FUNDAMENTAL SOLUTIONS ON PARTIAL DIFFERENTIAL OPERATORS OF SECOND ORDER WITH APPLICATION TO MATRIX RICCATI EQUATIONS

Sheng-Ya Feng

Abstract

In this paper, we study the geometry associated with Schrödinger operator via Hamiltonian and Lagrangian formalism. Making use of a multiplier technique, we construct the heat kernel with the coefficient matrices of the operator both diagonal and non-diagonal. For applications, we compute the heat kernel of a Schrödinger operator with terms of lower order, and obtain a globally closed solution to a matrix Riccati equations as a by-product. Besides, we finally recover and generalise several classical results on some celebrated operators.

1. Introduction

1.1. Background

We first introduce a second order differential operator with quadratic potentials

$$
T=-\operatorname{div}(A \nabla)+\langle B x, x\rangle+\langle C x, \nabla\rangle .
$$

with A, B and C matrices. From now on, we call the fundamental solution of the operator $\partial_{t}+T$ the heat kernel of T. Let us recall some well-known facts for $B=0$, when T becomes

$$
H=-\operatorname{div}(A \nabla)+\langle C x, \nabla\rangle .
$$

Kolmogorov [13] considers the following equation

$$
\left(\partial_{t}-\partial_{x_{1}}^{2}-x_{1} \partial_{x_{2}}\right) u=0, \quad\left(x_{1}, x_{2}, t\right) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{+}
$$

to describe the probability density of a system with $2 n$ degree of freedom and obtains an explicit fundamental solution by Fourier transform. Hörmander [12] uses the same method to construct heat kernel for H under a condition imposed on A and B which

[^0]is equivalent to the hypoellipticity of $\partial_{t}+H$. Beals [2] sketches a method to find heat kernel for H with $A \geq 0$ via a probabilistic ansatz.

The study of the generalised Hermite operator $L=-\Delta \pm|x|^{2}$ is of independent interest. Hermite operator $L_{H}=-\Delta+|x|^{2}$ arises from harmonic oscillator and has been studied for quite some time (cf. [3], [11]), while anti-Hermite operator $L_{G H}=-\Delta-|x|^{2}$ arises from anti-harmonic oscillator discussed in [14]. To the best knowledge of this author, the geometry induced by anti-harmonic oscillator was seldom studied. [8] makes some effort in this direction. They study the geometry of generalised Hermite operator $L_{G H}=-\Delta+\langle B x, x\rangle$ with B any real matrix when spatial dimension n equals 2 .

In this paper, our interests concentrate on the case $C=0$, and we study Schrödinger operator

$$
\begin{equation*}
L_{S}=-\operatorname{div}(A \nabla)+\langle B x, x\rangle \tag{1.1}
\end{equation*}
$$

where A is a symmetric positive definite $n \times n$ real matrix, B is a $n \times n$ real matrix commutative with A, i.e. $A B=B A$, div, ∇, and $\langle\cdot, \cdot\rangle$ denote respectively divergence, gradient and Euclidean inner product. In recent, [7] studies Hamiltonian system qualitatively from the view point of conservation law of energy, and obtains the heat kernel formulae with B a diagonally positive definite matrix. [9] and [10] generalise the results in terms of spectral calculus for B any positive semi-definite matrix. More generally, we deal with the heat kernel of the Schrödinger operator with terms of lower order

$$
\begin{equation*}
L=-\operatorname{div}(A \nabla)+\langle B x, x\rangle+\langle f, \nabla\rangle+\langle g, x\rangle+h \tag{1.2}
\end{equation*}
$$

where f and g are vectors, and h is a real number.

1.2. Motivation, Methodology and presentation

There are many methods to derive the heat kernel of L_{S} with B positive definite (cf.[14]). In particular, a common way for Hermite operator is to use eigenfunction expansion (cf. [15]). [8] studies the Schrödinger operator via Hamiltonian and Lagrange formalism, which characterizes the singularities arising from the perturbation of negative eigenvalues of matrix B for 2D case. This present work is processed in the same framework, and the main objective is to

- complete the picture of singularities in higher dimension
- construct heat kernel for Schrödinger operators with at most quadratic potentials.

For the first objective, we block the matrix B into three parts according to the signs of its eigenvalues, namely positive, negative and zero. Singular regions are characterized by a solvable condition of linear equations induced by Hamiltonian system.

We show these regions are hyper planes in space-time coordinates, which explains the results in [8] that the disjoint union of singularities of different types are exactly planes in 3D space-time coordinates. For the second one, we note that the dissipation effect will appear in the heat kernel as the first-order terms are introduced into the potential. A probabilistic ansatz helps us establish the basic form the heat kernel, and the problem thus comes down to solving a set of matrix equations. The second objective is closely related to the first one. Actually, the heat kernel of Schrödinger operators without first-order terms solves the matrix Riccati equations deduced by the ansatz, and it also provides an initial condition for the volume element.

Throughout this paper, we make solid computations for two purposes. On the one hand, direct computations make the characterization of the singular regions natural and clear. One the other hand, we introduce a diffusion matrix A for more generality, which allows one to have an interesting modification of energy function in classical HamiltonJacobi theory. Concrete calculus helps the readers to comprehend the construction of this conserved quantity, while abstract deductions probably miss this point.

1.3. Arrangement

In section 2, we quantitatively study the associated Hamiltonian system for any dimension, from which we conclude that the singularities are hyperplanes in phase space. This work uniformly generalises the results for B positive definite or low dimensional space (cf.[8], [9] or [10]). Moreover, we formally characterize three important objects, namely geodesic, energy and action function of the Hamiltonian system, where geodesic formally means x-component of the solution for Hamiltonian system. All these quantities are given in closed forms, which will play a crucial role in constructing explicit heat kernel of Schrödinger operator.

In section 3, we first use the obtained action function and a multiplier technique to construct the heat kernel of Schrödinger operator L_{S} when the coefficient matrices A and B are diagonal. It is worth mentioning that the heat kernel has slightly different properties as the normal one does, primly because that the Schrödinger operator under consideration is not linear in x-variables. For this reason, we address the fundamental solution of $\partial_{t}+L_{S}$ or $\partial_{t}+L$ as generalised heat kernel. We close section 3 with the computation of heat kernel for A and B non-diagonal case.

The heat kernel has significance in two areas of applications. In section 4, we first apply it to obtain the heat kernel for Schrödinger operator with terms of lower order in (1.2). The heat kernel of L has an ansatz

$$
\begin{align*}
& K\left(x, x^{0} ; t\right) \\
= & W(t) \exp \left\{\langle\alpha(t) x, x\rangle+\left\langle\beta(t) x, x^{0}\right\rangle+\left\langle\gamma(t) x^{0}, x^{0}\right\rangle+\langle\mu, x\rangle+\left\langle\nu, x^{0}\right\rangle\right\}, \tag{1.3}
\end{align*}
$$

where α, β, γ are expected to be symmetric $n \times n$ real matrices, μ, ν to be vectors,
and we deduce a system of matrix and scalar differential equations as in [2]

$$
\begin{align*}
& \quad \dot{\alpha}=4 \alpha A \alpha-\frac{B+B^{t}}{2} \tag{1.4}\\
& \dot{\beta}=4 \beta A \alpha \tag{1.5}\\
& \dot{\gamma}=\beta A \beta \tag{1.6}\\
& \dot{\mu}=4 \alpha A \mu-2 \alpha f-g \tag{1.7}\\
& \dot{\nu}=2 \beta A \mu-\beta f \tag{1.8}\\
& W^{-1} \dot{W}=2 \operatorname{tr}(A \alpha)+\langle A \mu, \mu\rangle-\langle f, \mu\rangle-h \tag{1.9}
\end{align*}
$$

where the dot denotes $\frac{d}{d t}$, and B^{t} denotes transpose of B. The main difficulty is to solve the matrix Riccati equation (1.4), which is an equation of fundamental importance in control theory [1]. Fortunately, the heat kernel of L_{S} provide us a globally closed solution of matrix Riccati equation (1.4), and a condition to identify the solution of the scalar differential equation (1.9). Then other equations and hence the heat kernel of L can be explicitly computed. Last section is devoted to the second areas of applications. We will recover and generalise several classical results on some celebrated operators, including Laplacian, Hermite operator and Ornstein-Uhlenbeck operator on weighted space.

2. Hamiltonian System Associated with L_{S}

In this section, we consider Hamiltonian system associated with Schrödinger operator

$$
L_{S}=-\operatorname{div}(A \nabla)+\langle B x, x\rangle
$$

with A and B commutative.
Geodesics, energy and Hamilton-Jacobi action function are three significant objects in Hamilton-Jacobi theory and are of their own interest. We study them one by one in the following subsections.

2.1. Geodesics

The Hamiltonian function of L_{S} is defined as its full symbol

$$
H_{S}=-\langle A \xi, \xi\rangle+\langle B x, x\rangle
$$

and the associated Hamiltonian system is

$$
\left\{\begin{array}{l}
\dot{x}=\frac{\partial H_{S}}{\partial \xi}=-A \xi-A^{t} \xi=-2 A \xi \tag{2.1}\\
\dot{\xi}=-\frac{\partial H_{S}}{\partial x}=-B x-B^{t} x=-\left(B+B^{t}\right) x
\end{array} .\right.
$$

Denoting $D:=2 A\left(B+B^{t}\right)$, one has

$$
\ddot{x}=-2 A \dot{\xi}=2 A\left(B+B^{t}\right) x=D x
$$

and D is symmetric following from that A is commutative with B. The geodesics $x(s)$ between x^{0} and x in \mathbb{R}^{n} satisfy the boundary value problem

$$
\left\{\begin{array}{l}
\ddot{x}=D x \tag{2.2}\\
x(0)=x_{0}, \quad x(t)=x
\end{array}\right.
$$

We start with the case when both A and B are diagonal matrices, and write them as follows

$$
A=\Lambda^{a}=\left[\begin{array}{lll}
a_{1}^{2} & & \tag{2.3}\\
& \ddots & \\
& & a_{n}^{2}
\end{array}\right]
$$

$$
\begin{gather*}
B=\Lambda^{b}=\left[\begin{array}{llllll}
b_{1}^{2} & & & & & \\
& \ddots & & & & \\
& & b_{m}^{2} & -b_{m+1}^{2} & & \\
& & & & \ddots & \\
& & & & & -b_{n}^{2}
\end{array}\right] \tag{2.4}\\
A B=\Lambda^{a} \Lambda^{b}=\left[\begin{array}{llllll}
a_{1}^{2} b_{1}^{2} & & & & & \\
& \ddots & & & & \\
& & a_{m}^{2} b_{m}^{2} & -a_{m+1}^{2} b_{m+1}^{2} & & \\
& & & & \ddots & \\
& & & & & -a_{n}^{2} b_{n}^{2}
\end{array}\right]
\end{gather*}
$$

where $a_{j}>0, b_{j}>0$ for $j \in\{1, \cdots, n\}$ satisfy the condition that:

Condition (C). For $i \neq k$ and $1 \leqslant i, k \leqslant m$ or $m+1 \leqslant i, k \leqslant n, a_{i}^{2} b_{i}^{2} \neq a_{k}^{2} b_{k}^{2}$.
Putting $\Lambda_{1}^{a}=\operatorname{diag}\left\{a_{j}^{2}\right\}_{j=1}^{m}, \Lambda_{2}^{a}=\operatorname{diag}\left\{a_{j}^{2}\right\}_{j=m+1}^{n}, \Lambda_{1}^{b}=\operatorname{diag}\left\{b_{j}^{2}\right\}_{j=1}^{m}$, and $\Lambda_{2}^{b}=$ $\operatorname{diag}\left\{-b_{j}^{2}\right\}_{j=m+1}^{n}$, one has

$$
\begin{align*}
& A=\left[\begin{array}{ll}
\Lambda_{1}^{a} & \\
& \Lambda_{2}^{a}
\end{array}\right], \tag{2.6}\\
& B=\left[\begin{array}{ll}
\Lambda_{1}^{b} & \\
& \Lambda_{2}^{b}
\end{array}\right] \tag{2.7}
\end{align*}
$$

and

$$
D=4 A B=4\left[\begin{array}{ll}
\Lambda_{1}^{a} \Lambda_{1}^{b} & \tag{2.8}\\
& \Lambda_{2}^{a} \Lambda_{2}^{b}
\end{array}\right]
$$

The solution of the linear system $\ddot{x}=D x$ is a combination of radical solutions $\left\{e^{2 a_{j} b_{j} s}\right\}_{j=1}^{m},\left\{e^{-2 a_{j} b_{j} s}\right\}_{j=1}^{m},\left\{\cos \left(2 a_{j} b_{j} s\right)\right\}_{j=m+1}^{n}$, and $\left\{\sin \left(2 a_{j} b_{j} s\right)\right\}_{j=m+1}^{n}$. We write the coefficients in both block and component forms

$$
\begin{array}{ll}
C_{1}=\left[\begin{array}{l}
C_{11} \\
C_{21}
\end{array}\right], & C_{2}=\left[\begin{array}{l}
C_{12} \\
C_{22}
\end{array}\right], \\
C_{3}=\left[\begin{array}{l}
C_{13} \\
C_{23}
\end{array}\right], & C_{4}=\left[\begin{array}{l}
C_{14} \\
C_{24}
\end{array}\right],
\end{array}
$$

where

$$
\begin{array}{lll}
C_{11} & =\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 m} \\
\vdots & \ddots & \vdots \\
c_{m 1} & \cdots & c_{m m}
\end{array}\right], & C_{21}=\left[\begin{array}{ccc}
c_{m+1,1} & \cdots & c_{m+1, m} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \cdots & c_{n m}
\end{array}\right], \\
C_{12} & =\left[\begin{array}{ccc}
c_{1, m+1} & \cdots & c_{1 n} \\
\vdots & \ddots & \vdots \\
c_{m, m+1} & \cdots & c_{m n}
\end{array}\right], & C_{22}=\left[\begin{array}{ccc}
c_{m+1, m+1} & \cdots & c_{m+1, n} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \cdots & c_{n n}
\end{array}\right], \\
C_{13} & =\left[\begin{array}{cccc}
c_{1, n+1} & \cdots & c_{1, n+m} \\
\vdots & \ddots & \vdots \\
c_{m, n+1} & \cdots & c_{m, n+m}
\end{array}\right], & C_{23}=\left[\begin{array}{ccc}
c_{m+1, n+1} & \cdots & c_{m+1, n+m} \\
\vdots & \ddots & \vdots \\
c_{n, n+1} & \cdots & c_{n, n+m}
\end{array}\right], \\
C_{14}=\left[\begin{array}{ccc}
c_{1, n+m+1} & \cdots & c_{1,2 n} \\
\vdots & \ddots & \vdots \\
c_{m, n+m+1} & \cdots & c_{m, 2 n}
\end{array}\right], & C_{24}=\left[\begin{array}{ccc}
c_{m+1, n+m+1} & \cdots & c_{m+1,2 n} \\
\vdots & \ddots & \vdots \\
c_{n, n+m+1} & \cdots & c_{n, 2 n}
\end{array}\right] .
\end{array}
$$

Accordingly, we first write the solution vectors as

$$
\begin{aligned}
& x_{1}(s)=\left(e^{2 a_{1} b_{1} s}, \cdots, e^{2 a_{m} b_{m} s}\right)^{t} \\
& x_{2}(s)=\left(\cos \left(2 a_{m+1} b_{m+1} s\right), \cdots, \cos \left(2 a_{n} b_{n} s\right)\right)^{t} \\
& x_{3}(s)=\left(e^{-2 a_{1} b_{1} s}, \cdots, e^{-2 a_{m} b_{m} s}\right)^{t} \\
& x_{4}(s)=\left(\sin \left(2 a_{m+1} b_{m+1} s\right), \cdots, \sin \left(2 a_{n} b_{n} s\right)\right)^{t}
\end{aligned}
$$

then

$$
\begin{aligned}
& x(s)=\left[\begin{array}{llll}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right], \\
& \ddot{x}(s)=4\left[\begin{array}{llll}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24}
\end{array}\right]\left[\begin{array}{lllll}
\Lambda_{1}^{a} \Lambda_{1}^{b} & & & \\
& \Lambda_{2}^{a} \Lambda_{2}^{b} & & \\
& & \Lambda_{1}^{a} \Lambda_{1}^{b} & \\
& & & \Lambda_{2}^{a} \Lambda_{2}^{b}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right] \\
& =4\left[\begin{array}{llll}
C_{11} \Lambda_{1}^{a} \Lambda_{1}^{b} & C_{12} \Lambda_{2}^{a} \Lambda_{2}^{b} & C_{13} \Lambda_{1}^{a} \Lambda_{1}^{b} & C_{14} \Lambda_{2}^{a} \Lambda_{2}^{b} \\
C_{21} \Lambda_{1}^{a} \Lambda_{1}^{b} & C_{22} \Lambda_{2}^{a} \Lambda_{2}^{b} & C_{23} \Lambda_{1}^{a} \Lambda_{1}^{b} & C_{24} \Lambda_{2}^{a} \Lambda_{2}^{b}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right], \\
& D x(s)=4\left[\begin{array}{ll}
\Lambda_{1}^{a} \Lambda_{1}^{b} & \\
& \Lambda_{2}^{a} \Lambda_{2}^{b}
\end{array}\right]\left[\begin{array}{llll}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right] \\
& =4\left[\begin{array}{llll}
\Lambda_{1}^{a} \Lambda_{1}^{b} C_{11} & \Lambda_{1}^{a} \Lambda_{1}^{b} C_{12} & \Lambda_{1}^{a} \Lambda_{1}^{b} C_{13} & \Lambda_{1}^{a} \Lambda_{1}^{b} C_{14} \\
\Lambda_{2}^{a} \Lambda_{2}^{b} C_{21} & \Lambda_{2}^{a} \Lambda_{2}^{b} C_{22} & \Lambda_{2}^{a} \Lambda_{2}^{b} C_{23} & \Lambda_{2}^{a} \Lambda_{2}^{b} C_{24}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right] .
\end{aligned}
$$

Noting $\ddot{x}(s)=D x(s)$, and the condition (C) implies

$$
\begin{array}{ll}
C_{11}=\operatorname{diag}\left\{c_{j j}\right\}_{j=1}^{m}, & C_{13}=\operatorname{diag}\left\{c_{j, n+j}\right\}_{j=1}^{m} \tag{2.9}\\
C_{22}=\operatorname{diag}\left\{c_{j j}\right\}_{j=m+1}^{n}, & C_{24}=\operatorname{diag}\left\{c_{j, n+j}\right\}_{j=m+1}^{n}
\end{array}
$$

Similarly, that $a_{j}^{2} b_{j}^{2}>0$ for $j \in \overline{1, n}$ implies

$$
C_{12}=C_{21}=C_{14}=C_{23}=0
$$

Thus,

$$
x(s)=\left[\begin{array}{cccc}
C_{11} & 0 & C_{13} & 0 \\
0 & C_{22} & 0 & C_{24}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right]
$$

where $C_{11}, C_{22}, C_{13}, C_{24}$ are diagonal matrices commutative with Λ_{j}^{a} and Λ_{j}^{b} for $j=1,2$.

Next, the boundary condition in (2.2) will establish $C_{i j}$'s. As before, we introduce some notations.

$$
\begin{aligned}
x^{0} & =\left(x_{1}^{(0)}, \cdots, x_{n}^{(0)}\right)^{t}, & x & =\left(x_{1}^{(1)}, \cdots, x_{n}^{(1)}\right)^{t} \\
x_{1}^{0} & =\left(x_{1}^{(0)}, \cdots, x_{m}^{(0)}\right)^{t}, & x_{2}^{0} & =\left(x_{m+1}^{(0)}, \cdots, x_{n}^{(0)}\right)^{t} \\
x_{1} & =\left(x_{1}^{(1)}, \cdots, x_{m}^{(1)}\right)^{t}, & x_{2} & =\left(x_{m+1}^{(1)}, \cdots, x_{n}^{(1)}\right)^{t} \\
\widetilde{C}_{11} & =\left(c_{11}, \cdots, c_{m m}\right)^{t}, & \widetilde{C}_{13} & =\left(c_{1, n+1}, \cdots, c_{m, n+m}\right)^{t} \\
\widetilde{C}_{22} & =\left(c_{m+1, m+1}, \cdots, c_{n n}\right)^{t}, & \widetilde{C}_{24} & =\left(c_{m+1, m+n+1}, \cdots, c_{n, 2 n}\right)^{t}
\end{aligned}
$$

Given a non-singular matrix M, we define $\frac{N}{M}:=M^{-1}{ }_{\sim}^{\sim}$.
By boundary condition in (2.2), $\widetilde{C}_{11}, \widetilde{C}_{22}, \widetilde{C}_{13}$ and \widetilde{C}_{24} satisfy the following linear equations

$$
\left[\begin{array}{cccc}
I_{m} & 0 & I_{m} & 0 \\
0 & I_{n-m} & 0 & 0 \\
e^{2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}} & 0 & e^{-2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}} & 0 \\
0 & \cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) & 0 & \sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)
\end{array}\right]\left[\begin{array}{l}
\widetilde{C}_{11} \\
\widetilde{C}_{22} \\
\widetilde{C}_{13} \\
\widetilde{C}_{24}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{0} \\
x_{2}^{0} \\
x_{1} \\
x_{2}
\end{array}\right]
$$

To move on, we make assumption $\left(^{*}\right)$ that $\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)$ is non-singular. Indeed, the region for $\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)$ singular consists of countably many hyperplanes in (x, t)-space, thus, it has no contribution to the Hamilton-Jacobi action function. In section 3, we will give a formal remark about this point.

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
I_{m} & 0 & I_{m} & 0 & \vdots & x_{1}^{0} \\
0 & I_{n-m} & 0 & 0 & \vdots & x_{2}^{0} \\
e^{2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}} & 0 & e^{-2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}} & 0 & \vdots & x_{1} \\
0 & \cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) & 0 & \sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) & \vdots & x_{2}
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccccc}
I_{m} & 0 & I_{m} & 0 & \vdots \\
0 & I_{n-m} & 0 & 0 & x_{1}^{0} \\
0 & 0 & \frac{1-e^{4 t} \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}}{e^{2 t} \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}} & 0 & \vdots \\
0 & 0 & \sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) & \vdots & x_{2}-\cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) x_{2}^{0}
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{l}
\rightarrow\left[\begin{array}{cccccc}
I_{m} & 0 & I_{m} & 0 & \vdots & x_{1}^{0} \\
0 & I_{n-m} & 0 & 0 & \vdots & x_{2}^{0} \\
0 & 0 & -I_{m} & 0 & \vdots & \frac{e^{2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}} x_{1}-e^{4 t} \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}} x_{1}^{0}}{e^{4 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}-1}} \\
0 & 0 & 0 & \sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) & \vdots & x_{2}-\cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)
\end{array} x_{2}^{0}\right.
\end{array}\right] .
$$

We read off the solution

$$
\begin{align*}
& \widetilde{C}_{11}=\frac{e^{2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}}}{e^{4 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}}-1} x_{1}-\frac{1}{e^{4 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}}-1} x_{1}^{0} \\
& \widetilde{C}_{22}=x_{2}^{0}, \\
& \widetilde{C}_{13}=-\frac{e^{2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}}}{e^{4 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}-1}} x_{1}+\frac{e^{4 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}}}{e^{4 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}}-1} x_{1}^{0}, \tag{2.10}\\
& \widetilde{C}_{24}=\csc \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) x_{2}-\cot \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) x_{2}^{0},
\end{align*}
$$

and we may recover $C_{i j}$'s in (2.9) from $\widetilde{C}_{i j}$'s in (2.10) with

$$
\begin{array}{llll}
c_{j j}=\left\langle\widetilde{C}_{11}, e_{j}^{m}\right\rangle, & c_{j, n+j}=\left\langle\widetilde{C}_{13}, e_{j}^{m}\right\rangle, & & j=\overline{1, m} \tag{2.11}\\
c_{j j}=\left\langle\widetilde{C}_{22}, e_{j-m}^{n-m}\right\rangle, & c_{j, n+j}=\left\langle\widetilde{C}_{24}, e_{j-m}^{n-m}\right\rangle, & & j=\overline{m+1, n}
\end{array}
$$

where e_{j}^{m} denotes a m-dimensional canonical basis vector with $j^{t h}$ component one and others zero, and e_{j-m}^{n-m} is defined in the same way.

Finally, we conclude the previous deduction as
Proposition 2.1. Suppose that A, B take the form (2.6), (2.7). Then the geodesics of Hamiltonian system (2.1) that solves boundary problem (2.2) with $t \neq \frac{k \pi}{2 a_{j} b_{j}}, k \in$ $\mathbb{N}^{+}, j \in \overline{m+1, n}$ are given by

$$
x(s)=\left[\begin{array}{cccc}
C_{11} & 0 & C_{13} & 0 \tag{2.12}\\
0 & C_{22} & 0 & C_{24}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right]=\left[\begin{array}{l}
C_{11} x_{1}(s)+C_{13} x_{3}(s) \\
C_{22} x_{2}(s)+C_{24} x_{4}(s)
\end{array}\right]
$$

where $C_{i j}$'s and components therein are identified by (2.9)-(2.11).

2.1. Energy

By use of Hamilton-Jacobi theory, the energy is conserved along the geodesics. In order to compute such energy and consequent action that both are associated with A, we introduce M-inner product $\langle\cdot, \cdot\rangle_{M}:=\langle M \cdot, \cdot\rangle$ with M a symmetric positive definite matrix. Indeed,

$$
\begin{aligned}
& \frac{d}{d s}\left[\langle\dot{x}(s), \dot{x}(s)\rangle_{\left(\Lambda^{a}\right)^{-1}}-\langle\ddot{x}(s), x(s)\rangle_{\left(\Lambda^{a}\right)^{-1}}\right] \\
= & 2\langle\ddot{x}(s), \dot{x}(s)\rangle_{\left(\Lambda^{a}\right)^{-1}}-\langle\ddot{x}(s), x(s)\rangle_{\left(\Lambda^{a}\right)^{-1}}-\langle\ddot{x}(s), \dot{x}(s)\rangle_{\left(\Lambda^{a}\right)^{-1}} \\
= & \langle\ddot{x}(s), \dot{x}(s)\rangle_{\left(\Lambda^{a}\right)^{-1}}-\langle\ddot{x}(s), x(s)\rangle_{\left(\Lambda^{a}\right)^{-1}} \\
= & \langle D x(s), \dot{x}(s)\rangle_{\left(\Lambda^{a}\right)^{-1}}-\langle D \dot{x}(s), x(s)\rangle_{\left(\Lambda^{a}\right)^{-1}} \\
= & 0 .
\end{aligned}
$$

$$
\langle\dot{x}(s), \dot{x}(s)\rangle_{\left(\Lambda^{a}\right)^{-1}}-\langle\ddot{x}(s), x(s)\rangle_{\left(\Lambda^{a}\right)^{-1}}=\mathrm{Const}=: 2 E
$$

The main task of this subsection is to find such constant E in terms of boundary data. In the following deduction, $f(T)$ denotes spectral calculus of continuous function f on the selfadjoint operator T. As we know in the previous subsection,

$$
x(s)=\left[\begin{array}{cccc}
C_{11} & 0 & C_{13} & 0 \\
0 & C_{22} & 0 & C_{24}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right],
$$

and

$$
\ddot{x}(s)=4\left[\begin{array}{cccc}
C_{11} & 0 & C_{13} & 0 \\
0 & C_{22} & 0 & C_{24}
\end{array}\right]\left[\begin{array}{cccc}
\Lambda_{1}^{a} \Lambda_{1}^{b} & & & \\
& \Lambda_{2}^{a} \Lambda_{2}^{b} & & \\
& & \Lambda_{1}^{a} \Lambda_{1}^{b} & \\
& & & \Lambda_{2}^{a} \Lambda_{2}^{b}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right] .
$$

A direct computation shows

$$
\begin{aligned}
& \dot{x}(s)=\left[\begin{array}{cccc}
C_{11} & 0 & C_{13} & 0 \\
0 & C_{22} & 0 & C_{24}
\end{array}\right] \\
& {\left[\begin{array}{ccc}
2 \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}} & & \\
& & \\
& & \\
& 2 \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}} & \\
& -2 \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}} & \\
& &
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right],}
\end{aligned}
$$

$$
\begin{aligned}
& \langle\dot{x}(s), \dot{x}(s)\rangle_{\left(\Lambda^{a}\right)^{-1}} \\
= & 4\left[\begin{array}{llll}
x_{1}(s)^{t}, & x_{2}(s)^{t}, & x_{3}(s)^{t}, & \left.x_{4}(s)^{t}\right] \\
& \cdot\left[\begin{array}{cccc}
C_{11}^{2} \Lambda_{1}^{b} & 0 & -C_{11} C_{13} \Lambda_{1}^{b} & 0 \\
0 & -C_{24}^{2} \Lambda_{2}^{b} & 0 & C_{22} C_{24} \Lambda_{2}^{b} \\
-C_{11} C_{13} \Lambda_{1}^{b} & 0 & C_{13}^{2} \Lambda_{1}^{b} & 0 \\
0 & C_{22} C_{24} \Lambda_{2}^{b} & 0 & -C_{22}^{2} \Lambda_{2}^{b}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right]
\end{array}>. \begin{array}{c}
0
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \langle\ddot{x}(s), x(s)\rangle_{\left(\Lambda^{a}\right)^{-1}} \\
= & 4\left[\begin{array}{llll}
x_{1}(s)^{t}, & x_{2}(s)^{t}, & x_{3}(s)^{t}, & \left.x_{4}(s)^{t}\right]
\end{array}\right. \\
& \cdot\left[\begin{array}{cccc}
C_{11}^{2} \Lambda_{1}^{b} & 0 & C_{11} C_{13} \Lambda_{1}^{b} & 0 \\
0 & C_{22}^{2} \Lambda_{2}^{b} & 0 & C_{22} C_{24} \Lambda_{2}^{b} \\
C_{11} C_{13} \Lambda_{1}^{b} & 0 & C_{13}^{2} \Lambda_{1}^{b} & 0 \\
0 & C_{22} C_{24} \Lambda_{2}^{b} & 0 & C_{24}^{2} \Lambda_{2}^{b}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right] .
\end{aligned}
$$

So,

$$
\begin{aligned}
& \langle\dot{x}(s), \dot{x}(s)\rangle_{\left(\Lambda^{a}\right)^{-1}}-\langle\ddot{x}(s), x(s)\rangle_{\left(\Lambda^{a}\right)^{-1}} \\
& =4\left[\begin{array}{lll}
x_{1}(s)^{t}, & x_{2}(s)^{t}, & x_{3}(s)^{t}, \\
x_{4}(s)^{t}
\end{array}\right] \\
& {\left[\begin{array}{cccc}
0 & 0 & -2 C_{11} C_{13} \Lambda_{1}^{b} & 0 \\
0 & -\left(C_{22}^{2}+C_{24}^{2}\right) \Lambda_{2}^{b} & 0 & 0 \\
-2 C_{11} C_{13} \Lambda_{1}^{b} & 0 & 0 & 0 \\
0 & 0 & 0 & -\left(C_{22}^{2}+C_{24}^{2}\right) \Lambda_{2}^{b}
\end{array}\right]\left[\begin{array}{l}
x_{1}(s) \\
x_{2}(s) \\
x_{3}(s) \\
x_{4}(s)
\end{array}\right]} \\
& =-16 x_{3}(s)^{t} C_{11} C_{13} \Lambda_{1}^{b} x_{1}(s) \\
& -4 x_{2}(s)^{t}\left(C_{22}^{2}+C_{24}^{2}\right) \Lambda_{2}^{b} x_{2}(s)-4 x_{4}(s)^{t}\left(C_{22}^{2}+C_{24}^{2}\right) \Lambda_{2}^{b} x_{4}(s) \\
& =4\left\{-4 \operatorname{tr}\left(C_{11} C_{13} \Lambda_{1}^{b}\right)-\operatorname{tr}\left[\left(C_{22}^{2}+C_{24}^{2}\right) \Lambda_{2}^{b}\right]\right\} \text {. }
\end{aligned}
$$

Hence,

$$
\begin{align*}
E & =\frac{1}{2}\left(\langle\dot{x}, \dot{x}\rangle_{\left(\Lambda^{a}\right)^{-1}}-\langle\ddot{x}, x\rangle_{\left(\Lambda^{a}\right)^{-1}}\right) \tag{2.13}\\
& =2\left\{-4 \operatorname{tr}\left(C_{11} C_{13} \Lambda_{1}^{b}\right)-\operatorname{tr}\left[\left(C_{22}^{2}+C_{24}^{2}\right) \Lambda_{2}^{b}\right]\right\} .
\end{align*}
$$

Making use of $\widetilde{C}_{i j}$'s solved previously, we have

$$
\begin{aligned}
& \operatorname{tr}\left(C_{11} C_{13} \Lambda_{1}^{b}\right) \\
= & \left\langle\widetilde{C}_{11}, \widetilde{C}_{13}\right\rangle_{\Lambda_{1}^{b}} \\
= & -\left\langle\frac{\Lambda_{1}^{b} e^{2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}} x_{1}-\Lambda_{1}^{b} x_{1}^{0}}{e^{4 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}}-1}, \frac{e^{2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}} x_{1}-e^{4 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}} x_{1}^{0}}{e^{4 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}}-1}\right\rangle \\
= & -\frac{1}{4}\left\langle\frac{\Lambda_{1}^{b}}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}, x_{1}\right\rangle-\frac{1}{4}\left\langle\frac{\Lambda_{1}^{b}}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}^{0}, x_{1}^{0}\right\rangle \\
& +\frac{1}{2}\left\langle\frac{\Lambda_{1}^{b} \cosh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}, x_{1}^{0}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{tr}\left[\left(C_{24}^{2}+C_{22}^{2}\right) \Lambda_{2}^{b}\right] \\
= & \left\langle\widetilde{C}_{24}, \widetilde{C}_{24}\right\rangle_{\Lambda_{2}^{b}}+\left\langle\widetilde{C}_{22}, \widetilde{C}_{22}\right\rangle_{\Lambda_{2}^{b}} \\
= & \left\langle\Lambda_{2}^{b} \frac{x_{2}-\cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) x_{2}^{0}}{\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}, \frac{x_{2}-\cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) x_{2}^{0}}{\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}\right\rangle+\left\langle\Lambda_{2}^{b} x_{2}^{0}, x_{2}^{0}\right\rangle \\
= & \left\langle\frac{\Lambda_{2}^{b}}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}, x_{2}\right\rangle+\left\langle\frac{\Lambda_{2}^{b}}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}^{0}, x_{2}^{0}\right\rangle \\
& -2\left\langle\frac{\Lambda_{2}^{b} \cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}, x_{2}^{0}\right\rangle .
\end{aligned}
$$

Finally, we conclude the following proposition on the energy
Proposition 2.2. Suppose that A, B take the form (2.6), (2.7). Then energy of Hamiltonian system (2.1) conforms conservation law along the geodesics (2.9) with constant E given by

$$
\begin{aligned}
E= & \frac{1}{2}\left(\langle\dot{x}, \dot{x}\rangle_{\left(\Lambda^{a}\right)^{-1}}-\langle\ddot{x}, x\rangle_{\left(\Lambda^{a}\right)^{-1}}\right) \\
= & 2\left\{-4 \operatorname{tr}\left(C_{11} C_{13} \Lambda_{1}^{b}\right)-\operatorname{tr}\left[\left(C_{24}^{2}+C_{22}^{2}\right) \Lambda_{2}^{b}\right]\right\} \\
= & 2\left[\left\langle\frac{\Lambda_{1}^{b}}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}, x_{1}\right\rangle+\left\langle\frac{\Lambda_{1}^{b}}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}^{0}, x_{1}^{0}\right\rangle\right. \\
& -2\left\langle\frac{\Lambda_{1}^{b} \cosh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}, x_{1}^{0}\right\rangle+\left\langle\frac{-\Lambda_{2}^{b}}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}, x_{2}\right\rangle \\
& \left.+\left\langle\frac{-\Lambda_{2}^{b}}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}^{0}, x_{2}^{0}\right\rangle-2\left\langle\frac{-\Lambda_{2}^{b} \cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}, x_{2}^{0}\right\rangle\right] .
\end{aligned}
$$

2.2. Action function

In this subsection, we compute the Hamilton-Jacobi action function S, which is a crucial ingredient in the construction of heat kernel. It satisfies Hamilton-Jacobi equation (cf. [4], [5] and [6])

$$
\frac{\partial S}{\partial t}+H(x, \nabla S)=0
$$

Noting in our case $H=-\frac{1}{2} E$, we have $S=\frac{1}{2} \int E d t+c$. In the multiplier method to be adopted in section 3, the factor $\frac{1}{2}$ and constant c independent of variable t will be absorbed by multiplier and volume element respectively. For this reason, we do not differentiate energy from Hamiltonian, and simply define action function as $S=-\int E d t$. Integration by parts shows

$$
\begin{aligned}
& J_{1}=\int \frac{\Lambda_{1}^{b}}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} d t=-\frac{1}{2} \sqrt{\frac{\Lambda_{1}^{b}}{\Lambda_{1}^{a}}} \frac{\cosh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}{\sinh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}, \\
& J_{2}=\int \frac{\Lambda_{1}^{b} \cosh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} d t=-\frac{1}{2} \sqrt{\frac{\Lambda_{1}^{b}}{\Lambda_{1}^{a}}} \frac{1}{\sinh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& J_{3}=\int \frac{-\Lambda_{2}^{b}}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} d t=-\frac{1}{2} \sqrt{\frac{-\Lambda_{2}^{b}}{\Lambda_{2}^{a}}} \frac{\cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}{\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} \\
& J_{4}=\int \frac{-\Lambda_{2}^{b} \cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} d t=-\frac{1}{2} \sqrt{\frac{-\Lambda_{2}^{b}}{\Lambda_{2}^{a}}} \frac{1}{\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}
\end{aligned}
$$

Finally, we have
Proposition 2.3. Suppose that A, B take the form (2.6), (2.7). Then the HamiltonJacobi action function of Hamiltonian system (2.1) with boundary condition in (2.2) is given by

$$
\begin{align*}
S & =-\int E d t \\
& =\left\langle\sqrt{\frac{\Lambda_{1}^{b}}{\Lambda_{1}^{a}}} \frac{\cosh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}{\sinh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}, x_{1}\right\rangle+\left\langle\sqrt{\frac{\Lambda_{1}^{b}}{\Lambda_{1}^{a}}} \frac{\cosh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}{\sinh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}^{0}, x_{1}^{0}\right\rangle \\
& -2\left\langle\sqrt{\frac{\Lambda_{1}^{b}}{\Lambda_{1}^{a}}} \frac{1}{\sinh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}, x_{1}^{0}\right\rangle+\left\langle\sqrt{\frac{-\Lambda_{2}^{b}}{\Lambda_{2}^{a}}} \frac{\cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}{\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}, x_{2}\right\rangle \tag{2.14}\\
& +\left\langle\sqrt{\frac{-\Lambda_{2}^{b}}{\Lambda_{2}^{a}}} \frac{\cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}{\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}^{0}, x_{2}^{0}\right\rangle-2\left\langle\sqrt{\frac{-\Lambda_{2}^{b}}{\Lambda_{2}^{a}}} \frac{1}{\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}, x_{2}^{0}\right\rangle .
\end{align*}
$$

3. Heat Kernel for L_{S}

Given diagonal coefficient matrices, we find heat kernel for L_{S} via multiplier techniques, and discuss its properties similar to the normal heat distribution. Heat kernel formulae for non-diagonal coefficient matrices will be given at the end of this section.

3.1. Explicit formulae (diagonal case)

We start with a basic fact on the action function.
Lemma 3.1. Given A, B, energy E and action function S as in (2.6), (2.7), (2.10) and (2.11) respectively, the following equalities hold
(3.1) (1) $\left|\nabla_{x} S\right|_{A}^{2}=4\langle B x, x\rangle+2 E$

$$
\begin{equation*}
\text { (2) } \operatorname{tr}(A \operatorname{Hess}(S))=\sum_{j=1}^{m} \frac{2 a_{j} b_{j} \cosh \left(2 t a_{j} b_{j}\right)}{\sinh \left(2 t a_{j} b_{j}\right)}+\sum_{j=m+1}^{n} \frac{2 a_{j} b_{j} \cos \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a_{j} b_{j}\right)} \tag{3.2}
\end{equation*}
$$

where $|\cdot|_{A}:=\sqrt{\langle\cdot, \cdot\rangle_{A}}$, and $\operatorname{Hess}(f)$ denotes Hessian of function $f \in C^{2}$.

Proof.

A direct computation shows that
(1)

$$
\begin{aligned}
& \left|\nabla_{x} S\right|_{A}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\nabla_{x_{1}} S, \nabla_{x_{1}} S\right\rangle_{\Lambda_{1}^{a}}+\left\langle\nabla_{x_{2}} S, \nabla_{x_{2}} S\right\rangle_{\Lambda_{2}^{a}} \\
& =4\left\{\left\langle\frac{\Lambda_{1}^{b}}{\Lambda_{1}^{a}} \frac{\cosh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}, x_{1}\right\rangle_{\Lambda_{1}^{a}}+\left\langle\frac{\Lambda_{1}^{b}}{\Lambda_{1}^{a}} \frac{1}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}^{0}, x_{1}^{0}\right\rangle_{\Lambda_{1}^{a}}\right. \\
& -2\left\langle\frac{\Lambda_{1}^{b}}{\Lambda_{1}^{a}} \frac{\cosh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}{\sinh ^{2}\left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} x_{1}, x_{1}^{0}\right\rangle_{\Lambda_{1}^{a}}+\left\langle\frac{-\Lambda_{2}^{b}}{\Lambda_{2}^{a}} \frac{\cos ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}, x_{2}\right\rangle_{\Lambda_{2}^{a}} \\
& \left.+\left\langle\frac{-\Lambda_{2}^{b}}{\Lambda_{2}^{a}} \frac{1}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}^{0}, x_{2}^{0}\right\rangle_{\Lambda_{2}^{a}}-2\left\langle\frac{-\Lambda_{2}^{b}}{\Lambda_{2}^{a}} \frac{\cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}{\sin ^{2}\left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)} x_{2}, x_{2}^{0}\right\rangle_{\Lambda_{2}^{a}}\right\} \\
& =4\langle B x, x\rangle+2 E \text {. }
\end{aligned}
$$

(2)

$$
\operatorname{Hess}(S)=2\left[\begin{array}{ll}
\sqrt{\frac{\Lambda_{1}^{b}}{\Lambda_{1}^{a}}} \cosh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{G}}\right) \\
\sinh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{\circ}}\right) & \\
& \sqrt{\frac{-\Lambda_{2}^{b}}{\Lambda_{2}^{a}}} \cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right) \\
\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{G}}\right)
\end{array}\right] .
$$

Hence,

$$
A H \operatorname{ess}(S)=2\left[\begin{array}{ll}
\sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}} \frac{\cosh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)}{\sinh \left(2 t \sqrt{\Lambda_{1}^{a} \Lambda_{1}^{b}}\right)} & \\
& \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}} \frac{\cos \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)}{\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{5}}\right)}
\end{array}\right] .
$$

Thus,

$$
\operatorname{tr}(A \operatorname{Hess}(S))=\sum_{j=1}^{m} \frac{2 a_{j} b_{j} \cosh \left(2 t a_{j} b_{j}\right)}{\sinh \left(2 t a_{j} b_{j}\right)}+\sum_{j=m+1}^{n} \frac{2 a_{j} b_{j} \cos \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a_{j} b_{j}\right)} .
$$

We expect to find the heat kernel of L_{S} in the following form

$$
K\left(x, x^{0} ; t\right)=V(t) e^{\kappa S\left(x, x^{0} ; t\right)}
$$

where the multiplier κ is a real number. Making use of (3.1) in Lemma 4.1 and noticing that

$$
\begin{aligned}
P K: & =\left(\partial_{t}+L\right) K \\
& =\left(\partial_{t}-\operatorname{div}(A \nabla)+\langle B x, x\rangle\right)\left(V(t) e^{\kappa S\left(x, x_{0} ; t\right)}\right) \\
& =K\left(\frac{V^{\prime}}{V}-\kappa E-\kappa^{2}\left|\nabla_{x} S\right|_{A}^{2}-\kappa \operatorname{tr}(A \operatorname{Hess}(S))+\langle B x, x\rangle\right) \\
& =K\left(\frac{V^{\prime}}{V}-\kappa E-4 \kappa^{2}\langle B x, x\rangle-2 \kappa^{2} E-\kappa \operatorname{tr}(A \operatorname{Hess}(S))+\langle B x, x\rangle\right) \\
& =0
\end{aligned}
$$

for $t>0$, we choose $\kappa=-\frac{1}{2}$ and let volume element $V(t)$ satisfy transport equation

$$
\begin{equation*}
\frac{V(t)^{\prime}}{V(t)}=\kappa \operatorname{tr}(A \operatorname{Hess}(S)) \tag{3.3}
\end{equation*}
$$

Readers may consult [4], [5] and [6] for more types of transport equations. By (3.2) in Lemma 4.1, we integrate equation (3.3) to have

$$
\begin{equation*}
V(t)=C \prod_{j=1}^{m}\left(\frac{1}{\sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{1}{\sin \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \tag{3.4}
\end{equation*}
$$

The constant C is determined to normalise the integral in x-variable of the heat kernel K. However, it is easy to see from (2.14) that the integral is divergent if $x_{0} \neq 0 . K(x, 0 ; t)$, a propagator from origin to arbitrary point x, is called generalised heat kernel as we shall prove next section that it indeed has similar properties to the normal heat distribution. We denote $K(x, 0 ; t)$ by $K(x ; t)$ from now on, then

$$
\begin{aligned}
K(x ; t)= & C \prod_{j=1}^{m}\left(\frac{1}{\sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{1}{\sin \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \\
& \times e^{-\frac{1}{4 t}\left(\sum_{j=1}^{m} \frac{2 t b_{j} j_{j}}{a_{j}} \frac{\cosh \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a a_{j} b_{j}\right)}\left(x_{j}^{(1)}\right)^{2}+\sum_{j=m+1}^{n} \frac{2 t b_{j}}{a_{j}} \frac{\cos \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a_{j} j_{j} j\right.}\left(x_{j}^{(1)}\right)^{2}\right) .}
\end{aligned}
$$

Making use of $\int_{\mathbb{R}} e^{-x^{2}} d x=\sqrt{\pi}$,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} K(x ; t) d x \\
= & C \prod_{j=1}^{m}\left(\frac{1}{\sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{1}{\sin \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \\
& \cdot \prod_{j=1}^{m}\left[\left(\frac{1}{4 t} \frac{2 t b_{j}}{a_{j}} \frac{\cosh \left(2 t a_{j} b_{j}\right)}{\sinh \left(2 t a_{j} b_{j}\right)}\right)^{-\frac{1}{2}} \sqrt{\pi}\right] \prod_{j=m+1}^{n}\left[\left(\frac{1}{4 t} \frac{2 t b_{j}}{a_{j}} \frac{\cos \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a_{j} b_{j}\right)}\right)^{-\frac{1}{2}} \sqrt{\pi}\right] \\
= & C \prod_{j=1}^{n}\left(\frac{2 \pi a_{j}}{b_{j}}\right)^{\frac{1}{2}} \prod_{j=1}^{m}\left(\frac{1}{\cosh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{1}{\cos \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}}
\end{aligned}
$$

tends to $C \prod_{j=1}^{n}\left(\frac{2 \pi a_{j}}{b_{j}}\right)^{\frac{1}{2}}$ as $t \rightarrow 0^{+}$.
By choosing $C=\prod_{j=1}^{n}\left(\frac{b_{j}}{2 \pi a_{j}}\right)^{\frac{1}{2}}$, we have arrived at the following proposition
Proposition 3.4. Assume that A and B are diagonal matrices as in (2.3) and (2.4). Then the heat kernel of the Schrödinger operator $L_{S}=-\operatorname{div}(A \nabla)+\langle B x, x\rangle$ is

$$
\begin{aligned}
& K\left(x, x^{0} ; t\right)=(4 \pi t)^{-\frac{n}{2}} \prod_{j=1}^{m}\left(\frac{2 t b_{j}}{a_{j} \sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{2 t b_{j}}{a_{j} \sin \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{align*}
& \times e^{-\frac{1}{4 t}\left(\sum_{j=m+1}^{n} \frac{2 t b_{j}}{a_{j}} \frac{\cos \left(2 a_{j} b_{j}\right)}{\sin \left(2 t a_{j} b_{j}\right)}\left(x_{j}^{(1)}\right)^{2}+\sum_{j=m+1}^{n} \frac{2 t b_{j}}{a_{j}} \frac{\cos \left(2 t a_{j} b_{j}\right.}{\sin \left(2 t a_{j} b_{j}\right)}\left(x_{j}^{(0)}\right)^{2}\right)} \tag{3.5}\\
& \times e^{\frac{1}{2 t}\left(\sum_{j=1}^{m} \frac{2 t b_{j}}{a_{j}} \frac{1}{\sinh \left(2 t a_{j} b_{j}\right)} x_{j}^{(0)} x_{j}^{(1)}+\sum_{j=m+1}^{n} \frac{2 t b_{j}}{a_{j}} \frac{1}{\sin \left(2 t a_{j} b_{j}\right)} x_{j}^{(0)} x_{j}^{(1)}\right) .}
\end{align*}
$$

Remark 3.1. In sake of continuity of a_{j} 's and b_{j} 's, heat kernel (3.5) keeps valid if the matrix D has multiple eigenvalues or zero eigenvalues. Moreover, condition (C) is technical, and can be removed.

Remark 3.2. Heat kernel (3.5) is complex valued as long as $\sin \left(2 t a_{j} b_{j}\right)<0$, i.e. $t \in\left(\frac{4 k+1}{4 a_{j} b_{j}} \pi, \frac{4 k+3}{4 a_{j} b_{j}} \pi\right), k \in \mathbb{N}^{+}, j \in \overline{m+1, n}$.

Remark 3.3. Heat kernel (3.5) holds if the sub-matrix $\sin \left(2 t \sqrt{-\Lambda_{2}^{a} \Lambda_{2}^{b}}\right)$ is nonsingular, which we proposed as an assumption in the previous section. We call region $\Omega=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}^{+}: t=\frac{k \pi}{2 a_{j} b_{j}}, k \in \mathbb{N}^{+}, j \in \overline{m+1, n}\right\}$ singular region and
region $\Omega^{c}=\mathbb{R}^{n} \times \mathbb{R}^{+} \backslash \Omega$ regular region. Briefly speaking, there is no geodesic or uncountably many geodesics connecting the given boundary points x and x^{0} for $t=$ $\frac{k \pi}{2 a_{j} b_{j}}$, while there is a unique geodesic for any given two points x and x^{0} if $t \neq \frac{k \pi}{2 a_{j} b_{j}}$. Here we point out that such singular region has no contribution to the Hamilton-Jacobi action function which is regarded as an integral of energy in t-variable.

3.1. Generalised heat kernel

In this subsection, we show that generalised heat kernel has analogue properties to the normal one, that is

Proposition 3.5. Heat kernel (3.5) is said to be generalised in the following sense.
(1) $K\left(x, x^{0} ; t\right)>0, \forall\left(x, x^{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, 0<t \ll 1$.
(2) Fix $x^{0}=0, \hat{K}(\xi ; t) \rightarrow 1$, as $t \rightarrow 0^{+}$.
(3) Fix $x^{0}=0, K(x ; t) \xrightarrow{d} \delta(x)$, as $t \rightarrow 0^{+}$.
where hat denotes Fourier transform on spatial variables, and \xrightarrow{d} means limitation in the sense of distribution.

Proof. (1) It is obvious from formulae (3.5) for t appropriately small.
In the rest of this proof, we fix $x^{0}=0$ in (3.5) and

$$
\begin{align*}
K(x ; t)= & (4 \pi t)^{-\frac{n}{2}} \prod_{j=1}^{m}\left(\frac{2 t b_{j}}{a_{j} \sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{2 t b_{j}}{a_{j} \sin \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \tag{3.6}\\
& \left.\times e^{-\frac{1}{4 t}\left(\sum_{j=1}^{m} \frac{2 t b_{j}}{a_{j}} \frac{\cosh \left(2 t a_{j} b_{j}\right.}{\sinh \left(2 t a_{j} b_{j}\right)}\left(x_{j}^{(1)}\right)^{2}+\sum_{j=m+1}^{n}\right.} \frac{2 t b_{j}}{a_{j} \frac{\cos \left(2 t a b_{j} b_{j}\right)}{\sin \left(2 t a_{j} b_{j}\right)}\left(x_{j}^{(1)}\right)^{2}}\right) .
\end{align*}
$$

(2) By properties of Fourier transform

$$
\widehat{e^{-\pi x^{2}}}(\xi)=e^{-\pi \xi^{2}}
$$

and

$$
\widehat{f(\lambda x)}(\xi)=\lambda^{-1} \hat{f}\left(\lambda^{-1} \xi\right),
$$

we have

$$
\begin{aligned}
\hat{K}(\xi ; t)= & \int_{\mathbb{R}^{n}} K(x ; t) e^{-2 \pi i \xi \cdot x} d x \\
= & (4 \pi t)^{-\frac{n}{2}} \prod_{j=1}^{m}\left(\frac{2 t b_{j}}{a_{j} \sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{2 t b_{j}}{a_{j} \sin \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \\
& \times \prod_{j=1}^{m} \int_{\mathbb{R}} e^{-\frac{1}{4 t} \frac{2 t b_{j}}{a_{j}} \frac{\cosh \left(2 t a_{j} b_{j}\right)}{\sinh \left(2 t a_{j} b_{j}\right)}\left(x_{j}^{(1)}\right)^{2}} e^{-2 \pi i \xi_{j} \cdot x_{j}^{(1)}} d x_{j}^{(1)} \\
& \times \prod_{j=m+1}^{n} \int_{\mathbb{R}} e^{-\frac{1}{4 t} \frac{2 t b_{j}}{a_{j}} \frac{\cos \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a_{j} b_{j}\right)}\left(x_{j}^{(1)}\right)^{2}} e^{-2 \pi i \xi_{j} \cdot x_{j}^{(1)}} d x_{j}^{(1)} \\
= & (4 \pi t)^{-\frac{n}{2}} \prod_{j=1}^{m}\left(\frac{2 t b_{j}}{a_{j} \sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{2 t b_{j}}{a_{j} \sin \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \\
& \times \prod_{j=1}^{m}\left(\frac{1}{4 \pi t} \frac{2 t b_{j}}{a_{j}} \frac{\cosh \left(2 t a_{j} b_{j}\right)}{\sinh \left(2 t a_{j} b_{j}\right)}\right)^{-\frac{1}{2}} e^{-4 \pi^{2} \frac{a_{j}}{2 t b_{j}} \frac{\sinh \left(2 t a_{j} b_{j}\right)}{\cosh \left(2 t a_{j} b_{j} \xi_{j}^{2}\right.}} \\
& \times \prod_{j=m+1}^{n}\left(\frac{1}{4 \pi t} \frac{2 t b_{j}}{a_{j}} \frac{\cos \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a_{j} b_{j}\right)}\right)^{-\frac{1}{2}} e^{-4 \pi^{2} t \frac{a_{j}}{2 t b_{j}} \frac{\sin \left(2 t a_{j} b_{j}\right)}{\cos \left(2 t a_{j} b_{j}\right)} \xi_{j}^{2}} \\
= & \prod_{j=1}^{m}\left(\frac{1}{\cosh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{1}{\cos \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \\
& \times \prod_{j=1}^{m} e^{-2 \pi^{2} \frac{a_{j}}{b_{j}} \frac{\sinh \left(2 t a_{j} b_{j}\right)}{\cosh \left(2 t a_{j} b_{j} \xi_{j}^{2}\right.} \prod_{j=m+1}^{n} e^{-2 \pi^{2} \frac{a_{j}}{b_{j}} \frac{\sin \left(2 t a_{j} b_{j}\right)}{\cos \left(2 t a_{j} b_{j}\right)} \xi_{j}^{2}} \rightarrow 1}
\end{aligned}
$$

as $t \rightarrow 0^{+}$.
(3) We write (3.6) as $K(x ; t)=K_{1}(x ; t) K_{2}(x ; t)$, where

$$
\begin{gathered}
K_{1}(x ; t)=\prod_{j=1}^{m}\left(\frac{2 t a_{j} b_{j}}{\sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{2 t a_{j} b_{j}}{\sin \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \\
\cdot e^{-\frac{1}{4 t}\left[\sum_{j=1}^{m}\left(\frac{x_{j}^{(1)}}{a_{j}}\right)^{2}\left(\frac{2 t a_{j} b_{j} \cosh \left(2 t a_{j} b_{j}\right)}{\sinh \left(2 t a_{j} b_{j}\right)}-1\right)+\sum_{j=m+1}^{n}\left(\frac{x_{j}^{(1)}}{a_{j}}\right)^{2}\left(\frac{2 t a_{j} b_{j} \cos \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a_{j} b_{j}\right)}-1\right)\right]}
\end{gathered}
$$

and

$$
K_{2}(x ; t)=\frac{(4 \pi t)^{-\frac{n}{2}}}{(\operatorname{det} A)^{\frac{1}{2}}} e^{-\frac{|x|_{A-1}^{2}}{4 t}} .
$$

The proof will be carried out in two steps.
(i) $K_{2}(x ; t) \xrightarrow{d} \delta(x)$, as $t \rightarrow 0^{+}$.

For any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} K_{2}(x ; t) \varphi(x) d x=\varphi(0) \int_{\mathbb{R}^{n}} K_{2}(x ; t) d x+\int_{\mathbb{R}^{n}} K_{2}(x ; t)[\varphi(x)-\varphi(0)] d x \tag{3.7}
\end{equation*}
$$

The first term

$$
\int_{\mathbb{R}^{n}} K_{2}(x ; t) d x=\prod_{j=1}^{n} \int_{\mathbb{R}} \frac{1}{a_{j} \sqrt{4 \pi t}} e^{-\frac{x_{j}^{2}}{4 t a_{j}^{2}}} d x_{j}=\prod_{j=1}^{n} \int_{\mathbb{R}} e^{-\pi x_{j}^{2}} d x_{j}=1,
$$

and the second term

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} K_{2}(x ; t)[\varphi(x)-\varphi(0)] d x & =\int_{\mathbb{R}^{n}} \frac{(4 \pi t)^{-\frac{n}{2}}}{(\operatorname{det} A)^{\frac{1}{2}}} e^{-\frac{\left|A^{-\frac{1}{2}} x\right|^{2}}{4 t}}[\varphi(x)-\varphi(0)] d x \\
& =\int_{\mathbb{R}^{n}} e^{-\pi|y|^{2}}\left[\varphi\left(\sqrt{4 \pi t} A^{\frac{1}{2}} y\right)-\varphi(0)\right] d y \rightarrow 0,
\end{aligned}
$$

as $t \rightarrow 0^{+}$.
As a result of (3.7),

$$
\lim _{t \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} K_{2}(x ; t) \varphi(x) d x=\varphi(0)=\int_{\mathbb{R}^{n}} \delta(x) \varphi(x) d x
$$

i.e. $K_{2} \xrightarrow{d} \delta$, as $t \rightarrow 0^{+}$.
(ii) $K(x ; t) \xrightarrow{d} \delta(x)$, as $t \rightarrow 0^{+}$.

Taking any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, we assume that support of φ is contained in the ball $\left\{x \in \mathbb{R}^{n}:|x| \leqslant R\right\}$, and that φ is dominated by some constant C everywhere. For the sake of

$$
\int_{\mathbb{R}^{n}} K \varphi d x-\varphi(0)=\int_{\mathbb{R}^{n}}\left(K_{1}-1\right) K_{2} \varphi d x+\int_{\mathbb{R}^{n}} K_{2} \varphi d x-\varphi(0)
$$

and step (i) $\lim _{t \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} K_{2} \varphi d x=\varphi(0)$, it is sufficient to conclude $K \xrightarrow{d} \delta$, as $t \rightarrow 0^{+}$ by checking

$$
\lim _{t \rightarrow 0^{+}} \int_{\mathbb{R}^{n}}\left(K_{1}-1\right) K_{2} \varphi d x=0
$$

Indeed, a variable change $y=\frac{A^{-\frac{1}{2}} x}{\sqrt{4 \pi t}}$ makes

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(K_{1}-1\right) K_{2} \varphi d x & =\int_{|x| \leqslant R}\left(K_{1}(x ; t)-1\right) K_{2}(x ; t) \varphi(x) d x \\
& =\int_{|y| \leqslant \frac{\left\|A^{-\frac{1}{2}}\right\| R}{\sqrt{4 \pi t}}}\left(K_{1}\left(\sqrt{4 \pi t} A^{\frac{1}{2}} y\right)-1\right) \varphi\left(\sqrt{4 \pi t} A^{\frac{1}{2}} y\right) e^{-\pi|y|^{2}} d y
\end{aligned}
$$

where

$$
\begin{gathered}
K_{1}\left(\sqrt{4 \pi t} A^{\frac{1}{2}} y\right)=\prod_{j=1}^{m}\left(\frac{2 t a_{j} b_{j}}{\sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{2 t a_{j} b_{j}}{\sin \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \\
\cdot e^{-\pi\left[\sum_{j=1}^{m} y_{j}^{2}\left(\frac{2 t a_{j} b_{j} \cosh \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a a_{j} b_{j}\right)}-1\right)+\sum_{j=m+1}^{n} y_{j}^{2}\left(\frac{2 t a_{j} b_{j} \cos \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a_{j} j_{j}\right)}-1\right)\right]} .
\end{gathered}
$$

Noticing that $\frac{u \cosh (u)-\sinh (u)}{\sinh (u)} \rightarrow 0^{+}$and $\frac{u \cos (u)-\sin (u)}{\sin (u)} \rightarrow 0^{-}$as $t \rightarrow 0^{+}$, we obtain

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{n}}\left(K_{1}-1\right) K_{2} \varphi d x\right| & \leqslant C \prod_{j=1}^{m}\left(\frac{2 t a_{j} b_{j}}{\sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \prod_{j=m+1}^{n}\left(\frac{2 t a_{j} b_{j}}{\sin \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \\
\cdot & \int_{\mathbb{R}^{n}}\left[e^{-\pi \sum_{j=m+1}^{n} y_{j}^{2}\left(\frac{2 t a_{j} b_{j} \cos \left(2 t a_{j} b_{j}\right)}{\sin \left(2 t a_{j} b_{j}\right)}-1\right)}-1\right] e^{-\pi|y|^{2}} d y \rightarrow 0
\end{aligned}
$$

as $t \rightarrow 0^{+}$, which completes the proof.

3.2. Explicit formulae (non-diagonal case)

In order to generalise Proposition 3.1 to non-diagonal case, we first rewrite (3.5) in inner-product form

$$
\begin{align*}
& K\left(x, x^{0} ; t\right)=(4 \pi t)^{-\frac{n}{2}}\left(\frac{\operatorname{det} \psi\left(2 t \sqrt{\Lambda^{a} \Lambda^{b}}\right)}{\operatorname{det} \Lambda^{a}}\right)^{\frac{1}{2}} \tag{3.8}\\
& \times e^{-\frac{1}{4 t}\left(\left\langle\varphi\left(2 t \sqrt{\Lambda^{a} \Lambda^{b}}\right) x, x\right\rangle_{\left(\Lambda^{a}\right)^{-1}}+\left\langle\varphi\left(2 t \sqrt{\Lambda^{a} \Lambda^{b}}\right) x^{0}, x^{0}\right\rangle_{\left(\Lambda^{a}\right)^{-1}-2}\left\langle\psi\left(2 t \sqrt{\Lambda^{a} \Lambda^{b}}\right) x, x^{0}\right\rangle_{\left(\Lambda^{a}\right)^{-1}}\right)}
\end{align*}
$$

where $\varphi(u)=u \operatorname{coth}(u), \psi(u)=\frac{u}{\sinh (u)}$.
Suppose that A and B are commutative, then there exists an orthogonal matrix P such that $P A P^{t}=\Lambda^{a}$ and $P\left(B+B^{t}\right) P^{t}=2 \Lambda^{b}$. Putting $y=P x$, system $\ddot{x}=2 A\left(B+B^{t}\right) x=: D x$ becomes $\ddot{y}=4 \Lambda^{a} \Lambda^{b} y$. Moreover, we have

$$
\begin{aligned}
\operatorname{det} \psi\left(2 t \sqrt{\Lambda^{a} \Lambda^{b}}\right) & =\operatorname{det} \psi(t \sqrt{D}), \\
\left\langle\varphi\left(2 t \sqrt{\Lambda^{a} \Lambda^{b}}\right) y, y\right\rangle_{\left(\Lambda^{a}\right)^{-1}} & =\left\langle\left(\Lambda^{a}\right)^{-1} \varphi\left(2 t \sqrt{\Lambda^{a} \Lambda^{b}}\right) P x, P x\right\rangle \\
& =\left\langle P A^{-1} P^{t} \varphi\left(2 t \sqrt{\Lambda^{a} \Lambda^{b}}\right) P x, P x\right\rangle \\
& =\left\langle A^{-1} \varphi(t \sqrt{D}) x, x\right\rangle \\
& =\langle\varphi(t \sqrt{D}) x, x\rangle_{A^{-1}},
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
\left\langle\varphi\left(2 t \sqrt{\Lambda^{a} \Lambda^{b}}\right) y^{0}, y^{0}\right\rangle_{\left(\Lambda^{a}\right)^{-1}} & =\left\langle\varphi(t \sqrt{D}) x^{0}, x^{0}\right\rangle_{A^{-1}} \\
\left\langle\psi\left(2 t \sqrt{\Lambda^{a} \Lambda^{b}}\right) y, y^{0}\right\rangle_{\left(\Lambda^{a}\right)^{-1}} & =\left\langle\psi(t \sqrt{D}) x, x^{0}\right\rangle_{A^{-1}}
\end{aligned}
$$

According to (3.8), we have arrived one of our main results.
Theorem 3.1. For given matrix A symmetric positive definite, B a real matrix such that A and B are commutative, the heat kernel of Schrödinger operator

$$
L_{S}=-\operatorname{div}(A \nabla)+\langle B x, x\rangle
$$

has the following form

$$
\begin{align*}
K\left(x, x^{0} ; t\right)= & (4 \pi t)^{-\frac{n}{2}}\left(\frac{\operatorname{det} \psi(t \sqrt{D})}{\operatorname{det} A}\right)^{\frac{1}{2}} \\
& \times e^{-\frac{1}{4 t}\left(\langle\varphi(t \sqrt{D}) x, x\rangle_{A^{-1}}+\left\langle\varphi(t \sqrt{D}) x^{0}, x^{0}\right\rangle_{A^{-1}}-2\left\langle\psi(t \sqrt{D}) x, x^{0}\right\rangle_{A^{-1}}\right)} \tag{2.1}
\end{align*}
$$

where $D=2 A\left(B+B^{t}\right), \varphi(u)=u \operatorname{coth}(u), \psi(u)=\frac{u}{\sinh (u)}$.
Remark 3.4. We use the convention $\left.u \operatorname{coth}(u)\right|_{u=0}=1$, so $D \operatorname{coth}(D)=I_{n}$ on the kernel of D, and so on.

4. Heat Kernel for L

For the first application of Theorem 3.1, we compute the explicit heat kernel of operator L. With mention in introduction, we will adopt the ansatz (1.3) and solve the associated differential equation system (1.4)-(1.9). Of all these equations, the most difficult one is the matrix Riccati equation (1.4). Given the results of previous sections, we handle this point in a straightforward way. In fact, we have the following

Theorem 4.2. (Globally closed solution for matrix Riccati equation). For matrix A symmetric positive definite, B a real matrix such that A and B are commutative, matrix Riccati equation

$$
\begin{equation*}
\dot{\alpha}=4 \alpha A \alpha-\frac{B+B^{t}}{2} \tag{1.4}
\end{equation*}
$$

has a globally explicit solution

$$
\begin{equation*}
\alpha=\frac{-1}{4 t} A^{-1} \varphi(t \sqrt{D}) \tag{4.1}
\end{equation*}
$$

Besides, the differential equations system

$$
\begin{equation*}
\dot{\beta}=4 \beta A \alpha \tag{1.5}
\end{equation*}
$$

have explicit solutions

$$
\begin{align*}
\beta & =\frac{1}{2 t} A^{-1} \psi(t \sqrt{D}) \\
\gamma & =\frac{-1}{4 t} A^{-1} \varphi(t \sqrt{D}) \tag{4.2}
\end{align*}
$$

where $D=2 A\left(B+B^{t}\right), \varphi(u)=u \operatorname{coth}(u), \psi(u)=\frac{u}{\sinh (u)}$.
Proof. The solutions are read out from the Theorem 3.1 since equations (1.4)-(1.6) are irrelevant to vector f, g and constant h.

Next, we may integrate equations (1.7)-(1.9) for A and B satisfying condition of Theorem 3.1. We point out that for singular matrix B, solutions are formulated in component form. To have concise solutions, we assume that B is non-singular and commutative with symmetric positive definite A.

- μ-function

$$
\begin{equation*}
\mu=\frac{1}{2} A^{-1} f-\frac{\cosh (t \sqrt{D})}{\sqrt{D} \sinh (t \sqrt{D})} g . \tag{4.3}
\end{equation*}
$$

- ν-function

$$
\begin{equation*}
\nu=\frac{1}{2} A^{-1} f+\frac{1}{\sqrt{D} \sinh (t \sqrt{D})} g \tag{4.4}
\end{equation*}
$$

Remark 4.5. Free constants in μ-function and ν-function are absorbed by function $W(t)$.

- W - function

Making use of

$$
\begin{aligned}
& A \alpha=\frac{-1}{4 t} \varphi(t \sqrt{D}) \\
& \langle A \mu, \mu\rangle=\frac{1}{4}|f|_{A^{-1}}^{2}-\left\langle\frac{\operatorname{coth}(t \sqrt{D})}{\sqrt{D}} f, g\right\rangle+\left\langle\frac{\operatorname{coth}^{2}(t \sqrt{D})}{2\left(B+B^{t}\right)} g, g\right\rangle \\
& \langle f, \mu\rangle=\frac{1}{2}|f|_{A^{-1}}^{2}-\left\langle\frac{\operatorname{coth}(t \sqrt{D})}{\sqrt{D}} f, g\right\rangle
\end{aligned}
$$

volume element $W(t)$ satisfies

$$
W^{-1} \dot{W}=\frac{-1}{2 t} \operatorname{tr}[\varphi(t \sqrt{D})]-\frac{1}{4}|f|_{A^{-1}}^{2}+\left\langle\frac{\operatorname{coth}^{2}(t \sqrt{D})}{2\left(B+B^{t}\right)} g, g\right\rangle-h
$$

Integration yields

$$
W(t)=W_{0} e^{-\left(\frac{1}{4}|f|_{A^{-1}}^{2}+h\right) t+\langle\phi(t \sqrt{D}) g, g\rangle_{A} t^{3}}
$$

where $W_{0}=C\left[\operatorname{det} \frac{1}{\sinh (t \sqrt{D})}\right]^{\frac{1}{2}}$ and $\phi(u)=\frac{u-\operatorname{coth}(u)}{u^{3}}$. Taking $f=g=h=0$, we have

$$
W_{0}=W=V=(4 \pi t)^{-\frac{n}{2}}\left(\frac{\operatorname{det} \psi(t \sqrt{D})}{\operatorname{det} A}\right)^{\frac{1}{2}}
$$

Consequently, volume element W is given by

$$
\begin{equation*}
W=(4 \pi t)^{-\frac{n}{2}}\left(\frac{\operatorname{det} \psi(t \sqrt{D})}{\operatorname{det} A}\right)^{\frac{1}{2}} e^{-\left(\frac{1}{4}|f|_{A^{-1}}^{2}+h\right) t+\langle\phi(t \sqrt{D}) g, g\rangle_{A} t^{3}} \tag{4.5}
\end{equation*}
$$

Finally, we yields another main result of this paper.
Theorem 4.3. For A symmetric positive definite, B non-singular such that A and B are commutative, the heat kernel of operator

$$
L=-\operatorname{div}(A \nabla)+\langle B x, x\rangle+\langle f, \nabla\rangle+\langle g, x\rangle+h
$$

has the following form

$$
\begin{align*}
K\left(x, x^{0} ; t\right)= & (4 \pi t)^{-\frac{n}{2}}\left(\frac{\operatorname{det} \psi(t \sqrt{D})}{\operatorname{det} A}\right)^{\frac{1}{2}} e^{-\left(\frac{1}{4}|f|_{A^{-1}}^{2}+h\right) t+\langle\phi(t \sqrt{D}) g, g\rangle_{A^{\prime}} t^{3}} \\
& \times e^{-\frac{1}{4 t}\left(\langle\varphi(t \sqrt{D}) x, x\rangle_{A^{-1}}+\left\langle\varphi(t \sqrt{D}) x^{0}, x^{0}\right\rangle_{A^{-1}}-2\left\langle\psi(t \sqrt{D}) x, x^{0}\right\rangle_{A^{-1}}\right)} \\
& \times e^{\frac{1}{2}\left\langle f, x-x^{0}\right\rangle_{A^{-1}}-\left\langle\frac{\operatorname{coth}(t \sqrt{D})}{\sqrt{D}} g, x\right\rangle+\left\langle\frac{1}{\sqrt{D} \sinh (t \sqrt{D})} g, x^{0}\right\rangle} \tag{2.2}
\end{align*}
$$

where $D=2 A\left(B+B^{t}\right), \varphi(u)=u \operatorname{coth}(u), \psi(u)=\frac{u}{\sinh (u)}, \phi(u)=\frac{u-\operatorname{coth}(u)}{u^{3}}$.

5. Examples

For the second application of Theorem 3.1, we demonstrate three examples to recover and generalise several classical results on some celebrated operators. Notation $\varphi(u)=u \operatorname{coth}(u)$ and $\psi(u)=\frac{u}{\sinh (u)}$ keep valid throughout the whole section.

Example 5.1. Generalised Laplacian

Define generalised Laplacian as $L_{G L}=-\operatorname{div}(A \nabla)$ where A is a symmetric positive definite matrix. With $B=0$ in Theorem 3.1, we have $D=0, \varphi(t \sqrt{D})=I_{n}$, $\psi(t \sqrt{D})=I_{n}$ and the heat kernel is given by

$$
\begin{align*}
K_{G L}\left(x, x^{0} ; t\right) & =\frac{(4 \pi t)^{-\frac{n}{2}}}{(\operatorname{det} A)^{\frac{1}{2}}} e^{-\frac{1}{4 t}\left(\langle x, x\rangle_{A^{-1}}+\left\langle x^{0}, x^{0}\right\rangle_{A^{-1}}-2\left\langle x, x^{0}\right\rangle_{A^{-1}}\right)} \\
& =\frac{(4 \pi t)^{-\frac{n}{2}}}{(\operatorname{det} A)^{\frac{1}{2}}} e^{-\frac{\left|x-x^{0}\right|_{A-1}^{2}}{4 t}} . \tag{5.1}
\end{align*}
$$

In particular, taking $A=I_{n}$, kernel becomes

$$
K_{L}\left(x, x^{0} ; t\right)=(4 \pi t)^{-\frac{n}{2}} e^{-\frac{\left|x-x^{0}\right|^{2}}{4 t}}
$$

which is exactly the Gaussian.
Example 5.2. Generalised Hermite operator
Define generalised Hermite operator $L_{G H}=-\operatorname{div}(A \nabla)+\langle B x, x\rangle$ with $B>0$.

- $A=I_{n}, \quad B=\operatorname{diag}\left\{b_{j}^{2}\right\}_{j=1}^{n} \quad\left(b_{j}>0\right)$

By Theorem 3.1, we yield Mehler formulae

$$
\begin{align*}
K\left(x, x^{0} ; t\right)= & (4 \pi t)^{-\frac{n}{2}} \prod_{j=1}^{n}\left(\frac{2 t b_{j}}{\sinh \left(2 t b_{j}\right)}\right)^{\frac{1}{2}} \\
& \times e^{-\frac{1}{4 t}\left(\sum_{j=1}^{n} \frac{2 t b_{j} \cosh \left(2 t b_{j}\right)}{\sin \left(2 t b_{j}\right)}\left(x_{j}^{(1)}\right)^{2}+\sum_{j=1}^{n} \frac{2 t b_{j} \cosh \left(2 t b_{j}\right)}{\sin \left(2 t b_{j}\right)}\left(x_{j}^{(0)}\right)^{2}\right)} \tag{5.2}\\
& \times e^{-\frac{1}{4 t}\left(-2 \sum_{j=1}^{n} \frac{2 t b_{j}}{\sinh \left(2 t t_{j}\right)} x_{j}^{(0)} x_{j}^{(1)}\right)} .
\end{align*}
$$

- $A=\operatorname{diag}\left\{a_{j}^{2}\right\}_{j=1}^{n}, \quad B=\operatorname{diag}\left\{b_{j}^{2}\right\}_{j=1}^{n} \quad\left(a_{j}>0, b_{j}>0\right)$

By Theorem 3.1, the heat kernel for the generalised Hermite operator has the form

$$
\begin{align*}
K\left(x, x^{0} ; t\right)= & (4 \pi t)^{-\frac{n}{2}} \prod_{j=1}^{n}\left(\frac{2 t b_{j}}{a_{j} \sinh \left(2 t a_{j} b_{j}\right)}\right)^{\frac{1}{2}} \\
& \times e^{-\frac{1}{4 t}\left(\sum_{j=1}^{n} \frac{2 t b_{j}}{a_{j}} \frac{\cosh \left(2 t a_{j} b_{j}\right)}{\sinh \left(2 t a a_{j} b_{j}\right)}\left(x_{j}^{(1)}\right)^{2}+\sum_{j=1}^{n} \frac{2 t b_{j}}{a_{j}} \frac{\cosh \left(2 t a_{j} b_{j}\right)}{\sinh \left(2 t a_{j} b_{j}\right)}\left(x_{j}^{(0)}\right)^{2}\right)} \tag{5.3}\\
& \times e^{-\frac{1}{4 t}\left(-2 \sum_{j=1}^{n} \frac{2 t b_{j}}{a_{j}} \frac{1}{\sinh \frac{1}{\left(2 t a_{j} b_{j}\right.} x_{j}^{(0)} x_{j}^{(1)}}\right) .} .
\end{align*}
$$

- $A>0, B=\operatorname{diag}\left\{b_{j}^{2}\right\}_{j=1}^{n} \quad\left(b_{j}>0\right), \quad A$ and B are commutative.

With $D=4 A B$ in Theorem 3.1, the heat kernel of the generalised Hermite operator
is given by

$$
\begin{align*}
& K\left(x, x^{0} ; t\right) \\
= & (4 \pi t)^{-\frac{n}{2}}\left(\frac{\operatorname{det} \psi(2 t \sqrt{A B})}{\operatorname{det} A}\right)^{\frac{1}{2}} \times \tag{5.4}\\
& e^{-\frac{1}{4 t}\left(\langle\varphi(2 t \sqrt{A B}) x, x\rangle_{A^{-1}}+\left\langle\varphi(2 t \sqrt{A B}) x^{0}, x^{0}\right\rangle_{A^{-1}}-2\left\langle\psi(2 t \sqrt{A B}) x, x^{0}\right\rangle_{A^{-1}}\right) .}
\end{align*}
$$

Example 5.3. Ornstein-Uhlenbeck operator on weighted space
Define Ornstein-Uhlenbeck operator

$$
H_{O U}=-\operatorname{div}(A \nabla)+B x \cdot \nabla
$$

with A symmetric positive definite and B any real matrix commutative with A. OrnsteinUhlenbeck

$$
H_{\phi}=-\operatorname{div}(A \nabla)+A \nabla \phi \cdot \nabla
$$

on Hilbert space $L^{2}\left(\mathbb{R}^{n}, e^{-\phi} d x\right)$ is unitarily equivalent to the Schrödinger operator

$$
H=-\operatorname{div}(A \nabla)+\frac{1}{4}|\nabla \phi|_{A}^{2}-\frac{1}{2} \operatorname{div}(A \nabla \phi)
$$

defined on Hilbert space $L^{2}\left(\mathbb{R}^{n}, d x\right)$:

$$
H_{\phi}=T H T^{-1}
$$

where T is a multiplication operator defined by

$$
T u:=e^{\frac{\phi}{2}} u
$$

Thus,

$$
e^{-t H_{\phi}}=T e^{-t H} T^{-1}
$$

Let ϕ take the form $\langle\tilde{B} x, x\rangle$ satisfying $A \nabla \phi=B x$, then

$$
\tilde{B} x+\tilde{B}^{t} x=\nabla \phi=A^{-1} B x
$$

Hence,

$$
\begin{gathered}
\phi=\frac{1}{2}\left\langle\left(\tilde{B} x+\tilde{B}^{t}\right) x, x\right\rangle=\frac{1}{2}\langle B x, x\rangle_{A^{-1}}, \\
\operatorname{Hess}(\phi)=A^{-1} B \\
\operatorname{div}(A \nabla \phi)=\operatorname{tr}[A \operatorname{Hess}(\phi)]=\operatorname{tr}(B)
\end{gathered}
$$

Consequently,

$$
H=-\operatorname{div}(A \nabla)+\frac{1}{4}\left\langle B^{t} A^{-1} B x, x\right\rangle-\frac{1}{2} \operatorname{tr}(B)
$$

By Theorem 4.2 with $D=B^{t} B, f=g=0$ we have the heat kernel of H :

$$
\begin{aligned}
& K\left(x, x^{0} ; t\right) \\
= & (4 \pi t)^{-\frac{n}{2}}\left(\frac{\operatorname{det} \psi\left(t \sqrt{B^{t} B}\right)}{\operatorname{det} A}\right)^{\frac{1}{2}} e^{\frac{t}{2} \operatorname{tr}(B)} \\
& \times e^{-\frac{1}{4 t}\left(\left\langle\varphi\left(t \sqrt{B^{t} B}\right) x, x\right\rangle_{A^{-1}}+\left\langle\varphi\left(t \sqrt{B^{t} B}\right) x^{0}, x^{0}\right\rangle_{A^{-1}}-2\left\langle\psi\left(t \sqrt{B^{t} B}\right) x, x^{0}\right\rangle_{A^{-1}}\right) .}
\end{aligned}
$$

For any $g \in L^{2}\left(\mathbb{R}^{n}, e^{-\phi} d x\right)$,

$$
\begin{aligned}
e^{-t H_{\phi}} g & =T e^{-t H} T^{-1} g \\
& =\int_{\mathbb{R}^{n}} e^{\frac{\phi(x)}{2}} K(x, y ; t) e^{-\frac{\phi(y)}{2}} g(y) d y \\
& =\int_{\mathbb{R}^{n}} e^{\frac{\phi(x)}{2}} K(x, y ; t) e^{\frac{\phi(y)}{2}} g(y) e^{-\phi} d y
\end{aligned}
$$

Finally, the heat kernel of Ornstein-Uhlenbeck operator on weighted space

$$
H_{O U}: L^{2}\left(\mathbb{R}^{n}, e^{-\frac{\langle B x, x\rangle_{A^{-1}}}{2}} d x\right) \rightarrow L^{2}\left(\mathbb{R}^{n}, e^{-\frac{\langle B x, x\rangle_{A^{-1}}}{2}} d x\right)
$$

is given by

$$
\begin{align*}
& K_{O U}\left(x, x^{0} ; t\right) \\
= & e^{\frac{\phi(x)}{2}} K\left(x, x^{0} ; t\right) e^{\frac{\phi\left(x^{0}\right)}{2}} \\
= & (4 \pi t)^{-\frac{n}{2}}\left(\frac{\operatorname{det} \psi\left(t \sqrt{B^{t} B}\right)}{\operatorname{det} A} e^{\operatorname{trt}(B)}\right)^{\frac{1}{2}} \tag{5.5}\\
& \times e^{-\frac{1}{4 t}\left\{\left\langle\left[\varphi\left(t \sqrt{B^{t} B}\right)-t B\right] x, x\right\rangle_{A-1}+\left\langle\left[\varphi\left(t \sqrt{B^{t} B}\right)-t B\right] x^{0}, x^{0}\right\rangle_{A^{-1}}-2\left\langle\psi\left(t \sqrt{B^{t} B}\right) x, x^{0}\right\rangle_{A^{-1}}\right\} .}
\end{align*}
$$

Acknowledgments

The author would like to extend his deep gratitude to Professor Der-Chen Chang at Georgetown University, for his constant feedback, encouragement and support. The author would also like to thank the anonymous referee for several helpful corrections and comments.

References

1. H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in Control and Systems Theory, Birkhäuser, Basel, 2003.
2. R. Beals, A note on fundamental solutions, Comm. PDE, 24 (1999), 369-376.
3. R. Beals and P. C. Greiner, Calculus on Heisenberg manifolds, Ann. Math. Studies, 119, Princeton University Press, Princeton, New Jersey, 1988.
4. R. Beals, B. Gaveau and P. C. Greiner, The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes, Adv. Math., 121(2) (1996), 288-345.
5. R. Beals, B. Gaveau and P. C. Greiner, On a geometric formula for the fundamental solution of subelliptic Laplacians, Math. Nachr., 181 (1996), 81-163.
6. R. Beals, B. Gaveau and P. C. Greiner, Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians, I, II, III, Bull. Sci. Math., 121 (1997), 1-36, 97-149, 195-259.
7. O. Calin, D.-C. Chang and J. Tie, Fundamental solutions for Hermite and subelliptic operators, J. Anal. Math., 100 (2006), 223-248.
8. D.-C. Chang and S.-Y. Feng, Geometric analysis on generalised Hermite operators, $A d v$ in Appl. Math., 47 (2011), 710-771.
9. S.-Y. Feng, A note on heat kernels of generalised Hermite operators, Taiwanese J. Math., 15 (2011), 2035-2041.
10. S.-Y. Feng, Analysis on heat kernels of Schrödinger operators (Variational approach), Ph.D. diss., Peking University, 2011.
11. J. Glimm and A. Jaffe, Quantum Physics, A Fundamental Integral Point of View, 2nd ed., Springer-Verlag, Berlin, New York, Heidelberg, 1987.
12. L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.
13. A. Kolmogorov, Zufällige Bewegungen, Ann. Math., 35 (1934), 116-117.
14. M. Reed and B. Simon, Methods of modern mathematical physics II, Fourier analysis, self-adjointness, Academic Press, New York-London, 1975.
15. S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Princeton University Press, Princeton, New Jersey, 1993.

Sheng-Ya Feng
Department of Mathematics
East China University of Science and Technology
Shanghai 200237
P. R. China

E-mail: s.y.feng@ecust.edu.cn

[^0]: Received June 6, 2012, accepted August 8, 2012.
 Communicated by Der-Chen Chang.
 2010 Mathematics Subject Classification: Primary: 35J05; Secondary: 35F21, 15A24.
 Key words and phrases: Hamiltonian system, Hamilton-Jacobi equation, Transport equation, Matrix Riccati equation, Schrödinger operator.

