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A GENERAL Lp-VERSION OF PETTY’S AFFINE PROJECTION
INEQUALITY

Wang Weidong and Feng Yibin

Abstract. About a decade ago Lutwak, Yang, and Zhang introduced the notion
of Lp-projection body. More recently, Wang and Leng established an Lp-version
of Petty’s affine projection inequality. At the same time Ludwig discovered a
family of general Lp-projection bodies and Haberl and Schuster established Petty’s
projection inequality for general Lp-projection bodies. In this paper we establish a
general Lp-version of Petty’s affine projection inequality for general Lp-projection
bodies. Moreover, we obtain an analogous inequality for Lp-geominimal surface
area.

1. INTRODUCTION

Let Kn denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in Euclidean space R

n. For the set of convex bodies containing the origin in
their interiors, we write Kn

o . Let Sn
o denote the set of star bodies (about the origin) in

R
n. Let Sn−1 denotes the unit sphere in R

n and V (K) the n-dimensional volume of
the body K. For the standard unit ball B in R

n let ωn = V (B).
If K ∈ Kn, then its support function, hK = h(K, ·) : R

n −→ (−∞, +∞), is
defined by (see [7])

h(K, x) = max{x · y : y ∈ K}, x ∈ R
n,

where x · y denotes the standard inner product of x and y.
The classical projection bodies were introduced by Minkowski at the turn of the

previous century. For each K ∈ Kn, the projection body, ΠK, of K is an origin-
symmetric convex body whose support function is defined by (see [7])

hΠK(u) =
1
2

∫
Sn−1

| u · v | dS(K, v),
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for all u ∈ Sn−1. Here S(K, ·) denotes the classical surface area measure of K.
Projection bodies are a very important object for the study of projections in the Brunn-
Minkowski theory. During the past four decades, a number of important results regard-
ing classical projection bodies were obtained (see e.g. [1-4, 12, 13, 18, 20, 27, 28, 42]
or the book [7]).
The notion of Lp-projection body was introduced by Lutwak, Yang, and Zhang (see

[23]). For each K ∈ Kn
o and p ≥ 1, the Lp-projection body, ΠpK , of K is defined as

the origin-symmetric convex body whose support function is given by

(1.1) hp
ΠpK(u) = αn,p

∫
Sn−1

| u · v |p dSp(K, v).

for all u ∈ Sn−1. Here

(1.2) αn,p =
1

nωncn−2,p

with cn,p = ωn+p/ω2ωnωp−1, and Sp(K, ·) is a positive Borel measure on Sn−1,
called the Lp-surface area measure of K ∈ Kn

o (see [21]). It turns out that the measure
Sp(K, ·) is absolutely continuous with respect to the classical surface area measure
S(K, ·) of K, and has Radon-Nikodym derivative

(1.3)
dSp(K, ·)
dS(K, ·) = h(K, ·)1−p.

The unusual normalization of definition (1.1) is chosen so that for the unit ball B,
we have ΠpB = B. In particular, for p = 1, the convex body Π1K is the classical
projection body ΠK of K under the normalization of definition (1.1).

Lp-projection bodies extended the classical projection bodies from the Brunn-
Minkowski theory to the Lp-Brunn-Minkowski theory. Lp-projection bodies have been
investigated intensively in recent years, see [8, 11, 14, 26, 30, 34-37, 39].
For p ≥ 1, Ludwig discovered in [14] a new notion of asymmetric Lp-projection

bodies, Π+
p K, of K ∈ Kn

o , defined by

(1.4) hp

Π+
p K

(u) = 2αn,p

∫
Sn−1

(u · v)p
+dSp(K, v),

where (u · v)+ = max{u · v, 0}. From (1.2) and (1.4), we see that Π+
p B = B. In [8]

Haberl and Schuster also defined

Π−
p K = Π+

p (−K).

Moreover, the authors of [14, 8] introduced a function ϕτ : R −→ [0, +∞), given
by

ϕτ (t) = |t| + τt,
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for τ ∈ [−1, 1], and for K ∈ Kn
o , p ≥ 1, they defined Πτ

pK ∈ Kn
o via its support

function by

(1.5) hp
Πτ

pK(u) = αn,p(τ)
∫

Sn−1

ϕτ (u · v)pdSp(K, v),

where
αn,p(τ) =

2αn,p

(1 + τ)p + (1− τ)p
.

The normalization is chosen such that Πτ
pB = B for every τ ∈ [−1, 1]. The family

of convex bodies Πτ
pK is called the general Lp-projection bodies of K. Obviously, if

τ = 0 then Πτ
pK = ΠpK.

For the general Lp-projection bodies, Haberl and Schuster (see [8]) proved a general
version of the Lp-Petty projection inequality:

Theorem 1.A. If K ∈ Kn
o , p ≥ 1, then for every τ ∈ [−1, 1],

(1.6) V (K)(n−p)/pV (Πτ,∗
p K) ≤ ωn/p

n ,

with equality if and only if K is an ellipsoid centered at the origin.

Here, Πτ,∗
p K denotes the polar of the general Lp-projection body Πτ

pK . If τ = 0,
then inequality (1.6) is just the Lp-Petty projection inequality which was established
by Lutwak, Yang and Zhang (see [23]). If τ = 0 and p = 1, then inequality (1.6)
becomes the classical Petty projection inequality (see [28]) under the normalization of
definition (1.1).
The classical Petty projection inequality and its Lp-extension have become a major

focus in different areas. For example, the family of Lp-Petty projection inequalities
has been used to establish a number of affine analytic inequalities, see [5, 9, 10, 24,
25, 31, 32].
Associated with the Lp-projection bodies, Wang and Leng established in [37] an

Lp-version of Petty’s affine projection inequality:

Theorem 1.B. If K ∈ Fn
o and p ≥ 1, then

(1.7) Ωp(K) ≤ nω
n

n+p
n V (ΠpK)

p
n+p ,

with equality if and only if K is an ellipsoid centered at the origin.

Here Fn
o denotes the set of convex bodies in Kn

o with positive continuous curvature
function, and Ωp(K) denotes the Lp-affine surface area of K (see Section 2).
Note that for p = 1, inequality (1.7) is just Petty’s affine projection inequality (see

[28]) under the normalization of definition (1.1).
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In this paper, we continue to investigate the family of general Lp-projection bodies.
First, we extend inequality (1.7), to obtain the following general Lp-version of Petty’s
affine projection inequality.

Theorem 1.1. If K ∈ Fn
o , p ≥ 1, τ ∈ [−1, 1], then

(1.8) Ωp(K) ≤ nω
n

n+p
n V (Πτ

pK)
p

n+p ,

with equality if and only if K is an ellipsoid centered at the origin.
Note that if τ = 0, then inequality (1.8) is just inequality (1.7).
We also establish a general version of the Lp-geominimal surface area inequality.

Theorem 1.2. If K ∈ Kn
o , p ≥ 1, τ ∈ [−1, 1], then

(1.9) Gp(K) ≤ nω
n−p

n
n V (Πτ

pK)
p
n ,

with equality if and only if Πτ
pK is an ellipsoid centered at the origin.

Here, Gp(K) denotes the Lp-geominimal surface area of K ∈ Kn
o (see Section 2).

From Theorem 1.2 and a combination of the definitions of Lp-affine surface area
and Lp-geominimal surface area, we obtain a further extension of Theorem 1.1:

Corollary 1.1. If K ∈ Kn
o , p ≥ 1, τ ∈ [−1, 1], then

(1.10) Ωp(K) ≤ nω
n

n+p
n V (Πτ

pK)
p

n+p ,

with equality if and only if Πτ
pK is an ellipsoid centered at the origin.

Let Kn
c denote the set of convex bodies whose centroid is at the origin. If K ∈ Kn

c ,
then the equality conditions of inequality (1.9) may be improved as follows:

Theorem 1.3. If K ∈ Kn
c , p ≥ 1, τ ∈ [−1, 1], then

(1.11) Gp(K) ≤ nω
n−p

n
n V (Πτ

pK)
p
n ,

with equality if and only if K is an ellipsoid centered at the origin.

Similarly, we obtain the following generalization of Theorem 1.3:

Corollary 1.2. If K ∈ Kn
c , p ≥ 1, τ ∈ [−1, 1], then

Ωp(K) ≤ nω
n

n+p
n V (Πτ

pK)
p

n+p ,

with equality if and only if K is an ellipsoid centered at the origin.
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2. BASIC NOTIONS

2.1. Radial Function and Polar Bodies

If K is a compact star-shaped (about the origin) set in R
n, its radial function,

ρK = ρ(K, ·) : R
n\{0} −→ [0, +∞), is defined by (see [7])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ R
n\{0}.

If ρK is positive and continuous, K will be called a star body (about the origin).
Two star bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u) is
independent of u ∈ Sn−1.
If E ⊆ R

n is nonempty, the polar set of E , E∗, is defined by (see [7])

E∗ = {x ∈ R
n : x · y ≤ 1, y ∈ E}.

For K ∈ Kn
c and its polar body, the well-known Blaschke-Santaló inequality can

be stated as follows (see [29]):

Theorem 2.A. If K ∈ Kn
c , then

(2.1) V (K)V (K∗) ≤ ω2
n,

with equality if and only if K is an ellipsoid.

Note that an extension of the Blaschke-Santaló inequality (2.1) to star bodies whose
centroid is at the origin was obtained by Lutwak (see[19]).

2.2. Lp-Mixed Volume

For K, L ∈ Kn
o , p ≥ 1 and λ, μ ≥ 0 (not both zero), the Firey Lp-combination,

λ · K +p μ · L ∈ Kn
o , of K and L is defined by (see [6])

h(λ · K +p μ · L, · )p = λh(K, ·)p + μh(L, ·)p,

where ” · ” in λ · K denotes the Firey scalar multiplication.
Associated with the Firey Lp-combination of convex bodies, Lutwak ([21]) intro-

duced for K, L ∈ Kn
o , ε > 0 and p ≥ 1, the Lp-mixed volume, Vp(K, L), of K and L,

defined by
n

p
Vp(K, L) = lim

ε−→0+

V (K +p ε · L) − V (K)
ε

.

Corresponding to each K ∈ Kn
o , Lutwak ([21]) proved that there is a positive Borel

measure, Sp(K, ·), on Sn−1 such that

(2.2) Vp(K, L) =
1
n

∫
Sn−1

h
p
L(v)dSp(K, v)
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for each L ∈ Kn
o . The measure Sp(K, ·) is called the Lp-surface area measure of K.

From formula (2.2) and (1.3), it follows immediately that for each K ∈ Kn
o ,

(2.3) Vp(K, K) =
1
n

∫
Sn−1

hK(v)dS(K, v) = V (K).

2.3. Lp-Affine Surface Area and Lp-Geominimal Surface Area

A convex body K ∈ Kn
o is said to have an Lp-curvature function (see [22])

fp(K, ·) : Sn−1 −→ R, if its Lp-surface area measure Sp(K, ·) is absolutely con-
tinuous with respect to spherical Lebesgue measure S, and

(2.4) fp(K, ·) =
dSp(K, ·)

dS
.

Using definition (2.4) of the Lp-curvature function, Lutwak [22] defined the notion
of Lp-curvature image as follows: For eachK ∈ Fn

o and real p ≥ 1, define ΛpK ∈ Sn
o ,

the Lp-curvature image of K, by

ρ(ΛpK, ·)n+p =
V (ΛpK)

ωn
fp(K, ·).

The notion of Lp-affine surface area was introduced by Lutwak (see [22]). For
each K ∈ Kn

o and p ≥ 1, the Lp-affine surface area, Ωp(K), of K is defined by

(2.5) n− p
n Ωp(K)

n+p
n = inf{nVp(K, Q∗)V (Q)

p
n : Q ∈ Sn

o }.
Moreover, Lutwak in [22] proved that if K ∈ Fn

o and p ≥ 1, then the Lp-affine
surface area of K has the integral representation

(2.6) Ωp(K) =
∫

Sn−1

fp(K, u)
n

n+p dS(u).

Lp-affine surface area is very important in the Lp-Brunn-Minkowski theory, see
[15-17, 33, 40, 41].
In [22] Lutwak also introduced the notion of Lp-geominimal surface area. For each

K ∈ Kn
o and p ≥ 1, the Lp-geominimal surface area, Gp(K), of K is be defined by

(2.7) ω
p
n
n Gp(K) = inf{nVp(K, Q)V (Q∗)

p
n : Q ∈ Kn

o }.
For the study of Lp-geominimal surface area, apart from [22], also see [43, 38].
From definitions (2.5) and (2.7), the following fact can be obtained (see [22]):

Theorem 2.B. If K ∈ Kn
o , p ≥ 1, then

(2.8) Ωp(K)n+p ≤ (nωn)pGp(K)n.
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3. THE GENERAL Lp-VERSION OF PETTY’S AFFINE PROJECTION INEQUALITY

In this section, we give the proofs of Theorem 1.1-1.3. The proof of Theorem 1.1
requires the following lemmas.

Lemma 3.1. If K, L ∈ Kn
o , p ≥ 1, τ ∈ [−1, 1], then

(3.1) Vp(K, Πτ
pL) = Vp(L, Πτ

pK).

Proof. From (1.5) and (2.2), we easily obtain

Vp(L, Πτ
pK) =

1
n

∫
Sn−1

h
p
Πτ

pK(u)dSp(L, u)

=
1
n

∫
Sn−1

αn,p(τ)
∫

Sn−1

ϕτ (u · v)pdSp(K, v)dSp(L, u)

=
1
n

∫
Sn−1

hp
Πτ

pL(v)dSp(K, v)

= Vp(K, Πτ
pL).

Using (2.6), Wang and Leng in [37] proved the following result.

Lemma 3.2. If K ∈ Fn
o , L ∈ Kn

o and p ≥ 1, then

(3.2) Ωp(K) ≤ nVp(K, L)
n

n+p V (L∗)
p

n+p ,

with equality if and only if ΛpK and L∗ are dilates.

Note that for K, L ∈ Kn
o , inequality (3.2) can immediately be deduced from defi-

nition (2.5), however without the equality conditions.

Lemma 3.3. If K ∈ Fn
o , L ∈ Kn

o and p ≥ 1, then

(3.3) Ωp(K)V (L)
n−p
n+p ≤ nω

n
n+p
n Vp(K, Πτ

pL)
n

n+p ,

with equality if and only if K and L are dilates of the same ellipsoid centered at the
origin.

Proof. Taking Πτ
pL for L in inequality (3.2), we obtain

(3.4) Ωp(K) ≤ nVp(K, Πτ
pL)

n
n+p V (Πτ,∗

p L)
p

n+p ,

with equality if and only if ΛpK and Πτ,∗
p L are dilates.
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Using the general Lp-Petty projection inequality (1.6), we have

Ωp(K)V (L)
n−p
n+p ≤ nVp(K, Πτ

pL)
n

n+p [V (L)n−pV (Πτ,∗
p L)p]

1
n+p

≤ nω
n

n+p
n Vp(K, Πτ

pL)
n

n+p .

Equality holds in inequality (1.6) if and only if L is an ellipsoid centered at the origin.
This together with the condition under which equality holds in inequality (3.4), shows
that equality holds in inequality (3.3) if and only if K and L are dilates of the same
ellipsoid centered at the origin.

Proof of Theorem 1.1. For K ∈ Fn
o , L ∈ Kn

o , inequality (3.3) states that

(3.5) Ωp(K)V (L)
n−p
n+p ≤ nω

n
n+p
n Vp(K, Πτ

pL)
n

n+p .

Using (3.1), we have

(3.6) Ωp(K)V (L)
n−p
n+p ≤ nω

n
n+p
n Vp(L, Πτ

pK)
n

n+p ,

where equality holds in (3.5) and (3.6) if and only if K and L are dilates of the same
ellipsoid centered at the origin by the condition under which equality holds in (3.3).
Taking L = Πτ

pK in inequality (3.6), and using (2.3), we get inequality (1.8).
According to the conditions under which equality holds in (3.6), we easily see that
equality holds in (1.8) if and only if K is an ellipsoid centered at the origin.

Proof of Theorem 1.2. For L ∈ Kn
o , taking Q = Πτ

pL in (2.7) and using (3.1), we
have

ω
p
n
n Gp(K) ≤ nVp(K, Πτ

pL)V (Πτ,∗
p L)

p
n

= nVp(L, Πτ
pK)V (Πτ,∗

p L)
p
n .

Taking L = Πτ
pK and using (2.3), we get

ω
p
n
n Gp(K) ≤ nV (Πτ

pK)V (Πτ,∗
p Πτ

pK)
p
n ,

which together with the general Lp-Petty projection inequality (1.6), then yields

(3.7)
ωnGp(K)

n
p ≤ n

n
p V (Πτ

pK)[V (Πτ
pK)

n−p
p V (Πτ,∗

p Πτ
pK)]

≤ n
n
p ω

n
p
n V (Πτ

pK).

From (3.7), we now obtain inequality (1.9).
According to the conditions of equality in inequality (1.6), we know that equality

holds in the second inequality of (3.7) if and only if Πτ
pK is an ellipsoid centered at

the origin.
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Proof of Corollary 1.1. Using inequalities (1.9) and (2.8), we immediately get
inequality (1.10).

Proof of Theorem 1.3. By Theorem 1.2, if K ∈ Kn
c , then inequality (1.11) is true,

and equality holds in (1.11) if and only if Πτ
pK is an ellipsoid centered at the origin.

In this case the Blaschke-Santaló inequality (2.1) yields

(3.8) V (Πτ
pK)V (Πτ,∗

p K) = ω2
n.

But equality in inequality (1.11) implies that

Gp(K) = nω
n−p

n
n V (Πτ

pK)
p
n ,

from this and definition (2.7), we obtain for any Q ∈ Kn
o ,

(3.9) ω
p
n
n nω

n−p
n

n V (Πτ
pK)

p
n ≤ nVp(K, Q)V (Q∗)

p
n .

Take Q = K in (3.9) and use the Blaschke-Santaló inequality (2.1) to get

ωnV (Πτ
pK)

p
n ≤ V (K)V (K∗)

p
n ≤ ω

2p
n

n V (K)
n−p

n .

Thus

(3.10) V (Πτ
pK)

p
n ≤ ω

2p−n
n

n V (K)
n−p

n .

From (3.8) and (3.10), we see that

(
ω2

n

V (Πτ,∗
p K)

) p
n

≤ ω
2p−n

n
n V (K)

n−p
n ,

i.e.,
V (K)

n−p
p V (Πτ,∗

p K) ≥ ω
n
p
n .

This together with the general Lp-Petty projection inequality (1.6) yields

V (K)
n−p

p V (Πτ,∗
p K) = ω

n
p
n ,

which is possible only if K is an ellipsoid centered at the origin.
Therefore, we know that equality holds in inequality (1.11) if and only if K is an

ellipsoid centered at the origin.

From inequalities (1.11) and (2.8), we easily obtain Corollary 1.2.
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