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EXISTENCE OF WEAK SOLUTIONS FOR p-LAPLACIAN PROBLEM WITH
IMPULSIVE EFFECTS

Jiafa Xu, Zhongli Wei and Youzheng Ding

Abstract. In this paper, we shall adopt topological degree theory and critical
point theory to study the existence of weak solutions for the p-Laplacian Dirichlet
boundary value problem{

− (|u′|p−2u′)′ = f(t, u), in Ω,

u(0) = u(1) = 0,

with impulsive conditions u(t+j )−u(t−j ) = 0,Δ|u′(tj)|p−2u′(tj) = Ij(u(tj)), j =
1, 2, . . . , n, where p ∈ (1, +∞), Ω = (0, 1)\{t1, . . . , tn}, f ∈ C([0, 1]× R, R)
and Ij ∈ C(R, R) (j = 1, 2, . . . , n).

1. INTRODUCTION

In this work, we will investigate the existence of weak solutions for the following
Dirichlet boundary value problem with p-Laplacian operator

(1.1)

{
− (|u′|p−2u′)′ = f(t, u), in Ω,

u(0) = u(1) = 0,

subject to impulsive conditions u(t+j )−u(t−j ) = 0,Δ|u′(tj)|p−2u′(tj) = Ij(u(tj)), j =
1, 2, . . . , n, where p ∈ (1, +∞), Ω = (0, 1)\{t1, . . . , tn}, f ∈ C([0, 1]× R, R), Ij ∈
C(R, R) (j = 1, 2, . . . , n) and Δ|u′(tj)|p−2u′(tj) = |u′(t+j )|p−2u′(t+j ) − |u′(t−j )|p−2

u′(t−j ), here u′(t+j ) and u′(t−j ) denote the right and left limits of u′(t) at t, respectively.
The theory of impulsive differential equations is emerging as an important area of

investigation since it is a lot richer than the corresponding theory of non-impulsive
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differential equations. Many evolutionary processes in nature are characterized by the
fact that at certain moments in time an abrupt change of state is experienced. That is
the reason for the rapid development of the theory of impulsive differential equations,
for instance, see the two books [1, 2].
Recently, many researchers pay their attention to impulsive differential equations

by variational method and critical point theory, to the best our knowledge, we refer
the reader to [3, 4, 5, 6, 7, 8] and references cited therein. Meanwhile, some people
begin to study p-Laplacian differential equations with impulsive effects, for example,
see [9, 10, 11, 12, 13, 14].
In [9, 10], Bai and Dai utilize B. Ricceri’s three critical point theorem and moun-

tain pass theorem to investigate the existence of solutions for an impulsive boundary
value problem involving the p-Laplacian operator. Chen and Tang [11] adopt the least
action principle and the saddle point theorem to obtain some existence theorems for
second-order p-Laplacian systems with or without impulsive effects under weak sub-
linear growth conditions. In [12], They also consider that a class of second-order
impulsive differential equations with Dirichlet problems has one or infinitely many so-
lutions under more relaxed assumptions on their nonlinearity f , which satisfies a kind
of new superquadratic and subquadratic condition. Wang et al. [13] study the criti-
cal point theory and the method of lower and upper solutions to obtain the existence
of solutions to a p-Laplacian impulsive problem. As applications, they also get un-
bounded sequences of solutions and sequences of arbitrarily small positive solutions of
the p-Laplacian impulsive problem. Ivan Bogun [14] discusses the existence of weak
solutions for a p-Laplacian problem with superlinear impulses by virtue of mountain
pass theorem and symmetric mountain pass theorem. Moreover, when the case p = 2,
he also offers the existence of at least one non-positive and one non-negative solution.
Motivated by the works cited above, in particular [14], in this paper, we shall

discuss the problem (1.1). Firstly, we adopt topological degree theory to prove that
the problem (1.1) has at least one weak solution. Secondly, we shall utilize Fountain
theorem under Cerami condition (C), which is introduced in [15], to investigate the
problem (1.1) has infinitely many weak solutions. The results obtained here improve
some existing results in the literature.

2. VARIATIONAL STRUCTURE AND THE EXISTENCE OF AT LEAST ONE WEAK SOLUTION

In this paper, we use the Hilbert space X := W 1,p
0 (0, 1), the norm in W 1,p

0 (0, 1) is
‖x‖ = (

∫ 1
0 |x′(t)|p) 1

p . We denote by ‖x‖p the norm in Lp(0, 1) and ‖x‖∞ in C[0, 1].
For u ∈ W 1,p(0, 1), we have that u and u′ are both absolutely continuous. Hence
u′(t+) − u′(t−) = 0 for any t ∈ [0, 1].
If u ∈ X , then u is absolutely continuous. In this case, the one-sided derivatives

u′(t+), u′(t−) may not exist. It leads to the impulsive effects. As a result, we need to
introduce a different concept of solution. Suppose that u ∈ C[0, 1] satisfies the Dirichlet
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condition u(0) = u(1) = 0. Assume that, for every j = 1, 2, . . . , n, uj = u|(tj,tj+1)

and uj ∈ W 1,p(0, 1). In what follows, we first translate (1.1) into its equivalent integral
equation. For any v ∈ X , multiply (1.1) by v and integrate between 0 and 1 to obtain

(2.1)
∫ 1

0
−(|u′|p−2u′)′vdt =

∫ 1

0
f(t, u)vdt.

Note that the impulsive effects, for the left integral of (2.1), define t0 = 0, tn+1 = 1,
we have

(2.2)

∫ 1

0
−(|u′|p−2u′)′vdt

=
n∑

j=0

∫ t−j+1

t+j

−(|u′|p−2u′)′vdt =
n∑

j=0

∫ t−j+1

t+j

−vd
(|u′|p−2u′)

=
n∑

j=0

−|u′|p−2u′v
∣∣t−j+1

t+j
+

n∑
j=0

∫ t−j+1

t+j

|u′|p−2u′v′dt

=
n∑

j=0

[
|u′(t+j )|p−2u′(t+j )v(t+j )−|u′(t−j+1)|p−2u′(t−j+1)v(t−j+1)

]
+
∫ 1

0
|u′|p−2u′v′dt

=
n∑

j=1

[
|u′(t+j )|p−2u′(t+j )−|u′(t−j )|p−2u′(t−j )

]
v(tj)+

∫ 1

0
|u′|p−2u′v′dt

=
n∑

j=1

Ij(u(tj))v(tj) +
∫ 1

0

|u′|p−2u′v′dt.

By (2.1) and (2.2), we find that if for all v ∈ X , there exists u ∈ X such that

(2.3)
∫ 1

0
|u′|p−2u′v′dt +

n∑
j=1

Ij(u(tj))v(tj)−
∫ 1

0
f(t, u)vdt = 0,

then u is called a weak solution of (1.1). Meanwhile, we can obtain the weak solutions
for (1.1) coincide with critical points of the energy functional

(2.4) ϕ(u) =
1
p

∫ 1

0
|u′|pdt +

n∑
j=1

∫ u(tj )

0
Ij(t)dt −

∫ 1

0
F (t, u)dt,

where F (t, u) =
∫ u
0 f(t, x)dx. Clearly, ϕ is class of C1 and it’s derivative is

(2.5) (ϕ′(u), v) =
∫ 1

0
|u′|p−2u′v′dt+

n∑
j=1

Ij(u(tj))v(tj)−
∫ 1

0
f(t, u)vdt, ∀v ∈ X.
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The parameter λ ∈ R for which there is a nontrivial weak solution ϕ(t), t ∈ [0, 1] of
the problem

(2.6)

{
− (|u′|p−2u′)′ − λ|u|p−2u = 0, t ∈ (0, 1),
u(0) = u(1) = 0,

is called an eigenvalue of the eigenvalue problem (2.6) and the function ϕ an eigen-
function associated with the eigenvalue λ. It is known that the problem (2.6) has
a countable set of simple eigenvalues 0 < λ1 < λ2 < · · · , limn→∞ λn = ∞ and
the values of λn, n = 1, 2, . . ., can be explicitly calculated in terms of p and π, i.e.,
λn = (p− 1)

(
2nπ

p sin π
p

)p
for n = 1, 2, . . ., see [12, the below of (2.1)]. The eigenfunc-

tion ϕn associated with λn is continuously differentiable and has exactly n − 1 zero
points in (0, 1). In particular, we can choose ϕ1(t) > 0, t ∈ (0, 1).
In the following, we introduce the fundamental definitions and theorems for topo-

logical degree theory needed in the ensuing results.

Definition 2.1. (see [16, Page 122], [17, Page 2340]). Let X be a reflexive real
Banach space and X∗ its dual. The operator T : X → X∗ is said to satisfy the (S+)
condition if the assumptions un ⇀ u0 weakly in X and lim supn→∞(T (un), un −
u0) ≤ 0 imply un → u0 strongly in X .

Definition 2.2. (see [18, the top of page 912]). The operator T : X → X∗ is
said to be demicontinuous if T maps strongly convergent sequences in X to weakly
convergent sequences in X∗.

Lemma 2.1. (see [19]). Let T : X → X∗ satisfy the (S+) condition and let
K : X → X∗ be a compact operator. Then the sum T + K : X → X∗ satisfies the
(S+) condition.

Lemma 2.2. (see [19]). Let T : X → X∗ be a bounded and demicontinuous
operator satisfying the (S+) condition. Let D ⊂ X be an open, bounded and nonempty
set with the boundary ∂D such that T (u) 	= 0 for u ∈ ∂D. Then there exists an integer
deg(T,D, 0) such that

(1) deg(T,D, 0) 	= 0 implies that there exists an element u0 ∈ D such that T (u0) =
0.

(2) If D is symmetric with respect to the origin and T satisfies T (u) = −T (−u)
for any u ∈ ∂D, then deg(T,D, 0) is an odd number.

(3) Let Tλ be a family of bounded and demicontinuous mappings which satisfy the
(S+) condition and which depend continuously on a real parameter λ ∈ [0, 1],
and let Tλ(u) 	= 0 for any u ∈ ∂D and λ ∈ [0, 1]. Then deg(Tλ,D, 0) is
constant with respect to λ ∈ [0, 1].
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Now, we list our assumptions on f and Ij (j = 1, 2, . . . , n) in this section.
(H1) lim|u|→∞

f(t,u)
|u|p−2u

= λ, where λn < λ < λn+1 for any n = 1, 2, . . ..
(H2) There exist aj, bj > 0 and γj ∈ [1, p) such that |Ij(u)| ≤ aj + bj|u|γj−1, ∀u ∈ R

and j = 1, 2, . . . , n.

Theorem 2.1. Let (H1) and (H2) hold. Then (1.1) has at least one weak solution.

Proof. From (2.3), let us define the three operators J, G, Q : X → X∗ by

(2.7)
(J(u), v) =

∫ 1

0
|u′|p−2u′v′dt, (G(u), v)

=
∫ 1

0

f(t, u)vdt, (Q(u), v) =
n∑

j=1

Ij(u(tj))v(tj), ∀u, v ∈ X.

We first show the two operators G, Q are compact. If {un}∞n=1 is a bounded sequence
inX . By X ↪→↪→ C[0, 1], passing to a subsequence, we may assume that the sequence
{un}∞n=1 is converged. Then {un}∞n=1 is a Cauchy sequence in C[0, 1]. Therefore,

(2.8)

‖G(un) − G(um)‖
= sup

‖v‖≤1

|(G(un) − G(um), v)|

= sup
‖v‖≤1

∣∣∣∣∫ 1

0
(f(t, un) − f(t, um))vdt

∣∣∣∣
≤ sup

‖v‖≤1

∫ 1

0
|(f(t, un)−f(t, um))v|dt→0, as m, n→∞,

and

(2.9)

‖Q(un) − Q(um)‖
= sup

‖v‖≤1
|(Q(un) − Q(um), v)|

= sup
‖v‖≤1

∣∣∣∣∣∣
n∑

j=1

[Ij(un(tj))− Ij(um(tj))] v(tj)

∣∣∣∣∣∣
≤ sup

‖v‖≤1

n∑
j=1

| [Ij(un(tj))−Ij(um(tj))] v(tj)|→0, as m, n→∞.

In what follows, we shall sketch the properties of the operator J . For J , it is clear
that (J(u), u) = ‖u‖p. Furthermore, J is an odd mapping, bounded and continuous.
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Indeed, by Hölder inequality,

(2.10)
|(J(u), v)| =

∣∣∣∣∫ 1

0

|u′|p−2u′v′dt

∣∣∣∣
≤
(∫ 1

0
|u′|pdt

) p−1
p
(∫ 1

0
|v′|pdt

) 1
p

≤ ‖u‖p−1‖v‖ < ∞, ∀u, v ∈ X.

Hence, J is bounded. We assume that a sequence {un}∞n=1 ⊂ X weakly converges to
a element u0 in X , and then X ↪→↪→ Lp(0, 1),

∫ 1
0 |u′

n|p−1dt ≤ ‖un‖p−1 < ∞, for
un ∈ X and Hölder inequality enable us to find

(2.11)

‖J(un)− J(u0)‖ = sup
‖v‖≤1

|(J(un) − J(u0), v)|

= sup
‖v‖≤1

∣∣∣∣∫ 1

0
[|u′

n|p−2u′
n − |u′

0|p−2u′
0]v

′dt

∣∣∣∣
≤
(∫ 1

0

∣∣|u′
n|p−2u′

n − |u′
0|p−2u′

0

∣∣ p
p−1 dt

) p−1
p
(∫ 1

0
|v′|pdt

) 1
p

≤
(∫ 1

0

∣∣|u′
n|p−2u′

n − |u′
0|p−2u′

0

∣∣ p
p−1 dt

) p−1
p

→ 0, as n → ∞,

where the last limit follows from Lebesgue’s dominated convergence theorem. Conse-
quently, J is continuous and so demicontinuous.
Secondly, we prove J satisfies the (S+) condition. Let un ⇀ u weakly in X and

lim supn→∞(J(un), un − u0) ≤ 0. Then limn→∞(J(u0), un − u0) = 0 and so

(2.12)

0 ≥ lim sup
n→∞

(J(un) − J(u0), un − u0)

= lim sup
n→∞

∫ 1

0

(|u′
n|p−2u′

n − |u′
0|p−2u′

0

)
(u′

n − u′
0)dt

≥ lim sup
n→∞

{∫ 1

0

|u′
n|pdt −

(∫ 1

0

|u′
n|pdt

) 1
p′
(∫ 1

0

|u′
0|pdt

) 1
p

−
(∫ 1

0

|u′
n|pdt

) 1
p
(∫ 1

0

|u′
0|pdt

) 1
p′

+
∫ 1

0

|u′
0|pdt

}

= lim sup
n→∞

(‖un‖p−1 − ‖u0‖p−1
)
(‖un‖ − ‖u0‖) ≥ 0.

Hence, ‖un‖ → ‖u0‖, and note that the uniform convexity of X , then un → u0 in X .
Finally, we prove that the inverse operator J−1 of J exists and J−1 is bounded and

continuous. The strict monotonicity of s �→ |s|p−1 implies that (J(u)−J(v), u−v) > 0
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for u 	= v. Hence, J is injective. By (2.12), we know (J(u) − J(v), u − v) ≥(‖u‖p−1 − ‖v‖p−1
)
(‖u‖ − ‖v‖) and thus J−1 is bounded. Next, we claim that J−1

is continuous. If the claim is false. Indeed, there exists {fn}∞n=1, fn → f in X∗ and
‖J−1(fn) − J−1(f)‖ ≥ δ, for a δ > 0. Let xn := J−1(fn), x := J−1(f). Then we
have ‖fn‖‖xn‖ ≥ (fn, xn) = (J(xn), xn) = ‖xn‖p =⇒ ‖xn‖p−1 ≤ ‖fn‖. We may
assume xn ⇀ x̃ in X due to the reflexivity of X . Hence

(2.13) (J(xn)−J(x̃), xn−x̃) = (J(xn)−J(x), xn−x̃)+(J(x)−J(x̃), xn−x̃) → 0.

Since J(xn) → J(x) and ‖xn‖ → ‖x̃‖. Hence xn → x̃. Since J is continuous and
injective, x̃ = x, a contradiction. Up to now, we have discussed the properties of the
three operators J, G, Q.
Let us denote an operator S : X → X∗ by

(2.14) (S(u), v) =
∫ 1

0

|u|p−2uvdt, ∀u, v ∈ X.

Next, we show S is compact. Indeed, Hölder inequality and X ↪→↪→ Lp(0, 1) imply
that

∫ 1
0 |u|p−1dt ≤ ‖u‖p−1

p < ∞, for u ∈ X . Thus we know that the mapping
u �→ |u|p−2u (i.e., X → Lp′) is continuous. We take the operator S as a functional
from Lp′ to X∗, so the operator S is compact from the fact that the compactness of
Lp′ → X∗.
We define a homotopy

(2.15) Tτ (u) = J(u)−(1−τ)G(u)−τλS(u)+(1−τ)Q(u), for τ ∈ [0, 1], u ∈ X.

From Lemma 2.1, we know that Tτ satisfies the (S+) condition. We shall prove that
there exists a large enough R > 0 such that this homotopy is admissible with respect
to the ball B(0, R) ⊂ X . If the claim is false, for any k ∈ N, there exists τk ∈ [0, 1]
and uk ∈ X , ‖uk‖ ≥ k such that Tτk

(uk) = 0, i.e.,

(2.16) J(uk) − (1 − τk)G(uk) − τkλS(uk) + (1− τk)Q(uk) = 0.

It is equivalent to the integral equation

(2.17)

∫ 1

0
|u′

k|p−2u′
kv′dt − (1 − τk)

∫ 1

0
f(t, uk)vdt

−τkλ

∫ 1

0
|uk|p−2ukvdt + (1 − τk)

n∑
j=1

Ij(uk(tj))v(tj) = 0.

Set ωk = uk
‖uk‖p−1 and divided (2.17) by ‖uk‖p−1 to get

(2.18)

∫ 1

0
|ω′

k|p−2ω′
kv′dt − (1 − τk)

∫ 1

0

f(t, uk)
‖uk‖p−1

vdt

−τkλ

∫ 1

0
|ωk|p−2ωkvdt + (1 − τk)

n∑
j=1

Ij(uk(tj))
‖uk‖p−1

v(tj) = 0.
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Due to the reflexivity of X and the compactness of the interval [0, 1], we may assume
that ωk ⇀ ω weakly in X and τk → τ ∈ [0, 1]. The continuity of G and S, combining
with (H1), enables us to obtain

(2.19)
(1− τk)

∫ 1

0

f(t, uk)
‖uk‖p−1

vdt → (1− τ)λ
∫ 1

0
|ω|p−2ωvdt,

τkλ

∫ 1

0
|ωk|p−2ωkvdt → τλ

∫ 1

0
|ω|p−2ωvdt.

On the other hand, (H2) and X ↪→↪→ C[0, 1] yield that there exists d > 0 such that

(2.20)

∣∣∣∣∣∣(1−τk)
n∑

j=1

Ij(uk(tj))
‖uk‖p−1

v(tj)

∣∣∣∣∣∣ ≤ |(1−τk)|
n∑

j=1

|Ij(uk(tj))|
‖uk‖p−1

|v(tj)|

≤ |(1− τk)|
n∑

j=1

aj + bj|uk|γj−1

‖uk‖p−1
|v(tj)|

≤ |(1−τk)|
n∑

j=1

aj +bjd ‖uk‖γj−1

‖uk‖p−1
|v(tj)|→0.

Passing to the limit in (2.18), together with (2.19) and (2.20), we find

(2.21) (J(ωk), v) → (1 − τ)λ(S(ω), v)+ τλ(S(ω), v), ∀v ∈ X, as k → ∞,

i.e., ωk → J−1(λS(ω)). Since ωk ⇀ ω in X , we have J(ωk) → J(ω), i.e., J(ω) −
λS(ω) = 0.
Since ‖wk‖ = 1 for k = 1, 2, . . ., we have ‖ω‖ = 1 and it contradicts the fact that

λ is not an eigenvalue of (2.6). This prove that the homotopy Tτ is admissible with
respect to the ball B(0, R) if R is large enough. Hence, Lemma 2.2 (3) yields that

(2.22) deg(J − G − Q, B(0, R), 0) = deg(J − λS, B(0, R), 0),

Note that the value of the degree on the right-hand side of (2.22) is an odd number by
Lemma 2.2 (2). Hence deg(J − G − Q, B(0, R), 0) 	= 0, and Lemma 2.2 (1) indicate
that the existence of at least one weak solution u ∈ X of (1.1) which satisfies ‖u‖ ≤ R.

3. INFINITELY MANY WEAK SOLUTIONS FOR (1.1)

In this section, we shall adopt Fountain theorem under Cerami condition (C) (see
[15]) to study the existence of infinitely many weak solutions for (1.1). We first give
the definition of Cerami condition (C) (see [15, Definition 1.1]).

Definition 3.1. Assume that X is a Banach space with norm ‖ · ‖, we say that
ϕ ∈ C1(X, R) satisfies Cerami condition (C), if for all d ∈ R:
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(i) any bounded sequence {un} ⊂ X satisfying ϕ(un) → d, ϕ′(un) → 0 possesses a
convergent subsequence;
(ii) there exist δ, ξ, ρ > 0 such that for any u ∈ ϕ−1([d − δ, d + δ]) with ‖u‖ ≥
ξ, ‖ϕ′(u)‖ · ‖u‖ ≥ ρ.
As X is a Hilbert space, there exist (see [20]) {en}∞n=1 ⊂ X and {fn}∞n=1 ⊂ X∗

such that fn(em) = δn,m, X = span{en : n = 1, 2, . . .} and X∗ = spanW∗{fn : n =
1, 2, . . .}. For j, k ∈ N, denoteXj := span{ej}, Yk :=

⊕k
j=1 Xj and Zk :=

⊕∞
j=k Xj .

Clearly, X =
⊕

j∈N
Xj with dimXj < ∞ for all j ∈ N. Denote Sρ := {u ∈ X :

‖u‖ = ρ}. We will introduce the following Fountain theorem under condition (C).

Lemma 3.1. (see [15, Proposition 1.2]). Let X, Yk, Zk define above. Assume that
ϕ ∈ C1(X, R) satisfies condition (C), and ϕ(−u) = ϕ(u). For each k ∈ N, there
exist ρk > rk > 0 such that

(i) bk := infu∈Zk∩Srk
ϕ(u) → +∞, k → ∞;

(ii) ak := maxu∈Yk∩Sρk
ϕ(u) ≤ 0.

Then ϕ has a sequence of critical points un, such that ϕ(un) → +∞ as n → ∞.
Nowadays, we list our assumptions on f and Ij(j = 1, 2, . . . , n) in this section.

(H3) There exist c1, c2 > 0 such that f(t, u) ≤ c1 + c2|u|p−1, ∀u ∈ R, t ∈ [0, 1].

(H4) There is a positive constant a > 0 such that lim|u|→∞
−pF (t,u)+f(t,u)u

|u| ≥ a,
uniformly on t ∈ [0, 1].

(H5) p
∫ u
0 Ij(s)ds − Ij(u)u ≥ 0,

∫ u
0 Ij(s)ds ≥ 0, ∀u ∈ R, j = 1, 2, . . . , n.

(H6) lim|u|→∞
F (t,u)
|u|p = +∞, uniformly on t ∈ [0, 1].

(H7) f(t, u) and Ij(u) (j = 1, 2, . . . , n) are odd functions about u, for all t ∈ [0, 1].

Lemma 3.2. Let (H3)-(H5) hold. Then ϕ satisfies Cerami condition (C).

Proof. For all d ∈ R, we assume that {un}∞n=1 ⊂ X is bounded and

(3.1) ϕ(un) → d, ϕ′(un) → 0, n → ∞.

Going, if necessary, to a subsequence, we can assume that un ⇀ u weakly in X , then

(3.2)

(ϕ′(un) − ϕ′(u))(un − u) =
∫ 1

0

(|u′
n|p−2u′

n − |u′|p−2u′) (u′
n − u′)dt

+
n∑

j=1

(Ij(un(tj)) − Ij(u(tj)))(un(tj) − u(tj))

−
∫ 1

0
(f(t, un) − f(t, u))(un − u)dt.
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X ↪→↪→ C[0, 1] enables us to obtain that

(3.3)

n∑
j=1

(Ij(un(tj))− Ij(u(tj)))(un(tj) − u(tj)) → 0,∫ 1

0

(f(t, un) − f(t, u))(un − u)dt → 0 as n → ∞.

It follows from un ⇀ u weakly in X and (ϕ′(un) − ϕ′(u))(un − u) → 0 that

(3.4)
∫ 1

0

(|u′
n|p−2u′

n − |u′|p−2u′) (u′
n − u′)dt → 0 as n → ∞.

Note that (2.12), we have

(3.5)
(‖un‖p−1−‖u‖p−1

)
(‖un‖−‖u‖)≤

∫ 1

0

(|u′
n|p−2u′

n−|u′|p−2u′) (u′
n−u′)dt,

and thus ‖un −u‖ → 0 as n → ∞. Hence, condition (i) of Definition 3.1 holds. Next,
we prove condition (ii) of Definition 3.1, if not, there exists a sequence {un} ⊂ X

such that

(3.6) ϕ(un) → d, ‖ϕ′(un)‖ · ‖un‖ → 0, n → ∞,

and

(3.7) ‖un‖ → ∞, n → ∞.

By (3.6), there exists a constant ε1 > 0 such that

(3.8) ϕ(un) − 1
p
ϕ′(un)un ≤ ε1.

On the other hand, (H4) implies that there is aM > 0 such that−pF (t, u)+f(t, u)u ≥
a|u|, ∀|u| > M and t ∈ [0, 1]. Furthermore, −pF (t, u) + f(t, u)u is bounded for
|u| ≤ M and t ∈ [0, 1]. Therefore, there exists c > 0 such that −F (t, u)+ 1

pf(t, u)u ≥
a
p |u| − c, ∀u ∈ R, t ∈ [0, 1]. This, together with (H5), yields

(3.9)

ϕ(un) − 1
p
ϕ′(un)un

=
n∑

j=1

∫ un(tj)

0

Ij(t)dt − 1
p
Ij(un(tj))un(tj)

+
∫ 1

0

(
−F (t, un) +

1
p
f(t, un)un

)
dt

≥
∫ 1

0

(
−F (t, un) +

1
p
f(t, un)un

)
dt ≥

∫ 1

0

(
a

p
|un| − c

)
dt,
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which implies
∫ 1
0 |un|dt ≤ pa−1(c + ε1). Therefore, there is a ε2 > 0 such that

‖un‖∞ ≤ ε2.
It follows from (H3) that there are c3, c4 > 0 such that

(3.10) F (t, u) ≤ c3|u|+ c4|u|p, ∀u ∈ R and t ∈ [0, 1].

By this and (H5), we can find

(3.11)

ϕ(un)

=
1
p

∫ 1

0
|u′

n|pdt +
n∑

j=1

∫ un(tj)

0
Ij(t)dt −

∫ 1

0
F (t, un)dt

≥ 1
p
‖un‖p −

∫ 1

0
(c3|un|+ c4|un|p)dt ≥ 1

p
‖un‖p − c3‖un‖∞ − c4‖un‖p

∞

≥ 1
p
‖un‖p − c3ε2 − c4ε

p
2

and thus ϕ(un) → ∞ if (3.7) holds, which contradicts ϕ(un) → d in (3.6). This
proves that ϕ satisfies condition (C).

Theorem 3.1. Suppose (H2)-(H7) hold, then (1.1) has infinitely many weak solu-
tions.

Proof. By (H7), we easily have ϕ is even. Denote lk = supu∈Zk∩S1
‖u‖2, βk =

supu∈Zk∩S1
‖u‖p, by the compactness of the embedding X ↪→↪→ Lp(0, 1) (p > 1),

we know that lk, βk → 0 as k → ∞ (see [21, Lemma 3.8]). Note that (3.10), we have
by (H5) and Schwarz inequality, for any u ∈ Zk and ‖u‖ = rk := (lk + βk)−1, we get

(3.12)
ϕ(u) ≥ 1

p
‖u‖p −

∫ 1

0
(c3|u| + c4|u|p)dt ≥ 1

p
‖u‖p − c3‖u‖2 − c4‖u‖p

p

≥ 1
p
‖u‖p − c3lk‖u‖ − c4β

p
k‖u‖p ≥ (lk + βk)−p

p
− c3 − c4.

We easily have rk → ∞ as k → ∞, then we have

(3.13) ϕ(u) ≥ (lk + βk)−p

p
− c3 − c4 → ∞, as k → ∞.

Hence, bk := infu∈Zk,‖u‖=rk
ϕ(u) → ∞ as k → ∞.

On the other hand, by (H6), we find there are b, c > 0 such that F (t, u) ≥
b|u|p−c, ∀u ∈ R, t ∈ [0, 1]. Since all the norms of a finite dimensional normed space
are equivalent, note that ‖ · ‖p is a norm of Yk , so there exists a ξ > 0 such that

(3.14) ‖u‖p
p ≥ ξ‖u‖p, ∀u ∈ Yk.
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Moreover, X ↪→↪→ C[0, 1] implies that there is a d > 0 such that ‖u‖∞ ≤ d‖u‖, ∀u ∈
X . Those imply

(3.15)

ϕ(u) =
1
p

∫ 1

0
|u′|pdt +

n∑
j=1

∫ u(tj )

0
Ij(t)dt −

∫ 1

0
F (t, u)dt

≤ 1
p
‖u‖p −

∫ 1

0
(b|u|p − c)dt +

n∑
j=1

∫ u(tj)

0
(aj + bj|s|γj−1)dt

≤ 1
p
‖u‖p − b‖u‖p

p + c +
n∑

j=1

[
aj|u(tj)| + bj

γj
|u(tj)|γj

]

≤ 1
p
‖u‖p − bξ‖u‖p +

n∑
j=1

[
aj‖u‖∞ +

bj

γj
‖u‖γj∞

]
+ c

≤
(

1
p
− bξ

)
‖u‖p +

n∑
j=1

[
ajd‖u‖ +

bj

γj
dγj‖u‖γj

]
+ c.

Note that we can choose a large enough b such that 1
p − bξ < 0 by (H6) and p > γj

by (H2), then there exists positive constants dk such that

(3.16) ϕ(u) ≤ 0, for each u ∈ Yk and ‖u‖ ≥ dk.

Combining this and (3.16), we can take ρk := max{dk, rk + 1}, and thus ak :=
maxu∈Yk ,‖u‖=ρk

ϕ(u) ≤ 0. Up until now, we have proved the functional ϕ satisfies all
the conditions of Lemma 3.1, then ϕ has infinitely many solutions.

Remark 3.1. (H6). can be weaken that lim|u|→∞
F (t,u)
|u|p > (pξ)−1, uniformly on

t ∈ [0, 1], where ξ is determined by (3.14). Indeed, by this, we can obtain that there
is a b > (pξ)−1 and M > 0 such that F (t, u) ≥ b|u|p, ∀|u| ≥ M . As a result of this,
we can also have (3.16).

In what follows, we shall give two interesting examples to illustrate our results.

Example 3.1. Let t1 = · · · = tn = 1. Then we investigate the problem

(3.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− (|u′|p−2u′)′ = (p − 1)

(
2(n + 1

2 )π
p sin π

p

)p

|u|p−2u, in Ω,

u(0) = u(1) = 0,

u(t+j ) − u(t−j ) = 0,

Δ|u′(tj)|p−2u′(tj) = Ij(u(tj)), j = 1, 2, . . . , n,

where Ij(u(tj)) = 5
√

u(t1). Clearly, (H2) holds. By direct computation, we have

lim|u|→∞
f(t,u)
|u|p−2u

= (p−1)
(

2(n+ 1
2
)π

p sin π
p

)p

∈ (λn, λn+1) by the fact that np < (n+ 1
2 )p <
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(n + 1)p for p > 1 and n ∈ N. Thus, (H1) is satisfied. By Theorem 2.1, (3.17) has at
least one weak solution.

Example 3.2. Let p = 4 and t1 = · · · = tn = 1. Consider the following problem

(3.18)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− (|u′|p−2u′)′ = f(t, u), in Ω,

u(0) = u(1) = 0,

u(t+j ) − u(t−j ) = 0,

Δ|u′(tj)|p−2u′(tj) = Ij(u(tj)), j = 1, 2, . . . , n,

where f(t, u) = −η + (ξ−1 + 4)u3 and Ij(u(tj)) = 3
√

u(t1), where η > 0 and ξ is
defined by (3.14).
For Ij(u), we can easily have (H2) and (H7) hold. By computation,

∫ u
0 Ij(s)ds =

3
4

3
√

u4 ≥ 0, p
∫ u
0 Ij(s)ds−Ij(u)u = 4× 3

4
3
√

u4− 3
√

u4 = 2 3
√

u4 ≥ 0, ∀u ∈ R, hence we
obtain (H5) is satisfied. For f(t, u) and F (t, u), we see f(t, u) = −η+(ξ−1 +4)u3 ≤
η + (ξ−1 + 4)|u|3, ∀u ∈ R, t ∈ [0, 1]. Moreover, f(t, u) is an odd function about u,
for all t ∈ [0, 1]. Therefore, (H3) and (H7) hold.
It is obvious that F (t, u) =

∫ u
0 f(t, x)dx =

∫ u
0 (−η + (ξ−1 + 4)x3)dx = −η|u|+

ξ−1+4
4 |u|4, furthermore,

lim
|u|→∞

F (t, u)
|u|p = lim

|u|→∞
−η|u|+ ξ−1+4

4 |u|4
|u|4 =

ξ−1 + 4
4

> (pξ)−1.

As a result of this, (H6) is true by Remark 3.1. It follows from −pF (t, u)+f(t, u)u =
−4[−η|u| + ξ−1+4

4 |u|4] + (−η + (ξ−1 + 4)u3)u = 4η|u| − ηu ≥ 3η|u| that
lim|u|→∞

−pF (t,u)+f(t,u)u
|u| ≥ lim|u|→∞

3η|u|
|u| = 3η, uniformly on t ∈ [0, 1]. Conse-

quently, (H4) holds. Nowadays, we have proved that (H2)-(H7) hold, then (3.18) has
infinitely many solutions by Theorem 3.1.
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