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HARDY INEQUALITIES UNDER SOME NON-CONVEXITY MEASURES

Waleed Abuelela

Abstract. Considering two different non-convexity measures, we obtain some
new Hardy-type inequalities for non-convex domains Ω ⊂ R

n. We study the
three-dimensional case and then generalise the approach to the n−dimensional
case.

1. INTRODUCTION

We study high dimension variants of the classical integral Hardy-type inequality
([8])

(1)
∞∫

0

(
F (x)

x

)p

dx ≤ μ

∞∫
0

fp(x)dx,

where p > 1, f(x) ≥ 0, and F (x) =
∫ x
0 f(t)dt with constant μ. Inequality (1) with its

improvements have played a fundamental role in the development of many mathematical
branches such as spectral theory and PDE’s, see for instance [2-5, 7] and [10]. We
centre our attention on the multi-dimensional version of (1) for p = 2, which takes the
following form (see for example [6]):

(2) μ

∫
Ω

|f(x)|2
d(x)2

dx ≤
∫
Ω

|∇f |2 dx, f ∈ C∞
c (Ω),

where

(3) d(x) := min{|x − y| : y /∈ Ω}.
For convex domains Ω ⊂ Rn, the sharp constant μ in (2) has been shown to equal 1

4 ,
see for instance [5] and [10]. However, the sharp constant for non-convex domains is
unknown, although for arbitrary planar simply-connected domains Ω ⊂ R2, A. Ancona
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([1]) proved, using the Koebe one-quarter Theorem, that the constant μ in (2) is greater
than or equal to 1

16 . Later A. Laptev and A. Sobolev ([9]) considered, under certain
geometrical conditions, classes of domains for which there is a stronger version of
the Koebe Theorem, this implied better estimates for the constant μ. Other specific
examples of non-convex domains were presented by E. B. Davies ([6]).
Our main goal is to obtain new Hardy-type inequalities under some non-convexity

measures for domains in Rn, n ≥ 3, focusing on obtaining upper bounds for μ. In fact
we have two different conditions ”measures” introduced in the following section.

2. NOTATIONS AND CONDITIONS

In this section we present two ‘non-convexity measures’ for domains Ω ⊂ Rn; n ≥
3. In order to do so let us introduce the following notations: Let w be a point in R

n

and ν be a unit vector. For α ∈ (
0, π

2

)
define

C0(ν, α) = {x ∈ R
n : x · ν ≥ |x| cosα} ,

which is a cone in the Euclidean space Rn with vertex at 0 and symmetry axis in the ν

direction. Denote by Cw(ν, α) = C0(ν, α) + w, the transition of C0(ν, α) by w ∈ R
n,

i.e.
Cw(ν, α) = {x ∈ R

n : (x − w) · ν ≥ |x − w| cos α} ,

which can be seen as an n-dimensional cone with vertex at w and symmetry axis
parallel to the ν direction with angle 2α at the vertex.
Now for h ≥ 0, define the half-space Πh(ν) by

Πh(ν) = {x ∈ R
n : x · ν ≥ h} .

Denote by Πh,w(ν) = Πh(ν) + w, the transition of Πh(ν) by w ∈ R
n, i.e.

Πh,w(ν) = {x ∈ R
n : (x − w) · ν ≥ h} ,

which is a half-space of ‘height h’ from the point w in the ν direction.
Define the region Kh,w(ν, α) to be

Kh,w(ν, α) = Cw(ν, α) ∪ Πh,w(ν).

With the notations given above we now state the conditions or ‘non-convexity measures’
we use throughout the rest of this paper.

Condition 2.1. (Exterior Cone Condition).
We say that Ω ⊂ Rn satisfies the Exterior Cone Condition if for each x ∈ Ω

there exists an element w ∈ ∂Ω such that d(x) = |w − x| and Ω ⊂ Cc
w(ν, α), with

(x− w) · ν = −|x|.
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Condition 2.1 means that for every point x ∈ Ω we can always find a cone Cω(ν, α)
such that x lies on its symmetry axis where Ω is completely outside that cone.
As a development of the above condition, we establish the following condition.

Condition 2.2. (Truncated Cone Region (TCR). Condition ).
We say that Ω ⊂ R

n satisfies the TCR Condition if for each x ∈ Ω there exists an
element w ∈ ∂Ω such that d(x) = |w − x| and Ω ⊂ Kc

h,w(ν, α), for some h ≥ 0, with
(x− w) · ν = −|x|.
Condition 2.2 means that for every point x ∈ Ω we can always find a truncated

conical region Kh,ω(ν, α) such that x lies on its symmetry axis, which is the symmetry
axis of Cω(ν, α) where Ω is completely outside that truncated conical region.
Suppose that the domain Ω satisfies one of Conditions 2.1 and 2.2. For a fixed x ∈ Ω,
choose w, a mutual point of ∂Ω and ∂B, to be such that d(x) = |x − w|. Denote by
B the appropriate test domain, i.e. a cone (Condition 2.1) or truncated conical region
(Condition 2.1). Furthermore, by du(x) we mean the distance from x ∈ Ω to ∂Ω in
the direction u, i.e.

(4) du(x) := min{|s| : x + su /∈ Ω},
and d̃u(x) the distance from x ∈ Ω to ∂B, in the direction u, i.e.

d̃u(x) := min{|s| : x + su ∈ ∂B}.
Finally, denote by θ0 ∈ (

0, π
2

)
the angle at which the line segment representing d̃u(x)

leaves ∂B to infinity.

3. MAIN RESULTS AND DISCUSSION

In this section we state and discuss our main theorems which will be proved in
Section 4.

3.1. Results related to the Exterior Cone Condition

The following two theorems are related to the Exterior Cone Condition.

Theorem 3.1. Suppose that the domain Ω ⊂ R
3 satisfies Condition 2.1 with some

α ∈ (
0, π

2

)
. Then for any f ∈ C∞

c (Ω) the following Hardy-type inequality holds:

(5) μ (α)
∫
Ω

|f(x)|2
d(x)2

dx ≤
∫
Ω

|∇f(x)|2 dx,

where

(6) μ (α) =
1
4

tan2 α

2
.
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Remark 3.2. If the domain Ω in Theorem 3.1 is convex, then α = π
2 . Thus the

function μ(α) defined by (6) will be μ(π
2 ) = 1

4 as known for convex domains.

Theorem 3.3. Suppose that the domain Ω ⊂ R
n; n ≥ 3, satisfies Condition 2.1.

Then for any function f ∈ C∞
c (Ω) , the following Hardy-type inequality holds:

(7) μ (n, α)
∫
Ω

|f(x)|2
d(x)2

dx ≤
∫
Ω

|∇f(x)|2 dx,

where

(8)

μ (n, α)

=
1

2
√

π
· Γ

(
n
2

)
Γ

(
n−1

2

)
⎛
⎝(

(n − 1) cot2 α + 1
) α∫

0

sinn−2 θdθ − sinn−3 α cos α

⎞
⎠ .

Remark 3.4.

1. For convex domains we have α = π
2 . In this case, the function μ(n, α), given

by (8), becomes

(9) μ
(
n,

π

2

)
=

1
2
√

π
· Γ

(
n
2

)
Γ

(
n−1

2

)
π
2∫

0

sinn−2 θdθ =
1
4
for any n,

as expected for a convex case.

2. For n = 3, the function μ(n, α), given by (8), becomes

μ (3, α) =
1

2
√

π
·
√

π

2
· [(2 cot2 α + 1

)
(1 − cosα) − cos α

]

=
1
4

[(
2 cos2 α + 1 − cos2 α

1 − cos2 α

)
(1 − cos α) − cosα

]

=
1
4

[
cos2 α + 1− cosα − cos2 α

1 + cosα

]
=

1
4

[
1 − cosα

1 + cosα

]

=
1
4

tan2 α

2
,

exactly as obtained in (6).

3.2. Results related to the TCR Condition

For the advantage of ‘measuring how deep the dent’ inside the domain is, let us
consider domains Ω ⊂ R

n that satisfy Condition 2.2.
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Theorem 3.5. Suppose that the domain Ω ⊂ R3 satisfies Condition 2.2. Then for
any f ∈ C∞

c (Ω) the following Hardy-type inequality holds:

(10)
∫
Ω

μ1 (x, α, h)
|f(x)|2

(h + d(x))2
dx +

∫
Ω

μ2 (x, α, h)
|f(x)|2
d(x)2

dx ≤
∫
Ω

|∇f(x)|2 dx,

where

(11) μ1 (x; α, h) =
1
4

cos3
(
tan−1 (a(x) tan α)

)
,

and

(12)

μ2 (x, α, h)

=
1

4 sin2 α

[
3 − cos 2

(
α − (

tan−1 (a(x) tan α)
))

−2 cos
(
2α − (

tan−1 (a(x) tan α)
)) ]

sin2

(
tan−1 (a(x) tan α)

)
2

,

with a(x) = 1

1+
d(x)

h

.

Remark 3.6.

1. If Ω is a convex domain then α = π
2 . Therefore, for convex domains with

a(x) 	= 0, i.e. h 	→ 0, we have μ1

(
x, π

2 , h
)

= 0 and μ2

(
x, π

2 , h
)

= 1
4 , thus the

Hardy-type inequality (10) reproduces the well-known bound (see for instance
[5]):

(13)
1
4

∫
Ω

|f(x)|2
d(x)2

dx ≤
∫
Ω

|∇f(x)|2 dx.

2. As α ↗ π
2 , the domain Ω approaches the convexity case, and hence it is natural

to compare μ1 (x, α, h) and μ2 (x, α, h) given by (11) and (12) respectively,
with their values for the convex case. To this end we use the Taylor expansion to
expand μ1 (x, α, h) and μ2 (x, α, h) in powers of

(
π
2 − α

)
. Keeping in mind that

for fixed h we have θ0 = tan−1 (a(x) tanα) = π
2 where α = π

2 . Consequently,
for μ1 (x, α, h) , we have

μ1

(
x,

π

2
, h

)
= 0,

∂

∂α
μ1

(
x,

π

2
, h

)
= 0,

∂2

∂α2
μ1

(
x,

π

2
, h

)
= 0.

However,

∂3

∂α3
μ1

(
x,

π

2
, h

)
= − 3

2a(x)3
= −3 (h + d(x))3

2h3
, · · · and so on.

Thus μ1 (x, α, h) can be written as follows:
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(14) μ1 (x, α, h) =
(h + d(x))3

4h3

(π

2
− α

)3
+ O

((
α − π

2

)4
)

.

Similarly, μ2 (x, α, h) can be written as follows:

(15) μ2 (x, α, h) =
1
4

+
1
2

(
α − π

2

)
+ O

((
α − π

2

)2
)

.

For α = π
2 , we have μ1 (x, α, h) = 0 and μ2 (x, α, h) = 1

4 , thus we obtain the
same bound as in (13).
Relations (14) and (15) show that the second term in inequality (10) is the
effective term when talking about the convex case, since μ1 (x, α, h) decays
rapidly to zero while μ2 (x, α, h) tends to 1

4 , when α tends to π
2 .

Theorem 3.7. Suppose that the domain Ω ⊂ Rn; n ≥ 3, satisfies Condition 2.2.
Then for any function f ∈ C∞

c (Ω), the following Hardy-type inequality holds:

(16)

∫
Ω

μ1 (n, x, α, h)
|f(x)|2

(h + d(x))2
dx +

∫
Ω

μ2 (n, x, α, h)
|f(x)|2
d(x)2

dx

≤
∫
Ω

|∇f(x)|2 dx,

where

(17) μ1 (n, x, α, h) =
Γ

(
n
2

)
2
√

πΓ
(

n−1
2

)
⎛
⎜⎝− sinn−1 θ0 cos θ0 +

π
2∫

θ0

sinn−2 θdθ

⎞
⎟⎠ , and

(18)

μ2 (n, x, α, h) =
Γ

(
n
2

)
2
√

πΓ
(

n−1
2

) · 1
sin2 α

⎛
⎝(

(n−1) cot2 α+1
) θ0∫

0

sinn−2 θdθ

− sinn−1 θ0 cos (2α − θ0)

⎞
⎠ ,

with θ0 satisfies tan θ0 = h
h+d(x) tan α. In particular, when α = π

2 , we have μ1(n, x,

α, h) = 0 and μ2 (n, x, α, h) = 1
4 .

Remark 3.8.
1. If Ω is a convex domain then α = θ0 = π

2 . Consequently, the Hardy-type
inequality (16) reproduces the well-known bound (13) for any convex domain
Ω ⊂ Rn.

2. When α ↗ π
2 , the domain Ω approaches the convexity case. Therefore, it is

natural to compare μ1 (n, x, α, h) and μ2 (n, x, α, h) , given by (17) and (18)
respectively, with their values for the convex case. Keeping in mind that when
α = π

2 we set θ0 = θ0(x, α) = tan−1 (a(x) tan α) = π
2 , and for fixed h,

expressions for μ1 (n, x, α, h) and μ2 (n, x, α, h) can be written as powers of(
α − π

2

)
. We find that, the function μ1 (n, x, α, h) can be written as follows:
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(19) μ1 (n, x, α, h) =
nΓ

(
n
2

)
√

πΓ
(

n−1
2

) (h + d(x))3

6h3

(π

2
− α

)3
+ O

((
α − π

2

)4
)

.

On the other hand, the function μ2

(
n, x, π

2 , h
)
can be written as follows:

(20) μ2 (n, x, α, h) =
1
4

+
Γ

(
n
2

)
√

πΓ
(

n−1
2

) (
α − π

2

)
+ O

((
α − π

2

)2
)

.

Relations (19) and (20) show that the second term in Hardy-type inequality (16)
is the effective term when talking about the convex case, since μ1 (n, x, α, h)
tends to zero while μ2 (n, x, α, h) tends to 1

4 as α tends to π
2 .

3. For fixed α, as h tends to ∞, a(x) tends to 1, which means implicitly that θ0

tends to α. Therefore, we obtain the following limit for μ2 (n, x, α, h) as h tends
to ∞:

(21)

lim
h→∞

μ2 (n, x, α, h) =
Γ

(
n
2

)
2
√

πΓ
(

n−1
2

)
⎛
⎝(

(n − 1) cot2 α + 1
) α∫

0

sinn−2 θdθ

− sinn−3 α cos (α)

⎞
⎠ = μ(n, α).

Since all functions (f, μ1, μ2) are uniformly bounded, we can pass to the limit
under the integral, thus the first term in Hardy-type inequality (16) tends to zero
and we obtain the same result as in Theorem 3.3. On the other hand, as h tends
to 0, a(x) tends to 0, which leads to the tendency of θ0 to 0 as well. This implies
that μ1(n, x, α, h) → 1

4 and μ2(n, x, α, h) → 0.

The key ingredient in proving Theorems 3.1, 3.3, 3.5 and 3.7 is the following
proposition.

Proposition 3.9. (E. B. Davies, [4, 7]). Let Ω be a domain in Rn and let
f ∈ C∞

c (Ω). Then
n

4

∫
Ω

|f(x)|2
m(x)2

dx ≤
∫
Ω

|∇f(x)|2 dx,

where m(x) is given by

(22)
1

m(x)2
:=

1
|Sn−1|

∫
Sn−1

1
du(x)2

dS(u),

and
du(x) := min{|t| : x + tu /∈ Ω} ,

for every unit vector u ∈ Sn−1 and x ∈ Ω. Here
∣∣Sn−1

∣∣ = 2πn/2

Γ(n/2)
is the surface area

of the unit sphere in R
n.
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Our strategy to prove Theorems 3.1, 3.3, 3.5 and 3.7 is to obtain lower bounds for
the function 1

m(x)2
given by (22), containing d(x), then apply Proposition 3.9.

4. PROOFS

Proof of Theorem 3.1. By (22) and the fact that d̃u(x) ≥ du(x), we have
1

m(x)2
=

1
4π

∫
S2

1
du(x)2

dS(u) ≥ 1
4π

∫
S2

1
d̃u(x)2

dS(u).(23)

Since d̃u(x) is a symmetric function, with respect to the rotation about the symmetry
axis of the cone Cω(ν, α), then using spherical coordinates, (r, θ, φ) where r ≥ 0,

0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, leads to u = u(θ, φ), and d̃u(x) depends on θ only. Thus,
slightly abusing the notation, from this point on we write d̃(x, θ) instead of d̃u(x).
Therefore, inequality (23) becomes

1
m(x)2

≥ 1
4π

2π∫
0

π∫
0

1
d̃(x, θ)2

sin θ dθdφ =

π
2∫

0

1
d̃(x, θ)2

sin θ dθ.(24)

However, the angle θ can not exceed α, thus inequality (24) takes the following form:

1
m(x)2

≥
α∫

0

1
d̃(x, θ)2

sin θ dθ.(25)

Since Ω ⊂ R3 satisfies Condition 2.1 and if we consider the two-dimensional cross
section that contains the point x ∈ Ω, and the line segments representing both d(x)
and d̃(x, θ), we conclude that

d̃(x, θ) =
d(x) sinα

sin(α − θ)
.

Thus, the lower bound (25), on the function 1
m(x)2

, can be written as follows:

(26)

1
m(x)2

≥

α∫
0

sin2(α − θ) sin θdθ

d(x)2 sin2 α

=

α∫
0

(sin θ − sin θ cos 2 (α − θ)) dθ

2d(x)2 sin2 α

=
(1 − cos α)2

3 d(x)2(1− cos2 α)
=

1
3 d(x)2

· 1 − cos α

1 + cos α

=
tan2 α

2

3 d(x)2
.
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Apply Proposition 3.9 to this lower bound in (26) to obtain the Hardy-type inequality
(5) with μ(α) as given in (6), this completes the proof.

Proof of Theorem 3.3. By (22) and the fact that d̃u(x) ≥ du(x), we have

1
m(x)2

=
1

|Sn−1|
∫

Sn−1

1
du(x)2

dS(u) ≥ 1
|Sn−1|

∫
Sn−1

1
d̃u(x)2

dS(u).(27)

Because of the definition of d̃u(x) and by using spherical coordinates, (r, θ, φ) where
r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, we have u = (θ, φ), and that d̃u(x) depends on θ
only. Thus, slightly abusing the notation, from this point on we write d̃(x, θ) instead
of d̃u(x). Therefore, inequality (27) becomes

1
m(x)2

≥ 1
|Sn−1|

π∫
0

1
d̃(x, θ)2

sinn−2 θdθ

∫
Sn−2

dw

= 2

∣∣Sn−2
∣∣

|Sn−1|

π
2∫

0

1
d̃(x, θ)2

sinn−2 θdθ.

However, the angle θ can not exceed the value α < π
2 , hence

(28)
1

m(x)2
≥ 2

∣∣Sn−2
∣∣

|Sn−1|

α∫
0

1
d̃(x, θ)2

sinn−2 θdθ.

Since Ω satisfies Condition 2.1, i.e., we have symmetry with respect to the axis of
Cω(ν, α), we consider the two-dimensional cross section that contains the point x ∈ Ω,

and the line segments representing both d(x) and d̃(x, θ), so we have

d̃(x, θ) =
d(x) sinα

sin(α − θ)
.

Thus inequality (28) can be rewritten as follows:

1
m(x)2

≥ 2
∣∣Sn−2

∣∣
|Sn−1| d(x)2 sin2 α

α∫
0

sin2(α − θ) sinn−2 θdθ

=

∣∣Sn−2
∣∣

|Sn−1| d(x)2 sin2 α

⎛
⎝

α∫
0

sinn−2 θdθ − I1(α)

⎞
⎠ ,(29)

where

I1(α) =

α∫
0

sinn−2 θ cos 2 (α − θ) dθ.
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There are many ways to evaluate I1(α). Rewrite I1(α) as follows

(30)

I1(α) = cos 2α

⎡
⎣

α∫
0

sinn−2 θdθ − 2

α∫
0

sinn θdθ

⎤
⎦ +

2
n

sin 2α sinn α

= cos 2α

⎡
⎣

α∫
0

sinn−2 θdθ+
2
n

sinn−1 α cos α− 2n− 2
n

α∫
0

sinn−2 θdθ

⎤
⎦

+
4
n

sinn+1 α cos α

=
2 − n

n
cos 2α

α∫
0

sinn−2 θdθ +
2
n

sinn−1 α cos α.

Thus using (30), inequality (29) produces the following lower bound on 1
m(x)2

:

(31)

1
m(x)2

≥
∣∣Sn−2

∣∣
n d(x)2 |Sn−1| sin2 α⎡
⎣n

α∫
0

sinn−2 θdθ + (n − 2) cos2α

α∫
0

sinn−2 θdθ − 2 sinn−1 α cos α

⎤
⎦

=

∣∣Sn−2
∣∣

n d(x)2 |Sn−1| sin2 α⎡
⎣(n + (n − 2) cos2α)

α∫
0

sinn−2 θdθ − 2 sinn−1 α cos α

⎤
⎦

=

∣∣Sn−2
∣∣

n d(x)2 |Sn−1| sin2 α⎡
⎣2((n− 1) cos2 α + sin2 α)

α∫
0

sinn−2 θdθ − 2 sinn−1 α cosα

⎤
⎦

=
2

∣∣Sn−2
∣∣

d(x)2 n |Sn−1|

⎡
⎣((n− 1) cot2 α + 1)

α∫
0

sinn−2 θdθ − sinn−3 α cosα

⎤
⎦ .

Applying Proposition 3.9 to the lower bound (31) putting into account that

(32)
∣∣Sn−2

∣∣
|Sn−1| =

1√
π
· Γ

(
n
2

)
Γ

(
n−1

2

) ,

returns the Hardy-type inequality (7) with μ(n, α) as in (8), this completes the
proof.
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Proof of Theorem 3.5 By (22) and the fact that d̃u(x) ≥ du(x), we have

1
m(x)2

=
1
4π

∫
S2

1
du(x)2

dS(u) ≥ 1
4π

∫
S2

1
d̃u(x)2

dS(u).(33)

Since the function d̃u(x) is symmetric, with respect to the rotation about the symmetry
axis of the domain Kh,ω(ν, α), then using spherical coordinates, (r, θ, φ) where r ≥ 0,
0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, leads to u = u(θ, φ), and that d̃u(x) depends on θ

only. Thus, slightly abusing the notation, from this point on we write d̃(x, θ) instead
of d̃u(x). Therefore, inequality (33) becomes

1
m(x)2

≥ 1
4π

2π∫
0

π∫
0

1
d̃(x, θ)2

sin θ dθdφ =

π
2∫

0

1
d̃(x, θ)2

sin θ dθ.

Since Ω ⊂ R
3 satisfies Condition 2.2 and if we consider the two-dimensional cross

section that contains the point x ∈ Ω, and the line segments representing both d(x)
and d̃u(x), we can divide the above interval into two intervals considering the relation
between d̃(x, θ) and d(x). Thus, for θ ∈ (0, θ0), the function d̃(x, θ) can be expressed
in the following form:

d̃(x, θ) =
d(x) sinα

sin(α − θ)
.

Besides, for θ ∈ (θ0,
π
2 ), the function d̃(x, θ) can be written as follows

d̃(x, θ) =
h + d(x)

cos θ
,

where θ0 satisfies

(34) tan θ0 =
1

1 + d(x)
h

tan α.

Moreover, for α = π
2 (for which Ω attains the convex case) we have

d̃(x, θ) =
d(x)
cos θ

.

Thus, the function 1
m(x)2

is bounded from below as follows:

1
m(x)2

≥
∫ θ0

0 sin2(α − θ) sin θdθ

d(x)2 sin2 α
+

∫ π
2

θ0
cos2 θ sin θdθ

(h + d(x))2
.

Using the substitution u = cos θ in the second integral produces
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(35)

1
m(x)2

≥ − cos θ|θ0
0 − 1

2

∫ θ0

0 (sin (2α − θ) + sin (3θ − 2α)) dθ

2d(x)2 sin2 α
+

cos3 θ0

3 (h + d(x))2

=
1 − cos θ0 − cos(2α−θ0)

2 + cos(3θ0−2α)
6 + cos(2α)

3

2d(x)2 sin2 α
+

cos3 θ0

3 (h + d(x))2

=
(3− cos 2 (α − θ0) − 2 cos (2α − θ0)) sin2 θ0

2

3d(x)2 sin2 α
+

cos3 θ0

3 (h + d(x))2
.

Applying Proposition 3.9 to this lower bound in (35) leads to
∫
Ω

μ∗
1 (θ0)

|f(x)|2
(h + d(x))2

dx +
∫
Ω

μ∗
2 (θ0, α)

|f(x)|2
d(x)2

dx ≤
∫
Ω

|∇f(x)|2 dx,

where
μ∗

1 (θ0) =
cos3 θ0

4
,

and

μ∗
2 (θ0, α) =

(3 − cos 2 (α − θ0) − 2 cos (2α − θ0)) sin2 θ0
2

4 sin2 α
.

Now using (34), the relation between θ0 and α, enables us to write μ∗
1 (θ0) and

μ∗
2 (θ0, α) as functions of x, α, and h as in (11) and (12) respectively. This com-
pletes the proof.

Proof of Theorem 3.7 As have been illustrated before, the function 1
m(x)2

, has the
following lower bound

1
m(x)2

≥ 2

∣∣Sn−2
∣∣

|Sn−1|

π
2∫

0

1
d̃(x, θ)2

sinn−2 θdθ.(36)

Since Ω satisfies Condition 2.2, we consider the cross section containing the point
x ∈ Ω and the line segments representing d(x) and d̃(x, θ), then according to the
relation between d̃(x, θ) and d(x), we can rewrite inequality (36) as follows:

1
m(x)2

≥ 2b [I1(n, θ0) + I2(n, θ0)] ; b =

∣∣Sn−2
∣∣

|Sn−1| =
Γ

(
n
2

)
√

πΓ
(

n−1
2

) ,(37)

where

I1(n, θ0) =

θ0∫
0

1
d̃(x, θ)2

sinn−2 θdθ,
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I2(n, θ0) =

π
2∫

θ0

1
d̃(x, θ)2

sinn−2 θdθ,

and 0 ≤ θ0 < π
2 satisfies

tan θ0 =
h

h + d(x)
tanα.

However, for all angles α < π
2 , we can easily find that: For θ ∈ [0, θ0), the relation

between d̃(x, θ) and θ is
d̃(x, θ) =

d(x) sinα

sin(α − θ)
,

and for θ ∈ [θ0,
π
2 ), we have

d̃(x, θ) =
h + d(x)

cos θ
.

On the other hand, for α = π
2 the relation between d̃(x, θ) and θ is

d̃(x, θ) =
d(x)
cos θ

.

Therefore, we can evaluate the first integral I1(n, θ0) as follows:

(38)

I1(n, θ0) =
1

d(x)2 sin2 α

θ0∫
0

sin2(α − θ) sinn−2 θdθ

=
1

2d(x)2 sin2 α

⎛
⎝

θ0∫
0

sinn−2 θdθ − I3(n, θ0)

⎞
⎠ ,

where

I3(n, θ0) =

θ0∫
0

sinn−2 θ cos 2 (α − θ) dθ.

On the other hand, we can rewrite I3(n, θ0) as

(39)

I3(n, θ0)

= cos 2α

θ0∫
0

sinn−2 θ cos 2θdθ+sin2α

θ0∫
0

sinn−2 θ sin 2θdθ

= cos 2α

⎡
⎣

θ0∫
0

sinn−2 θ cos2 θdθ−
θ0∫

0

sinn θdθ

⎤
⎦+2 sin2α

θ0∫
0

sinn−1 θ cos θdθ

= cos 2α

⎡
⎣ 2

n
sinn−1 θ0 cos θ0 +

2 − n

n

θ0∫
0

sinn−2 θdθ

⎤
⎦ +

2
n

sin 2α sinn θ0 .
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Substituting (39) into (38) produces

(40)

I1(n, θ0) =
1

nd(x)2 sin2 α

⎛
⎝1

2
(n (1 + cos 2α) − 2 cos 2α)

θ0∫
0

sinn−2 θdθ

− cos 2α sinn−1 θ0 cos θ0 − sin 2α sinn θ0

⎞
⎠

=
1

nd(x)2 sin2 α

⎛
⎝(

n cos2 α − cos 2α
) θ0∫

0

sinn−2 θdθ

− sinn−1 θ0(cos 2α cos θ0 + sin 2α sin θ0)

⎞
⎠

=
1

nd(x)2

⎛
⎝(

(n − 1) cot2 α + 1
) θ0∫

0

sinn−2 θdθ

− sinn−1 θ0
cos (2α − θ0)

sin2 α

⎞
⎠ .

Concerning I2(n, θ0), we have

(41)

I2(n, θ0) =
1

(h + d(x))2

π
2∫

θ0

sinn−2 θ cos2 θdθ

=
1

(h + d(x))2

⎡
⎢⎣ sinn−1 θ cos θ

n

∣∣∣∣
π
2

θ0

+
1
n

π
2∫

θ0

sinn−2 θdθ

⎤
⎥⎦

=
1

n (h + d(x))2

⎡
⎢⎣− sinn−1 θ0 cos θ0 +

π
2∫

θ0

sinn−2 θdθ

⎤
⎥⎦ .

Therefore, substituting (41) and (40) into (37) gives the following lower bound on the
function 1

m(x)2
:

(42)

1
m(x)2

≥ 2b

n

⎡
⎣ 1
d(x)2

⎛
⎝(

(n−1) cot2 α+1
) θ0∫

0

sinn−2 θdθ − sinn−1 θ0
cos (2α−θ0)

sin2 α

⎞
⎠

+
1

(h + d(x))2

⎛
⎜⎝

π
2∫

θ0

sinn−2 θdθ − sinn−1 θ0 cos θ0

⎞
⎟⎠

⎤
⎥⎦ .
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Apply Proposition 3.9 to the lower bound (42) to obtain the Hardy-type inequality (16)
where μ1 (n, x, α, h) and μ2 (n, x, α, h) as stated in (17) and (18) respectively. On the
other hand, when α = π

2 , we have θ0 = π
2 as well, this implies

μ1 (n, x, α, h) = 0, and

μ2 (n, x, α, h) =
Γ

(
n
2

)
2
√

πΓ
(

n−1
2

)
π
2∫

0

sinn−2 θdθ

=
1
4

for any n.

This completes the proof.
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