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RIEMANNIAN SUBMERSIONS FROM ALMOST HERMITIAN MANIFOLDS

Bayram Şahin

Abstract. We survey main results of holomorphic submersions, anti-invariant
submersions, slant submersions, semi-invariant submersions and semi-slant sub-
mersions defined on almost Hermitian manifolds. We also give an application
of Riemannian submersions on redundant robotic chains obtained by Altafini and
propose some open problems related to topics discussed in the paper.

1. INTRODUCTION

Riemannian submersions between Riemannian manifolds were studied by O’Neill
[24] and Gray [17]. Later such submersions were considered between manifolds en-
dowed with differentiable structures. As an analogue of holomorphic submanifolds,
Watson defined almost Hermitian submersions between almost Hermitian manifolds
and he showed that the base manifold and each fiber have the same kind of structure
as the total space, in most cases [37]. We note that almost Hermitian submersions
have been extended to the almost contact manifolds [12], locally conformal Kähler
manifolds[22] and quaternion Kähler manifolds [20] (see:[15] for details concern-
ing Riemannian submersions between Riemannian manifolds equipped with additional
structures of complex, contact, locally conformal or quaternion Kähler).
In [32], we introduced anti-invariant Riemannian submersions from almost Her-

mitian manifolds onto Riemannian manifolds as follows. Let M be a complex m−
dimensional almost Hermitian manifold with Hermitian metric gM and almost complex
structure J and N be a Riemannian manifold with Riemannian metric g

N
. Suppose that

there exists a Riemannian submersion F : M −→ N such that the integral manifold of
the distribution kerF∗ is anti-invariant with respect to J , i.e., J(kerF∗) ⊆ (kerF∗)⊥.
Then we say that F is an anti-invariant Riemannian submersion.
On the other hand, in [34], we introduced semi-invariant submersions from al-

most Hermitian manifolds onto Riemannian manifolds as a generalization of holo-
morphic submersions and anti-invariant submersions, then we studied the geometry of
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such maps. We recall that a Riemannian submersion F from an almost Hermitian
manifold(M, JM , gM ) with almost complex structure JM onto a Riemannian manifold
(N, g

N
) is called a semi-invariant submersion if the fibers have differentiable distri-

butions D and D⊥ such that D is invariant with respect to JM and its orthogonal
complementary distributionD⊥ is totally real distribution, i.e, J

M
(D⊥

p ) ⊆ (kerF∗p)⊥.

Obviously, almost Hermitian submersions and anti-invariant submersions are semi-
invariant submersions with D⊥ = {0} and D = {0}, respectively.
Recently, we also introduced the notion of slant submersions from almost Hermitian

manifolds onto arbitrary Riemannian manifolds[33] as follows: Let F be a Rieman-
nian submersion from an almost Hermitian manifold (M1, g1, J1) onto a Riemannian
manifold (M2, g2). If for any non-zero vector X ∈ Γ(kerF∗), the angle θ(X) between
JX and the space kerF∗ is a constant, i.e. it is independent of the choice of the point
p ∈ M1 and choice of the tangent vector X in kerF∗, then we say that F is a slant
submersion. In this case, the angle θ is called the slant angle of the slant submersion.
Moreover, Park and Prasad [29] defined semi-slant submersions from almost Her-

mitian manifolds as a generalization of slant submersions. They also investigated the
geometry of such submersions and gave many nice examples.
We note that Riemannian submersions have been studied widely in different fields.

In mathematical physics, in particular Kaluza-Klein theory, the general solution of a
recent model can be expressed in terms of harmonic maps satisfying Einstein equations.
However, a very general class of solutions is given by Riemannian submersions from
the extra dimensional space onto the space in which the scalar fields take values. One
can see details of this result in [15]. On the other hand, Einstein-Witten manifolds can
be considered as the total space of the principal S1− bundle over CP1 ×CP1. Wang
and Ziller [36] showed that the principal S1− bundle over a product of Kähler-Einstein
manifolds with positive first Chern class admits a totally geodesic Einstein metric that is
unique up to scalling. The metric is determined by the property that the projection onto
the base is a Riemannian submersion with totally geodesic fibers. Generalized Einstein-
Witten manifolds are quotient manifolds of S3 ×S5, where the S1− action is given by
((z, w), y) → ((eil1θz, eil2θw), eil1θy), here (z, w) ∈ S3 ⊆ C

2, y ∈ S5, l1, l2, k ∈ Z.
We note that generalized Einstein-Witten manifolds are important in unified theory.
Recently, Kennedy [21] investigated the existence of Einstein metrics on generalized
Einstein-Witten manifolds by using Riemannian submersions. Another application for
Riemannian submersions is statistical machine learning process. In [39], the authors
used Riemannian submersions to employ a class specific information into a manifold.
This can be viewed as a learning process in which the embedding is recovered from a
labelled graph. Thus, as input to the training step, the method takes a set of graphs,
whose nodes attributes are given by a set of vectors, and delivers, at output, a model
which can be used for embedding graphs which are not in the training set. Riemannian
submersions have been also used in medical imaging (as projections) [23], Statistical
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analysis on manifolds [4] and robotic theory[1] which will be explained in section 3.
In this paper, we gather results on Riemannian submersions from almost Hermitian

manifolds onto arbitrary Riemannian manifolds. Section 2 is devoted to the main
results of geometry of Riemannian submersions. The results of this section can be
found in [24]. Applications of Riemannian submersions are given in section 3. We
note that applications of Riemannian submersions in mathematical physics were given
in [6], [14] and [15] therefore here we give Altafini’s results about applications of
Riemannian submersions on redundant robotic chains as another application of such
maps. In section 4, we define holomorphic submersions and recall Watson’s result
on such submersions. In section 5, we define invariant Riemannian submersions from
almost Hermitian manifolds and show that although every holomorphic submersion
is an invariant Riemannian submersion, the converse is not true. In section 6, we
define anti-invariant submersions from almost Hermitian manifolds, give an example,
investigate the geometry of leaves of distributions and obtain the harmonicity of such
submersions. We also show that anti-invariant Riemannian submersions are useful for
obtaining decomposition theorems. In section 7, we introduce slant submersions, give
examples and investigate the main properties of such submersions. In section 8, we
define semi-invariant submersions, give examples and examine the geometry of such
submersions. Section 9 is devoted to the geometry of semi-slant submersions from
almost Hermitian manifolds onto Riemannian manifolds. Finally, in section 10, we
propose seven open problems to the readers.

2. RIEMANNIAN SUBMERSIONS

Riemannian submersions between Riemannian manifolds were studied by O’Neill
[24] and [17]. Later such submersions were considered between manifolds endowed
with (various) differentiable structures[15]. In this section we review basic information
for Riemannian submersions from [24] and [15]. We first recall the definition of
Riemannian submersions between Riemannian manifolds. Let (Mm, g

M
) and (Nn, g

N
)

be Riemannian manifolds, where dim(M) = m, dim(N ) = n and m > n. A
Riemannian submersion F : M −→ N is a surjective map of M onto N satisfying the
following axioms:

(S1) F has maximal rank.

(S2) The differential F∗ preserves the lenghts of horizontal vectors.

For each q ∈ N , F−1(q) is an (m − n) dimensional submanifold of M . The
submanifolds F−1(q), q ∈ N , are called fibers. A vector field on M is called vertical
if it is always tangent to fibers. A vector field on M is called horizontal if it is always
orthogonal to fibers. A vector field X on M is called basic if X is horizontal and F−
related to a vector field X∗ on N , i.e., F∗Xp = X∗F (p) for all p ∈ M . Note that we
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denote the projection morphisms on the distributions kerF∗ and (kerfF∗)⊥ by V and
H, respectively.
We recall the following lemma from [24].

Lemma 2.1. Let F : M −→ N be a Riemannian submersion between Riemannian
manifolds and X, Y be basic vector fields of M . Then

(a) g
M

(X, Y ) = g
N

(X∗, Y∗) ◦ F,

(b) the horizontal part [X, Y ]H of [X, Y ] is a basic vector field and corresponds to
[X∗, Y∗],i.e., F∗([X, Y ]H) = [X∗, Y∗],

(c) [V, X ] is vertical for any vector field V of kerF∗,
(d) (∇M

X Y )H is the basic vector field corresponding to ∇N

X∗Y∗.

The geometry of Riemannian submersions is characterized by O’Neill’s tensors T
and A defined for vector fields E, F on M by

(1) AEF = H∇HEVF + V∇HEHF

(2) TEF = H∇VEVF + V∇VEHF,

where ∇ is the Levi-Civita connection of g
M
.

It is easy to see that a Riemannian submersion F : M −→ N has totally geodesic
fibers if and only if T vanishes identically. For any E ∈ Γ(TM), TE and AE are
skew-symmetric operators on (Γ(TM), g) reversing the horizontal and the vertical
distributions. It is also easy to see that T is vertical, TE = TVE and A is horizontal,
A = AHE . We note that the tensor fields T and A satisfy

TUW = TW U, ∀U, W ∈ Γ(kerF∗)(3)

AXY = −AY X =
1
2
V [X, Y ],(4)

for X, Y ∈ Γ((kerF∗)⊥).
On the other hand, from (1) and (2) we have

∇V W = TV W + ∇̂V W(5)

∇V X = H∇V X + TV X(6)

∇XV = AXV + V∇XV(7)

∇XY = H∇XY + AXY(8)

for X, Y ∈ Γ((kerF∗)⊥)and V, W ∈ Γ(kerF∗), where ∇̂V W = V∇V W . If X is
basic, then H∇V X = AXV .
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We now state the following curvature relation between the base manifold and the
total manifold [24].

Theorem 2.1. For X, Y ∈ Γ((kerF∗)⊥), we have

gN (R
N
(X ′, Y ′)X ′, Y ′) = gM (R

M
(X, Y )X, Y )

+
3
4
gM ([X, Y ]

V
, [X, Y ]

V
),

where X ′ = F∗X, Y ′ = F∗Y . In other words, the sectional curvature in the base
manifold increases by the amount 3

4gM ([X, Y ]
V
, [X, Y ]

V
).

We now recall the notion of harmonic maps between Riemannian manifolds. Let
(M, gM) and (N, gN ) be Riemannian manifolds and suppose that ϕ : M −→ N is a
smooth mapping between them. Then the differential ϕ∗ of ϕ can be viewed a section
of the bundle Hom(TM, ϕ−1TN ) −→ M, where ϕ−1TN is the pullback bundle
which has fibers

(ϕ−1TN )p = Tϕ(p)N,

p ∈ M . Hom(TM, ϕ−1TN ) has a connection ∇ induced from the Levi-Civita con-
nection ∇M and the pullback connection. Then the second fundamental form of ϕ is
given by

(9) ∇ϕ∗(X, Y ) = ∇ϕ
Xϕ∗(Y ) − ϕ∗(∇M

X Y )

for X, Y ∈ Γ(TM), where ∇ϕ is the pullback connection. It is known that the second
fundamental form is symmetric. For a Riemannian submersion F , one can easily obtain

(∇F∗)(X, Y ) = 0

for X, Y ∈ Γ((kerF∗)⊥). A smooth map ϕ : (M, g
M

) −→ (N, g
N
) is said to be

harmonic if trace∇ϕ∗ = 0. On the other hand, the tension field of ϕ is the section
τ(ϕ) of Γ(ϕ−1TN ) defined by

(10) τ(ϕ) = divϕ∗ =
m∑

i=1

∇ϕ∗(ei, ei),

where {e1, ..., em} is the orthonormal frame on M. Then it follows that ϕ is harmonic
if and only if τ(ϕ) = 0, for details, see [2].

3. APPLICATIONS OF RIEMANNIAN SUBMERSIONS

Riemannian submersions have their applications in Kaluza-Klein theory [15], [6],
statistical machine learning process [39] medical imaging [23], statistical analysis on
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manifolds [4] and the theory of robotics [1]. In Kaluza-Klein theory, the general
solution of a recent model can be expressed in terms of harmonic maps satisfying
Einstein equations. However, a very general class of solutions is given by Riemannian
submersions from the extra dimensional space onto the space in which the scalar fields
take values. Applications of Riemannian submersions in Kaluza-Klein theory have been
given in details in the book [15] and papers [14] and [6]. Therefore, we do not repeat
applications of Riemannian submersions in Kaluza-Klein theory here. Of course it is
out of scope of this paper to mention all applications of Riemannian submersions, but
we will focus on applications of Riemannian submersions in redundant robotic chains
given in [1].

3.1. Preliminaries

A particle is an object with mass concentrated at a point. A rigid body is an object
with mass and volume. A free mechanical system is a collection P1, ..., PN of particles
and B1, ..., BN of rigid bodies which move independently of one another. To specify
the location of a particle, choose an inertial reference frame (Ospatial, {s1, s2, s3})
consisting of a spatial origin Ospatial and an orthonormal frame {s1, s2, s3} at Ospatial.
The position of the particle Pj is exactly determined by a vector rj ∈ R3 from Ospatial

to the location of Pj . The configuration of a free mechanical system is specified by a
point in

R3 × ...R3︸ ︷︷ ︸
NP copies

× (SO(3)× R3) × ...(SO(3)× R3)︸ ︷︷ ︸
N

B
copies

.

Robot manipulators can be regarded as open-loop link mechanisms consisting of
several links connected together by joints. Joints are typically rotary or linear. A
rotary joint is like a hinge and allows relative rotation between two links. A linear
joint allows a linear relative motion between two links. Each joint represents the
interconnection between two links. A configuration of a manipulator is a complete
specification of the location of every point on the manipulator. The set of all possible
configurations is called the configuration space. If we know the values for the joint
variables (i.e., the joint angle for revolute joints, or the joint offset for prismatic joints),
then it is straightforward to infer the position of any point on the manipulator, since
the individual links of the manipulator are assumed to be rigid, and the base of the
manipulator is assumed to be fixed.
As an example, for two link manipulator, a planar joint can be built from a revolute

joint attached to two independent prismatic joints. The motion of a planar joint is
restricted to SE(2), regarded as a 3− dimensional subgroup of SE(3).
Here we have

(SO(3)× R3) × (SO(3)× R3).

However, the actual configurations of the system are specified by the angles θ1 and θ2
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as shown in the figure. Each angle is measured by a point on the circle

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}.
Thus the configurations of this simple two link robot are specified by a point in S1×S1.

Fig. 1. Two-link planar manipulator:

An object is said to have n degrees-of-freedom (DOF) if its configuration can be
minimally specified by n parameters. Thus, the number of DOF is equal to the di-
mension of the configuration space. For a robot manipulator, the number of joints
determines the number DOF. A rigid object in three-dimensional space has six DOF:
three for positioning and three for orientation (e.g., roll, pitch and yaw angles). There-
fore, a manipulator should typically possess at least six independent DOF. With fewer
than six DOF the arm cannot reach every point in its work environment with arbitrary
orientation. Certain applications such as reaching around or behind obstacles may re-
quire more than six DOF. A manipulator having more than six links is referred to as
a kinematically redundant manipulator. The workspace of a manipulator is the total
volume swept out by the endeffector as the manipulator executes all possible motions.
The workspace is constrained by the geometry of the manipulator as well as mechan-
ical constraints on the joints. The workspace is often broken down into a reachable
workspace and a dexterous workspace. The reachable workspace is the entire set of
points reachable by the manipulator, whereas the dexterous workspace consists of those
points that the manipulator can reach with an arbitrary orientation of the end-effector.
Obviously the dexterous workspace is a subset of the reachable workspace, for details
see: [35] and [7].
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3.2. Forward kinematics map as an example of Riemannian submersions

This subsection is taken from a paper by Altafini [1] which may be consulted for
the details we can not discuss in this paper. The forward kinematics of a robot arm is
represented by the smooth map

(11)
ρ : Q → SE(3)

q = [q1, ..., qn] → g = ρ(q),

where SE(3) is the Lie group of rigid body motions in 3− dimensional space. Each
joint variable leaves on S or on R and therefore lies in the left/right invariant translation
of a one dimensional subgroup of SE(3). Hence their product Q is an n− dimensional
abelian group. The movements of the end-effector are the resulting of the composition
of rototranslatins of the n− one parameter joints. This can be represented as a product
of exponentials of the single one-degree of freedom screw motion. The interpration of
that method is the following. One fixes a coordinate system on Q and one on SE(3)
and identifies them through ρ . Now differentiating (11), we have

(12)
ρB∗ : TQ → TSE(3)

(q, q̇) → (g, gXρ(g)) = (g, gJb(q)q̇),

where q̇ corresponds to the velocity in coordinates q̇ = q̇ ∂
∂q .

Using the natural paralelism of an abelian group, instead of tangent bundle ρB∗ one
can consider the map between tangent space ρ∗, which is called the differential forward
kinematics

(13)
ρ∗ : TqQ → se(3)

q̇ → Xρ(g) = Jb(q)q̇,

where Jb is the Jacobian of the product of exponentials.
In joint space Q, it is possible to construct a positive definite and symmetric metric

M(q) by

(14) M(q) =
9∑

i=1

JT
i (q)MiJi(q),

where Mi is the quadratic form representing the generalized inertia tensor of the i− th
joint and Ji(q) is the R

6− velocity of the j− th joint (j ≤ i) which is referred to the
i− th link. Consequently Q is a Riemannian manifold.
Moreover the Levi-Civita connection determined by M is locally flat. For flat

manifolds, it is possible to construct an isometry

(15) ϕ : (Q, M(q)) −→ (Q̃, I)
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such that

(16)

< ˙̃q, ˙̃q >Q̃ = ϕT
∗ (q)ϕ∗(q)

= q̇T NT (q)N (q)q̇

= < q̇, q̇ >Q,

where N (q) is the Jacobian of the isometry. Then M(q) can be written as

(17) M(q) = N (q)TN (q).

Thus the metric of Q can be reduced to the identity.
Now assume the following condition:

R1 Assume that at q ∈ Q,rank(ρ∗(q)) = 6.
Since the dimension of SE(3) is 6, this assumption implies that we have a 6 degree

of freedom manipulator.
It is known that in SE(3), there is no ad-invariant Riemannian metric which im-

plies that there is no natural way of transporting vector fields between points of SE(3)
and that there is no natural concept of distance on SE(3). The two most common ap-
proaches to tackle this obstruction are: (1) Ad-invariant pseudo Riemannian structure,
(2) Double geodesic. The double geodesic method is based on discarding the group
structure of SE(3) and consider separately the bi-invariant metric of SO(3) and the
Euclidean metric of R3. The corresponding quadratic form is

(18) Mdg =
(

I 0
0 I

)
.

In fact, above quadratic form is special. One can choose a more general form, but
this will be enough for our aim. The Riemannian connection is defined by

(19) ∇̃gAi(gAj) = g∇̃AiAj = Γk
ijgAk

for all g ∈ SE(3) and Ai the elements of an orthonormal basis of left invariant vector
fields. Since Q is a Riemannian manifold, at each q ∈ Q, we have the following
decomposition

TqQ = Hq ⊕ Vq,

where Vq is the kernel space of ρ∗(q) andHq is the orthogonal complementary subspace
to Vq in TqQ.

R2 Assume that at q ∈ Q,dimHq = 6 and dimVq = n − 6.
Now we have the following result.
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Proposition 3.1. [1]. Under the assumption R2, the forward kinematic map is a
Riemannian submersion.

Proof. For the orthogonal subalgebra of se(3) = so(3)�R3, so(3) is isomorphic to
(R3,×). The cross product induces a Lie algebra structure on R

3 which is compatible
with the Euclidean inner product, i.e., for x, y ∈ R3,< x, y >R3=< x̃, ỹ >so(3). Now
for q̇X , q̇Y ∈ Hq, from (16) we have

< q̇X , q̇Y >Q= q̇T
XNT (q)N (q)q̇Y .

Using (17) and (14) we get

(20) < q̇X , q̇Y >Q= q̇T
XJT

i (qX)MiJi(qY )q̇Y .

On the other hand, from (13) and (18) we have

(21) < q̇X , q̇Y >se(3)= q̇T
XJb(qX)MdgJb(qY )q̇Y .

Then since the metric of Q is reduced to the identity by the isometry ϕ, proof is
complete due to (20) and (21).
In this construction, sinceQ is Abelian, the horizontal distribution is also integrable.

Also note that, in robotics, ρ−1(g) is the set of joint movements that do not affect the
end effector.

4. HOLOMORPHIC SUBMERSIONS

In this section, we recall main results for holomorphic or almost Hermitian sub-
mersions which were defined by Watson in [37]. Let (M̄ , g) be an almost Hermitian
manifold. This means [38] that M̄ admits a tensor field J of type (1, 1) on M̄ such
that, ∀X, Y ∈ Γ(TM̄), we have

(22) J2 = −I, g(X, Y ) = g(JX, JY ).

An almost Hermitian manifold M̄ is called Kähler manifold if

(23) (∇̄XJ)Y = 0, ∀X, Y ∈ Γ(TM̄),

where ∇̄ is the Levi-Civita connection on M̄.

A smooth map φ : M −→ N between almost complex manifolds (M, J) and
(N, J̄) is called almost complex (or holomorphic) map if φ∗(JX) = J̄φ∗(X) for
X ∈ Γ(TM), where J and J̄ are complex structures of M and N, respectively.
Let M be a complex m− dimensional almost Hermitian manifold with Hermitian

metric gM and almost complex structure JM and N be a complex n− dimensional
almost Hermitian manifold with almost complex structure JN , Watson [37] considered
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the holomorphic Riemannian submersion, called Hermitian submersion, and obtained
the fundamental properties of this map. Later, this topic was studied by many authors.
More precisely, a Riemannian submersion F : M −→ N is called an almost Hermitian
submersion if F is an almost complex mapping. The main result of this notion is that
the vertical and horizontal distributions are JM− invariant. In most cases, the base
manifold and each fiber have the same kind of structure as the total space. Watson
also found the following result.

Theorem 4.1. [37]. Let F : (M, g
M

, J
M

) −→ (N, g
N
, J

N
) be a holomorphic

submersion from an almost Hermitian manifold (M, gM , JM ) onto an almost Hermitian
manifold (N, gN , JN ). Then

(a) If the total space is almost semi-Kähler, then the base manifold is almost semi-
Kähler if and only if each fiber is minimal.

(b) A quasi-Kähler submersion is curvature decreasing.
(c) An almost semi-Kähler submersion is Betti number decreasing.

We note that the idea of holomorphic submersions between almost Hermitian manifolds
has been extended to almost contact manifolds [12], locally conformal Kähler manifolds
[22], quaternion Kähler manifolds [20] and other manifolds equipped with a structure,
see [15].

5. INVARIANT RIEMANNIAN SUBMERSIONS

In previous section, we have seen that the notion of the holomorphic submersions
implies that the vertical distributions and horizontal distributions are invariant under
the complex structure. In this section, we consider the converse. More precisely, if
the vertical and horizontal distributions of a submersion between almost Hermitian
manifolds are invariant with respect to the complex structure of the total manifold,
then is this Riemannian submersion a holomorphic map? In fact, we are going to to
show that an invariant submersion may not be a holomorphic submersion. We first
present the following definition.

Definition 5.1. Let F be a Riemannian submersion from an almost Hermitian
manifold (M, g

M
, JM) onto a Riemannian manifold (N, g

N
, JN). Then we say that F

is an invariant submersion if the vertical distribution is invariant with respect to JM ,
i.e.,

JM (kerF∗) = kerF∗.

From above definition, we have the following result.

Corollary 5.1. Let F be a Riemannian submersion from an almost Hermitian
manifold (M, g

M
, JM) onto a Riemannian manifold (N, g

N
, JN). Then the horizontal

distribution is invariant with respect to JM .
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Here is an example of an invariant Riemannian submersion, it also shows that an
invariant submersion between almost Hermitian manifolds is not a holomorphic map.

Example 5.1. Let F : R
8 −→ R

4 be a map defined by

F (x1, x2, x3, x4, x5, x6, x7, x8) = (
x1 − x5√

2
,
x2 − x6√

2
,
x3 − x7√

2
,
x4 − x8√

2
).

Then, by direct calculations

kerF∗ = span{Z1, Z2, Z3, Z4}

where

Z1 = ∂x1 + ∂x5 , Z2 = ∂x2 + ∂x6

Z3 = ∂x3 + ∂x7 , Z4 = ∂x4 + ∂x8

and
(kerF∗)⊥ = span{H1, H2, H3, H4}

where

H1 = ∂x1 − ∂x5 , H2 = ∂x2 − ∂x6

H3 = ∂x3 − ∂x7 , H4 = ∂x4 − ∂x8.

Then considering complex structures on R8 and R4 defined by

J8(a1, a2, a3, a4, a5, a6, a7, a8) = (−a2, a1,−a4, a3,−a6, a5,−a8, a7)

and
J4(a1, a2, a3, a4) = (−a3,−a4, a1, a2),

it is easy to see that kerF∗ and (kerF∗)⊥ are invariant with respect to J8. Thus F is an
invariant submersion. However, F is not a holomorphic submersion. Indeed, for H1,
we have J4F∗(H1) =

√
2∂y3 and F∗J8(H1) =

√
2∂y2, i.e., J4F∗(H1) �= F∗(J8H1).

Thus we can state the following.

Proposition 5.1. Every holomorphic submersion is an invariant submersion. How-
ever, an invariant submersion may not be a holomorphic submersion.
For an invariant Riemannian submersion we have the following proposition:

Proposition 5.2. Let F be an invariant submersion from a Kähler manifold (M, g
M

,

JM ) onto a Riemannian manifold (N, gN). Then the fibers are minimal submanifolds.
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Proof. Since kerF∗ is invariant with respect to J
M
, the fibers are minimal if and

only if TUU + TJ
M

UJM U = 0 for U ∈ kerF∗. Using (5) and Kähler character of M
we have

gM (TUU + TJM UJM U, X) = gM (∇UU, X)− gM (∇JM UU, JM X)

for X ∈ Γ((kerF∗)⊥). Then, Lemma 1.1 (c) and (22) imply

gM (TUU + TJM UJM U, X) = 0

which shows that TUU + TJ
M

UJM U = 0 due to T reverses horizontal and vertical
distributions.

6. ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM ALMOST HERMITIAN MANIFOLDS

In this section, we define anti-invariant Riemannian submersions from almost Her-
mitian manifolds onto Riemannian manifolds. For details see [32].

Definition 6.1. [32]. Let M be a complex m− dimensional almost Hermitian
manifold with Hermitian metric gM and almost complex structure J and N be a Rie-
mannian manifold with Riemannian metric gN . Suppose that there exists a Riemannian
submersion F : M −→ N such that kerF∗ is anti-invariant with respect to J , i.e.,
J(kerF∗) ⊆ (kerF∗)⊥. Then we say that F is an anti-invariant Riemannian submer-
sion.
First of all, from above definition, we have J(kerF∗)⊥∩kerF∗ �= {0}. We denote

the complementary orthogonal subbundle to J(kerF∗) in (kerF∗)⊥ by μ. Then we
have

(24) (kerF∗)⊥ = JkerF∗ ⊕ μ.

It is easy to see that μ is an invariant subbundle of (kerF∗)⊥, under the endomorphism
J . Thus, for X ∈ Γ((kerF∗)⊥), we have

(25) JX = BX + CX,

where BX ∈ Γ(kerF∗) and CX ∈ Γ(μ).

Example 6.1. Let F : R4 −→ R2 be a map defined by F (x1, x2, x3, x4) =
(x1+x4√

2
, x2+x3√

2
). Then, by direct calculations

kerF∗ = span{Z1 = ∂x1 − ∂x4, Z2 = ∂x2 − ∂x3}

and
(kerF∗)⊥ = span{X1 = ∂x1 + ∂x4, X2 = ∂x2 + ∂x3}.
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Then it is easy to see that F is a Riemannian submersion. Moreover, JZ1 = X2 and
JZ2 = X1 imply that J(kerF∗) = (kerF∗)⊥. As a result, F is an anti-invariant
Riemannian submersion.
In the sequel, we find necessary and sufficient conditions in terms of (24), (25) and

the second fundamental form (9) for the distribution (kerF∗)⊥ to be integrable. Note
that the distribution kerF∗ is always integrable.

Theorem 6.1. [32]. Let F be an anti-invariant Riemannian submersion from a
Kähler manifold (M, gM , J) onto a Riemannian manifold (N, gN ). Then the following
assertions are equivalent to each other;

(a) (kerF∗)⊥ is integrable.

(b)
gN ((∇F∗)(Y, BX), F∗JV ) = gM (CY, JAXV )

−gM (CX, JAY V )

+g
N

((∇F∗)(X, BY ), F∗JV ).

(c) gM (AY BX −AXBY, JV ) = gM (CY, JAXV ) − gM (CX, JAY V ),
for X, Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗).

We say that an anti-invariant Riemannian submersion is a Lagrangian Riemannian
submersion if J(kerF∗) = (kerF∗)⊥. From above theorem, we have the following
corollary.

Corollary 6.1. [32]. Let F : (M, g
M

, J) −→ (N, g
N
) be a Lagrangian Rieman-

nian submersion. Then the following assertions are equivalent to each other;
(a) (kerF∗)⊥ is integrable.
(b) (∇F∗)(X, JY ) = (∇F∗)(JX, Y )) for X, Y ∈ Γ((kerF∗)⊥).
(c) AXJY = AY JX .

The following theorems show that anti-invariant Riemannian submersions produce new
conditions for the geometry of leaves of the horizontal and vertical distributions.

Theorem 6.2. [32]. Let F be an anti-invariant Riemannian submersion from a
Kähler manifold (M, gM , J) onto a Riemannian manifold (N, gN ). Then the following
assertions are equivalent to each other;

(a) (kerF∗)⊥ defines a totally geodesic foliation on M .
(b) g

M
(AXBY, JV ) = g

M
(CY, JAXV ).

(c) gN ((∇F∗)(X, JY ), F∗JV ) = gM (CY, JAXV ). for X, Y ∈ Γ((kerF∗)⊥).



Riemannian Submersions from Almost Hermitian Manifolds 643

For the distribution kerF∗, we have;

Theorem 6.3. [32]. Let F : (M, g
M

, J) −→ (N, g
N
) be a Lagrangian Riemannian

submersion, where (M, gM ) is Kähler manifold and (N, gN) is a Riemannain manifold.
Then the following assertions are equivalent to each other;

(a) (kerF∗) defines a totally geodesic foliation on M .
(b) gN ((∇F∗)(Z, JX), F∗JV ) = 0 for X ∈ Γ((kerF∗)⊥) and Z, W ∈ Γ(kerF∗).

(c) TZJW = 0.

We also have the following corollary.

Corollary 6.2. [32]. Let F be a Lagrangian Riemannian submersion from a
Kähler manifold (M, g

M
, J) to a Riemannian manifold (N, g

N
). Then the following

assertions are equivalent to each other;
(a) (kerF∗)⊥ defines a totally geodesic foliation on M .
(b) AXJY = 0.
(c) (∇F∗)(X, JY ) = 0 for X, Y ∈ Γ((kerF∗)⊥).

It is known that the tensor T behaves as the second fundamental form of fibers of a
Riemannian submersion. Thus fibers are totally geodesic if and only if TUV = 0 for
U, V ∈ Γ(kerF∗). Hence, it follows that a Riemannian submersion is totally geodesic if
and only if TUV = 0 and the horizontal distribution is parallel due to (∇F∗)(X, Y ) = 0
for X, Y ∈ Γ((kerF∗)⊥). Next we show that the notion of anti-invariant submersions
present new conditions for a Riemannian submersion to be totally geodesic.

Theorem 6.4. [32]. Let F be a Lagrangian Riemannian submersion from a Kähler
manifold (M, g

M
, J) to a Riemannian manifold (N, g

N
). Then F is a totally geodesic

map if and only if

(26) TW JV = 0, ∀W, V ∈ Γ(kerF∗)

and

(27) AXJW = 0, ∀X ∈ Γ((kerF∗)⊥).

Moreover, we also have a new result to characterize the harmonicity of Riemannian
submersions by using the notion of Lagrangian submersion.

Theorem 6.5. [32]. Let F be a Lagrangian Riemannian submersion from a Kähler
manifold (M, g

M
, J) to a Riemannian manifold (N, g

N
). Then F is harmonic if and

only if TraceJTV = 0 for V ∈ Γ(kerF∗).
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Let g be a Riemannian metric tensor on the manifold M = B ×F and assume that
the canonical foliations D and D̄ intersect perpendicularly everywhere. Then from de
Rham’s theorem [13], we know that g is the metric tensor of a usual product Rieman-
nian manifold if and only if D and D̄ are totally geodesic foliations. This notion later
has been extended to the other product manifolds. The concept of warped products was
first introduced by Bishop and O’Neill [5] to construct examples of Riemannian mani-
folds with negative curvature. Many spacetime models are examples of warped product
manifolds. More precisely, Robertson-Walker spacetimes, Asymptotically flat space-
times, Schwarzschild spacetimes and Reissner-Nordström spacetimes are examples of
warped product manifolds, for details, [18].
Let (B, g1) and (F, g2) be two Riemannian manifolds, f : B → (0,∞) and

π : B × F → B, η : B × F → F the projection maps given by π(p, q) = p and
η(p, q) = q for every (p, q) ∈ B×F. The warped productM = B×F is the manifold
B × F equipped with the Riemannian structure such that

g(X, Y ) = g1(π∗X, π∗Y ) + (foπ)2g2(η∗X, η∗Y )

for everyX and Y of M and ∗ is symbol for the tangent map. The function f is called
the warping function of the warped product manifold. In particular, if the warping
function is constant, then the manifoldM is said to be trivial. Let (B, gB) and (F, gF )
be Riemannian manifolds of dimensionsm and n, respectively and let π : B×F → B
and σ : B × F → F be the canonical projections. Also let f : B × F → (0,∞) be a
smooth function. Then the twisted product [30]) of (B, gB) and (F, gF ) with twisting
functions b and f is defined to be the product manifoldM = B×F with metric tensor
g = gB ⊕f2 gF given by g = f2 gB + b2 gF . Next theorem shows that the existence of
anti-invariant submersions implies decomposition structure on the total manifold. More
precisely we have the following results.

Theorem 6.6. [32]. Let F be a Lagrangian Riemannian submersion from a Kähler
manifold (M, g

M
, J) to a Riemannian manifold (N, g

N
). Then M is a locally product

manifold if and only if AXJY = 0 and TV JW = 0 for X, Y ∈ Γ((kerF∗)⊥) and
V, W ∈ Γ(kerF∗).

Theorem 6.7. [32]. Let F be a Lagrangian Riemannian submersion from a Kähler
manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then M is a locally twisted
product manifold of the form M(kerF∗)⊥ ×f MkerF∗ if and only if

TV JX = −gM (X, TV V ) ‖ V ‖−2 JV

and
AXJY = 0

for X ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗), whereM(kerF∗)⊥ and MkerF∗are integral
manifolds of the distributions (kerF∗)⊥ and kerF∗ .
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7. SLANT SUBMERSIONS FROM ALMOST HERMITIAN MANIFOLDS

In this section, we define slant submersions from almost Hermitian manifolds onto
Riemannian manifolds by using the definition of a slant distribution given in [8]. Then
we investigate the harmonicity of a slant submersions and obtain a decomposition
theorem for the total manifold.

Definition 7.1. [33]. Let F be a Riemannian submersion from an almost Hermitian
manifold (M1, g1, J1) onto a Riemannian manifold (M2, g2). If for any non-zero vector
X ∈ Γ(kerF∗), the angle θ(X) between J1X and the space kerF∗ is a constant, i.e.
it is independent of the choice of the point p ∈ M1 and choice of the tangent vector X

in kerF∗, then we say that F is a slant submersion. In this case, the angle θ is called
the slant angle of the slant submersion.
It is known that the distribution kerF∗ is integrable. In fact, its leaves are F−1(q),

q ∈ M1, i.e., fibers. Thus it follows from above definition that the fibers are slant
submanifolds of M1, for slant submanifold, [11].
We first give some examples of slant submersions.

Example 7.1. Every Hermitian submersion from an almost Hermitian manifold
onto an almost Hermitian manifold is a slant submersion with θ = 0.

Example 7.2. Every anti-invariant Riemannian submersion from an almost Her-
mitian manifold to a Riemannian manifold is a slant submersion with θ = π

2 .
A slant submersion is said to be proper if it is neither Hermitian nor anti-invariant

Riemannian submersion.

Example 7.3. Let F : R4 −→ R2 be a submersion defined by

F (x1, x2, x3, x4) = (x1 sin α − x3 cos α, x4).

Then for any 0 < α < π
2 , F is a slant submersion with slant angle α.

Example 7.4. The following Riemannian submersion defined by

F (x1, x2, x3, x4) = (
x1 − x4√

2
, x2)

is a slant submersion with slant angle θ = π
4 .

Let F be a Riemannian submersion from an a Kähler manifold (M1, g1, J) onto a
Riemannian manifold (M2, g2). Then for X ∈ Γ(kerF∗), we write

(28) JX = φX + ωX,
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where φX and ωX are vertical and horizontal parts of JX . Also for V ∈ Γ((kerF∗)⊥),
we have

(29) JZ = BZ + CZ,

where BZ and CZ are vertical and horizontal components of JZ.
Using (5), (6), (28) and (30) we obtain

(∇Xω)Y = CTXY − TXφY(30)

(∇Xφ)Y = BTXY − TXωY,(31)

where

(∇Xω)Y = H∇XωY − ω∇̂XY

(∇Xφ)Y = ∇̂XφY − φ∇̂XY.

for X, Y ∈ Γ(kerF∗). Let F be a slant submersion from an almost Hermitian manifold
onto a Riemannian manifold, then we say that ω is parallel if ∇ω = 0.
The proof of the following result is exactly same with slant immersions (see [11]

or [8] for Sasakian case).

Theorem 7.1. [33]. Let F be a Riemannian submersion from an almost Hermi-
tian manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then F is a slant
submersion if and only if there exists a constant λ ∈ [−1, 0] such that φ2X = λX for
X ∈ Γ(kerF∗). Furthermore,if F is a slant submersion, then λ = − cos2 θ.
By using above theorem, it is easy to see that

g1(φX, φY ) = cos2 θg1(X, Y )(32)

g1(ωX, ωY ) = sin2 θg1(X, Y )(33)

for any X, Y ∈ Γ(kerF∗).
The following theorem shows that the notion of slant submersions gives new infor-

mation for the harmonicity of Riemannian submersions.

Theorem 7.2. [33]. Let F be a slant submersion from a Kähler manifold onto a
Riemannian manifold. If ω is parallel then F is a harmonic map.
Slant submersions are also useful for obtaining new decomposition theorems.

Theorem 7.3. [33]. Let F be a slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then M1 is locally a product
Riemannian manifold if and only if

g1(H∇Z1Z2, ωφX) = g1(AZ1BZ2

+H∇Z1CZ2, ωX)
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and

g1(H∇XωφY, Z1) = g1(H∇XωY, CZ1)

+g1(TXωY,BZ1)

for X, Y,∈ Γ(kerF∗) and Z1, Z2 ∈ Γ((kerF∗)⊥.
Finally, in this section, we give necessary and sufficient conditions for a slant sub-

mersion to be totally geodesic. We recall that a differentiable map F between Rieman-
nian manifolds (M1, g1) and (M2, g2) is called a totally geodesic map if (∇F∗)(X, Y ) =
0 for all X, Y ∈ Γ(TM1). A geometric interpretation of a totally geodesic map is that
it maps every geodesic in the total manifold into a geodesic in the base manifold in
proportion to arc lengths.

Theorem 7.4. Let F be a slant submersion from a Kähler manifold (M1, g1, J1)
onto a Riemannian manifold (M2, g2). Then F is totally geodesic if and only if

g1(H∇XωφY, Z1) = g1(TXωY,BZ1)

+g1(H∇XωY, CZ1)

and

−g1(H∇Z1ωφX, Z2) = g1(AZ1BZ2

+H∇Z1CZ2, ωX)

for Z1, Z2 ∈ Γ((kerF∗)⊥) and X, Y ∈ Γ(kerF∗).

8. SEMI-INVARIANT SUBMERSIONS FROM ALMOST HERMITIAN MANIFOLDS

In this section, we define semi-invariant submersions, give examples, investigate the
integrability of distributions and obtain a decomposition theorem by using the existence
of such submersions.

Definition 8.1. [34]. Let M1 be a complex m− dimensional almost Hermitian
manifold with Hermitian metric g1 and almost complex structure J and M2 be a
Riemannian manifold with Riemannian metric g2. A Riemannian submersion F :
M1 −→ M2 is called semi-invariant Riemannian submersion if there is a distribution
D1 ⊆ kerF∗ such that

(34) kerF∗ = D1 ⊕D2

and

(35) J(D1) = D1, J(D2) ⊆ (kerF∗)⊥,
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where D2 is orthogonal complementary to D1 in kerF∗.
Above definition implies that the integral manifolds (fibers) F−1(q), q ∈ M2, of

kerF∗ is a CR-submanifold of M1. For CR-submanifolds, see: [3], [10] and [38].
We now give some examples of semi-invariant Riemannian submersions.

Example 8.1. Every anti-invariant Riemannian submersion from an almost Hermi-
tian manifold onto a Riemannian manifold is a semi-invariant Riemannian submersion
with D1 = {0}.

Example 8.2. Every holomorphic submersion from an almost Hermitian manifold
onto an almost Hermitian manifold is a semi-invariant submersion with D2 = {0}.

Example 8.3. Let F : R6 −→ R3 be a submersion defined by F (x1, x2, x3, x4,

x5, x6) = (x1+x2√
2

, x3+x5√
2

, x4+x6√
2

). Then it follows that kerF∗ = span{V1, V2, V3}
where

V1 = −∂x1 + ∂x2, V2 = −∂x3 + ∂x5

V3 = −∂x4 + ∂x6.

On the other hand, we have (kerF∗)⊥ = span{X1, X2, X3}, where

X1 = ∂x1 + ∂x2, X2 = ∂x3 + ∂x5,

X3 = ∂x4 + ∂x6}.

Hence we have JV2 = V3 and JV1 = −X1. Thus it follows that D1 = span{V2, V3}
and D2 = span{V1}. Moreover one can see that μ = span{X2, X3}. By direct
computations, we also have

gR6(JV1, JV1) = gR3(F∗(JV1), F∗(JV1)),

gR6(X2, X2) = gR3(F∗(X2), F∗(X2))

and
gR6(X3, X3) = gR3(F∗(X3), F∗(X3)),

which show that F is a Riemannian submersion. Thus F is a semi-invariant Rieman-
nian submersion.
We now investigate the integrability of the distributions D1 and D2. Since fibers

of semi-invariant submersions from Kähler manifolds are CR-submanifolds and T is
the second fundamental form of the fibers, the following results can be deduced from
Theorem 1.1 of [3].

Lemma 8.1. [34]. Let F be a semi-invariant Riemannian submersion from a
Kähler manifold (M1, g1, J1) onto a Riemannian manifold (M2, g2). Then
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(i ) the distribution D2 is always integrable.
(ii) The distribution D1 is integrable if and only if

g1(TXJY − TY JX, JZ) = 0

for X, Y ∈ Γ(D1) and Z ∈ Γ(D2).

Let F be a semi-invariant Riemannian submersion from a Kähler manifold (M1, g1,
J) onto a Riemannian manifold (M2, g2). We denote the complementary distribution
to JD2 in (kerF∗)⊥ by μ. Then for V ∈ Γ(kerF∗), we write

(36) JV = φV + ωV,

where φV ∈ Γ(D1) and ωV ∈ Γ(JD2). Also for X ∈ Γ((kerF∗)⊥), we have

(37) JX = BX + CX,

where BX ∈ Γ(D2) and CX ∈ Γ(μ).
Then, by using (36), (37), (5) and (6) we get

(∇V φ)W = BTV W − TV ωW(38)

(∇V ω)W = CTV W − TV φW,(39)

for V, W ∈ Γ(kerF∗), where

(∇V φ)W = ∇̂V φW − φ∇̂V W

and
(∇V ω)W = H∇1

V ωW − ω∇̂V W.

The proof of the following proposition can be deduced from Theorem 5.1 of [3].

Proposition 8.1. [34]. Let F be a semi-invariant Riemannian submersion from a
Kähler manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then the fibers
of F are locally product Riemannian manifolds if and only if (∇V φ)W = 0 for
V, W ∈ Γ(kerF∗).
The conditions for a semi-invariant submersion to be totally geodesic take the

following forms.

Theorem 8.1. [34]. Let F be a semi-invariant submersion from a Kähler manifold
(M1, g1, J) onto a Riemannian manifold (M2, g2). Then F is a totally geodesic map
if and only if

(a) ∇̂XφY + TXωY and ∇̂XBZ + TXCZ belong to D1.
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(b) H∇1

XωY + TXφY and TXBZ + H∇1

XCZ belong to JD2

for X, Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥).
For the geometry of leaves of the distributions (kerF∗)⊥ and kerF∗ we have the

following results.

Proposition 8.2. [34]. Let F be a semi-invariant submersion from a Kähler
manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then the distribution
(kerF∗)⊥ defines a totally geodesic foliation if and only if

AZ1BZ2 + H∇1

Z1
CZ2 ∈ Γ(μ),

AZ1CZ2 + V∇1

Z1
Z2 ∈ Γ(D2)

for Z1, Z2 ∈ Γ((kerF∗)⊥).

Proposition 8.3. [34]. Let F be a semi-invariant Riemannian submersion from a
Kähler manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then the distri-
bution kerF∗ defines a totally geodesic foliation if and only if

TX1φX2 + H∇1

X1
ωX2 ∈ Γ(JD2),

∇̂X1φX2 + TX1ωX2 ∈ Γ(D1)

for X1, X2 ∈ Γ(kerF∗).
We also have the following result.

Corollary 8.1. [34]. Let F be a semi-invariant Riemannian submersion from a
Kähler manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then the distri-
bution kerF∗ defines a totally geodesic foliation if and only if

g2((∇F∗)(X1, X2), F∗(JZ)) = 0,

g2((∇F∗)(X1, ωX2), F∗(W )) = −g1(TX1W, φX2)

for X1, X2 ∈ Γ(kerF∗), Z ∈ Γ(D2). and W ∈ Γ(μ).

It is also possible to obtain the below decomposition theorem for semi-invariant
submersions.

Theorem 8.3. [34]. Let F be a semi-invariant submersion from a Kähler manifold
(M1, g1, J) onto a Riemannian manifold (M2, g2). Then M1 is locally a product
Riemannian manifold MD1 × MD2 × M(kerF∗)⊥ if and only if

(∇φ) = 0 on kerF∗,
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AZ1BZ2 + H∇1

Z1
CZ2 ∈ Γ(μ)

and
AZ1CZ2 + V∇1

Z1
Z2 ∈ Γ(D2)

for Z1, Z2 ∈ Γ((kerF∗)⊥), where MD1 , MD2 and M(kerF∗)⊥ are integral manifolds
of the distributions D1, D2 and (kerF∗)⊥.

Also by using above results, we have the following decomposition theorem.

Theorem 8.4. [34]. Let F be a semi-invariant submersion from a Kähler manifold
(M1, g1, J) onto a Riemannian manifold (M2, g2). Then M1 is locally a product
Riemannian manifold MkerF∗ × M(kerF∗)⊥ if and only if

g2((∇F∗)(X1, X2), F∗(JZ)) = 0,

g2((∇F∗)(X1, ωX2), F∗(W )) = −g1(TX1W, φX2),

AZ1BZ2 + H∇1

Z1
CZ2 ∈ Γ(μ),

AZ1CZ2 + V∇1

Z1
Z2 ∈ Γ(D2)

for X1, X2 ∈ Γ(kerF∗), W ∈ Γ(μ), Z ∈ Γ(D2) and Z1, Z2 ∈ Γ((kerF∗)⊥), where
MkerF∗ andM(kerF∗)⊥ are integral manifolds of the distributions kerF∗ and (kerF∗)⊥.

In the rest of this section, we will obtain a classification theorem for semi-invariant
submersions from Kähler manifolds. Let F be a Riemannian submersion from a Rie-
mannian manifold onto a Riemannian manifold (M2, g2). Recall that a Riemannian
submersion is called a Riemannian submersion with totally umbilical fibers if

(40) TXY = g1(X, Y )H

for X, Y ∈ Γ(kerF∗), whereH is the mean curvature vector field of the fiber. We also
recall that a simply connected complete Kähler manifold of constant sectional curvature
c is called a complex space-form, denoted by M(c). The curvature tensor of M(c) is

(41)

R(X, Y )Z =
c

4
[g (Y, Z)X − g (X, Z)Y

+g (JY, Z)JX − g (JX, Z)JY

+2 g (X, JY )JZ]

for X, Y, Z ∈ Γ(TM). Moreover, from [24] we have the following relation for a
Riemannian submersion

g1(R1(X1, X2)X3, Z) = g1((∇X2T )X1X3, Z)

−g1((∇X1T )X2X3, Z)
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for X1, X2, X3 ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥), where R1 is the curvature tensor
field of M1 and (∇T ) is the covariant derivative of T .
By using (40) and (41), as in CR-submanifolds, see: Theorem 1.2 of [3], we have

the following result.

Teorem 8.5. Let F be a semi-invariant submersion with totally umbilical fibers
from a complex space form (M1(c), g1, J) onto a Riemannian manifold (M2, g2). Then
c = 0.

We now give a classification theorem for semi-invariant Riemannian submersions
with totally umbilical fibers. But we need the following result which shows that the
mean curvature vector field of semi-invariant Riemannian submersions has special form.

Lemma 8.2. [34]. Let F be a semi-invariant submersion with totally umbilical
fibers from a Kähler manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then
H ∈ Γ(JD2).

We now give a classification theorem for a semi-invariant submersion with totally
umbilical fibers which is similar to that Theorem 6.1 of [38].

Theorem 8.6. [34]. Let F be a semi-invariant submersion with totally umbilical
fibers from a Kähler manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then
either D2 is one dimensional or the fibers are totally geodesic.

9. SEMI-SLANT SUBMERSIONS FROM ALMOST HERMITIAN MANIFOLDS

In this section, we define semi-slant submersions, give examples, investigate the
integrability of distributions and give necessary and sufficient conditions for such sub-
mersions to be totally geodesic.

Definition 9.1. [29]. Let M1 be a complex m− dimensional almost Hermitian
manifold with Hermitian metric g1 and almost complex structure J and M2 be a
Riemannian manifold with Riemannian metric g2. A Riemannian submersion F :
M1 −→ M2 is called semi-slant Riemannian submersion if there is a distribution
D1 ⊆ kerF∗ such that

(42) kerF∗ = D1 ⊕ D2, J(D1) = D1

and the angle θ(X) between JX and the space (D2)q is constant for non-zero X ∈
(D2)q and q ∈ M1.
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We note that above definition implies that the integral manifold (fiber) F−1(q),
q ∈ M2, of kerF∗ is a semi-slant-submanifold of M1. For semi-slant submanifolds,
see: [26].
We now give some examples of semi-slant Riemannian submersions.

Example 9.1. Every slant Riemannian submersion from an almost Hermitian
manifold onto a Riemannian manifold is a semi-slant Riemannian submersion with
D1 = {0}.

Example 9.2. Every semi-invariant submersion from an almost Hermitian manifold
onto an almost Hermitian manifold is a semi-invariant submersion with θ = π

2 .

We say that a semi-slant submersion is proper if D1 �= {0} and θ �= 0, π
2 . Here is

an example for proper semi-slant submersions.

Example 9.3. [29]. Let F : R10 −→ R4 be a submersion defined by

F (x1, ..., x10) = (
x3 − x5√

2
, x6,

x7 − x9√
2

, x8).

Then it follows that F is a semi-slant submersion such that

D1 = Sp{V1 = ∂x1, V2 = ∂x2}

and

D2 = Sp{V3 = ∂x3 + ∂x5, V4 = ∂x7 + ∂x9, V5 = ∂x4, V6 = ∂x10}

with the slant angle π
4 .

Let F be a semi-slant Riemannian submersion from a Kähler manifold (M1, g1, J)
onto a Riemannian manifold (M2, g2). Then for V ∈ Γ(kerF∗), we write

(43) JV = φV + ωV,

where φV ∈ Γ(kerF∗) and ωV ∈ Γ((kerF∗)⊥). Also for X ∈ Γ((kerF∗)⊥), we have

(44) JX = BX + CX,

where BX ∈ Γ(kerF∗) and CX ∈ Γ((kerF∗)⊥). We denote the complementary
distribution to ωD2 in (kerF∗)⊥ by μ. Then we have

(kerF∗)⊥ = ωD2 ⊕ μ.

For the integrability of the distributions we have the following results.
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Theorem 9.1. [29]. Let F be a semi-slant submersion from an almost Hermi-
tian manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then the complex
distribution D1 is integrable if and only if, for X, Y ∈ Γ(D1), we have

ω(∇̂XY − ∇̂Y X) = C(TXY − TY X).

Theorem 9.2. [29]. Let F be a semi-slant submersion from an almost Hermitian
manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then the slant distribution
D2 is integrable if and only if, for X, Y ∈ Γ(D2), we have

P (∇̂XφY − ∇̂Y φX + TXωY − TY ωX) = 0,

where P denotes the projection on the distribution kerF∗.

For the geometry of leaves of the vertical and horizontal distributions we have the
following theorems.

Theorem 9.3. [29]. Let F be a semi-slant submersion from an almost Hermitian
manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then the vertical distribu-
tion kerF∗ defines totally geodesic foliation onM1 if and only if, forX, Y ∈ Γ(kerF∗),
we have

ω(∇̂XφY + TXωY ) + C(TXφY + H∇Y ωY ) = 0.

Theorem 9.4. [29]. Let F be a semi-slant submersion from an almost Her-
mitian manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then the ver-
tical distribution kerF∗ defines totally geodesic foliation on M1 if and only if, for
X, Y ∈ Γ((kerF∗)⊥), we have

φ(V∇XBY + AXCY ) + B(AXBY + H∇XCY ) = 0.

We also have the following result which gives necessary and sufficient conditions
for a semi-slant submersion to be totally geodesic.

Theorem 9.5. [29]. Let F be a semi-slant submersion from an almost Hermitian
manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then F is totally geodesic
map if and only if we have

ω(∇̂XY + T XωY ) + C(TXφY + H∇XωY ) = 0

and
ω(∇XBZ + TXCZ) + C(TXBZ + H∇XCZ) = 0

for X, Y ∈ Γ((kerF∗) and Z ∈ Γ((kerF∗)⊥).

Also for the harmonicity of semi-slant submersion we have the following.
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Theorem 9.6. [29]. Let F be a semi-slant submersion from an almost Hermitian
manifold (M1, g1, J) onto a Riemannian manifold (M2, g2). Then F is harmonic if
and only if

trace(∇F∗) = 0 on D2.

We also note that Park and Prasad obtained more results on the geometry of semi-
slant submersions in [29]. In particular, they found curvature relations among the base
manifold, the total manifold and fibers.

10. OPEN PROBLEMS

In this section, we propose some open problems to the interested readers.
(1) It is known that the sectional curvature in the base manifold increases by the

amount 3
4gM ([X, Y ]

V
, [X, Y ]

V
). Although, in [29], the authors investigated

curvature relations for semi-slant submersions, the relations for anti-invariant
submersions, slant submersions and semi-invariant submersions has not been in-
vestigated yet. So it would be interesting to research curvature relations for such
submersions.

(2) Oniciuc[25] proved that Riemannian submersion F : M1 → M2 is biharmonic if
and only if ∇M

τ(F ) = 0, where M2 is compact, orientable and RicM2 ≤ 0 and
τ(F ) denotes the tension field of F . So it would be interesting to find necessary
and sufficient conditions for anti-invariant submersions, slant submersions, semi-
invariant submersions and semi-slant submersions to be biharmonic.

(3) Some special vector fields play important roles in Riemannian geometry, for
instance Killing vector fields. A smooth vector fieldX on a Riemannian manifold
M is said to be Killing if its local flow consists of local isometries of the
Riemannian manifold (M, g). The presence of a nonzero Killing vector field
on a compact Riemannian manifold constrains its geometry as well as topology.
For Riemannian submersions, it is known that if the tension field τ(F ) is a
unitary Killing vector field then F is biharmonic [25]. On the other hand,
holomorphic vector fields are useful in complex geometry. Note that a complex
vector field Z of type (1, 0) on M is said to be holomorphic vector field if
Zf is holomorphic for locally defined holomorphic function f . Therefore one
can investigate the effect of such vector fields ( especially for the harmonicity or
biharmonicity of such maps) on the geometry of anti-invariant submersions, slant
submersions. Similarly, one can check the effect of infinitesimal automorphism
(analytical vector field) of an almost complex structure on the biharmonicity of
anti-invariant submersions, slant submersions, semi-invariant submersions and
semi-slant submersions.

(4) It is known that every Hermitian manifold is even dimensional. On the other
hand, almost contact metric manifolds are odd dimensional. And their geometry
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is different from the geometry of Hermitian manifolds. The contact version of
holomorphic submersions have been studied by many authors under the name of
almost contact submersions, see [12] and [15]. So it will be interesting problem
to research anti-invariant submersions, slant submersions, semi-invariant sub-
mersions and semi-slant submersions from almost contact metric manifolds onto
Riemannian manifolds. We note that Park studied same problem for quaternion
Kähler manifolds, [27], [28].

(5) It is known that a Riemannian submersion F is harmonic if and only if its
fibers are minimal. The harmonicity conditions of anti-invariant submersions,
slant submersions and semi-slant submersions have been given in Theorem 6.5,
Theorem 7.2 and Theorem 9.6. So next problem is to determine stability of such
submersions. Here we note that any harmonic map from a compact Riemannian
manifold to a manifold of non-positive sectional curvatures is stable, [2].

(6) Some special differential or partial differential equations defined on Riemannian
manifolds are useful for obtaining decomposition theorems. One can also ar-
gue the existence of a domain manifold for a differential equation or a partial
differential equation to possess a nontrivial solution. Recently, in [16], the au-
thors introduce a (global) partial differential equation on a Riemannian manifold,
called the local Möbius equation, and in the case of a solution to this equation,
they showed that manifold locally decomposes to certain products of Rieman-
nian manifolds. For instance, if F : (M1, g1) → (M2, g2) is a submersion and
satisfies the Möbius equation, then they showed that (M1, g1) is locally twisted
product manifold. So it would be possible to obtain nice results by assum-
ing anti-invariant submersions, slant submersions, semi-invariant submersions
and semi-slant submersions satisfy some special equations on the total manifold.
Conversely, one can also investigate the following problem: are there special dif-
ferential equations or partial differential equations on Hermitian manifolds such
that anti-invariant submersions, slant submersions, semi-invariant submersions or
semi-slant submersions are solutions of such equations.

(7) As a generalization of slant submanifolds and semi-slant submanifolds, anti-
slant submanifolds were introduced by Carriazo[9] and such submanifolds were
studied in detail in [31] under the name of hemi-slant submanifolds. Then one can
define and study hemi-slant submersions as generalization of slant submersions
and semi-slant submersions. One can see that the fibers of such submersions will
be hemi-slant submanifolds.
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