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ROUGHLY GEODESIC B-INVEX AND OPTIMIZATION PROBLEM ON
HADAMARD MANIFOLDS

Li-wen Zhou and Nan-jing Huang*

Abstract. In this paper, a new class of roughly geodesic B-invex sets, quasi
roughly geodesic B-invex functions and pseudo roughly geodesic B-invex func-
tions are introduced and studied on Hadamard manifolds by relaxing the definitions
of geodesic convex sets and functions. Some properties of quasi roughly geodesic
B-invex functions and pseudo roughly geodesic B-invex functions are proved on
Hadamard manifolds. As applications, some sufficient and necessary conditions
for optimal solution of the nonlinear programming problems involving the quasi
roughly geodesic B-invex functions and the pseudo roughly geodesic B-invex
functions are given on Hadamard manifolds. The Mond-weir type dual prob-
lems for the nonlinear programming problems are also considered on Hadamard
manifolds.

1. INTRODUCTION

The concept of convexity for sets and functions plays a central role in nonlinear
programming with continuous variables, and has various applications in the areas of
mathematical economics, engineering, operations research, Riemannian manifolds, etc.
[6]. Therefore, it is important to consider a wider class of generalized convex func-
tions and also to seek practical criteria for convexity or generalized convexity. In 1981,
Hanson [15] introduced the concept of invexity by generalizing the difference (x − y)
in the definition of convex function to any function η(x, y). Hanson’s initial results
inspired a great deal of subsequent work, which has greatly expanded the role and
application of invexity in nonlinear optimization and other branches of pure and ap-
plied sciences. Later, Kaul and Kaur [17] defined η-pseudoconvex and η-quasiconvex
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functions. They studied their relations with convex, pseudoconvex, and quasiconvex
functions and the interrelations between themselves. Sufficient optimality criteria for
a nonlinear programming problems were also established involving these generalized
functions.
Recently, another generalization of convex functions, called B-vex functions, was

introduced by Bector et al. [7, 8]. Later, Suneja et al. [31] introduced a class
of functions called B-preinvex functions which are generalizations of preinvex and
B-vex functions. In 1997, Phu [27] introduced roughly convex functions of several
kinds as ν-convex, midpoint ν-convex, lightly ν-convex functions. In Phu’s opinion,
many non convex functions are able to get convex by choosing a suitable condition.
Mathematically, for allowing small nonconvex blips, the demand “for all x, y ∈ D” is
weakened by the requirement “for all x, y ∈ D with ‖x−y‖ ≥ r,” where r > 0 denotes
the roughness degree. On the base of the researches above, Morsy [25] introduced a
new class of B-vex functions, this class called roughly B-vex functions. Emam [11]
introduced the concepts of roughly B-invex functions and generalized roughly B-invex
functions. Some properties for roughly B-invex functions and generalized roughly
B-invex functions, and the sufficient optimality criteria for nonlinear programming
problems involving these functions were given.
On the other hand, in the last few years, several important concepts of nonlinear

analysis and optimization problems have been extended from Euclidean space to a
Riemannian manifold setting in order to go further in the study of the convex theory, the
fixed point theory, the variational inequality and related topics. In general, a manifold
is not a linear space, but the extension of concepts and techniques from linear spaces
to Riemannian manifold are natural. Rapcsak [29] and Udriste [33] considered a
generalization of convexity, called geodesic convexity and extended many result of
convex analysis and optimization theory to Riemannian manifolds. For more details,
readers may see [18, 29, 33] and the reference cited therein. The notion of invex
functions on Riemannian manifold was introduced by Pini [28], and Mititelu [24]
investigated its generalizations. Barani and Pouryayevali [4] introduced the geodesic
invex set, geodesic η-invex function and geodesic η-preinvex function on Riemannian
manifold and studied the relations between them.
Inspired by the concept of convexity on a linear vector space the notion of geodesic

convexity on some nonlinear metric spaces has become a successful tool in optimiza-
tion. In fact, some constrained optimization problems can be seen as unconstrained
ones from the Riemannian geometry point of view. In addition, another advantage
is that optimization problems with nonconvex objective functions can be written as
convex optimization problems by endowing the space with an appropriate Riemannian
metric. For instance, Rapcsak ([29] p.169) gave an example of solving the noncon-
vex constrained problem in Euclidean space with the Euclidean metric is equivalent
to solving the unconstrained convex minimization problem on the Hadamard manifold
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with the affine metric.
These ideas have opened a new way to solve other related problems in optimization.

Actually, in the last decades concepts and techniques which fit in Euclidean spaces have
extended to the nonlinear framework of Riemannian manifolds. Nemeth [26] introduced
and researched the variational inequalities on Hadamard manifolds. Ferreira et al.
[12, 13, 14] studied the monotone vector fields and some proximal point algorithm
on Riemannian manifolds. Weak sharp minima for constrained optimization problems
and some other algorithm on Riemannian manifolds have been proposed by Li et al.
[21, 22, 23, 35]. Besides, it is worth to mentioning that the extension of concepts and
techniques of nonlinear analysis from Euclidean space to Riemannian manifold have
been studied in a couple of papers including [3, 5, 9, 16, 19, 20, 24, 28, 32, 34, 36]
and the bibliographies therein for more examples and discussions.
Motivated and inspired by the works mentioned above, in this paper, we shall in-

troduce a new notion of roughly geodesic B-invexity on Hadamard manifolds. We
generalize roughly geodesic B-invex functions, to the so called quasi roughly geodesic
B-invex functions and pseudo roughly geodesic B-invex functions, and discuss their
properties. The relations between roughly geodesic B-invex functions, quasi roughly
geodesic B-invex functions and pseudo roughly geodesic B-invex functions are estab-
lished. As applications, we study the sufficient and necessary conditions for optimal
solution of programming problems which involve roughly geodesic B-invex functions
on Hadamard manifolds.

2. PRELIMINARIES

In this section we recall some notations, definitions and basic properties used
throughout the paper. It can be found in many introductory books on Riemannian
geometry, topology and equilibrium problems (see, for example, [10, 18, 19, 29, 33]).

Definition 2.1. A Hadamard manifoldM is a simply-connected complete Rieman-
nian manifold of non-positive sectional curvature.

Definition 2.2. The exponential mapping expp : TpM → M is defined by exppν =
γν(1), where γν is the geodesic defined by its position p and velocity ν at p.

Lemma 2.1. (Cartan-Hadamard theorem). Let X be a connected complete metric
space and suppose that X is locally convex. Then the universal cover of X is a
convex geodesic space with respect to the induced length metric d. In particular, any
two points of the universal cover are joined by a unique geodesic.

Remark 2.1. The exponential mapping and its inverse are continuous on Hadamard
manifolds.

From now on, let a Hadamard manifold M be endowed by a Riemannian metric
〈·, ·〉 with corresponding norm denoted by ‖ · ‖, K ⊂ M is a subset on M. A mapping
η : K × K → TM is a function such that for every x, y ∈ K , η(x, y) ∈ TyM.
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Definition 2.3. The geodesic distance d(x, y) is the length of minimal geodesic
segment between any two points x, y on a manifold.

Definition 2.4. A mapping f : K → R is said to be an η(x, y)-differentiable
mapping at y ∈ M , if the limit

lim
λ↓0

f(expyλη(x, y))− f(y)
λ‖η(x, y)‖

exists. We shall denote by

dη(x,y)f(y) = lim
λ↓0

f(expyλη(x, y))− f(y)
λ‖η(x, y)‖

the η(x, y)-differential of f at y.

Remark 2.2. We would like to point out that the definition of η(x, y)-differentiable
mapping is similar to the definition of directional derivative in the Euclidean space. In
fact, the vector η(x, y) ∈ TyM can be considered as the direction from y to x.

Definition 2.5. [4]. Let M be a Riemannian manifold and η : M ×M → TM be
a function such that for every x, y ∈ M, η(x, y) ∈ TyM . A nonempty subset K of M
is said to be geodesic η-invex if for every x, y ∈ K there exists exactly one geodesic
αx,y : [0, 1] → M such that

αx,y(0) = y, α′
x,y(0) = η(x, y), αx,y(t) ∈ K

for all t ∈ [0, 1].

3. GEODESIC B-INVEX SETS ON HADAMARD MANIFOLDS

Definition 3.1. Let y ∈ K. The set K is said to be a geodesic B-invex set on
Hadamard manifolds with respect to η at y ∈ K , if there exists b(x, y, λ) : K × K ×
[0, 1] → R+ such that expyλbη(x, y) ∈ K for all x ∈ K and 0 ≤ λ ≤ 1.

K is said to be a geodesic B-invex set with respect to η on Hadamard manifolds,
if K is B-invex at each y ∈ K on a Hadamard manifold with respect to the same η.

Remark 3.1.

(1) Every geodesic B-invex set with respect to η is a geodesic η-invex set on
Hadamard manifolds when b = 1 ;

(2) In particular, every geodesic B-invex set with respect to η is a geodesic convex
set on Hadamard manifolds when b = 1 and η(x, y) = exp−1

y x;
(3) Every geodesic η-invex set does not necessarily a geodesic B-invex set with

respect to same η;
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(4) If the intersection of finite (or infinite) family of geodesic B-invex sets is a
geodesic B-invex with same η is nonempty, then it set but the union is not
necessarily a geodesic B-invex set;

(5) The sum of geodesic B-invex sets and multiplying a geodesic B-invex set by a
real number is also a geodesic B-invex set.

4. ROUGHLY GEODESIC B-INVEX FUNCTIONS ON HADAMARD MANIFOLDS

Definition 4.1. A mapping f : K → TM , defined on a geodesic B-invex set K
is said to be a roughly geodesic B-invex function with respect to η with roughness
degree r at y ∈ K, if there exists b(x, y, λ) : K × K × [0, 1] → R such that

f(expyλbη(x, y)) ≤ λbf(x) + (1− λb)f(y)

for any x ∈ K and 0 ≤ λ ≤ 1 with d(x, y) ≥ r. f is said to be a roughly geodesic
B-invex function on K with respect to η, if it is a roughly geodesic B-invex function
at any y ∈ K with respect to the same η on K.

Remark 4.1. Every η-invex function defined in [4] is a roughly geodesic B-invex
function with respect to same η, where b(x, y, λ) = 1. However, the converse does not
hold in general, see Example 4.1.

Example 4.1. Let M = {eiθ|0 < θ < 1} and f : M → R be defined as f(eiθ) =
θ + sin θ with x, y ∈ M, x = eiα and y = eiβ . If expeiβ λbη = ei((1−λ)β+λα) with

‖η(eiα, eiβ)‖ =
2(sinα − cos β)

cosβ

and b(eiα, eiβ, λ) = 2, then it is easy to see that f is a roughly B-invex function with
respect to η. However, f is not an η-invex function as

‖η(eiα, eiβ)‖dη(eiα,eiβ)f(eiβ) > f(eiα)− f(eiβ)

at α = π
4 and β = π

6 .

Remark 4.2. In particular, every roughly geodesic B-invex function with respect
to η is a geodesic convex function when b(x, y, λ) = 1 and η(x, y) = exp−1

y x for each
x, y ∈ K and 0 ≤ λ ≤ 1.

Proposition 4.1. If functions fi : K → R, i = 1, 2, · · · , k are roughly geodesic
B-invex functions with respect to same η : K × K → TM at y ∈ K with roughness
degree r, then for ai ≥ 0, i = 1, 2, · · · , k, the function defined by

h(x) =
k∑

i=1

aifi(x)

is a roughly geodesic B-invex function at y ∈ K.
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Proof. Since fi : K → R, i = 1, 2, · · · , k are roughly geodesic B-invex
functions with respect to same η : K × K → TM at y ∈ K, there exists b(x, y, λ) :
K × K × [0, 1] → R+ such that, for some i,

fi(expyλbη(x, y))≤ λbfi(x) + (1 − λb)fi(y)

for any x ∈ K and 0 ≤ λ ≤ 1 with d(x, y) ≥ r. Thus, we get

h(expyλbη(x, y)) =
k∑

i=1

aifi(expyλbη(x, y))

≤ λb
k∑

i=1

aifi(x) + (1 − λb)
k∑

i=1

aifi(y)

= λbh(x) + (1 − λb)h(y).

Thus, h(x) is a roughly geodesic B-invex function with respect to η at y ∈ K. This
completes the proof.

Proposition 4.2. If f : K → R is a roughly geodesic B-invex function with respect
to η : K × K → TM at y ∈ K with roughness degree r on a geodesic B-invex set
K, then for any real number γ ∈ R, the level set Kγ = {x|x ∈ K, f(x) ≤ γ} is a
geodesic B-invex set.

Proof. For any x, y ∈ Kγ and 0 ≤ λ ≤ 1, we have

f(x) ≤ γ, f(y) ≤ γ.

Since f is a roughly geodesic B-invex function with respect to λ : K × K → TM at
y ∈ K with roughness degree r on K , there exists b(x, y, λ) : M × M × [0, 1] → R+

such that
f(expyλbη(x, y))≤ λbf(x) + (1 − λb)f(y),

where expyλbη(x, y) ∈ K and d(x, y) ≥ r. Thus, we have

f(expyλbη(x, y))≤ λbγ + (1− λb)γ = γ,

which implies that Kγ is a geodesic B-invex set. This completes the proof.

Theorem 4.1. Let K be a geodesic B-invex set. Then a function f : K → R is
roughly geodesic B-invex with respect to η : K ×K → TM with roughness degree r
on K if and only if epi(f) is geodesic B-invex on K × R.

Proof. Let f be a roughly geodesicB-invex function with respect to η : K×K →
TM with roughness degree r on K. Then there exists b(x, y, λ) : K×K×[0, 1] → R+

such that
f(expyλbη(x, y))≤ λbf(x) + (1 − λb)f(y),
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where expyλbη(x, y) ∈ K and d(x, y) ≥ r. Assume that (x, γ), (y, β) ∈ epi(f). Then
it is easy to see that

f(x) ≤ γ, f(y) ≤ β.

From above inequalities, we have

f(expyλbη(x, y)) ≤λ bγ + (1− λb)β
= β + (γ − β)λb

= β + η0(γ, β)λb,

where η0(γ, β) = γ − β. Thus,

(expyλ b η (x, y), β + λ b η0 (γ, β)) ∈ epi(f),

which implies that epi(f) is a geodesic B-invex set on K × R.
Conversely, suppose that epi(f) is geodesicB-invex onK×R, where η : K×K →

TM and η0(p, q) = p − q for all p, q ∈ R. Let x, y ∈ K and 0 ≤ λ ≤ 1. Then

(x, f(x)) ∈ epi(f) and (y, f(y)) ∈ epi(f).

Since epi(f) is geodesic B-invex on K × R with respect to η × η0, there exists
b(x, y, λ) : K × K × [0, 1] → R+ such that(

expyλbη(x, y), f(y)+ λbη0

(
f(x), f(y)

)) ∈ epi(f),

which implies that

f
(
expyλbη(x, y)

)≤ f(y) + λbη0

(
f(x), f(y)

)
= λbf(x) + (1 − λb)f(y).

It follows that f is roughly geodesic B-invex with respect to η on K . This completes
the proof.

Theorem 4.2. If (fi)i∈I is a family of roughly geodesic B-invex functions with
respect to the same η : K × K → TM with roughness degree r and bounded from
above on a geodesic B-invex set K. Then the function defined by f(x) = supi∈Ifi(x)
is a roughly geodesic B-invex function with respect to η on K .

Proof. Since each fi is a roughly geodesic B-invex function on K,

epi(fi) = {(x, γ)|x ∈ K, γ ∈ R, fi(x) ≤ γ}
is a geodesic B-invex set on K × R. Thus,⋂

i∈I

epi(fi) =
⋂
i∈I

{(x, γ)|x ∈ K, γ ∈ R, fi(x) ≤ γ}

= {(x, γ)|x∈ K, γ ∈ R, supi∈Ifi(x) ≤ γ}
= {(x, γ)|x∈ K, γ ∈ R, f(x) ≤ γ}
= epi(f).
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Since epif = ∩i∈Iepi(fi) is geodesic B-invex on K × R, by Theorem 4.1, we know
that f is a roughly geodesic B-invex function on K . This completes the proof.

Remark 4.3. Theorems 4.1 and 4.2 generalize Theorems 3.2 and 3.4 of [1] from
geodesic η-invexity to roughly geodesic B-invexity, respectively.

Proposition 4.3. Let f : K → R be a roughly geodesic B-invex function with
respect to η : K × K → TM at y ∈ K with roughness degree r on K and let
ϕ : R → R be a positively homogenous nondecreasing function. Then the composite
function ϕ◦f is a roughly geodesic B-invex function with respect to η at y with
roughness degree r.

Proof. Since f is a roughly geodesic B-invex function, there exists b(x, y, λ) :
K × K × [0, 1] → R+ such that

f(expyλbη(x, y)) ≤ λbf(x) + (1− λb)f(y)

for each x ∈ K and 0 ≤ λ ≤ 1 with d(x, y) ≥ r. Since ϕ is positively homogenous
nondecreasing, we have

ϕ◦f(expyλbη(x, y))≤ ϕ◦(f(y) + λb(f(x)− f(y))
)

and so

(ϕ◦f)(expyλbη(x, y))≤ (ϕ◦f)(y) + λb
(
(ϕ◦f)(x) − (ϕ◦f)(y)

)
.

It follows that ϕ◦f is a roughly geodesic B-invex function at y ∈ K. This completes
the proof.

Theorem 4.3. If gi : K → R are roughly geodesic B-invex functions with respect
to the same η : M × M → TM with roughness degree r on K for i = 1, 2, . . . , m,

then the set defined by

M = {x ∈ K|gi(x) ≤ 0, i = 1, 2, . . . , m}
is a geodesic B-invex set with respect to η.

Proof. Since gi(x), i = 1, 2, . . . , m, are roughly geodesic B-invex functions,
there exists b(x, y, λ) : M × M × [0, 1] → R+ such that

gi(expyλbη(x, y))≤ λbgi(x) + (1− λb)gi(y)

for each x, y ∈ M and 0 ≤ λ ≤ 1 with d(x, y) ≥ r. It follows that

gi(expyλbη(x, y))≤ 0, i = 1, 2, . . . , m

and so expyλbη(x, y) ∈ M . Thus, M is a geodesic B-invex set. This completes the
proof.
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Theorem 4.4. LetK be a geodesicB-invex set. If f : K → R is an η-differentiable
roughly geodesic B-invex function with respect to η : K × K → R with roughness
degree r at y ∈ K, then there exists a function b̄(x, y) : K × K → R+ such that

‖η(x, y)‖dη(x,y)f(y) ≤ b̄(x, y)
(
f(x) − f(y)

)
for each x ∈ K with d(x, y) ≥ r and b̄(x, y) = limλ↓0 b(x, y, λ).

Proof. Since f is a roughly geodesicB-invex function at y, there exists b(x, y, λ) :
K × K × [0, 1] → R+ such that

f(expyλbη(x, y)) ≤ λbf(x) + (1− λb)f(y)

for each x ∈ K and 0 ≤ λ ≤ 1 with d(x, y) ≥ r. Since f is η-differentiable at y, we
have

dη(x,y)f(y) = lim
λ↓0

f(expyλbη(x, y))− f(y)
λ‖η(x, y)‖

and so

f(y) + dη(x,y)f(y)λ‖η(x, y)‖+ o2(λb) = f(expyλbη(x, y))
≤ λbf(x) + (1 − λb)f(y)
= f(y) + λb(f(x)− f(y)).

Dividing the above inequality by λ ≥ 0 and taking λ → 0, we get

‖η(x, y)‖dη(x,y)f(y) ≤ b̄(x, y)(f(x)− f(y))

for each x ∈ K with b̄(x, y) = limλ↓0 b(x, y, λ). This completes the proof.

5. GENERALIZED ROUGHLY GEODESIC B-INVEX FUNCTIONS ON HADAMARD MANIFOLDS

In this section, we generalize roughly geodesic B-invex functions, to what is called
quasi roughly geodesic B-invex and pseudo roughly geodesic B-invex functions on
Hadamard manifolds.

Definition 5.1. A function f , defined on a geodesic B-invex set K , is said to be a
quasi roughly geodesic B-invex function with respect to η : K × K → TM at y ∈ K
with roughness degree r if there exists b(x, y, λ) : K × K × [0, 1] → R+ such that

f(expyλbη(x, y))≤ max{f(x), f(y)}
for each x ∈ K and 0 ≤ λ ≤ 1 with d(x, y) ≥ r. f is said to be a quasi roughly
geodesic B-invex function on K with respect to η : K × K → TM if it is quasi
roughly geodesic B-invex at each y ∈ K with respect to the same η.
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Proposition 5.1. Let K be a geodesic B-invex set. Then f : K → R is a quasi
roughly geodesic B-invex function with respect to η : K × K → TM with roughness
degree r on K if and only if the level set Kγ = {x ∈ K|f(x) ≤ γ} is a geodesic
B-invex set with respect to the same η.

Proof. For any x, y ∈ Kγ and 0 ≤ λ ≤ 1, we have

f(x) ≤ γ, f(y) ≤ γ.

Since f is a quasi roughly geodesic B-invex function with respect to η : K×K → TM
with roughness degree r on K, there exists b(x, y, λ) : K×K × [0, 1] → R+ such that

f(expyλbη(x, y))≤ max{f(x), f(y)} ≤ γ,

where expyλbη(x, y) ∈ K and d(x, y) ≥ r. This implies thatKγ is a geodesic B-invex
set.
Conversely, assume that K and Kγ are geodesic B-invex sets for each γ ∈ R.

Then for any x, y ∈ Kγ and 0 ≤ λ ≤ 1, we have expyλbη(x, y) ∈ Kγ for each γ ∈ R.
By setting γ = max{f(x), f(y)}, we get

f(expyλbη(x, y))≤ γ = max{f(x), f(y)},

which shows that f is a quasi roughly geodesic B-invex function. This completes the
proof.

Proposition 5.2. Let f : K → R be a quasi roughly geodesic B-invex function
with respect to η : K ×K → TM with roughness degree r at y ∈ K . Let ϕ : R → R
be a positively homogenous nondecreasing function. Then the composite function ϕ◦f
is a quasi roughly geodesic B-invex function with respect to η at y with roughness
degree r.

Proof. Since f is a quasi roughly geodesic B-invex function with respect to
η : K × K → TM with roughness degree r at y, there exists b(x, y, λ) : K × K ×
[0, 1] → R+ such that

f(expyλbη(x, y)) ≤ max{f(x), f(y)}.

Since ϕ is a positively homogenous nondecreasing function, we have

ϕ◦f(expyλbη(x, y)) ≤ ϕ◦(max{f(x), f(y)}) ≤ max{ϕ◦f(x), ϕ◦f(y)}.

It follows that ϕ◦f is a quasi roughly geodesic B-invex function at y. This completes
the proof.
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Theorem 5.1. Let gi : K → R be quasi roughly geodesic B-invex functions
with respect to the same η : K × K → TM with roughness degree r on K for
i = 1, 2, . . . , m. Then the set defined by S = {x ∈ K|gi(x) ≤ 0, i = 1, 2, . . . , m} is a
geodesic B-invex set.

Proof. Since gi : K → R are quasi roughly geodesic B-invex functions, there
exists b(x, y, λ) : K × K × [0, 1] → R+ such that

gi(expyλbη(x, y)) ≤ max{gi(x), gi(y)}

for each x, y ∈ S ⊂ K and 0 ≤ λ ≤ 1 with d(x, y) ≥ r. Since x, y ∈ S, we have
max{gi(x), gi(y)} ≤ 0 and so expyλbη(x, y) ∈ S. Thus, S is a geodesic B-invex set.
This completes the proof.

Theorem 5.2. Let K be a geodesic B-invex set and f : K → R be an η-
differentiable quasi roughly geodesic B-invex function with respect to η : K×K → R

with roughness degree r at y ∈ K, then for each x ∈ K with f(x) ≤ f(y) and
d(x, y) ≥ r, there exists a function b̄(x, y) = limλ↓0 b(x, y, λ) : K × K → R+ such
that

b̄(x, y)‖η(x, y)‖dη(x,y)f(y) ≤ 0.

Proof. Since f is an η-differentiable quasi roughly geodesic B-invex function at
y, there exists b(x, y, λ) : K × K × [0, 1] → R+ such that

f(expyλbη(x, y)) ≤ max{f(x), f(y)} = f(y)

for each x ∈ K and 0 ≤ λ ≤ 1 such that d(x, y) ≥ r.

On the other hand, we have

f(y) + dη(x,y)f(y)λb‖η(x, y)‖+ o2(λb) = f(expyλbη(x, y)),

which implies that

f(y) + dη(x,y)f(y)λb‖η(x, y)‖+ o2(λb) ≤ f(y).

Dividing the above inequality by λ > 0 and taking λ → 0, we get

b̄(x, y)‖η(x, y)‖dη(x,y)f(y) ≤ 0

for each x ∈ K with d(x, y) ≥ r and b̄(x, y) = limλ↓0 b(x, y, λ). This completes the
proof.
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Definition 5.2. A function f , defined on a geodesic B-invex set K , is said to be
pseudo roughly geodesic B-invex with respect to η : K × K → TM at y ∈ K with
roughness r if there exist b(x, y, λ) : K × K × [0, 1] → R+ and a strictly positive
function a : K × K → R such that

bf(x) < bf(y) ⇒ f(expyλbη(x, y))≤ f(y) + λ(λ − 1)a((x, y)

for each x ∈ K with d(x, y) ≥ r.

Proposition 5.3. f : K → R is a roughly geodesic B-invex function with respect
to η : K×K → TM with roughness r on a geodesic B-invex set K . If b(x, y, λ) > 0,
f is a pseudo roughly geodesic B-invex function with respect to the same η on K.

Proof. For all x, y ∈ K with bf(x) < bf(y) and d(x, y) ≥ r and λ ∈ [0, 1].
Since f is a roughly geodesic B-invex function and b(x, y, λ) > 0

f(expyλbη(x, y))≤ f(y) + λb(f(x)− f(y)).

The above inequality can be rewritten as

f(expyλbη(x, y)) ≤ f(y) + λ(1− λ)b(f(x)− f(y))
= f(y) + λ(λ − 1)b(f(y)− f(x))
= f(y) + λ(λ − 1)a(x, y),

where a(x, y) = b(f(y)− f(x)) > 0. Hence f is a pseudo roughly geodesic B-invex
function on K. This completes the proof.

Proposition 5.4. Let f : K → R be a pseudo roughly geodesic B-invex function
with respect to η : K × K → TM with roughness r on a geodesic B-invex set K . If
b(x, y, λ) > 0, then f is a quasi roughly geodesic B-invex function with respect to the
same η on K.

Proof. Let f(x) ≤ f(y). Since f is a pseudo roughly B-invex function, there
exist b(x, y, λ) > 0 and a(x, y) > 0 such that

f(expyλbη(x, y)) ≤ f(y) + λ(λ− 1)a(x, y)

for all x, y ∈ K, 0 ≤ λ ≤ 1 and d(x, y) ≥ r. Since a(x, y) > 0 and 0 ≤ λ ≤ 1,

f(y) + λ(λ − 1)a(x, y) ≤ f(y).

From above inequality, we have

f(expyλbη(x, y))≤ f(y) = max{f(x), f(y)},
which implies that f is a quasi roughly geodesicB-invex function onK. This completes
the proof.
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Remark 5.1. It is easy to see that the following relationship hold:

roughly geodesic B-invex function⇒ pseudo roughly geodesic B-invex function
⇒ quasi roughly geodesic B-invex function.

Theorem 5.3. LetK be a geodesicB-invex set. If f : K → R is an η-differentiable
pseudo roughly geodesic B-invex function with respect to η : K × K → TM with
roughness r at y ∈ K, then there exists a function b̄(x, y) = limλ↓0 b(x, y, λ) such
that

b̄(x, y)‖η(x, y)‖dη(x,y)f(y) < 0

for each x ∈ K with d(x, y) ≥ r.

Proof. Since f is a pseudo roughly geodesic B-invex function at y, there exist
b(x, y, λ) : K × K × [0, 1] → R+ and strictly positive function a : K × K → R such
that

bf(x) ≤ bf(y) ⇒ f(expyλbη(x)) ≤ f(y) + λ(λ − 1)a(x, y)

for each x ∈ K and 0 ≤ λ ≤ 1 with d(x, y) ≥ r. Since f is η-differentiable, we have

f(y)+dη(x,y)f(y)λb‖η(x, y)‖+o2(λb) = f(expyλbη(x, y))≤ f(y)+λ(λ−1)a(x, y).

Dividing the above inequality by λ > 0 and taking λ → 0, we get

b̄(x, y)‖η(x, y)‖dη(x,y)f(y) ≤ −a(x, y) < 0

for each x ∈ K and d(x, y) ≥ r with b̄(x, y) = limλ↓0 b(x, y, λ). This completes the
proof.

Corollary 5.1. Let K ⊂ M be a geodesic B-invex set and f : K → R be a η-
differentiable pseudo roughly geodesic B-invex function with respect to η : K ×K →
TM with roughness degree r at y ∈ K . Then there exists a function b̄(x, y) =
limλ↓0 b(x, y, λ) such that

b̄(x, y)‖η(x, y)‖dη(x,y)f(y) ≥ 0 ⇒ b̄f(x) ≥ b̄f(y)

for each x ∈ K with d(x, y) ≥ r.

6. OPTIMALITY CRITERIA

Let η : K × K → TM be a mapping, f : K → R and gi : K → R(i =
1, 2, . . . , m) be η-differentiable roughly geodesic B-invex functions with respect to
same η : K × K → TM with roughness degree r on K . A roughly geodesic B-invex
programming problem is formulated as follows

(P )
{

min f(x)
x ∈ K = {x ∈ M |gi(x) ≤ 0, i = 1, 2, . . . , m}.
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Theorem 6.1. Let η : K × K → TM be a mapping and f : K → R be a quasi
roughly geodesic B-invex function with respect to η with roughness degree r on a
geodesic B-invex set K. If x0 ∈ K is a local solution of problem (P), then it is a
global of problem (P).

Proof. Let x0 ∈ K be a nonglobal minimum of the problem (P) on K. Then
there exists at least one element y0 ∈ K such that f(y0) < f(x0). Since f is quasi
roughly geodesic B-invex, there exists b(x, y, λ) : K × K × [0, 1] → R+ such that

f(expx0λbη(x0, y0)) ≤ max{f(x0), f(y0)} = f(x0)

for each 0 ≤ λ ≤ 1 with d(x0, y0) ≥ r. Therefore, for any small ε ∈ (0, 1),

λ =
ε

b‖η(x0, y0)‖
and so

f(expx0
η(x0, y0)

‖η(x0, y0)‖ε) ≤ f(x0),

which contradicts the local optimality of x0 for problem (P). Hence, x0 is a global
minimum of problem (P) on K. This completes the proof.

Remark 6.1. Theorem 6.1 generalizes Theorem 5.1 of [4] from Euclidean spaces
to Hadamard manifolds.

Corollary 6.1. Let η : M×M → TM be a mapping and f : K → R be a roughly
geodesic B-invex function with respect to η with roughness degree r on a geodesic
B-invex set K ⊂ M . By Remark 5.1, if x0 ∈ K is a local solution of problem (P),
then it is a global of problem (P).

Theorem 6.2. Let η : M ×M → TM be a mapping and f : K → R be a strictly
quasi roughly geodesic B-invex function with respect to η with roughness degree r on
a geodesic B-invex set K ⊂ M . Then the global optimal solution of problem (P) is
unique.

Proof. Let x1, x2 be two different global optimal solutions of problem (P). Then
f(x1) = f(x2). Since f is a strictly quasi roughly geodesic B-invex function with
respect to η with roughness degree r, there exists b(x, y, λ) : K × K × [0, 1] → R+

such that
f(expx2λbη(x1, x2)) < max{f(x1), f(x2)} = f(x1)

for 0 < λ < 1 with d(x1, x2) ≥ r. By the geodesic B-invexity of K , we have

expx2λbη(x1, x2) ∈ K,

which contradicts the optimality of x1 for problem (P). Hence the global optimal solu-
tion of problem (P) is unique. This completes the proof.
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Theorem 6.3. Let η : M × M → TM be a mapping, f : K → R be a quasi
roughly geodesic B-invex function with respect to η with roughness degree r on a
geodesic B-invex set K ⊂ M . Then the set of optimal solution of problem (P) is
geodesic B-invex with the same η.

Proof. Let x∗ ∈ K be an optimal solution of problem (P) and let β = f(x∗).
Let X be the set of optimal solutions for problem (P) which is written

X = {x ∈ K|f(x) ≤ β}.

Let x1, x2 ∈ X and x1 
= x2. Then f(x1) ≤ β and f(x2) ≤ β. Since f is a quasi
roughly geodesic B-invex function, there exists b(x, y, λ) : K×K × [0, 1] → R+ such
that

f(expx2λbη(x1, x2)) ≤ max{f(x1), f(x2)} ≤ β

for 0 ≤ λ ≤ 1with d(x1, x2) ≥ r. From above inequality, we know that expx2λbη(x1, x2) ∈
X and so X is a geodesic B-invex set. This completes the proof.

Remark 6.2. Theorem 6.3 generalizes Proposition 4.6 of [2] from geodesic η-
invexity to roughly geodesic B-invexity.

Corollary 6.2. Let η : M×M → TM be a mapping and f : K → R be a roughly
geodesic B-invex function with respect to η with roughness degree r on a geodesic
B-invex set K ⊂ M . Then the set of optimal solution of problem (P) is geodesic
B-invex with the same η.

Theorem 6.4. Let f be a roughly geodesic B0-invex function with respect to η
with roughness degree r0 at y ∈ K and gi be roughly geodesic B-invex functions with
respect to the same η with roughness degree r at y ∈ K for i = 1, 2, . . . , m. Assume
that there exists u = {u1, u2, . . . , um} ∈ Rm with ui ≥ 0 such that (y, u) satisfies the
following conditions

dη(x,y)f(y) + dη(x,y)

( m∑
i=1

uigi(y)
)

= 0,

m∑
i=1

uigi(y) = 0,

gi(y) ≤ 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.1)

for all i = 1, 2, . . . , m and x ∈ K. If b0(x, y) > 0 and b(x, y) > 0 for any x ∈ K ,
then y is an optimal solution for problem (P).

Proof. Since f is a roughly geodesic B0-invex function, by Theorem 4.4,

(6.2) ‖η(x, y)‖dη(x,y)f(y) ≤ b0(x, y)(f(x)− f(y))
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for each x ∈ K with d(x, y) ≥ r0. Similarly, we can get

(6.3) ‖η(x, y)‖dη(x,y)gi(y) ≤ b(x, y)(gi(x)− gi(y))

+for each x ∈ K with i = 1, 2, . . . , m and d(x, y) ≥ r. Adding (6.2) and (6.3) by
using (6.1), we have

b0(x, y)(f(x)− f(y)) ≥ ‖η(x, y)‖dη(x,y)f(y)

= −‖η(x, y)‖dη(x,y)

( m∑
i=1

uigi(y)
)

= −
m∑

i=1

ui‖η(x, y)‖dη(x,y)gi(y)

≥ b(x, y)
m∑

i=1

(
uigi(y)− uigi(x)

)
= −

m∑
i=1

uib(x, y)gi(x) ≥ 0

for any x ∈ K with d(x, y) ≥ max{r, r0}. It follows that f(y) ≤ f(x). This completes
the proof.

Remark 6.3. Theorem 6.4 generalizes Theorem 3.1 of [8] from Euclidean spaces
to Hadamard manifolds.

Remark 6.4. In Theorem 6.4, since ui ≥ 0, gi(y) ≤ 0 and
∑m

i=1 uigi(y) = 0, we
know that, for each i = 1, 2, . . . , m,

(6.4) uigi(y) = 0.

Let I = {i|gi(y) = 0} and J = {i|gi(y) < 0}. Then I ∪ J = {1, 2, . . . , m} and
(6.4) gives that ui = 0 for i ∈ J. From the proof of Theorem 6.4, it is easy to see that
the roughly geodesic B-invexity of gi (i = 1, 2, . . . , m) at y can be replaced by the
roughly geodesic B-invexity of gI = gi (i ∈ I) at y.

Theorem 6.5. Suppose that there exists a feasible point y for problem (P) and
let I be as defined in Remark 6.4. Let f be a pseudo roughly geodesic B0-invex
function with respect to η with roughness degree r0 at y ∈ K and gI be quasi roughly
geodesic B-invex functions with respect to same η with roughness degree r at y ∈ K.
Assume that there exists u = {ui} ∈ Rm such that (y, u) satisfies the condition (6.1)
of Theorem 6.4. If b(x, y) > 0 and b0(x, y) > 0 for any x ∈ K, then y is an optimal
solution for problem (P).

Proof. It can be proved as in Remark 6.4 that{
ui = 0, i ∈ J,

ui > 0, i ∈ I.
(6.5)
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The functions gI are quasi roughly geodesic B-invex functions with respect to same η

with roughness degree r at y ∈ K and

gI(x) ≤ 0 = gI(y).

By Theorem 5.2 and b(x, y) > 0, we have

‖η(x, y)‖dη(x,y)gi(y) ≤ 0

for each x ∈ K and i = 1, 2, . . . , m with d(x, y) ≥ r. Since b0(x, y) > 0, it follows
from Remark 6.4, (6.5) and the above inequality that

0 ≥ b0(x, y)‖η(x, y)‖
∑
i∈I

uidη(x,y)gi(y)

= b0(x, y)‖η(x, y)‖(∑
i∈I

uidη(x,y)gi(y) +
∑
i∈J

uidη(x,y)gi(y)
)

= b0(x, y)‖η(x, y)‖
m∑

i=1

uidη(x,y)gi(y)

= b0(x, y)‖η(x, y)‖dη(x,y)

( m∑
i=1

uigi(y)
)

= −b0(x, y)‖η(x, y)‖dη(x,y)f(y).

By the pseudo roughly geodesic B-invexity of f at y and Corollary 5.1, we have

b0(x, y)f(x) ≥ b0(x, y)f(y) ⇒ f(x) ≥ f(y),

which implies that y is an optimal solution for problem (P). This completes the
proof.

Corollary 6.3. Suppose that there exists a feasible point y for problem (P) and let
I be defined as in Remark 6.4. Let f be a pseudo roughly geodesic B0-invex function
with respect to η with roughness degree r0 at y ∈ K and

∑
i∈I uigi be a quasi roughly

geodesic B-invex functions with respect to same η with roughness degree r at y ∈ K.

Assume that there exists u = {ui} ∈ Rm such that (y, u) satisfies the condition (6.1)
of Theorem 6.4. If b(x, y) > 0 and b0(x, y) > 0 for any x ∈ K, then y is an optimal
solution for problem (P).

Proof. By (6.1), (6.5) and the condition of problem (P), we have

∑
i∈I

uigi(x) ≤ 0 =
m∑

i=1

uigi(y) =
∑
i∈I

uigi(y).
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Now the quasi roughly geodesic B-invexity of
∑

i∈I uigi at y ∈ K implies that

b(x, y)‖η(x, y)‖dη(x,y)

(∑
i∈I

uigi(y)
) ≤ 0

for any x ∈ K with d(x, y) ≥ r. Thus, similar to the proof of Theorem 6.5, we can
show that y is an optimal solution for problem (P). This completes the proof.

Corollary 6.4. Suppose that there exists a feasible point y for problem (P) and
let I be defined as in Remark 6.4. Let f +

∑
i∈I uigi be a pseudo roughly geodesic

B-invex function with respect to η with roughness degree r at y ∈ K. Assume that
there exists u = {ui} ∈ Rm such that (y, u) satisfies the condition (6.1) of Theorem
6.4. If b(x, y) > 0 for any x ∈ K, then y is an optimal solution for problem (P).

Proof. By (6.1), (6.5) and the condition of problem (P), we have∑
i∈I

uigi(x) ≤ 0 =
m∑

i=1

uigi(y) =
∑
i∈I

uigi(y).

Now the pseudo roughly geodesic B-invexity of f +
∑

i∈I uigi at y ∈ K implies that

b(x, y)‖η(x, y)‖dη(x,y)

(
f +

∑
i∈I

uigi

)
(y) ≤ 0

for any x ∈ K with d(x, y) ≥ r. Therefore, similar to the proof of Theorem 6.5, we
can show that y is an optimal solution for problem (P). This completes the proof.

7. DUALITY CRITERIA

In this section, we consider the Mond-weir type dual and generalize its results under
the geodesic roughly B-invextiy assumptions on a Hadamard manifold. Consider the
following dual of problem (P) as follows

(D)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max f(y)

dη(x,y)f(y) +
m∑

i=1

uidη(x,y)gi(y) = 0,

m∑
i=1

uigi(y) ≥ 0, ui ≥ 0,

for all x ∈ K, f and gi (i = 1, 2, . . . , m) are η-differentiable functions defined on K.

Theorem 7.1. Suppose that there exist a feasible solution (y, u) for the problem
(D) and X ⊂ K is feasible region for (P). Let f be a roughly geodesic B0-invex
function with respect to η : M × M → TM with roughness degree r0 at y ∈ K and
gi be roughly geodesic B-invex functions with respect to the same η with roughness
degree r at y. If b(x, y) > 0 and b0(x, y) > 0 for all x ∈ X , then y is an optimal
solution for problem (P).
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Proof. Since f is a roughly geodesic B0-invex function and b0(x, y) > 0, we
have

‖η(x, y)‖dη(x,y)f(y) ≤ b0(x, y)(f(x)− f(y))

for any x ∈ X with d(x, y) ≥ r0. Similarly, for all i = 1, 2, . . . , m and x ∈ X , we
have

‖η(x, y)‖dη(x,y)gi(y) ≤ b(x, y)(gi(x)− gi(y))

Since ui ≥ 0,

‖η(x, y)‖uidη(x,y)gi(y) ≤ uib(x, y)(gi(x)− gi(y))

⇒‖η(x, y)‖
m∑

i=1

uidη(x,y)gi(y) ≤
m∑

i=1

uib(x, y)gi(x) −
m∑

i=1

uib(x, y)gi(y).

By the conditions of (D) and the above inequality, we get

b0(x, y)(f(x)− f(y)) ≥‖η(x, y)‖dη(x,y)f(y)

= ‖η(x, y)‖
(
−

m∑
i=1

uidη(x,y)gi(y)

)

≥
m∑

i=1

uib(x, y)gi(y)−
m∑

i=1

uib(x, y)gi(x)

= − b(x, y)
m∑

i=1

uigi(x)

≥ 0,

which implies that y is an optimal solution for problem (P). This completes the
proof.

Theorem 7.2. Let x∗ be an optimal solution for (P) and gi (i = 1, 2, . . . , m)
satisfy the Kuhn-Tucker constraint qualification at x∗. Then there exists u∗ ∈ Rm

such that (x∗, u∗) is a feasible solution for (D) and the (P)-objective at x∗ is equal
to the (D)-objective at (x∗, u∗). If f is a roughly geodesic B0-invex with respect to
η : K × K → TM with roughness degree r0 on K and gi : K → R are roughly
geodesic B-invex functions with respect to the same η with roughness degree r on K.
If b(x, y) > 0 and b0(x, y) > 0 for any x, y ∈ K, then (x∗, u∗) is an optimal solution
for problem (D).

Proof. Since gi satisfies the Kuhn-Tucker constraint qualification at x∗, there
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exists u∗ ∈ Rm such that the following the Kuhn-Tucker conditions hold:

dη(x,x∗)f(x∗) +
m∑

i=1

u∗
i dη(x,x∗)gi(x∗) = 0,(7.1)

m∑
i=1

u∗
i gi(x∗) = 0,(7.2)

gi(x∗) ≤ 0,(7.3)

u∗
i ≥ 0(7.4)

for any x ∈ K and all i = 1, 2, . . . , m. Now (7.1), (7.2) and (7.4) yield that (x∗, u∗)
is a feasible solution for problem (D). Also (7.1)(7.2)(7.3) yields that the (P)-objective
at x∗ is equal to the (D)-objective at (x∗, u∗).
If (x∗, u∗) is not an optimal solution for problem (D), then there exists a feasible

solution (x̄, ū) 
= (x∗, u∗) such that f(x̄) > f(x∗). Since f is a roughly geodesic
B0-invex function and b0(x, x̄) > 0,

‖η(x, x̄)‖dη(x,x̄)f(x̄) ≤ b0(x, y)(f(x)− f(x̄))

for any x ∈ K with d(x, x̄) ≥ r0. Similarly, for any x ∈ K with i = 1, 2, . . . , m and
d(x, x̄) ≥ r, we have

‖η(x, x̄)‖dη(x,x̄)gi(x̄) ≤ b(x, y)(gi(x) − gi(x̄)).

By (7.4) and the conditions of (D), we have

b(x, y)

(
m∑

i=1

ūigi(x) −
m∑

i=1

ūigi(x̄)

)
≥ ‖η(x, x̄)‖

m∑
i=1

ūidη(x,x̄)gi(x̄)

= −‖η(x, x̄)‖dη(x,x̄)f(x̄)
≥ b0(x, y)(f(x̄)− f(x))

for any x ∈ K with d(x, x̄) ≥ max{r, r0}. Setting x = x∗, from above inequality and
(7.3), we have

m∑
i=1

ūigi(x∗) −
m∑

i=1

ūigi(x̄) ≥ b0(x, y)
b(x, y)

(f(x̄) − f(x∗)) > 0

⇒
m∑

i=1

ūigi(x̄) <

m∑
i=1

ūigi(x∗) ≤ 0,

which contradicts that (x̄, ū) 
= (x∗, u∗) is a feasible solution for problem (D). There-
fore, (x∗, u∗) is an optimal solution for problem (D). This completes the proof.



Roughly Geodesic B-Invex and Optimization Problem on Hadamard Manifolds 853

Remark 7.1. Theorem 7.2 generalizes Theorem 4.1 of [8] from Euclidean spaces
to Hadamard manifolds.
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