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ON A GENERALIZATION OF LIFTING MODULES RELATIVE TO A
TORSION THEORY

M. Tamer Koşan, Truong Cong Quynh and Yahya Talebi

Abstract. Let τ = (T ,F) be a torsion theory. An R-module M is τ -lifting, if
for any submodule N of M there exists a decomposition M = A ⊕ B such that
A ≤ N and N ∩ B is τ -small in M . This definition unifies several definitions
on generalizations of lifting property of modules. In the present paper, various
results on τ -lifting modules are developed, many extending known results.

1. INTRODUCTION

Throughout this paper, R will always denote an associative ring with unity and all
modules will be assumed to be unital right R−modules. The notions, “≤” will denote
a submodule, “≤d” a module direct summand and “≤e” an essential submodule.
Let τ = (T ,F ) be a torsion theory. Then τ is uniquely determined by its associated

class T of τ -torsion modules T = {M ∈ Mod − R | τ(M) = M} where for a
module M , τ(M) =

∑
{N | N ≤ M, N ∈ T } and F is referred as τ -torsion free

class and F = {M ∈ Mod − R | τ(M) = 0}. A module in T (or F ) is called
τ−torsion module (or τ -torsionfree module). Every torsion class T determines in
every module M a unique maximal T -submodule τ(M), the τ−torsion submodule of
M , and τ(M/τ(M)) = 0. In what follows τ will represent a hereditary torsion theory,
that is, if τ = (T ,F ) then the class T is closed under taking submodules, direct sums,
images and extensions by short exact sequences, equivalently the class F is closed
under submodules, direct products, injective hulls and isomorphic copies. The torsion
functor for the dual Goldie torsion theory will be denoted by τ∗. Then the dual Goldie
torsion theory τ∗ = (T∗,F∗) is generated by the class of small R−modules.
For any right R-module M , a submodule N of M is said to be small in M , if

M �= N + L for every proper submodule L of M . Recently, two generalizations of
small modules were introduced by Zhou [15].
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A submoduleN of M is said to be a δ-small in M if, wheneverN +X = M with
M/X singular, then X = M . Recall that an R-module module M is called lifting
if, for all N ≤ M , there exists a decomposition M = A ⊕ B such that A ≤ N and
N ∩ B is small in M . According to Koşan [5], a module M is said to be δ-lifting if,
for all N ≤ M , there exists a decompositionM = A⊕B such that A ≤ N and N ∩B

is δ-small in M . Clearly, every lifting module is δ-lifting and every singular δ-lifting
module is lifting. A submodule L of M is called a δ-supplement of N in M if N and
L satisfy one of the following conditions:

(i) M = N + L and N ∩ L is δ-small in L.
(ii) M = N + L and for any proper submodule K of L with L/K singular, M �=

N + K.

A module M is called a δ-supplemented module if every submodule of M has a
δ-supplement in M (see [5]).
The torsion theory τ is assumed to be cohereditary, that is, we assume that homo-

morphic images of τ -torsion free modules are τ -torsion free. Let N be a submodule
of a module M . Then N is called τF -small in M if it is small in M and N ∈ F . In
this case we write N �τF

M .
τ = (T ,F ) be a hereditary torsion theory and N be a submodule of an R-module

M . N is said to be a τT -small inM ifM �= N +Y for any proper submodule Y of M
withM/Y ∈ T . As Zhou pointed out in [15, Remark 5], in case τ is improper torsion
theory or Goldie torsion theory, all results in [15] and [5] can be obtain similarly. Zhou
raised the question whether these can be obtain for the setting of an arbitrary hereditary
torsion theory or not. In this paper, we will give some answers to this question.
We will refer to [1], [3] and [12] for all undefined notions used in the text.

2. τ -LIFTING MODULES

The properties of δ-small modules that are listed in [15, Lemmas 1.2 and 1.3] also
hold for τ -small modules. We write them for convenience.

Lemma 2.1. Let M be a module.
(1) For submodules N, K, L of M with K ≤ N , we have

(a) N �τT
M if and only if K �τT

M and N/K �τT
M/K .

(a′) N �τF
M if and only if K �τF

M and N/K �τF
M/K .

(b) N + L �τT
M if and only if N �τT

M and L �τT
M .

(b′) N + L �τF
M if and only if N �τF

M and L �τF
M .

(2) If K �τT
M and f : M → N is a homomorphism, then f(K) �τT

N . In
particular, if K �τT

M ≤ N , then K �τT
N
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(3) Let K1 ≤ M1 ≤ M , K2 ≤ M2 ≤ M and M = M1 ⊕M2. Then K1 ⊕K2 �τT
M1 ⊕ M2 if and only if K1 �τT

M1 and K2 �τT
M2. In particular, if

K ≤ L ≤d M and K �τT
M then K �τT

L.

Example 2.2. Let τ = (T ,F ) be a torsion theory, M an R-module and N be a
submodule of M .

(1) N �τT
M if and only if N � M , wheneverM = N +X withM/X ∈ T , we

have M = X .
(2) Assume that τ(N ) = N . Then N �τT

M if and only if N � M .

Let τ = (T ,F ) be a torsion theory and M an R-module. Let B ≤ A ≤ M , if
A/B �τT

M/B ( A/B �τF
M/B), then B is called a τT -cosmall (τF -cosmall)

submodule of A in M . A submodule A of M is called τT -coclosed( τF -coclosed) if
A has no proper τT -cosmall (τF -cosmall) submodule.

Remark 2.3.
(1) If N is coclosed in M , then N is a τT -coclosed submodule of M .
(1′) If N is coclosed in M , then N is a τF -coclosed submodule of M .
(2) Every τ -torsion, τT -coclosed submodule N of a module M is coclosed in M .
(2′) Every τ -torsion free, τF -coclosed submodule N of a module M is coclosed in

M .

Proof. (2′) Suppose that K ≤ N ≤ M and N/K � M/K . We must show that
N = K. Since N ∈ F , we get N/K ∈ F . Therefore N/K �τF

M/K , but N is
τF -coclosed, thus N = K.

We give some important fundamental properties of τT and τF -coclosed submodules.

Lemma 2.4. Let K ≤ L ≤ M . Then the following hold.
(1) If L is τT -coclosed in M , then L/K is τT -coclosed in M/K .
(1′) If L is τF -coclosed in M , then L/K is τF -coclosed in M/K .
(2) If L ≤ M is τT -coclosed, then K �τT

M implies K �τT
L.

(3) If K is τT -coclosed in M , then K is τT -coclosed in L and the converse is true
if L is τT -coclosed in M .

(3′) If K is τF -coclosed in M , then K is τF -coclosed in L and the converse is true
if L is τF -coclosed in M .

Proof.
(1) Suppose there exists a proper submodule N of L such that N/K ≤ L/K is

τT -cosmall in M/K . Then (L/K)/(N/K) �τT
(M/K)/(N/K), and so

L/N �τT
M/N . This contradicts the assumption that L is τT -coclosed in

M .
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(1′) It is similarly.

(2) Consider K ≤ L with K �τ M . Assume K + K ′ = L for some K ′ ⊆ L,
with L/K ′ ∈ T . Choose K ′ ⊂ L′ ⊂ M such that M/K ′ = L/K ′ + L′/K ′ and
(M/K ′)/(L′/K ′) ∈ T . ThenM = L+L′ = K +K ′+L′ = L′, and this shows
that L/K ′ �τT

M/K ′. Since L is τT -coclosed inM , we conclude L = K ′ and
so K �τT

L.
(3) Assume that there exists X ≤ K such that K/X �τT

L/X . Then K/X �τT
M/X . But K is τT -coclosed in M implies K = X . Hence K is τT -coclosed
in L.
Now suppose K is τT -coclosed in L and L is τT -coclosed in M . Let X ≤
K with K/X �τ M/X . By (1), L/X is τT -coclosed in M/X and by (2),
K/X �τT

L/X . As K is τT -coclosed in L, we can obtain that X = K.
(3′) It is similarly.

A submoduleK ofM is said to be a τT -supplement (τF -supplement) provided there
exists some N ≤ M such that N + K = M and N ∩ K �τT

K (N ∩ K �τF
K).

A module M is said to be a τT -supplemented (τF -supplemented) module if every
submodule of M has a τT -supplement (τF -supplement) in M .

Proposition 2.5. Let M be a module and N ≤ M . Consider the following
conditions:

(1) N is a τT -supplement submodule of M ;
(2) N is τT -coclosed in M ;
(3) For all X ≤ N , X �τT

M implies X �τT
N .

Then (2) ⇒ (3) holds. If N is τ -torsion, then (1) ⇒ (2).

Proof. (2) ⇒ (3) Let N be τT -coclosed in M , X ≤ N and X �τT
M .

Assume that Y ≤ N and N = X + Y such that N/Y ∈ T . Now we want to show
that N/Y �τT

M/Y . Let M/Y = N/Y + H/Y with Y ≤ H ≤ M such that
M/H � (M/Y )/(H/Y ) ∈ T . Then M = N + H = X + Y + H = X + H implies
M = H . Therefore N/Y �τT

M/Y . Since N is τT -coclosed in M , we can obtain
that N = Y . Hence X �τT

N .
(1) ⇒ (2) Let N be a τ -torsion and τT -supplement of K in M . Then M = N + K

and N ∩ K �τT
N . Let N ′ ≤ N and N/N ′ �τT

M/N ′. Then M/N ′ = (K +
N ′)/N ′+N/N ′. Since (M/N ′)/(K+N ′)/N ′ � M/(K+N ′) = (K+N )/(K+N ′)
and (K + N )/(K + N ′) is a homomorphic image of N/N ′, we can obtain that (K +
N )/(K + N ′) is τ -torsion. Therefore M/N ′ = (K + N ′)/N ′, and so M = K + N ′.
Then N = (N ∩ K) + N ′. Since N/N ′ ∈ T and N ∩ K �τT

N , we have K = K ′.
Hence N is τT -coclosed in M .
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It is easy to see that implication (2) ⇒ (3) holds for also τF -supplements and
τF -coclosed submodules.

Lemma 2.6. If K and N are submodules of a module M , then K is a τF -
supplement of N in M if and only if K is supplement of N in M and K ∩ N ∈ F .

Proof. The sufficiently is clear from the definitions. For the necessity, let

A = {A ≤ M |A + N = M} and B = {B ≤ M |B + N = M, B ∩ N ∈ F}.

Suppose that K is minimal in B. We want to show that K is minimal in A. Clearly
A ⊆ B and so K ∈ A. Now if A ∈ A with A ≤ K , then K ∩ N ∈ F , A ∩ N ≤
K ∩ N ≤ M . Note that A ∩ N ∈ F . Therefore A ∈ B and by minimality of K in B,
we have K = A. Thus K is minimal in A as required.

Proposition 2.7. The following statements hold for an R-module M .
(1) If K is a supplement of N in M such that either K ∈ F or N ∈ F , then K is

a τF -supplement of N in M .
(2) If N � M and N �∈ F , then N has no τF -supplement in M .
(3) Let τ = (T ,F ) be a hereditary torsion theory and M ∈ T . Then every nonzero

small submodule N of M has no τF -supplement in M .
(4) If one of the following two conditions holds, then N ∩ K �τF

M and K is
τF -coclosed in M :
(i) K is a supplement of N in M , and either N or K is τ -torsion free.
(ii) K is a τF -supplement of N in M .

Proof.
(1) If either K ∈ F or N ∈ F , then K ∩ N ∈ F . Therefore, by Lemma 2.6, K is

a τF -supplement of N in M .
(2) Suppose to the contrary that K is a τF -supplement of N in M . Then K is a

supplement of N and, since N � M , we get K = M . But N = N ∩ K ∈ F ,
giving the required contradiction.

(3) By (2), it suffices to show that N �∈ F . Suppose instead that N ∈ F . Since τ is
hereditary and M ∈ T , we have N ∈ T . Hence N ∈ T ∩F = 0 and so N = 0,
a contradiction.

(4) Since (i) implies (ii) by (1), it suffices to assume (ii). By [14, 14.1],N∩K � M .
Furthermore, N ∩ K ∈ F because K is a τF -supplement of N . Consequently
N ∩ K �τF

M .

Let K be a supplement of L in M . Then by [4, Lemma 1.1], K is coclosed in M
and so τF -coclosed in M by Remark (1).

Now we give the proof of Proposition 2.5 (1) ⇒ (2) for τF -supplement and τF -
coclosed submodules.
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Proposition 2.8. Let M be an R-module.

(1) If N is a τF -supplement submodule of M , then N is τF -coclosed in M .
(2) Let K be a submodule of M and L be a τF -supplement of K in M . Then K is

τF -coclosed in M if and only if K is a τF -supplement of L in M .
(3) If K has a τF -supplement inM and K is τF -coclosed inM , then K is coclosed

in M .

Proof.
(1) It follows from Proposition 2.7(4).
(2) Suppose that K is τF -coclosed in M . Let C = {C ≤ M |C + L = M and

C ∩ L ∈ F}. Clearly K ∈ C, since L is a τF -supplement of K. We must show
that K is minimal in C. Let N ∈ C with N ≤ K . Since K is τF -coclosed in M ,
it suffices to show that K/N �τF

M/N . Since N ∈ C, we have M = N + L,
soK = N +(L∩K). As K∩L ∈ F , K/N = (N +(K∩L))/N ∈ F . Now we
show that K/N � M/N . Let N ≤ T ≤ M and K/N + T/N = M/N . Then
K + T = M . On the other hand M = N + L implies that T = N + (L ∩ T ),
thereforeM = K +(L∩T ). Since L is a τF -supplement and thus a supplement
of K, we have L ∩ T = L, then L ≤ T . As T + L = M , T = M . Therefore
T/N = M/N .
Assume that K is a τ -supplement of L inM . By Lemma 2.6, K is a supplement
of L in M . Then by [4, Lemma 1.1], K is coclosed. By Remark 2.3, K is τF -
coclosed in M .

(3) It follows from Lemma 2.6 and (2).

The following lemma can be seen by the proof of the [15, Lemma 1.2].

Lemma 2.9. Let τ∗ = (T∗,F∗) be a Goldie torsion theory, M an R-module and
N be a submodule of M . Then N �τ∗ M if and only if, whenever M = X + N then
M = X ⊕ Y for a projective semisimple submodule Y with Y ⊆ N . In particular,
there exists P such that M/(N ⊕ P ) ∈ T∗.

Let τ = (T ,F ) be a torsion theory, M an R-module. We call M a τT -lifting (τF -
lifting) module if for any submoduleN ofM there exists a decompositionM = A⊕B

such that A ≤ N and N ∩ B is τT -small (τF -small) in M .

Example 2.10.
(1) Every lifting module is τT -lifting. Also every τF -lifting module is lifting.
(2) If M is almost τ -torsion free lifting module, then M is τF -lifting.
(3) Let τ∗ = (T∗,F∗) be a Goldie torsion theory and M be an R-module.

(i) Every τT∗ -lifting module which does not have any non-zero projective sim-
ple submodule is lifting.
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(ii) If M has a unique decomposition series M ⊃ U ⊃ V ⊃ (0), then M ⊕
(U/V ) is not τT∗ -lifting.

Proof. (1) and (2) follow from definitions.
(3)(i) Let M be a τT∗ -lifting module and let N ≤ M . Then there exists A ≤ N such
that M = A ⊕ B and N ∩ B is τT∗ -small in B. Assume that B = (N ∩ B) + L for
some L ≤ N . By Lemma 2.9, B = Y ⊕L for some projective semisimple submodule
Y with Y ≤ N ∩B. By hypothesis, Y = 0. It implies that B = L and so N ∩B � B.
Hence M is lifting.
(ii) Let N = {(u, u) : u ∈ U} ≤ M ⊕ (U/V ). Then M ⊕ (U/V ) = (M ⊕ (0)) + N

and (M ⊕ (U/V ))/(M ⊕ (0)) ∈ T∗. Hence N is not τ -small in M . It is easily seen
that N is not a direct summand of M ⊕ (U/V ) and A = {(v, 0) : v ∈ V } is the
only proper submodule of N which is not a direct summand of M ⊕ (U/V ). Hence
M ⊕ (U/V ) is not τT∗ -lifting.

Proposition 2.11. Let τ = (T ,F ) be a torsion theory.

(1) The following are equivalent for a module M :

(a) M is τT -lifting (or τF -lifting).
(b) For all N ≤ M , there exists a decomposition N = A ⊕ B such that A is

a direct summand of M and B �τT
M (or B �τF

M ).
(c) For all N ≤ M , there exists a direct summand A of M such that A ≤ N

and N/A �τT
M/A (or N/A �τF

M/A).
(d) For every submodule N of M , there exists an idempotent homomorphism

e from M to N such that (1 − e)N is τT -small (or τF -small).

(2) Assume that M is an almost τ -torsion module. Then the class of τT -lifting
modules is closed under taking direct summands.

(3) Assume that M is an almost τ -torsion free module. Then the class of τF -lifting
modules is closed under taking direct summands.

Proof. (1) This is standard.
(2) and (3) follow from definitions and Remark 2.3.

Example 2.12. Let R denote the ring of all upper triangular 2 × 2 matrices with

entries in the field F . Let M denote the right R-module M =
(

0 F
F F

)
. By [9,

Theorem 4.41], M is a lifting module.

(1) Let X =
(

F F
0 0

)
. Then X is an idempotent ideal of R. Clearly, τX is a

hereditary torsion theory with torsion class τ = {N ∈ Mod − R | NX = 0} . Note

that, all proper submodules ofM areN1 =
(

0 F
0 F

)
= τX(M),N2 =

(
0 F

0 0

)
=
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τX(N2), N3 =
(

0 0
0 F

)
= τX(N3) and N4 =

(
0 0
F F

)
. Since N2 is a direct

summand of M , N1 = N2 ⊕ N3 and N3 is τ -small in M , then M is τ -lifting module
by Proposition 2.10 and Lemma 2.5(1).
(2) Let eij the matrix units in R and Y = e12R + e22R. Then Y is an idempotent
ideal of R and so defines a hereditary torsion theory τY with torsion class τ = {K ∈
Mod − R | KY = 0}. Let A = e12R. Then A is not direct summand of M . Since
AY = e12R, then A is not τY -torsion. Note that A is a simple module. So A does
not contain any submodule B such that B is a direct summand of M and A/B is
τY -torsion. Thus M is not τY -lifting.
Recall that nonzero module M is called hollow (or we say τF -hollow) if every

proper submodule of M is small (or τF -small in M ). It is easy to see that M is
τF -hollow if and only if M is a hollow almost τ -torsion free module.

Proposition 2.13. The following are equivalent for a moduleM .
(1) M is τF -hollow.
(2) M is indecomposable τF -lifting.
(3) M is lifting, indecomposable and almost τ -torsion free.
(4) M is τF -lifting, indecomposable and almost τ -torsion free.

Proof. (1) ⇒ (2) If M is τF -hollow, then it is hollow. This implies that M is
lifting (hence τF -lifting) and indecomposable.
(2) ⇒ (3). If M is τF -lifting then M is lifting. Let N � M . M has a decomposition
M = N1 ⊕ N2 such that N/N1 �τF

M/N1. As M is indecomposable, then N1 = 0.
Thus N �τF

M follows that N ∈ F . Therefore M is almost τ -torsion free.
(3) ⇒ (4) This is trivial.
(4) ⇒ (1) If N � M then, since M is almost τ -torsion free, N ∈F . Moreover, we
have N/N ∗�τF

M/N ∗ for some direct summand N ∗ of M . Since N ∗ �M and M
is indecomposable, we have N ∗=0. Therefore N �τF

M and thusM is τF -hollow.

By a class X of R-modules we mean a collection of R-modules containing the zero
module and closed under isomorphisms, i.e., any module isomorphic to some module in
X also belongs to X . By an X -module we mean any member of X , and a submodule
N of a module M is called X -submodule of M if N is a X -module. Koşan and
Harmanci [7] introduced X -lifting module. The module M is said to be a X -lifting
module if for every X -submodule N of M there exists A ≤ N such that M = A⊕B

and N ∩ B � B (see also [8] and [2]).

Example 2.14.
(1) Let ζ = (0, Mod−R) where 0 denotes the class of zero modules. Clearly, every

an R-module M is τ -lifting relative to a torsion theory ζ, i.e., M is ζ-lifting if
and only if M is semisimple.
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(2) An R-module M is χ-lifting if and only if it is lifting, where χ is the torsion
theory in which every module is considered to be torsion.

Lemma 2.15. We consider the following commutative diagram of rightR-modules;
0

��

0

��

0

��
0 �� K ′ α ��

η

��

L′ β ��

μ

��

M ′ ��

λ
��

0

0 �� K
f �� L

g �� M �� 0

where η(K ′) �τT
K and λ(M ′) �τT

M . If M is a projective module then
μ(L′) �τT

L.
Proof. Assume that K ′ ≤ L′, K ′ ≤ K, L′ ≤ L, M ′ ≤ M and K ≤ L without loss
of generality. Hence η, μ, λ and α, β are inclusion homomorphism. Clearly, K ′ �τT

L
and L′/K ′ ∼= M ′ �τT

M . Since K ′ ⊆ Ker(g) and M is a projective module, it is
easy to see that M is a direct summand of L/K ′. Then we have L′/K ′ �τT

L/K ′

and so L′ �τ L.

Recall that a projective module P is called a projective τ -cover of a module M if
there exists an epimorphism f : P −→ M with Ker(f) �τT

M . A right R-module
is said to be a τ -perfect if M possesses a projective τ -cover. So a ring R is called
τ -perfect if every right R-module is τ -perfect (see [15]).

Proposition 2.16. Let P be any class of τ -perfect R-modules. Then P is closed
under extensions.
Proof. Let 0 → K

f→ L
g→ M → 0 be a short exact sequence such that

K, M are τ -perfect modules. We have the following commutative diagram; where all
rows and columns are exact, P1, P2, P3 are projective modules with P1, P3 τ -covers of
K, M , respectively. By Lemma 2.15, P2 is a projective τ -cover of L.

0

��

0

��

0

��
0 �� K ′ ��

��

L′ ��

��

M ′ ��

��

0

0 �� P1
��

η

��

P2
��

μ

��

P3
��

λ
��

0

0 �� K
f ��

��

L
g ��

��

M ��

��

0

0 0 0
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LetM denote the class of all R-modules. Then a module M is lifting if and only
if M isM-lifting.

Theorem 2.18. Let P be any class of τ -perfect R-modules.
(1) R is semisimple if and only if P = {M : M is semisimple right R-module }.
(2) If R is semisimple then M is lifting if and only if M is P-lifting.

Proof. Clear.

3. DECOMPOSITIONS OF τ -LIFTING MODULES

In Proposition 2.11, we proved that the class of τT -lifting modules is closed under
direct summands. But it is not closed under factor modules or direct sums. First, we
give sufficient conditions for a factor module of a τT -lifting module to be τT -lifting
and for a direct sum of two τT -lifting modules to be τT -lifting.
A submoduleX of a moduleM is called fully invariant if for every h ∈ EndR(M),

h(X) ⊆ X . M is said to be a duo module if every submodule of M is fully invariant.

Proposition 3.1. Let τ = (T ,F ) be a torsion theory and M = M1 ⊕ M2 a
duo module. If M1 and M2 are almost τ -torsion free modules, then M is an almost
τ -torsion free module.

Proof. Let N be a submodule of M . Then N = (M1 ∩ N ) ⊕ (M2 ∩ N ). Since
Mi∩N � Mi and eachMi is almost τ -torsion free module, for i = 1, 2, we can obtain
that Mi ∩ N ∈ F . As F is closed under direct sum, N ∈ F .

A module M is called distributive if its lattice of submodules is a distributive
lattice, that is A∩ (B + C) = (A∩B) + (A∩C) for any submodules A, B and C of
M .

Proposition 3.2. Let τ = (T ,F ) be a torsion theory, M a τT -lifting module and
X ≤ M . Then M/X is τT -lifting in each of the following cases:

(1) For every direct summand K of M , (K+X)/X is a direct summand of M/X .
(2) M is a distributive module.
(3) For all e2 = e ∈ End(M), eX ⊆ X . In particular, X is a fully invariant

submodule of M .

Proof.
(1) Let A/X ≤ M/X . Since M is τT -lifting, there exists a direct summand K of

M such that K ⊆ A and A/K is τT -small in M/K by Proposition 2.5. By
hypothesis, (K + X)/X is a direct summand of M/X . Clearly, (K + X)/X ⊆
A/X . Now A/(K + X) is τT -small in M/(K + X) by Lemma 2.1. Hence
M/X is τT -lifting.
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(2) Let M = K ⊕ L. Then M/X = [(K + X)/X ] + [(L + X)/X ] and X =
X +(K∩L) = (X +K)∩(X +L). So, M/X = [(K +X)/X ]⊕ [(L+X)/X].
By (1), M/X is τT -lifting.

(3) Let M = K ⊕ L. Consider the projection map e of M onto K with kernel
(1 − e)M = L. Then e2 = e ∈ End(M) and eM = K . By hypothesis,
eX ⊆ X and (1 − e)X ⊆ X . Hence eX = X ∩ K and (1 − e)X = X ∩ L.
Therefore X = (X ∩ K) ⊕ (X ∩ L). Now (K + X)/X = (K ⊕ (X ∩ L))/X

and (L + X)/X = (L ⊕ (X ∩ K))/X . Hence M = K + X + L + X =
(K ⊕ (X ∩L)]+L+X implies that M/X = (K ⊕ (X ∩L))/X +(L+X)/X .
Since [K ⊕ (X ∩ L)] ∩ (L + X) = (X ∩ L) ⊕ (X ∩ K) = X , M/X =
(K ⊕ (X ∩L))/X⊕ (L+X)/X . Thus, by (1), M/X is a τT -lifting module.

Now we investigate when a finite direct sum of τT -lifting modules is τT -lifting.
We discuss the following example to show that there exists a torsion theory τ where
for τT -lifting modules M1, M2, M = M1 ⊕ M2 is not τT -lifting.

Example 3.3. Let Z denote the ring of integers and consider the Z-modulesM1 =
Z/2Z and M2 = Z/8Z and M = M1 ⊕ M2. Let τ := (T ,F) denote the torsion
theory on Mod-Z where T = {K ∈ Mod − Z; for each k ∈ K there exists a positive
integer t depending on k with 2tk = 0 }. Since M1, M2 are hollow, they are lifting,
in particular they are τT -lifting by Proposition 2.13. Let N = (1̄, 2̄)Z, then it does
not contain any submodule as a direct summand of M . Hence M is not an τT -lifting
module.

Theorem 3.4. Let τ = (T ,F ) be a hereditary torsion theory. IfM1 is a semisimple
module and M2 is a τT -lifting module such that M1 is M2-projective, then M =
M1 ⊕ M2 is τT -lifting.
Proof. Let 0 �= N ≤ M . Let K = M1 ∩ (N + M2). We divide the proof into two
cases.

Case (i) K �= 0. Then M1 = K ⊕ K1 for some submodule K1 of M1 and so
M = K ⊕ K1 ⊕ M2 = N + (M2 ⊕ K1). Hence K is M2 ⊕ K1-projective. By [9,
Lemma 4.47], there exists a submodule N1 of N such that M = N1 ⊕ (M2 ⊕ K1).
We may assume N ∩ (M2 ⊕ K1) �= 0. Then N ∩ (L + K1) = L ∩ (N + K1) for
any submodule L of M2. Since M2 is τT -lifting, there exists a submodule X of
M2 ∩ (N + K1) = N ∩ (M2 ⊕ K1) such that M2 = X ⊕ Y and Y ∩ (N + K1)
is τ -small in M2. Hence M = (N1 ⊕ X) ⊕ (Y ⊕ K1). Since N1 ⊕ X ≤ N and
N ∩ (Y ⊕ K1) = Y ∩ (N + K1), N ∩ (Y ⊕ K1) = Y ∩ (N + K1) is τT -small in
Y ⊕ K1 by Lemma 2.1. So M is τT -lifting.

Case (ii) K = 0. Then N ≤ M2. Since M2 is τT -lifting, there exists a submodule
X of N such that M2 = X ⊕ Y and N ∩ Y is τT -small in Y for some submodule Y
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of M2. Hence M = X ⊕ (M1 ⊕ Y ) and N ∩ (M1 ⊕ Y ) = N ∩ Y is τT -small in Y .
By Lemma 2.1, N ∩ (M1 ⊕ Y ) �τT

M1 ⊕ Y .

The following example shows that being hereditary torsion theory in Theorem 3.4
is essential.

Example 3.5. Let R denote the ring of all upper triangular 2 × 2 matrices with

entries in the field F . Let I =
(

F F
0 0

)
be an idempotent right ideal of R and

τ = {N ∈ Mod − R | NX = N} be a torsion theory. If we take the submodule

A =
(

0 F
0 0

)
of I , we can see that AI = 0 and so τ is not hereditary torsion theory.

Let J =
(

0 0
0 F

)
and let M = I ⊕ J . The only direct summand of M contained in

J is (0) submodule but J/(0) /∈ T .

Theorem 3.6. Let τ = (T ,F ) be a hereditary torsion theory.

(1) If M1 is a τT -lifting module and M2 is a τ -torsion module, M = M1 ⊕ M2 is
τT -lifting.

(2) IfM1 is a semisimple module andM2 is a τ -torsion module, thenM = M1⊕M2

is τT -lifting

Proof.

(1) Let N be a submodule of M . We consider the submodule N ∩ M1 of M1.
Since M1 is a τT -lifting module, there exits a direct summand K of M1 ( in
M ) such that (N ∩M1)/K is τT -small in M/K by Proposition 2.5. Note that
N/(N ∩ M1) ∼= (N + M1)/M1 ∈ T by assumption. This follows that N/K is
τT -small in M/K . By Lemma 2.1, M is τT -lifting.

(2) By (1).

The following example shows that being hereditary torsion theory in Theorem 3.6
is essential.

Example 3.7. Let R denote the ring of all upper triangular 2 × 2 matrices with
entries in the field F . Assume that M = M1 × M2 is an R-module, where M1 =(

0 F

0 F

)
and M2 =

(
F F

0 0

)
. Note that M1 is semisimple and M2 is a τ -

torsion module. Let I =
(

F F

0 0

)
be an idempotent right ideal of R and τ = {N ∈

Mod−R | NX = N} be a torsion theory. Since I is idempotent then it is τ -torsion. We
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consider the submodule I ′ =
(

0 F

0 0

)
of I . Since I ′I = 0, I ′ is not τ -torsion. But

M2I = M2, this follows that τ is not hereditary. Let N =
(

0 F

0 0

)
×

(
0 F

0 0

)
.

Since NI = 0, the module N does not contain any direct summand K of M such that
N/K is τ -small in M/K .
For a module M , let ΓT (M) =

∑
{L ≤ M | L is a τT -small submodule of M}.

Lemma 3.8. Let M be a module. Then

ΓT (M) = ∩{L ≤ M | M/L ∈ T , L is maximal in M }

Proof. Let A = ∩{L ≤ M | M/L ∈ T , L is maximal in M }. It is easy to see
that ΓT (M) ≤ A. Conversely, assume that a ∈ A such that aR ��τT

M . Then the set

F = {B ≤ M | B �= M, M/B ∈ T , B + aR = M}

is non-zero. By Zorn’s Lemma, F has a maximal element , say B0. Now we claim that
B0 is a maximal submodule ofM . If there exists C ≤ M such that B0 < C < M , then
M/C ∈ T (since M/B0 ∈ T ) and C + aR = M . That means C ∈ F , a contradicts
the maximal of B0. Thus B0 is a maximal submodule of M and M/B0 ∈ T . This is
a contradiction with a �∈ B0. Thus a ∈ ΓT (M).

Theorem 3.9. The following are equivalent for a module M .

(1) ΓT (M) is Artinian.
(2) Every τT -small submodule of M is Artinian.
(3) M satisfies DCC on τT -small submodules.

Dually, the following are equivalent.

(1′) M has ACC on τT -small submodules of M .
(2′) ΓT (M) is Noetherian.

Proof. (1) ⇒ (2) ⇒ (3). They are clear.
(3) ⇒ (1). It suffices to prove that any factor module of ΓT (M) is finitely cogenerated.
If there exists a factor module of ΓT (M) that is not finitely cogenerated, then the set
Ω = {L ≤ ΓT (M)| ΓT (M)/L is not finitely cogenerated} is nonempty. Let {Lλ : λ ∈
Λ} be any chain of submodules in Ω. Let L =

⋂
λ∈Λ Lλ. If L /∈ Ω, then ΓT (M)/L

is finitely cogenerated and hence L = Lλ for some λ ∈ λ. It follows that L ∈ Ω, a
contradiction. Thus L ∈ Ω. By Zorn’s Lemma, Ω has a minimal member, say A. Let
N be a finitely generated submodule of ΓT (M). Then N is a τT -small submodule of
M and hence Artinian by hypothesis. That means ΓT (M) is a locally Artinian module.
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Now let x ∈ ΓT (M), x /∈ A. Then xR is Artinian and (xR+A)/A � xR/(xR∩A).
So (xR+A)/A is a nonzero Artinian module and hence ΓT (M)/A has essential socle.
Let S denote the submodule of ΓT (M), containing A, such that S/A is the socle of
ΓT (M)/A. Thus S/A is not finitely generated by [1, Proposition 10.7].
Next we show that A �τT

M . If M = A+B withM/B ∈ T , then S = A+(S∩
B). Suppose that A ∩ B �= A. Then ΓT (M)/(A ∩ B) is finitely cogenerated by the
choice of A. But S/A = (A+(S∩B))/A � (S∩B)/(A∩B) ≤ Soc(ΓT (M)/(A∩B))
and hence S/A is finitely generated. This is a contradiction. Thus A = A ∩ B ≤ B
and we have M = A + B = B. So A �τT

M .
Now suppose that M = S +V for some submodule V of M and M/V ∈ T . Then

M/(A+V ) = (S+V )/(A+V ) � S/(A+(S∩V )). ThusM/(A+V ) is semisimple.
If M �= A+V , then there exists a maximal submoduleW ofM such that A+V ≤ W .
Note that M/W � (M/V )/(W/V ), M/V ∈ T and hence M/W ∈ T . It follows
that ΓT (M) ≤ W by Lemma 3.8. Then this gives the contradiction M = W . Thus
M = A + V , hence M = V since A �τT

M . Therefore S �τT
M and hence S

is Artinian by hypothesis. It follows that S/A is Artinian, and, in particular, S/A is
finitely generated. This is a contradiction. Thus ΓT (M) is Artinian.
(1′) ⇒ (2′)We assume thatX1 < X2 < ··· be a strictly ascending chain of submodules
of ΓT (M). Let x1 ∈ X1 and xi ∈ Xi−Xi−1 for i ≥ 2. Clearly, x1R ≤ x1R+x2R ≤
··· and each xiR is τT -small. Hence, by Lemma 2.1, for each n,

∑n
i=1 xiR is τT -small

submodule of M . This follows that M does not have ACC on τT -small submodules,
contradiction.
(2′) ⇒ (1′) Clear.

In case τ∗ = (T∗,F∗) is a Goldie torsion theory, the notion ΓT∗(M) is defined
similarly.

Theorem 3.10. Let τ∗ = (T∗,F∗) be a Goldie torsion theory and let M be a
countably τT∗ -lifting almost τ -torsion module. If ΓT∗(M) is τT∗ -small in M , then M

is isomorphic to a direct sum of cyclic submodules.

Proof. Let {x1, x2, · · ·} be a generating set forM . SinceM is τT∗ -lifting module,
we have a decompositionM = A1 ⊕B1 such that A1 ≤ Rx1 and B1 ∩Rx1 �τT∗

M .
Clearly, A1 is cyclic. Let C1 = B1 ∩ Rx1. By induction on a positive integer n, we
can writeM = (

∑n
i=1 Ai)⊕Bn such that

∑n
i=1 Rxi ≤ ⊕n

i=1Ai +Ci and Ci �τT∗
M .

By Proposition 2.11(2), the direct summand Bn of M is τT∗ -lifting. Then we have a
decompositionBn = An+1⊕Bn+1 such that An+1 ≤ Rxn+1 and Bn+1∩Rxn+1 �τT∗

Bn. Let D = Bn+1 ∩Rxn+1. Then M = (
∑n+1

i=1 Ai)⊕Bn+1 such that
∑n+1

i=1 Rxi ≤
⊕n+1

i=1 Ai+Cn +D and Cn+D �τT∗
M . Since C =

∑
i∈N

Ci ≤ ΓT∗(M) and ΓT∗(M)
is τT∗ -small in M then there exits a projective semisimple submodule P of C such that
M =

∑
i∈N

Rxi = (⊕i∈NAi) ⊕ C = (⊕i∈NAi) ⊕ P by Lemma 2.1.

Let M be a δ-supplemented module. In [5, Lemma 2.12], Koşan proved that
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M/δ(M) is semisimple.

Lemma 3.11. LetM be a τT -supplemented module. ThenM/ΓT (M) is a semisim-
ple module.
Proof. Let ΓT (M) ≤ N ≤ M . There exists X ≤ M such that M = N + X
and N ∩ X �τT

X . So N ∩ X �τT
M . Then M/ΓT (M) = N/ΓT (M) + (X +

ΓT (M))/ΓT (M) = N/ΓT (M)⊕(X+ΓT (M))/ΓT (M) becauseN∩(X+ΓT (M)) =
(N ∩ X) + ΓT (M) = ΓT (M).

A module M is called an amply τT -supplemented if for any submodules A, B of
M with M = A + B, there exists a τT -supplement P of A such that P ≤ B.

Theorem 3.12. Let M be a module. Then M is Artinian if and only if M is an
amply τT -supplemented module and satisfies DCC on τT -supplement submodules and
on τT -small submodules.
Proof. The necessary condition is clear. Conversely, assume that M is an amply
τT -supplemented module which satisfies DCC on τT -supplement submodules and on
τT -small submodules. Then ΓT (M) is Artinian by Theorem 3.9. Next, it suffices to
show that M/ΓT (M) is Artinian. It is clear that M/ΓT (M) is semisimple by Lemma
3.11.
Now suppose that ΓT (M) ≤ N1 ≤ N2 ≤ N3 ≤ · · · is an ascending chain of

submodules of M . Because M is an amply τT -supplemented module, there exists a
descending chain of submodules K1 ≤ K2 ≤ · · · such that Ki is a τT -supplement of
Ni inM for each i ≥ 1. By hypothesis, there exists a positive integer t such that Kt =
Kt+1 = Kt+2 = · · · . Because M/ΓT (M) = Ni/ΓT (M) ⊕ (Ki + ΓT (M))/ΓT (M)
for all i ≥ t, it follows that Nt = Nt+1 = · · · . Thus M/ΓT (M) is Noetherian, and
hence finitely generated. So M/ΓT (M) is Artinian, as desired.

Corollary 3.13. Let M be a finitely generated. Then M is Artinian if and only if
M is a τT -supplemented module satisfies DCC on τT -small submodules.

Proof. Since M/ΓT (M) is semisimple and M is finitely generated, M/ΓT (M)
is Artinian. Now that M satisfies DCC on τT -small submodules, ΓT (M) is Artinian.
Thus M is Artinian.

Corollary 3.14. IfM is a τT -supplemented module and satisfies DCC on τT -small
submodules, then so does M/A for any submodule A of M .

Proof. Let A be any submodule of M and B1/A ≤ B2/A ≤ · · · where each
Bi/A �τT

M/A. Let C be an τT -supplement of A inM . ThenM/A = (A+C)/A �
C/A ∩ C. Since Bi/A is τT -small in M/A, Bi/A � Di/A ∩ C �τT

C/A ∩ C for
some Di. Next we prove that Di �τT

M . Let Di + E = M with M/E ∈ T . Then
(Di + (E + A ∩ C))/A ∩ C = M/A ∩ C. Hence E + A ∩ C = M and E = M .
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Thus we have D1 ≤ D2 ≤ · · · . Since M satisfies ACC on τT -small submodules, there
exists n such that Dk = Dk+1 for all k ≥ n. Thus Bk/A = Bk+1/A for all k ≥ n.
Therefore M/A satisfies ACC on τT -small submodules, as required.

A submoduleN ofM is called T -semimaximal if N = ∩n
i=1Li with Li is maximal

in M and M/Li ∈ T for any i = 1, ..., n.

Theorem 3.15. Let M be a module. Then the following statements are equivalent:
(1) M is Artinian.
(2) M satisfies DCC on τT -small submodules and on T -semimaximal

submodules.
(3) M satisfies DCC on τT -small submodules and ΓT (M) is a T -semimaximal

submodule of M .

Proof. (1) ⇒ (2). It is clear.
(2) ⇒ (3). Assume that M satisfies DCC on T -semimaximal submodules. Let N

be a minimal T -semimaximal submodule of M . Then ΓT (M) ≤ N . If M = ΓT (M),
then ΓT (M) = N , a contradiction. Suppose that M �= ΓT (M). If P is a maximal
submodule of M and M/P ∈ T , then N ∩ P is an T -semimaximal submodule of
M and hence N = N ∩ P or N ≤ P . It follows that N ≤ ΓT (M). Therefore
N = ΓT (M). Thus ΓT (M) is an T -semimaximal submodule of M .

(3) ⇒ (1). It is clear ΓT (M) is Artinian. If M = ΓT (M), then M is Artinian.
Suppose thatM �= ΓT (M). Then ΓT (M) = P1∩P2∩· · ·∩Pn, where Pi is a maximal
submodule ofM andM/Pi ∈ T for any i = 1, ..., n. It follows thatM/ΓT (M) embeds
in the finitely generated semisimple moduleM/P1 ⊕ · · · ⊕ M/Pn. Hence M/ΓT (M)
is Artinian. It follows that M is Artinian.

4. τcG-LIFTING MODULES

In this section we investigate lifting modules relative to dual Goldie torsion theory
τcG on Mod-R. In [13], Talebi and Vanaja defined, Z(M) as follows:

Z(M) = Re(M, S) =
⋂

{Ker(g) | g ∈ Hom(M, L), L ∈ S},

where S denotes the class of all small modules. They called M a cosingular (non-
cosingular) module if Z(M) = 0 (Z(M) = M ).
In [11], Ramamurthi defined the dual Goldie Torsion theory as that generated

by the class of small modules and studied some of its properties. Further study was
done by Özcan and Harmanci [10]. In [13], Talebi and Vanaja defined torsion theory
cogenerated by the class S of all small modules for a fixed M ∈Mod-R. We denote
this theory by τcG := (TS,FS).

Proposition 4.1. Let M be an R-module. Then
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(1) The torsion class TS is the class of all noncosingular modules;
(2) The torsion free class FS is the class of modules for which every nonzero sub-

module is not noncosingular;
(3) τcG(M) is its largest noncosingular submodule.

Proof. See [13, Proposition 3.1].

Theorem 4.2. If M is amply supplemented and τcGFS -lifting, then τcG(M) is a
direct summand of M .

Proof. If M is a τcGFS -lifting module with τcG(M) = 0, then by Example 2.10,
M is lifting. Clearly, τcG(M) is noncosingular , therefore τcG(M) is coclosed in M
and so is direct summand. So suppose thatM is not τcG-torsion free. If K is a τcGFS -
supplement of τcG(M), then M = τcG(M) + K and τcG(M) ∩ K �τcGFS

K . Thus
τcG(τcG(M) ∩ K) = 0, therefore τcG(M) ∩ K is cosingular and so it is a τcG(M)-
torsion free submodule. On the other hand, since τcG(M/τcG(M)) = 0, we have
M/τcG(M) ∈ F . But

M/τcG(M) = (K + τcG(M))/τcG(M) � K/(τcG(M) ∩ K).

Thus K/(τcG(M)∩K) ∈ F . Since K ∈ F , we can obtain that K is a direct summand
of M . Let M = K ⊕ K ′ for some K ′ of M . Now we show that M/K is a τcG(M)-
torsion module. Note that

M/K = (K + τcG(M))/K � τcG(M)/(τcG(M) ∩ K)

as τcG(M) ∈ T . Hence τcG(M)/(τcG(M)∩K) ∈ T , and soM/K is τcG(M)-torsion.
Moreover M/K � K ′, and so K ′ is a τcG(M)-torsion submodule. But

τcG(M) = τcG(K) ⊕ τcG(K ′) = τcG(K ′) = K ′.

Therefore M = K ⊕ τcG(M).

Let X and Y be classes of modules. We write X ≤ Y in case every object of X
is in Y .

Lemma 4.3. ([7, Lemma 2.5] ). Let X and Y be classes of modules with X ≤ Y .
Then every Y-lifting module is X -lifting.

The torsion theories on Mod-R may be partially ordered. If τ1 = (T1,F1) and
τ2 = (T2,F2) are two torsion theories, we say that τ1 is smaller than τ2 (τ1 ≤ τ2) if
and only if F1 ⊇ F2 (equivalently T1 ⊆ T2).

Proposition 4.4. Let τ = (T1,F1) and 
 = (T2,F2) be torsion theories such that
τ ≤ 
. If module M is 
T2-lifting, then M is τT1 -lifting.
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Proof. By Lemma 4.3.

Theorem 4.5. Suppose that τ = (T ,F ) is a torsion theory such that τcG ≤ τ .
Then a noncosingular module M is τT -lifting if and only if it is τcGTS -lifting.

Proof. Since τcG ≤ τ , by Proposition 4.4, if M is τT -lifting, then M is τcGTS -
lifting. Conversely, suppose that M is τcGTS -lifting. Let N be a submodule of M .
Then there exists a decomposition N = A ⊕ B such that A is a direct summand
of M and B �τcG

M . Let M = B + Y such that M/Y is τ -torsion. Since M
is noncosingular, Z(M) = M . So M is τcG-torsion. Thus M/Y is τcG-torsion.
Therefore Y = M . Hence B �τ M , and M is τT -lifting.

Examples 4.6.

(1) Let X = {X ∈ Mod − Z : X2 = 0} and Y = {Y ∈ Mod − Z : Y 4 = 0}. We
consider the Z−module M = (Z/2Z) ⊕ (Z/8Z). It is easy to see that X ≤ Y
and M is X -lifting but is not Y-lifting.

(2) The Z-moduleQ, the set of all rational numbers, is noncosingular by [13, Remark
2.11]. So Q is τcG-torsion. Now Example 2.10 shows that Q is τcG-lifting. But
QZ is not lifting.

(3) Let τ be a torsion theory such that τcG ≤ τ . Then

(i) Every noncosingular module is τcG-lifting and τ -lifting.
(ii) Every τcG-lifting module is τ -lifting.
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