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MICRO-LOCAL STRUCTURE AND TWO KINDS OF WAVELET
CHARACTERIZATIONS ABOUT THE GENERALIZED HARDY SPACES

Tao Qian and Qi-Xiang Yang

Abstract. In this paper, we prove two kinds of wavelet characterizations of
the predual spaces of the Morrey spaces through considering some micro-local
quantities of the predual spaces.

1. INTRODUCTION

In chapter 5 of the celebrated book [13], Y. Meyer commented that B. Maurey
did the pioneer work on the relation of the Hardy space H1 and the L1 unconditional
convergence in [12]. L. Carleson [2] and P. Wojtaszczyk [21] also found some uncon-
ditional basis to establish such relation. According to the idea of Y. Meyer, through
the wavelet characterization without a family of Borel measures, we can establish
roughly the following: For function f in the Hardy space H1, ‖f‖H1 is equivalent to

‖f‖L1 +
n∑

i=1
‖Rif‖L1 where Rif is the Riesz transform of function f . Y. Meyer used

several sections to prove such wavelet characterizations. In this paper, we consider the
generalized Hardy spaces, viz., the predual spaces of the Sobolev type Morrey spaces.
We start by giving the definition of the Sobolev type Morrey spaces. For s ∈ R,

denote by fs,Q = |Q|−1
∫
Q(−Δ)

s
2 f(x)dx the mean value of the function (−Δ)

s
2 f on

the cube Q. For α ≥ 0, s ∈ R, 1 ≤ p < ∞, let

Bα,s,p,Qf = |Q|α
n (|Q|−1

∫
Q
|(−Δ)

s
2 f(x)− fs,Q|pdx)

1
p .

We denote also Bα,p,Qf = Bα,0,p,Qf . The Morrey spaces Mα,s,p and the vanishing
Morrey spaces M0

α,s,p are defined as follows.
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Definition 1. Let Ξ be the set of all the cubes. Define
(i) f ∈ Mα,s,p, if sup

Q∈Ξ
Bα,s,p,Qf < ∞.

(ii) f ∈ M0
α,s,p, if sup

Q∈Ξ
Bα,s,p,Qf < ∞ and lim

Q∈Ξ,|Q|→0 or ∞
Bα,s,p,Qf = 0.

The classical Morrey spaces Mα,p = Mα,0,p were introduced in 1938 to study
certain partial differential equations. The BMO space was introduced by F. John and
L. Nirenberg in 1961. See [9] and [15]. If α = s = 0, then, for 1 ≤ p < ∞,
different p produce the same space: M0,0,p = BMO and M0

0,0,p = V MO. We know
that (V MO)′ = H1 and (H1)′ = BMO. See [7] and [9]. If pα = n, then, modulo
polynomials, they become the classical Sobolev spaces. Mα,0,p = Lp. If 1 ≤ p < n

α ,
thenMα,s,p are different from each other for all different triples (α, s, p). These spaces
are different from the spaces discussed in the celebrated book of Triebel [20]. Further,
if we replace |Q|α

n by some positive function φ(|Q|), we get Mφ,p. It is shown in [30]
that there exists a large collection Mφ,1 that have no unconditional basis.
The Q spaces Qα = Mα,α,2 were introduced by R. Aulaskari, J. Xiao and R. H.

Zhao. The Q spaces come from the complex analysis, and were extended to IRn by M.
Essen, S. Janson, L. Z. Peng and J. Xiao. Now many authors are interesting in studying
the Q spaces, see [1, 3, 6, 8, 16, 23] and the references therein. Ignoring a difference
of fractional differential, Wu-Xie [23], Xiao [24], Peng-Yang [16, 26] proved that Q
spaces are in fact Morrey spaces in view of complex analysis, real analysis and wavelet
theory, respectively. Q. X. Yang generalized Q spaces to Ṁ s,q

p by wavelets. See §5.5
of [26]. D. C. Yang and many researchers studied systematically the properties of the
Besov type Morrey spaces, the Triebel-Lizorkin type Morrey spaces and other spaces.
For an overview, we refer the readers to [4, 17, 27, 28, 31, 32].
In the famous paper [7], C. Fefferman and E. M. Stein proved that the BMO

space is the dual space of the Hardy space H1. The classical Hardy spaces play an
important role in harmonic analysis and PDE. See also [7, 13, 19] and the references
therein. The predual spaces of Morrey spaces have a special micro-local structure. E.
A. Kalita found some predual spaces by using a family of Borel measures in 1998.
Afterwards, the predual of Morrey spaces were studied extensively by various skills.
See [3, 5, 10, 16, 23, 25, 31, 32].
The classical Hardy spaces are special Triebel-Lizorkin spaces. The generalized

Hardy spaces are neither Besov spaces nor Triebel-Lizorkin spaces. The generalized
Hardy spaces have a very different micro-local structure.
(i) For the classical Hardy spaces, the micro-local structure does not play an explicit
role. When we consider the micro-local structure of the generalized Hardy spaces,
we found that, the high frequency part and the low frequency part make different
contributions to the norm.

(ii) For the generalized Hardy spaces, D. C. Yang and W. Yuan used a group of Borel
measures to get some wavelet characterizations. But for the Hardy space H1,
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the L1 unconditional convergence produces a wavelet characterization without
involving a family of Borel measures. See [13] and [25].

In this paper, we obtain two kinds of wavelet characterizations through considering
three kinds of micro-local quantities of the generalized Hardy spaces. To stress on the
main idea, we consider only the cases p = 2, s = 0 and 0 < 2α < n in the two last
sections of this paper. For simplicity, we denote Mα = Mα,0,2 and M0

α = M0
α,0,2.

There have been many methods to determine whether a distribution f belongs to the
generalized Hardy spaces. For example, G. Dafni and J. Xiao [5] used the Hausdorff
capacity relative to the Careleson measure. Another method is to use the classical
atomic decomposition idea like what C. Fefferman and E. M. Stein did in [7]. See
[11] and [26]. Such obtained predual spaces are Banach spaces. But we did not know
how to use these ideas to get the wavelet characterization of the predual spaces of the
Morrey spaces. W. Yuan, W. Sickel and D. C. Yang adopted a family of Borel measure
to determine whether a function belongs to the predual spaces or not. The induced
norm shows that the predual spaces are only pseudo-Banach spaces, see [10, 25] and
[32].
We introduce a new method to study the generalized Hardy spaces in this paper.

The word ‘micro-local ’ appeared first in the study of PDE, we borrow this idea to
study the predual spaces. Roughly speaking, we consider the functions concentrated
in a compact set, whose frequencies concentrated in a band. But, the micro-local
information of a distribution can reflect in its global information.
This paper contains three main results for the generalized Hardy spaces. The

first one, proceeded in §3, concerns the micro-local quantities of distributions, which
manifests the micro-local structure of the generalized Hardy spaces. The second result
is to give a wavelet characterization by the micro-local quantities. The third result is to
give a wavelet characterization of the functions in the generalized Hardy spaces through
a group of L1 functions defined by the absolute values of their wavelet coefficients.
The last two results will be given in §4.

2. WAVELET PRELIMINARIES

In this section, we present some preliminaries on wavelets, functions and operators
concerned in this paper.

2.1. Wavelets and Sobolev spaces

In this paper, we use the real-valued tensor product wavelets; which can be Meyer
wavelets or Daubechies wavelets. To simplify the notations, we use also 0 to denote
the zero vector (0, · · · , 0) in R

n. Let Φ0(x) be the scale function in the wavelet
terminology. Let En = {0, 1}n\{0}. For ε ∈ En, let Φε(x) be the wavelet functions, cf
[13, 22] and [26]. Let m be a sufficiently large integer such that m > 8n and letM be
an integer depending on m. For ε ∈ {0, 1}n, we suppose that our Daubechies wavelets
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Φε(x) belong to Cm
0 ([−2M , 2M ]n); further, for ε ∈ En, Φε(x) have all the vanishing

moments from the order 0 to the order m−1. ∀ε ∈ {0, 1}n, j ∈ Z, k ∈ Z
n, we denote

Q = Qj,k =
n∏

s=1
[2−jks, 2−j(ks + 1)] and Φε

Q(x) = Φε
j,k(x) = 2

jn
2 Φε(2jx − k). Let

Ω = {Qj,k, j ∈ Z, k ∈ Z
n} and Λn = {(ε, j, k), ε ∈ En, j ∈ Z, k ∈ Z

n}.
For 1 < p < ∞, we denote by p′ the conjugate index satisfying 1

p + 1
p′ = 1.

For 1 < p < ∞, r ∈ R, we know that the dual space of the Sobolev space W r,p

is W−r,p′ , see [13, 20] and [26]. For any function f(x), we denote, in this paper,
f ε
j,k = 〈f, Φε

j,k〉, ∀ε ∈ {0, 1}n, j ∈ Z, k ∈ Zn. Let χ(x) be the character function on
the unit cube [0, 1]n. The above wavelets can characterize the Sobolev spaces W r,p

and the Hardy space H1, see [13, 26] and [29]:

Lemma 2.1. Given 1 < p < ∞ and |r| < m. For any function g(x) =∑
(ε,j,k)∈Λn

gε
j,kΦ

ε
j,k(x), we have

g(x)=
∑

(ε,j,k)∈Λn

gε
j,kΦ

ε
j,k(x) ∈ W r,p⇔‖( ∑

(ε,j,k)∈Λn

22j(r+n
2
)|gε

j,k|2χ(2jx − k))
1
2 ‖Lp <∞.

g(x) =
∑

(ε,j,k)∈Λn

gε
j,kΦ

ε
j,k(x) ∈ H1 ⇔ ‖( ∑

(ε,j,k)∈Λn

2nj|gε
j,k|2χ(2jx − k))

1
2‖L1 < ∞.

2.2. Calderón-Zygmund operators

We introduce now some preliminaries about the Calderón-Zygmund operators, see
[13] and [19]. Let K(x, y) be a smooth function for x �= y such that there exists a
sufficiently large N0 ≤ m satisfying that

|∂α
x ∂β

y K(x, y)| ≤ C|x − y|−(n+|α|+|β|), ∀|α|+ |β| ≤ N0.

A linear operator T is said to be a Calderón-Zygmund operator if it is continuous from
C1(Rn) to (C1(Rn))′ with the kernel K(x, y) where

Tf(x) =
∫

K(x, y)f(y)dy

such that Txα = T ∗xα = 0, ∀α ∈ Nn and |α| ≤ N0. Such Calderón-Zygmund
operator was denoted by T ∈ CZO(N0).
Taking into account that K(x, y) may have high singularities for x = y, the kernel

K(·, ·) is only a distribution in S ′(R2n). ∀(ε, j, k), (ε′, j ′, k′) ∈ Λn, let aε,ε′
j,k,j′,k′ =

〈K(·, ·),Φε
j,kΦ

ε′
j′,k′〉. If T is a Calderón-Zygmund operator, then its kernel K(·, ·) and

the related coefficients satisfy the following relations, see [13, 14] and [26]:



Micro-local Structure and Generalized Hardy Spaces 1043

Lemma 2.2. (i) If T ∈ CZO(N0), then the coefficients aε,ε′
j,k,j′,k′ satisfy the fol-

lowing condition:

|aε,ε′
j,k,j′,k′ | ≤ C2−|j−j′ |( n

2
+N0)

(
2−j + 2−j′

2−j + 2−j′ + |k2−j − k′2−j′ |

)n+N0

,

∀(ε, j, k), (ε′, j ′, k′) ∈ Λn.

(ii) If aε,ε′
j,k,j′,k′ satisfy the above condition (i), then

K(·, ·) =
∑

(ε,j,k),(ε′,j′,k′)∈Λn

aε,ε′
j,k,j′,k′Φε

j,kΦε′
j′,k′

in the distribution sense. Further, for any small positive real number δ, T ∈ CZO(N0−
δ).

To end this subsection, we recall a variant result for the continuity of the Calderón-
Zygmund operators on the Sobolev spaces (also see [13, 14, 16] and [19]). For all
(ε, j, k) ∈ Λn, denote g̃ε

j,k =
∑

(ε′,j′,k′)∈Λn

aε,ε′
j,k,j′,k′gε′

j′,k′ , we have

Lemma 2.3. If s > |r|, 1 < p < ∞ and ∀ (ε, j, k), (ε′, j ′, k′) ∈ Λn,

|aε,ε′
j,k,j′,k′ | ≤ C2−|j−j′ |( n

2
+s)(

2−j + 2−j′

2−j + 2−j′ + |k2−j − k′2−j′ | )
n+s,

then
∫
(
∑

2j(n+2r)|g̃ε
j,k|2χ(2jx − k))

p
2 dx ≤ C

∫
(
∑

2j(n+2r)|gε
j,k|2χ(2jx − k))

p
2 dx.

2.3. From wavelet characterization of Morrey spaces to generalized Hardy spaces

For |s| < m, for any function f(x) =
∑
ε,j,k

f ε
j,kΦε

j,k(x) and for any dyadic cube Q,

let
Cα,s,Qf = |Q|α

n
− 1

2 (
∑

Qj,k⊂Q

22js|f ε
j,k|2)

1
2 .

If s = 0, we denote Cα,Qf = Cα,0,Qf . By the wavelet characterization of the Sobolev
spaces W s,2, we get the following wavelet characterization of the Morrey spaces, cf
[32]:

Proposition 1. If 0 < α < n
2 and |s| < m, then

(i) f(x) =
∑

(ε,j,k)∈Λn

f ε
j,kΦε

j,k(x) ∈ Mα,s,2 ⇔ sup
Q∈Ω

Cα,s,Qf < ∞.
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(ii) f(x) =
∑

(ε,j,k)∈Λn

f ε
j,kΦε

j,k(x) ∈ M0
α,s,2 ⇔

sup
Q∈Ω

Cα,s,Qf < ∞ and lim
Q∈Ω,|Q|→0 or ∞

Cα,s,Qf = 0.

According to the lemma 2.1 and the above proposition 1, we can identify a function
f(x) =

∑
(ε,j,k)∈Λn

f ε
j,kΦ

ε
j,k(x) with the sequence {f ε

j,k}(ε,j,k)∈Λn
. In this paper, we did

not distinguish f(x) with the sequence {f ε
j,k}(ε,j,k)∈Λn

sometimes.
Peng and Yang used atoms to define the predual spaces of the Q spaces in [26]

like what Fefferman and Stein did for the classical Hardy spaces in [7]. Below we
introduce the standard atoms, the wavelet atoms and the relative generalized Hardy
space:

Definition 2. (i) A distribution g(x) is an (α, s, 2)−atom on a cubeQ, if ‖(−Δ)−
s
2

g‖L2 ≤ |Q|− 1
2
+α

n , suppg(x) ⊂ Q, and
∫

xαg(x)dx = 0, ∀|α| ≤ |s| in the distribution
sense.
(ii) A distribution f(x) belongs to the Hardy space Hα,s,2, if f(x) =

∑
u

λugu(x)

where {λu} ∈ l1 and gu(x) are (α, s, 2)−atoms.

Definition 3. (i) A distribution g(x) =
∑

ε,Qj,k⊂Q

gε
j,kΦ

ε
j,k(x) is an (α, s, 2)−wavelet

atom on a dyadic cube Q, if (
∑
ε,j,k

2−2js|gε
j,k|2)

1
2 ≤ |Q|α

n
− 1

2 .

(ii) A distribution f(x) belongs to the Hardy space Hα,s,2
w , if f(x) =

∑
u

λugu(x),

where {λu} ∈ l1 and gu(x) are (α, s, 2)−wavelet atoms.
These two kinds of atomic spaces Hα,s,2 and Hα,s,2

w are, in fact, identical; further
Calderón-Zygmund operators are continuous from Hα,s,2 to Hα,s,2, see [16, 30] and
[32]. In fact,

Proposition 2. If 0 < α < n
2 , |s| < N0 ≤ m, then

(i) Hα,s,2 = Hα,s,2
w .

(ii) f(x) ∈ Hα,s,2 ⇔ (−Δ)
s
2 Hα,0,2.

(iii) Any Calderón-Zygmund operators T ∈ CZO(N0) is continuous from Hα,s,2

to Hα,s,2.

For a function space A, we denote by (A)′ the dual space of A. Applying the same
ideas in [16, 18] and [32], we get the following duality:
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Proposition 3. If 0 ≤ α < n
2 and |s| < m, then

(i) (Hα,s,2)′ = Mα,s,2.
(ii) (M0

α,s,2)
′ = Hα,s,2.

To stress on the main ideas, we assume that s = 0 in the rest of this paper and
consider only Hα,2 = Hα,0,2.

3. MICRO-LOCAL QUANTITIES FOR Hα,2

If α = 0, then H0,2 = H1; and if α = n
2 , then modulo constant, H

n
2
,2 = L2. The

norms of the relative function spaces depend only on the Lp(l2)-norms of function series
{fj = Qjf}j∈Z, p = 1, 2, where the support of the Fourier transform of fj is contained
in some ring of size 2j . But for 0 < α < n

2 , the relative wavelet characterization
depends on both the Fourier frequency information and the local information in a self-
correlation way.
The word ‘micro-local’ was first introduced in the PDE problems. Although our

ideas in this paper is a little different from the original one, it is similar in some sense.
This is the reason we borrow this word. First, we use mathematic methods to study
the conditional maximum value problem for non negative sequence in §3.1. Then we
will use the result obtained in §3.1 to obtain the micro-local quantities in §3.2.
3.1. Conditional maximum value for non-negative sequence

For u ∈ N, we denote

Λu,n =
{

0, 1, · · · , 2u − 1
}n

and Gu,n =
{

(ε, s, v), ε ∈ En, 0 ≤ s ≤ u, v ∈ Λs,n

}
.

∀j ∈ Z, k ∈ Z
n, t ∈ N and sequence g̃t

j,k = {gε
j+s,2sk+u}(ε,s,u)∈Gt,n

, we define

Definition 4. {gε
j+s,2sk+u}(ε,s,u)∈Gt,n

is a non negative sequence, if

(3.1) gε
j+s,2sk+u ≥ 0, ∀ (ε, s, u) ∈ Gt,n.

For a non-negative sequence g̃t
j,k, we would like to find the maximum value of the

following quantities:

(3.2) τf t
j,k,g̃t

j,k
=

∑
(ε,s,u)∈Gt,n

f ε
j+s,2sk+ugε

j+s,2sk+u,

where f t
j,k = {f ε

j+s,2sk+u}(ε,s,u)∈Gt,n
is a non-negative sequence satisfying the follow-
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ing
∑

0≤s≤t

2ns restrict conditions

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(n−2α)(j+t)
∑

ε∈En

(f ε
j+t,2tk+u)2 ≤ 1, ∀u ∈ Λt,n;

2(n−2α)(j+t−1)
∑

(ε,s,v)∈G1,n

(f ε
j+t−1+s,2s(2t−1k+u)+v)2 ≤ 1, ∀u ∈ Λt−1,n;

2(n−2α)(j+t−2)
∑

(ε,s,v)∈G2,n

(f ε
j+t−2+s,2s(2t−2k+u)+v)2 ≤ 1, ∀u ∈ Λt−2,n;

· · · ≤ 1, · · · ;
2(n−2α)j

∑
(ε,s,v)∈Gt,n

(f ε
j+s,2sk+v)

2 ≤ 1.

There exist (2n − 1)
∑

0≤s≤t
2ns elements in Gt,n, so f t

j,k is a sequence of (2n −
1)

∑
0≤s≤t

2ns components.

Definition 5. ∀j ∈ Z, k ∈ Zn, t ∈ N, we call f t
j,k = {f ε

j+s,2sk+u}(ε,s,u)∈Gt,n
∈

F t
j,k, if f t

j,k is a non-negative sequence satisfying condition (3.3).

According to the basic results in mathematical analysis, we have:

Theorem 1. Given 0 ≤ α < n
2 and t ≥ 0. For j ∈ Z, k ∈ Z

n and for any
non-negative sequence g̃t

j,k = {gε
j+s,2sk+u}(ε,s,u)∈Gt,n

, there exists at least a sequence
f̄ t
j,k = {f̃ ε

j+s,2sk+u}(ε,s,u)∈Gt,n
∈ F t

j,k such that

τf̄ t
j,k,g̃t

j,k
= max

f t
j,k∈F t

j,k

τf t
j,k,g̃t

j,k
.

Proof. The (2n−1)
∑

0≤s≤t
2ns quantities f ε

j+s,2sk+u, (ε, s, u) ∈ Gt,n of the sequence

f t
j,k are restricted in a closed domain, so the conclusion is obvious.

3.2. Micro-local quantities in Hα,2(Rn)

Applying the proposition 3, to determine whether a function g(x) =
∑

(ε,j,k)∈Λn

gε
j,kΦ

ε
j,k(x) belongs to a given generalized Hardy space Hα,2(Rn), we consider the

actions of f ∈ M0
α(Rn) on g, where sup

Q∈Ω
Cα,s,Qf ≤ 1. The above sup of Cα,Qf

is taken for all Q ∈ Ω, we can not manifest the real structure of g(x). Hence we
localize g(x) by restricting its wavelet coefficients gε

j,k such that Qj,k are contained in
the dyadic cube Q, then we limit the range of frequencies by limiting the number of j.
In fact, we consider the function

(3.4) gt,Q(x) =:
∑

Qj,k⊂Q:− log2 |Q|≤nj≤nt−log2 |Q|
gε
j,kΦ

ε
j,k(x).
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For such a gt,Q, the number of (ε, j, k) such that gε
j,k �= 0 is at most (2n−1)

∑
0≤s≤t

2ns.

In this section, we study the micro-local functions gt,Q in Hα,2(Rn) and obtain its
three micro-local quantities. For all t, j ∈ Z, k ∈ Z

n and t ≥ 0, we consider the series
gt
j,k = {gε

j+s,2sk+v , ε ∈ En, 0 ≤ s ≤ t, v ∈ Λs,n}. Denote
(3.5) gt

j,k(x) =
∑

(ε,s,u)∈Gt,n

gε
j+s,2sk+uΦε

j+s,2sk+u(x).

Because there is a one-to-one relation between the sequence gt
j,k and the function

gt
j,k(x), sometimes, we do not distinguish them.
To simplify the notations, we suppose that our functions are real-valued. For two

functions f(x) =
∑

(ε,j,k)∈Λn

f ε
j,kΦε

j,k(x) and g(x) =
∑

(ε,j,k)∈Λn

gε
j,kΦ

ε
j,k(x), if 〈f(x), g(x)〉

and
∑

(ε,j,k)∈Λn

f ε
j,kgε

j,k are well defined, then we have

(3.6) τf,g =: 〈f(x), g(x)〉=
∑

(ε,j,k)∈Λn

f ε
j,kgε

j,k.

For the given function gt
j,k, according to the equation (3.6), we can restrict f to the func-

tion f t
j,k(x) =

∑
(ε,s,u)∈Gt,n

f ε
j+s,2sk+uΦε

j+s,2sk+u(x) with ‖f t
j,k‖M0

α
≤ 1. For f t

j,k(x),

the number of (ε, s, u) such that f ε
j+s,2sk+u �= 0 is at most (2n − 1)

∑
0≤s≤t

2ns. That is

to say, applying the equation (3.6), we transfer the problem to finding out the supremum

on an infinitely many restricted conditions to a maximum value problem on
t∑

s=0
2ns

restricted conditions on the series of quantities {f ε
j+s,2sk+u}(ε,s,u)∈Gt,n

.

Based on the theorem 1, we begin to consider the micro-local quantities of gt
j,k in

Hα,2(Rn).

Theorem 2. Given 0 < α < n
2 and t ≥ 0. For gt

j,k defined in (3.5), if ‖gt
j,k‖Hα,2 >

0, then
(i) There exists a function Sf t

j,k(x) =
∑

(ε,s,u)∈Gt,n

St
jf

ε
j+s,2sk+uΦε

j+s,2sk+u(x) with

‖St
jf

t
j,k‖M0

α
≤ 1 satisfying that

max
‖f‖

M0
α
≤1

τf,gt
j,k

=
∑

(ε,s,u)∈Gt,n

St
jf

ε
j+s,2sk+ugε

j+s,2sk+u.

(ii) There exists a positive number P t
j g

t
j,k which is defined by the absolute values of

wavelet coefficients of gt
j,k such that

P t
j g

t
j,k = ‖gt

j,k‖Hα,2 = max
‖f‖

M0
α
≤1

τf,gt
j,k

= τSf t
j,k,gt

j,k
.
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(iii) There exists a sequence {Qt
jg

ε
j,k}ε∈En such that

∑
ε∈En

Qt
jg

ε
j,kΦ

ε
j,k(x) has the same

Hα,2-norm as gt
j,k does.

Proof. For any sequence gt
j,k = {gε

j+s,2sk+u}(ε,s,u)∈Gt,n
, denote g̃t

j,k

= {|gε
j+s,2sk+u|}(ε,s,u)∈Gt,n

. Denote Gt,j,k
g = {(ε, s, u) ∈ Gt,n, gε

j+s,2sk+u �= 0}.
For f t

j,k(x) =
∑

(ε,s,u)∈Gt,n

f ε
j+s,2sk+uΦε

j+s,2sk+u(x), define

f ε,g
j+s,2sk+u =

{ |f ε
j+s,2sk+u| · |gε

j+s,2sk+u|−1gε
j+s,2sk+u, (ε, s, u) ∈ Gt,n;

0, (ε, s, u) /∈ Gt,n.

We denote by F t,j,k
g the set{

f t
j,k : f t

j,k(x) =
∑

(ε,s,u)∈Gt,n

f ε,g
j+s,2sk+uΦε

j+s,2sk+u(x) and ‖f t
j,k‖M0

α
≤ 1
}
.

According to the wavelet characterization of M0
α, we have

‖f t
j,k‖M0

α
≤ 1 implies f̃ t

j,k ∈ F t
j,k.

Hence, by the equation (3.6),

(3.7) max
‖f t

j,k‖M0
α≤1

τf t
j,k,gt

j,k
= max

f t
j,k∈F

t,j,k
g

τf t
j,k,gt

j,k
= max

f̃ t
j,k∈F

t,j,k
g

τf̃ t
j,k,g̃t

j,k
= max

f̃ t
j,k∈F t

j,k

τf̃ t
j,k,g̃t

j,k
.

According to the theorem 1, there exists at least one sequence f̄ t
j,k =

{f̃ ε
j+s,2sk+u}(ε,s,u)∈Gt,n

∈ F t
j,k such that

(3.8) τf̄ t
j,k,g̃t

j,k
= max

f t
j,k∈F t

j,k

τf t
j,k,g̃t

j,k
.

Let Sf t
j,k(x) =

∑
(ε,s,u)∈Gt,n

St
jf

ε
j+s,2sk+uΦε

j+s,2sk+u(x) where

St
jf

ε
j+s,2sk+u =

{
f̃ ε
j+s,2sk+u|gε

j+s,2sk+u|−1gε
j+s,2sk+u, ∀(ε, s, u) ∈ Gt,n;

0, ∀(ε, s, u) /∈ Gt,n.

According to the equations (3.6) and (3.7), Sf t
j,k(x) satisfies (i).

Let P t
j gt

j,k = τf̄ t
j,k,g̃t

j,k
. According to the equations (3.7) and (3.8), P t

j gt
j,k is defined

by the absolute value of gt
j,k. By applying the equations (3.6), (3.7) and (3.8), the

proposition 3 implies that P t
j g

t
j,k satisfies (ii).

Denote

Qt
jg

ε
j,k =

⎧⎪⎨
⎪⎩

2( n
2
−α)j−n

2 P t
j g

t
j,k, if

∑
ε∈En

|gε
j,k| = 0;

2( n
2
−α)jP t

j g
t
j,k(

∑
ε∈En

|gε
j,k|2)−

1
2 gε

j,k, if
∑

ε∈En

|gε
j,k| �= 0.
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According to the equation (3.6) and the wavelet characterization of M0
α, we know that

{Qt
jg

ε
j,k}ε∈En satisfies the condition (iii).

Remark 3.1. For α = 0 and α = n
2 , if we deal with similarly P t

j g
t
j,k, then:

(1) For α = 0, according to the wavelet characterization of the Hardy space H1 in
[13], the quantity P t

j gt
j,k is equivalent to∥∥∥( ∑

(ε,s,u)∈Gt,n

2n(j+s)|gε
j+s,2sk+u|2χ(2j+sx − 2sk − u)

) 1
2
∥∥∥

L1
.

(2) For α = n
2 , P

t
j g

t
j,k can be written as (

∑
(ε,s,u)∈Gt,n

|gε
j,k|2)

1
2 .

But for 0 < α < n
2 , P t

j g
t
j,k can not be written in an explicit way. Luckily, the

sequence {Qt
jg

ε
j,k}ε∈En, the function Sf t

j,k =
∑

(ε,s,u)∈Gt,n

St
jf

ε
j+s,2sk+uΦε

j+s,2sk+u(x)

and the quantity P t
j g

t
j,k indicate the micro-local characters. They include both the

frequency structure information and the local structure information. In the last section,
{Qt

jg
ε
j,k}ε∈En and P t

j g
t
j,k will be repeatedly used to the wavelet characterization. On

one hand, we show that the micro-local quantities result in the global information of
functions inHα,2(Rn) in §4.1. On other hand, we prove that the functions inHα,2(Rn)
can be characterized by a group of L1 functions defined by the absolute values of their
wavelet coefficients in §4.2.

4. WAVELET CHARACTERIZATION OF GENERALIZED HARDY SPACES

In the chapter 7 of [32], W. Yuan, W. Sickel and D. C. Yang used a family of
Borel measures, to determine whether or not a function belongs to the pre-dual spaces
of generalized Morrey spaces. They got some wavelet characterization, but the predual
spaces equipped with the induced norm are only pseudo-Banach spaces. In [16] and
[26], L. Z. Peng and Q. X. Yang characterized Hα,α,2 with atomic decomposition like
what C. Fefferman and E. M. Stein did in [7] and obtained induced Banach spaces.
But their methods cannot be used to characterize these spaces with wavelet coefficients.
B. Maurey inaugurate the study about the relation between Hardy space H1 and the

L1 unconditional convergence in [12]. L. Carleson [2] and P. Wojtaszczyk [21] make
also their contributions. In chapter 5 of [13], Y. Meyer showed also the importance of a
wavelet characterization without involving a family of Borel measures. It is natural to
seek some wavelet characterizations without involving a family of Borel measures for
generalized Hardy spaces. Comparing to the classical Hardy spaces, we have seen in the
above section that the generalized Hardy spaces have a different micro-local structure.
Thanks to the study in the above section, the task of this section is to establish two
kinds of characterizations of functions f in the generalized Hardy spaces Hα,2 by the
absolute values of its wavelet coefficients. The induced spaces are Banach spaces.
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4.1. Micro-local information results in global information

For s ∈ Z, N ∈ N, denote Ωs,N = {Q ∈ Ω : |Q| ≥ 2−sn, Q ⊂ [−2N−s, 2N−s]n};
for 0 ≤ t ≤ N and for m ∈ Zn, denote Ωt,N

s,m = {Q′ ∈ Ω : 2−sn ≤ |Q′| ≤
2(t−s)n, Q′ ⊂ Qs−N,m}. ∀s, N ∈ Z, m ∈ Z

n and 0 ≤ t ≤ N , denote g
t,N
s,m(x) =∑

Qj,k∈Ωt,N
s,m

gε
j,kΦ

ε
j,k(x), gN

s−N,m(x) = gN,N
s,m (x) and f t,N

s,m(x) =
∑

Qj,k∈Ωt,N
s,m

f ε
j,kΦ

ε
j,k(x). We

know that Ωs,N =
⋃

m∈{−1,0}n

ΩN,N
s,m . For PN

s−N gN
s−N,m defined in the theorem 2, denote

Ps,Ng =
∑

m∈{−1,0}n

PN
s−NgN

s−N,m. We define

Definition 6. We call g(x) ∈ P 1
α, if

C1,g = sup
s∈Z,N∈N

Ps,Ng < ∞.

Then we have:

Theorem 3. If 0 < α < n
2 , then P 1

α = Hα,2.

Proof. Applying the proposition 3, it is sufficient to prove (M0
α)′ = P 1

α.
(A) We transform first the problem to considering the micro-local functions. If

g(x) =
∑
ε,j,k

gε
j,kΦ

ε
j,k(x) ∈ (M0

α)′, then ∀f(x) =
∑
ε,j,k

f ε
j,kΦε

j,k(x) ∈ M0
α, we know that

τg = sup
‖f‖Qα≤1

|τf,g| < ∞. ∀s, N ∈ Z and N ≥ 0, denote gs,N (x) =
∑

Qj,k∈Ωs,N

gε
j,k

Φε
j,k(x). Since (M0

α)′ = Hα,2, we know that, if s, N → +∞, then gs,N(x) → g(x) in
the norm of Hα,2. Denote fs,N (x) =

∑
Qj,k∈Ωs,N

f ε
j,kΦε

j,k(x); by (3.6), we know that

τgs,N
= sup

‖f‖Qα≤1

|τf,gs,N
| = sup

‖fs,N‖Qα≤1

|τfs,N ,gs,N
| → τg.

(B) For gs,N(x), we prove that its P 1
α norm is equivalent to its Hα,2 norm. In fact,

according to the proposition 3 and the theorem 2, we have

‖gN
s−N,m(x)‖(M0

α)′ = ‖gN
s−N,m(x)‖Hα,2 = PN

s−N gN
s−N,m.

Since we have gs,N (x) =
∑

m∈{−1,0}n

gN,N
s,m (x). Hence

‖gs,N(x)‖Hα,2 ≤
∑

m∈{−1,0}n

‖gN
s−N,m(x)‖Hα,2 ≤ ‖gs,N‖P 1

α
.

According to the wavelet characterization of M0
α and the equation (3.6), we have

‖gs,N‖(M0
α)′ = max

m∈{−1,0}n
‖gN

s−N,m(x)‖(M0
α)′ ≥ 2−n‖gs,N‖P 1

α
.
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Hence ‖gs,N‖Pα ∼ ‖gs,N‖P 1
α
and (M0

α)′ = P 1
α.

4.2. Characterization by a group of L1 functions

In chapter 5 of the famous book [13], Y. Meyer proved the following fact. The
norm of functions in the Hardy space H1 can be characterized by the L1 norm of
some function defined by the absolute values of wavelet coefficients. The task of this
subsection is to show that the norm of each function g(x) in Hα,2 can characterized
by a group of L1 functions Ps,t,Ng(x).
We introduce first two lemmas.

Lemma 4.1. ([6]). For 0 < α < n
2 , Qα = Mα,α,2 ⊂ BMO.

By the fractional different differential and by the duality, we have

Lemma 4.2. (i) Mα = Mα,0,2 ⊂ BMO−α = {f : (−Δ)−
α
2 f ∈ BMO}.

(ii) Ḟα,2
1 = {f : (−Δ)

α
2 f ∈ H1} ⊂ Hα,2.

Now, we introduce some notations on the set of cubes. For s ∈ Z and N ∈ N,
denote Ωs,N = {Q ∈ Ω : 2−sn ≤ |Q| ≤ 2(N−s)n}; for 0 ≤ t ≤ N, m ∈ Z

n, Q =
Qs−N,m, denote Ωs,t,Q = Ωt,N

s,m = {Q′ ∈ Ω : 2−sn ≤ |Q′| ≤ 2(t−s)n, Q′ ⊂ Qs−N,m}.
It is easy to show that Ωs,N =

⋃
m∈Zn

ΩN,N
s,m .

We further define gs,N(x) =
∑

m∈Zn

gN
s−N,m(x), where

(4.1) gN
s−N,m(x) =

∑
Qj,k∈ΩN,N

s,m

gε
j,kΦ

ε
j,k(x).

We begin with the definition of the quantities g
ε,s,t,N
j,k .

(1) If t = 0 and j > s, then we denote gε,s,t,N
j,k = 0; if j = s, then we denote

gε,s,t,N
j,k = gε

j,k.

(2) For t ≥ 1, if j > s− t, then we denote gε,s,t,N
j,k = 0; if j < s− t, then we denote

gε,s,t,N
j,k = gε

j,k; if j = s − t, then we denote gε,s,t,N
j,k = Qt

jg
ε
j,k, where Qt

jg
ε
j,k is

defined in the theorem 2.

We denote gs,t,N(x) =
∑
ε,j,k

gε,s,t,N
j,k Φε

j,k(x) and set

(4.2) Ps,t,Ng(x) = (
∑

ε,Qj,k∈Ωs,N ,j≤s−t

2j(n+2α)|gε,s,t,N
j,k |2χ(2jx − k))

1
2 ,

(4.3) Qs,t,Ng = ‖2(s−t)α(
∑

ε,Qj,k∈Ωs,N ,j=s−t

2jn|gε,s,t,N
j,k |2χ(2jx − k))

1
2‖L1.

We define now the second kind of spaces.
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Definition 7. P 2
α = {g : sup

s∈Z,N∈N

min
0≤t≤N

‖Ps,t,Ng(x)‖L1 < ∞}.

We have

Theorem 4. If 0 < α < n
2 , then P 2

α = Hα,2.

Proof. According to the part (A) in the proof for the theorem 3, for g(x) =∑
ε,j,k

gε
j,kΦ

ε
j,k(x) ∈ Hα,2 and for any δ > 0, there exists τδ > 0 such that, for s >

τδ, N ≥ 2s, we have

(4.4) ‖gs,N (x)− g(x)‖Hα,2 +
∑

|m|>2n

‖gN
s−N,m(x)‖Hα,2 ≤ δ

and

(4.5)

8−n max
|m|≤2n

‖gN
s−N,m(x)‖Hα,2 − δ

≤ ‖gs,N (x)‖Hα,2 ≤
∑

|m|≤2n

‖gN
s−N,m(x)‖Hα,2 + δ.

By the construction of the above notations and using the theorem 2, we know that

(4.6) ‖gN
s−N,m(x)‖Hα,2 = Qs,N,NgN

s−N,m = ‖Ps,N,NgN
s−N,m(x)‖L1.

Furthermore

(4.7) ‖gs,t,N(x)‖Hα,2 ≤ ‖gs,t,N(x)‖
Ḟα,2

1
= ‖Ps,t,Ng(x)‖L1.

According to the above equations from (4.4) to (4.7), we finish the proof of the Theorem
4.2.
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