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SADDLE POINT CRITERIA AND THE EXACT MINIMAX PENALTY
FUNCTION METHOD IN NONCONVEX PROGRAMMING

Tadeusz Antczak

Abstract. A new characterization of the exact minimax penalty function method
is presented. The exactness of the penalization for the exact minimax penalty
function method is analyzed in the context of saddle point criteria of the La-
grange function in the nonconvex differentiable optimization problem with both
inequality and equality constraints. Thus, new conditions for the exactness of
the exact minimax penalty function method are established under assumption that
the functions constituting considered constrained optimization problem are invex
with respect to the same function η (exception with those equality constraints for
which the associated Lagrange multipliers are negative - these functions should
be assumed to be incave with respect to the same function η). The threshold of
the penalty parameter is given such that, for all penalty parameters exceeding this
treshold, the equivalence holds between a saddle point of the Lagrange function
in the considered constrained extremum problem and a minimizer in its associated
penalized optimization problem with the exact minimax penalty function.

1. INTRODUCTION

In the paper, we consider the following differentiable optimization problem with
both inequality and equality constraints:

minimize f(x)

subject to gi(x) ≤ 0, i ∈ I = {1, ...m} ,

hj(x) = 0, j ∈ J = {1, ..., s} ,

x ∈ X,

(P)

where f : X → R and gj : X → R, i ∈ I , hj : X → R, j ∈ J , are differentiable
functions on a nonempty open set X ⊂ Rn.
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We will write g := (g1, ..., gm) : X → Rm and h := (h1, ..., hs) : X → Rs for
convenience.

For the purpose of simplifying our presentation, we will next introduce some nota-
tions which will be used frequently throughout this paper.

Let
D := {x ∈ X : gi(x) ≤ 0, i ∈ I , hj(x) = 0, j ∈ J}

be the set of all feasible solutions of (P).
Further, we denote the set of active constraints at point x ∈ D by

I (x) = {i ∈ I : gi (x) = 0} .

It is well-known (see, for example, [8]) that the following Karush-Kuhn-Tucker
conditions are necessary for optimality of a feasible solution x in the considered dif-
ferentiable constrained optimization problem.

Theorem 1. Let x be an optimal solution in problem (P) and a suitable constraint
qualification [8] be satisfied at x. Then there exist the Lagrange multipliers ξ ∈ Rm

and μ ∈ Rs such that

(1) ∇f (x) +
m∑

i=1

ξi∇gi (x) +
s∑

i=1

μj∇hj (x) = 0,

(2) ξigi (x) = 0, i ∈ I ,

(3) ξ ≥ 0.

Definition 2. The point x ∈ D is said to be a Karush-Kuhn-Tucker point in
problem (P) if there exist the Lagrange multipliers ξ ∈ Rm, μ ∈ Rs such that the
Karush-Kuhn-Tucker necessary optimality conditions (1)-(3) are satisfied at this point
with these Lagrange multipliers.

In the field of mathematical programming many efforts have been devoted to solve
nonlinear constrained optimization problems. It is well known that penalty function
methods are popular methods in solving nonlinear constrained optimization problems.
A particular subclass of penalty functions are the so-called exact penalty functions.
They can be subdivided, in turn, into two main classes: nondifferentiable exact penalty
functions and continuously differentiable exact penalty functions. Nondifferentiable
exact penalty functions were introduced for the first time by Eremin [17] and Zangwill
[32].

In the exact penalty functions methods, the original constrained optimization prob-
lem is replaced by an unconstrained problem, in which the objective function is the
sum of a certain “merit” function (which reflects the objective function of the original
extremum problem) and a penalty term which reflects the constraint set. The merit
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function is chosen, in general, as the original objective function, while the penalty
term is obtained by multiplying a suitable function, which represents the constraints,
by a positive parameter c, called the penalty parameter. A given penalty parameter c is
called an exact penalty parameter when every solution of the given extremum problem
can be found by solving the unconstrained optimization problem with the penalty func-
tion associated with c. Further, from theoretical point of view, exact penalty functions
are important because of the relationship to the necessary optimality conditions for a
minimum in constrained optimization.

In [13], Charalambous introduced a class of nondifferentiable exact penalty func-
tions defined as follows

Pp (x, α, β, c) = f(x) + c

⎛⎝ m∑
i=1

[
αig

+
i (x)

]p +
s∑

j=1

[βj |hj (x)|]p
⎞⎠1/p

,

where p ≥ 1, αi >0, i = 1, ..., m, βj >0, j = 1, ..., s. For a given constraint gi(x) ≤ 0,
the function g+

i (x) is defined by

(4) g+
i (x) =

{
0 if gi(x) ≤ 0,

gi(x) if gi(x) > 0.

It follows by (4) that the function g+
i (x) is equal to zero for all x that satisfy the

constraint gi(x) ≤ 0 and that it has a positive value whenever this constraint is violated.
Moreover, large violations in the constraint gi(x) ≤ 0 result in large values for g+

i (x).
Thus, the function g+

i (x) has the penalty features relative to the single constraint
gi(x) ≤ 0.

Later, Han and Magasarian [22] introduced the class of penalty functions defined
as follows

Pp (x, c) = f(x) + c
∥∥g+ (x) , h (x)

∥∥
p
,

where c > 0, ‖·‖p denotes the lp norm over Rm+s for 1 ≤ p ≤ ∞.
For p = 1, we get the most known nondifferentiable exact penalty function, called

the exact l1 penalty function (also the absolute value penalty function). The exact l1
penalty function method has been introduced by Pietrzykowski [29]. Most of the liter-
ature on nondifferentiable exact penalty functions methods for optimization problems
is devoted to the study of conditions ensuring that a (local) optimum of the original
constrained optimization problem is also an unconstrained (local) minimizer of the ex-
act penalty function. In the literature, it can be found a lot of researches which has
been developed the exactness of the exact l1 penalty function method (see, for example,
[8, 12, 13, 18, 19, 21, 24, 26, 28, 29, 33]). Further, Antczak [2] established this result
for nonlinear smooth optimization problems (with both inequality and equality con-
straints) under suitable invexity assumptions. He showed that there is a lower bound c
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for the penalty parameter c, equal to the largest Lagrange multiplier such that, for any
c > c, optimal solutions sets of the original mathematical programming problem (P)
and its penalized optimization problem (P(c)) with the absolute value penalty function
are the same.

For p = ∞, we obtain the so-called exact minimax penalty function. It is given by

P∞(x, c) = f(x) + c max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} .

The exact minimax penalty function method has been used also by Bandler and Char-
alambous [9].

The Lagrange multipliers of a nonlinear optimization problem and the saddle points
of its Lagrangian function have been studied by many authors (see, for instance, [7,
8, 25, 30], and others). But in most of the studies, an assumption of convexity on the
problems was made. Recently, several new concepts concerning a generalized convex
function have been proposed. Among these, the concept of an invex function has
received more attention (see Hanson [23]).

Problems of finding saddle point form a large class of problems encountered in
various types of game situations (see, for instance, [11]) and also in intrinsically math-
ematical problems, for example, in the problem of nonlinear programming under La-
grangian formulations. Antczak [1] used the so-called η-approximation method to ob-
tain new saddle point criteria for differentiable optimization problems. He defined an
η-saddle point and an η-Lagrange function in the η-approximated optimization problem
associated to the considered constrained extremum problem. Further, under invexity
assumptions, he established the equivalence between an optimal solution in the given
optimization problem and an η-saddle point in its associated η-approximated optimiza-
tion problem. Later, using the η-approximation method, Antczak [6] established the
equivalence between a second order η-saddle point and a second order η-Lagrange
function and an optimal solution in twice differentiable optimization problems. In [4],
Antczak defined the so-called G-saddle points of the so-called G-Lagrange function in
constrained optimization problems and he proved the new saddle point criteria for non-
convex constrained optimization problems involved G-invex functions with respect to
the same function η and with respect to, not necessarily, the same function G. In [16],
Demyanov and Pevnyi used penalty function method for finding saddle points. The
strategy used by them is to transform the constrained problem into a sequence of uncon-
strained problems which are considerably easier to solve than the original optimization
problem. Zhao et al. [34] defined a new class of augmented Lagrangian functions for
nonlinear programming problem with both equality and inequality constraints. They
proved relationship between local saddle points of this new augmented Lagrangian and
local optimal solutions in the considered optimization problems. In [5], a quadratic
penalization technique was applied to establish strong Lagrangian duality property for
an invex program under the assumption that the objective function is coercive.
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In the paper, we are motivated to give a new characterization of the exact minimax
penalty function method used for solving the nonconvex differentiable optimization
problem with both inequality and equality constraints. The main goal of this paper is,
therefore, to relate a saddle point in the considered constrained minimization problem
and a minimizer of its associated penalized optimization problem with the exact min-
imax penalty function. A lower bound c of the penalty parameter c is given in the
function of the Lagrange multipliers such that, for all penalty parameters exceeding
this treshold, the equivalence mentioned above holds. In order to prove this result, we
assume that the functions constituting the considered constrained optimization problem
are invex with respect to the same function η (exception with those equality constraints
for which the associated Lagrange multipliers are negative - these functions are as-
sumed incave also with respect to the same function η). The results established in
the paper are illustrated by a suitable example of a nonconvex smooth optimization
problem solved by using the exact minimax penalty function method.

2. BASIC NOTATIONS AND PRELIMINARY DEFINITIONS

In recent years, some numerous generalizations of convex functions have been de-
rived which proved to be useful for extending optimality conditions and some classical
duality results, previously restricted to convex programs, to larger classes of optimiza-
tion problems. One of them is invexity notion introduced by Hanson [23]. He extended
the concept of convex functions and applied them to prove optimality conditions and
duality results for nonlinear constrained optimization problems. Later, Craven [15]
named on those functions, as invex functions.

Now, we recall the definition of an invex function introduced by Hanson [23].

Definition 3. Let X be a nonempty subset of Rn and f : X → R be a differentiable
function defined on X . If there exists a vector-valued function η : X ×X → Rn such
that, for all x ∈ X (x 
= u),

(5) f(x) − f(u) ≥ [η(x, u)]T ∇f(u), (>)

then f is said to be (strictly) invex at u ∈ X on X with respect to η. If the inequality
(5) is satisfied for each u ∈ X , then f is an invex function on X with respect to η.

Remark 4. In the case when η (x, u) = x − u, we obtain the definition of a
differentiable convex function.

Definition 5. Let X be a nonempty subset of Rn and f : X → R be a differentiable
function defined on X . If there exists a vector-valued function η : X ×X → Rn such
that, for all x ∈ X (x 
= u),

(6) f(x)− f(u) ≤ [η(x, u)]T ∇f(u), (<)
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then f is said to be (strictly) incave at u ∈ X on X with respect to η. If (6) is satisfied
for each u ∈ X , then f is an incave function on X with respect to η.

Remark 6. In the case when η (x, u) = x − u, we obtain the definition of a
differentiable concave function.

Before we prove the main results for the considered optimization problem (P), we
need the following useful lemma. The simple proof of this lemma is omitted in this
work.

Lemma 7. Let ϕk, k = 1, ..., p, be real-valued functions defined on X ⊂ Rn. For
each x ∈ X , one has

max
1≤k≤p

ϕk(x) = max
λ∈Λ

p∑
k=1

λkϕk(x),

where Λ = {λ = (λ1, ..., λp) ∈ Rp
+ :

∑p
k=1 λk = 1}.

Now, for the reader’s convenience, we also recall the definition of a coercive
function.

Definition 8. A continuous function f : Rn → R is said to be coercive if

lim
‖x‖→∞

f(x) = ∞.

This means that, for any constant M , there must be a positive number βM such
that f(x) ≥ M whenever ‖x‖ ≥ βM . In particular, the values of f cannot remain
bounded on a set X in Rn that is not bounded.

Remark 9. For f to be coercive, it is not sufficient that f(x) → ∞ as each
coordinate tends to ∞. Rather f must become infinite along any path for which ‖x‖
becomes infinite.

3. EXACT MINIMAX PENALTY FUNCTION METHOD AND SADDLE POINT CRITERIA

In this section, we use the exact minimax penalty function method for solving the
nonconvex differentiable extremum problem (P) with both inequality and equality con-
straints. In this method, for the considered optimization problem (P) with both equality
and inequality constraints, we construct the following unconstrained optimization prob-
lem as follows

(7) minimize P∞(x, c) = f(x) + c max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} . (P∞(c))
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We call the unconstrained optimization problem defined above the penalized optimiza-
tion problem with the exact minimax penalty function.

The idea of the exact minimax penalty function method is to solve the original
nonlinear constrained optimization problem (P) by means of a single unconstrained
minimization problem (P∞(c)). Roughly speaking, a minimax penalty function for
problem (P) is a function P∞(·, c) given by (7), where c > 0 is the penalty parameter,
with the property that there exists a lower bound c ≥ 0 such that for c > c any optimal
solution in problem (P) is also a minimizer in the penalized optimization problem
(P∞(c)) with the exact minimax penalty function.

The saddle point theory is of great importance not only in optimization theory
but also in finding optimal solutions of the problems associated with exact penalty
functions. Therefore, we prove the equivalence between a saddle point

(
x, ξ, μ

) ∈
D × Rm

+ × Rp in the given constrained extremum problem (P) and a minimizer x in
the penalized optimization problem (P∞(c)) with the exact minimax penalty function.
In order to prove this result, we assume that the functions constituting the considered
constrained optimization problem are invex with respect to the same function η at x

on X (exception with those equality constraints for which the associated Lagrange
multipliers are negative - they should be assumed incave also with respect to the same
function η).

Before we do it, we recall the definition of the Lagrange function in problem (P) and
the definition of a saddle point of the Lagrange function for the considered optimization
problem (P) given by Bazaraa et al. [8].

Definition 10. The Lagrange function or the Lagrangian L in the considered opti-
mization problem (P) with both inequality and equality constraints is defined by

(8) L (x, ξ, μ) := f(x) + ξTg(x) + μT h(x).

Definition 11. A point
(
x, ξ, μ

) ∈ D × Rm
+ × Rs is said to be a saddle point in

the optimization problem (P) if

(i) L (x, ξ, μ) ≤ L
(
x, ξ, μ

) ∀ξ ∈ Rm
+ , ∀μ ∈ Rs,

(ii) L
(
x, ξ, μ

) ≤ L
(
x, ξ, μ

) ∀x ∈ X .

Theorem 12. Let
(
x, ξ, μ

) ∈ D × Rm
+ × Rs be a saddle point in the considered

optimization problem (P). If c is assumed to satisfy c ≥ ∑m
i=1 ξi+

∑s
j=1

∣∣μj

∣∣, where ξi,
i = 1, ..., m, μj , j = 1, ..., s, are the Lagrange multipliers associated to the inequality
constraints gi and the equality constraints hj , respectively, then x is a minimizer in
the associated penalized optimization problem (P∞(c)) with the exact minimax penalty
function.

Proof. By assumption,
(
x, ξ, μ

)
is a saddle point in the considered constrained

extremum problem (P). Then, by Definition 11 i) and Definition 10, we have, for any
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ξ ∈ Rm
+ and any μ ∈ Rs,

(9) f (x) + ξTg (x) + μT h (x) ≤ f (x) + ξ
T
g (x) + μT h (x) .

Then, (9) implies

(10) ξ
T
g (x) = 0.

By Definition 11 ii) and Definition 10, we have, for all x ∈ X ,

(11) f (x) + ξ
T
g (x) + μT h (x) ≤ f (x) + ξ

T
g (x) + μT h (x) .

Using (4) together with the definition of the absolute value, we get

(12) f (x) +
m∑

i=1

ξigi (x) +
s∑

j=1

μjhj (x) ≤ f (x) +
m∑

i=1

ξig
+
i (x) +

s∑
j=1

∣∣μj

∣∣ |hj(x)| .

Combining (11) and (12), we obtain

(13) f (x) +
m∑

i=1

ξigi (x) +
s∑

j=1

μjhj (x) ≤ f (x) +
m∑

i=1

ξig
+
i (x) +

s∑
j=1

∣∣μj

∣∣ |hj(x)| .

Then, by x ∈ D and (10), it follows that

(14) f (x) ≤ f (x) +
m∑

i=1

ξig
+
i (x) +

s∑
j=1

∣∣μj

∣∣ |hj(x)| .

Using the feasibility of x together with (4), we get

(15) f (x) +
m∑

i=1

ξig
+
i (x) +

s∑
j=1

∣∣μj

∣∣ |hj (x)| = f (x) .

Combining (14) and (15), we obtain that the inequality

(16) f (x)+
m∑

i=1

ξig
+
i (x)+

s∑
j=1

∣∣μj

∣∣ |hj (x)| ≤ f (x)+
m∑

i=1

ξig
+
i (x)+

s∑
j=1

∣∣μj

∣∣ |hj(x)|

holds for all x ∈ X .

Now, we consider two cases:

(a)
∑m

i=1 ξi +
∑s

j=1

∣∣μj

∣∣ > 0.

We divide the both sides of the inequality (16) by
∑m

i=1 ξi +
∑s

j=1

∣∣μj

∣∣ > 0. Thus,
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(17)

1∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣f(x) +
m∑

i=1

ξi∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣g+
i (x)

+
s∑

j=1

∣∣μj

∣∣∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣ |hj(x)| ≤ 1∑m
i=1 ξi+

∑s
j=1

∣∣μj

∣∣f (x)

+
m∑

i=1

ξi∑m
i=1 ξi+

∑s
j=1

∣∣μj

∣∣g+
i (x) +

s∑
j=1

∣∣μj

∣∣∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣ |hj(x)| .

We denote

(18) λk =
ξk∑m

i=1 ξi +
∑s

j=1

∣∣μj

∣∣ , k = 1, ..., m,

(19) λm+k =
μk∑m

i=1 ξi +
∑s

j=1

∣∣μj

∣∣ , k = 1, ..., s,

(20) ϕk(x) = g+
k (x), k = 1, ..., m,

(21) ϕm+k(x) = |hk(x)| , k = 1, ..., s.

Note that

(22) λk ≥ 0, k = 1, ..., m+ s,

m+s∑
k=1

λk = 1.

Combining (17)-(22), we obtain, for all x ∈ X ,

(23)

1∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣f(x) +
m+s∑
k=1

λkϕk(x)

≤ 1∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣f (x) +
m+s∑
k=1

λkϕk(x).

Using the feasibility of x in problem (P) together with (18)-(22), we have

(24) max
λ∈Λ

m+s∑
k=1

λkϕk(x) =
m+s∑
k=1

λkϕk(x),

where Λ = {λ = (λ1, ..., λm+s) ∈ Rm+s
+ :

∑m+s
k=1 λk = 1}. Thus, (23) and (24) imply

(25)

1∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣f(x) + max
λ∈Λ

m+s∑
k=1

λkϕk(x)

≤ 1∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣f(x) + max
λ∈Λ

m+s∑
k=1

λkϕk(x).
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By Lemma 7, it follows that

1∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣f(x) + max
1≤k≤m+s

ϕk(x)

≤ 1∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣f(x) + max
1≤k≤m+s

ϕk(x).

Therefore, (20) and (21) yield

(26)

1∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣f(x) + max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|}

≤ 1∑m
i=1 ξi+

∑s
j=1|μj|f(x) + max

1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} .

We multiply the inequality above by
∑m

i=1 ξi +
∑s

j=1

∣∣μj

∣∣ > 0. Thus,

(27)

f(x) +

⎛⎝ m∑
i=1

ξi +
s∑

j=1

∣∣μj

∣∣⎞⎠ max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|}

≤ f(x) +

⎛⎝ m∑
i=1

ξi +
s∑

j=1

∣∣μj

∣∣⎞⎠ max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} .

By assumption, c ≥ ∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣. Since max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} = 0, then

the following inequality

f(x) + c max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} ≤ f(x) + c max

1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|}

holds for all x ∈ X . By definition of the minimax penalized optimization problem
(P∞(c)), it follows that the inequality

(28) P∞ (x, c) ≤ P∞ (x, c)

holds for all x ∈ X . This means that x is a minimizer in the associated penalized
optimization problem (P∞(c)) with the exact minimax penalty function.

(b)
∑m

i=1 ξi +
∑s

j=1

∣∣μj

∣∣ = 0.

By Definition 11 ii) and Definition 10, it follows that the inequality

f (x) ≤ f (x)
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holds for all x ∈ X . Thus, the assumption
∑m

i=1 ξi +
∑s

j=1

∣∣μj

∣∣ = 0 implies that the
inequality

f(x) +

⎛⎝ m∑
i=1

ξi +
s∑

j=1

∣∣μj

∣∣⎞⎠ max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|}

≤ f(x) +

⎛⎝ m∑
i=1

ξi +
s∑

j=1

∣∣μj

∣∣⎞⎠ max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|}

holds for all x ∈ X . From the feasibility of x in problem (P), it follows that

max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} = 0.

Thus, the assumption c ≥ ∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣ = 0 implies that the inequality

f(x) + c max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} ≤ f(x) + c max

1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|}

is satisfied for all x ∈ X . By definition of the minimax penalized optimization problem
(P∞(c)), it follows that the inequality

(29) P∞ (x, c) ≤ P∞ (x, c)

holds for all x ∈ X . This means that x is a minimizer in the associated penalized
optimization problem (P∞(c)) with the exact minimax penalty function.

In both considered cases a) and b), we prove that, for all penalty parameters c
exceeding the treshold value equal to

∑m
i=1 ξi +

∑s
j=1

∣∣μj

∣∣, the point x is a minimizer
in the penalized optimization problem (P∞(c)) with the exact minimax penalty function.
Thus, the proof of theorem is completed.

Remark 13. Note that Theorem 12 was established without any invexity assumption
imposed on the functions constituting the considered optimization problem (P).

Now, we prove the converse result under some stronger assumptions.

Theorem 14. Let x be a minimizer in the penalized optimization problem (P∞(c))
with the exact minimax penalty function and the penalty parameter c be assumed
to satisfy the condition c >

∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j |, where ξ̃i, i = 1, ..., m, μ̃j , j =

1, ..., s, are the Lagrange multipliers associated with the inequality constraints gi and
the equality constraints hj , respectively, satisfying the Karush-Kuhn-Tucker necessary
optimality conditions at x̃ ∈ D. Further, assume that the objective function f , the
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inequality constraints gi, i ∈ I (x̃), and the equality constraints hj , j ∈ J+ (x̃) :=
{j ∈ J : μ̃j > 0}, are invex on X with respect to the same function η, and the equality
constraints hj , j ∈ J− (x̃) := {j ∈ J : μ̃j < 0}, are incave on X with respect to the
same function η. If the set D of all feasible solutions in problem (P) is compact, then
there exist ξ ∈ Rm

+ and μ ∈ Rs such that
(
x, ξ, μ

)
is a saddle point in the considered

constrained optimization problem (P).

Proof. By assumption, x is a minimizer in the penalized optimization problem
(P∞(c)) with the exact minimax penalty function. Thus, for all x ∈ X , the following
inequality

P∞(x, c) ≥ P∞(x, c)

holds. By the definition of the exact minimax penalty function P∞(·, c), we have that
the inequality

(30) f(x) + c max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} ≥ f(x) + c max

1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|}

holds for all x ∈ X . Thus, by (4), it follows that the inequality

(31) f(x) + c max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} ≥ f(x)

holds for all x ∈ X . Therefore, it is also satisfied for all x ∈ D. By (4), it follows
that g+

i (x) = 0, i ∈ I , for all x ∈ D. Moreover, by the feasibility of x in problem (P),
we have that hj(x) = 0, j ∈ J . Thus, (31) yields that the inequality

(32) f (x) ≥ f (x)

holds for all x ∈ D.
In order to prove that there exist the Lagrange multipliers ξi, i = 1, ..., m, μj ,

j = 1, ..., s, associated to the inequality constraints gi and the equality constraints
hj , respectively, such that

(
x, ξ, μ

)
is a saddle point of the Lagrange function in

the given constrained optimization problem (P), first we show that x is feasible in
problem (P). By means of contradiction, suppose that x is not feasible in problem
(P). Since f is a continuous function bounded below on the compact set D, therefore,
by Weierstrass’ Theorem, f admits its minimum x̃ on D. Therefore, the considered
optimization problem (P) has an optimal solution x̃. Thus, the Karush-Kuhn-Tucker
necessary optimality conditions are satisfied at x̃ with the Lagrange multipliers ξ̃ ∈ Rm

+

and μ̃ ∈ Rs. By assumption, the objective function f and the constraint functions gi,
i ∈ I (x̃), hj , j ∈ J+ (x̃), are invex at x̃ on X with respect to the same function η, and,
moreover, the constraint functions hj , j ∈ J− (x̃), are incave at x̃ on X with respect



Saddle Point Criteria and Minimax Penalty Function Method 571

to the same function η. Hence, by Definitions 3 and 5, respectively, the following
inequalities

f(x)− f(x̃) ≥ [η(x, x̃)]T ∇f(x̃),

gi(x) − gi(x̃) ≥ [η(x, x̃)]T ∇gi(x̃), i ∈ I (x̃) ,

hj(x) − hj(x̃) ≥ [η(x, x̃)]T ∇hj(x̃), j ∈ J+(x̃),

hj(x) − hj(x̃) ≤ [η(x, x̃)]T ∇hj(x̃), j ∈ J−(x̃)

hold for all x ∈ X . Therefore, they are also satisfied for x = x. Thus,

(33) f(x) − f(x̃) ≥ [η(x, x̃)]T ∇f(x̃),

(34) gi(x) − gi(x̃) ≥ [η(x, x̃)]T ∇gi(x̃), i ∈ I (x̃) ,

(35) hj(x)− hj(x̃) ≥ [η(x, x̃)]T ∇hj(x̃), j ∈ J+(x̃),

(36) hj(x)− hj(x̃) ≤ [η(x, x̃)]T ∇hj(x̃), j ∈ J−(x̃).

Since the Karush-Kuhn-Tucker necessary optimality conditions (1)-(3) are satisfied at
x̃ with Lagrange multipliers ξ̃ ∈ Rm

+ and μ̃ ∈ Rs, then

(37) ξ̃igi(x) − ξ̃igi(x̃) ≥ [η(x, x̃)]T ξ̃i∇gi(x̃), i ∈ I (x̃) ,

(38) μ̃jhj(x) − μ̃jhj(x̃) ≥ [η(x, x̃)]T μ̃j∇hj(x̃), j ∈ J+ ∪ J−(x̃).

Adding both sides of (33), (37) and (38) and taking into account the Lagrange multi-
pliers equal to 0, we obtain

f(x) − f(x̃) +
m∑

i=1

ξ̃i (gi(x) − gi(x̃)) +
s∑

j=1

μ̃j (hj(x) − hj(x̃))

≥ [η(x, x̃)]T

⎡⎣∇f(x̃) +
m∑

i=1

ξ̃i∇gi(x̃) +
s∑

j=1

μ̃j∇hj(x̃)

⎤⎦ .

By the Karush-Kuhn-Tucker necessary optimality conditions (1), we get

f(x) − f(x̃) +
m∑

i=1

ξ̃i (gi(x) − gi(x̃)) +
s∑

j=1

μ̃j (hj(x) − hj(x̃)) ≥ 0.

Thus,

f(x) +
m∑

i=1

ξ̃igi(x) +
s∑

j=1

μ̃jhj(x) ≥ f(x̃) +
m∑

i=1

ξ̃igi(x̃) +
s∑

j=1

μ̃jhj(x̃).
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From the feasibility of x̃ in problem (P) and the Karush-Kuhn-Tucker necessary opti-
mality condition (2), it follows that

f(x) +
m∑

i=1

ξ̃igi(x) +
s∑

j=1

μ̃jhj(x) ≥ f(x̃).

Hence, by (4) and the definition of the absolute value, we get

f(x) +
m∑

i=1

ξ̃ig
+
i (x) +

s∑
j=1

|μ̃j| |hj(x)| ≥ f(x̃).

Now, assume that
∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j | > 0. We divide the inequality above by∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j | > 0. Thus,

(39)

1∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j |

f(x) +
m∑

i=1

ξ̃i∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j |

g+
i (x)

+
s∑

j=1

|μ̃j |∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j|

|hj(x)| ≥ 1∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j |

f(x̃).

We denote

(40) λ̃k =
ξ̃k∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j |
, k = 1, ..., m,

(41) λ̃m+k =
μ̃k∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j |
, k = 1, ..., s,

(42) ϕk(x) = g+
k (x), k = 1, ..., m,

(43) ϕm+k(x) = |hk(x)| , k = 1, ..., s.

Note that

(44) λ̃k ≥ 0, k = 1, ..., m+ s,

m+s∑
k=1

λ̃k = 1.

Combining (40)-(44), we obtain

1∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j |

f(x) +
m+s∑
k=1

λ̃kϕk(x) ≥ 1∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j |

f(x̃).

By (40)-(44), it follows that
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1∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j |

f(x) + max
λ∈Λ

m+s∑
k=1

λkϕk(x) ≥ 1∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j|

f(x̃),

where Λ = {λ = (λ1, ..., λm+s) ∈ Rm+s
+ :

∑m+s
k=1 λk = 1}. Thus, by Lemma 7, it

follows that
1∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j |
f(x) + max

1≤k≤m+s
ϕk(x) ≥ 1∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j |
f(x̃).

Hence, by (42) and (43), we have

1∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j|

f(x) + max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} ≥ 1∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j |
f(x̃).

Using (4) together with the feasibility of x̃ in the constrained optimization problem (P),
we get

(45)

1∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j|

f(x) + max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|}

≥ 1∑m
i=1 ξ̃i +

∑s
j=1 |μ̃j |

f(x̃) + max
1≤i≤m
1≤j≤s

{
g+
i (x̃), |hj(x̃)|} .

We multiply the inequality above by
∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j | > 0. Thus,

(46)

f(x) +

⎛⎝ m∑
i=1

ξ̃i +
s∑

j=1

|μ̃j |
⎞⎠ max

1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|}

≥ f(x̃) +

⎛⎝ m∑
i=1

ξ̃i +
s∑

j=1

|μ̃j |
⎞⎠ max

1≤i≤m
1≤j≤s

{
g+
i (x̃), |hj(x̃)|} .

By assumption, c >
∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j |. Therefore, (46) gives

f(x) + c max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} > f(x̃) + c max

1≤i≤m
1≤j≤s

{
g+
i (x̃), |hj(x̃)|} .

Hence, by the definition of the penalized optimization problem (P∞(c)) (see (7)), it
follows that the inequality

P∞(x, c) > P∞(x̃, c)

holds, contradicting the optimality of x in the penalized optimization problem (P∞(c))
with the exact minimax penalty function. Thus, we have established that x is feasible
in the given minimization problem (P).
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Now, we consider the case when
∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j | = 0. Hence, using the
Karush-Kuhn-Tucker necessary optimality conditions (1) together with (33), we get

(47) f(x) ≥ f(x̃).

Since
∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j | = 0, then

f(x) +

⎛⎝ m∑
i=1

ξ̃i +
s∑

j=1

|μ̃j |
⎞⎠ max

1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|}

≥ f(x̃) +

⎛⎝ m∑
i=1

ξ̃i +
s∑

j=1

|μ̃j |
⎞⎠ max

1≤i≤m
1≤j≤s

{
g+
i (x̃), |hj(x̃)|} .

By assumption, c >
∑m

i=1 ξ̃i +
∑s

j=1 |μ̃j | = 0. Thus,

f(x) + c max
1≤i≤m
1≤j≤s

{
g+
i (x), |hj(x)|} > f(x̃) + c max

1≤i≤m
1≤j≤s

{
g+
i (x̃), |hj(x̃)|} .

Hence, by the definition of the penalized optimization problem (P∞(c)) (see (7)), it
follows that the inequality

P∞(x, c) > P∞(x̃, c)

holds, contradicting the optimality of x in the penalized optimization problem (P∞(c))
with the exact minimax penalty function. Thus, we have established that x is feasible
in the considered constrained optimization problem (P).

Hence, by (32), it follows that x is optimal in the given optimization problem
(P). Then, there exist the Lagrange multipliers ξ ∈ Rm

+ and μ ∈ Rs such that the
Karush-Kuhn-Tucker necessary optimality conditions (1)-(3) are satisfied at x.

Now, by Definition 11, we show that
(
x, ξ, μ

) ∈ D × Rm
+ × Rs is a saddle point

of the Lagrange function in the considered constrained optimization problem (P).
First, we prove the relation i) in Definition 11. By the Karush-Kuhn-Tucker opti-

mality condition (2), the inequality

ξT g(x) ≤ ξ
T
g(x)

holds for all ξ ∈ Rm
+ . Hence,

f (x) + ξTg(x) + μT h(x) ≤ f (x) + ξ
T
g(x) + μT h(x).

By definition of the Lagrange function (8), the following inequality

(48) L (x, ξ, μ) ≤ L
(
x, ξ, μ

)
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holds for all ξ ∈ Rm
+ and μ ∈ Rs.

Now, we prove the inequality ii) in Definition 11. By assumption, f , gi, i ∈ I (x),
hj , j ∈ J+ (x), are invex functions at x with respect to the same function η on X and,
moreover, hj , j ∈ J− (x), are incave at x with respect to the same function η on X .
Then, by Definitions 3 and 5, respectively, the inequalities

(49) f(x) − f(x) ≥ [η(x, x)]T ∇f(x),

(50) gi(x)− gi(x) ≥ [η(x, x)]T ∇gi(x), i ∈ I (x) ,

(51) hj(x)− hj(x) ≥ [η(x, x)]T ∇hj(x), j ∈ J+ (x) ,

(52) hj(x) − hj(x) ≤ [η(x, x)]T ∇hj(x), j ∈ J− (x)

hold for all x ∈ X . Multiplying (50)-(53) by the Lagrange multipliers ξi ≥ 0, i ∈ I ,
μ > 0, j ∈ J+ (x), μ < 0, j ∈ J− (x), respectively, we get

(53) ξigi(x) − ξigi(x) ≥ [η(x, x)]T ξi∇gi(x), i ∈ I (x) ,

(54) μjhj(x)− μjhj(x) ≥ [η(x, x)]T μj∇hj(x), j ∈ J+ (x) ∪ J− (x) .

Adding both sides of (53) and (54), we obtain

(55)
∑

i∈I(x)

ξigi(x) −
∑

i∈I(x)

ξigi(x) ≥ [η(x, x)]T
∑

i∈I(x)

ξi∇gi(x),

(56) ∑
j∈J+(x)∪J−(x)

μjhj(x)−
∑

j∈J+(x)∪J−(x)

μjhj(x) ≥ [η(x, x)]T
∑

j∈J+(x)∪J−(x)

μj∇hj(x).

Now, adding both sides of (49), (55) and (56), we get

f(x)− f(x) +
∑

i∈I(x)

ξigi(x)−
∑

i∈I(x)

ξigi(x)

+
∑

j∈J+(x)∪J−(x)

μjhj(x) −
∑

j∈J+(x)∪J−(x)

μjhj(x)

≥ [η(x, x)]T
[
∇f(x) +

∑m
i=1 ξi∇gi(x) +

∑
j∈J+(x)∪J−(x) μj∇hj(x)

]
.

Taking into account the Lagrange multipliers equal to 0, then the Karush-Kuhn-Tucker
necessary optimality condition (1) yields that the inequality

f(x) +
∑
i∈I

ξigi(x) +
∑
j∈J

μjhj(x) ≥ f(x) +
∑
i∈I

ξigi(x) +
∑
j∈J

μjhj(x)
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holds for all x ∈ X . Thus, by the definition of the Lagrange function (8), the following
inequality

(57) L
(
x, ξ, μ

) ≥ L
(
x, ξ, μ

)
holds for all x ∈ X . Inequalities (48) and (57) mean, by Definition 11, that

(
x, ξ, μ

)
is a saddle point of the Lagrange function in the considered optimization problem
(P).

In Theorems 12 and 14, the equivalence between a saddle point in the consid-
ered optimization problem (P) and a minimizer in its associated penalized optimization
problem (P∞(c)) with the exact minimax penalty function has been established for all
penalty parameters exceeding the given treshold. The main tool to prove this equiv-
alence turns out a suitable invexity assumption imposed on the functions constituting
the considered nonlinear optimization problem (P).

Now, we illustrate the results established in the paper by the help of an example of
a nonconvex constrained optimization problem with invex functions. In order to solve
it, we use the exact minimax penalty function method.

Example 15. Consider the following nonlinear constrained optimization problem
with both inequality and equality constraints

f(x) = arctan2 (x1) + arctan (x1) + arctan2 (x2) + arctan (x2) → min
g1(x) = arctan2 (x1)− arctan (x1) ≤ 0,

g2(x) = − arctan (x2) ≤ 0,

h(x) = arctan (x1) − arctan (x2) = 0,

X = R2.

(P1)

Note that the set of all feasible solutions in problem (P1) is the set D =
{
(x1, x2) ∈ R2 :

0 ≤ x1 ≤ π
4 ∧ x2 ≥ 0 ∧ x1 = x2

}
. We use the exact minimax penalty function

method for solving the considered optimization problem (P1). Therefore, we construct
the following unconstrained optimization problem

P1∞(x, c) = arctan2 (x1) + arctan(x1) + arctan2 (x2) + arctan (x2)+
c
{
max

{
0, arctan2 (x1) − arctan (x1)

}
, max {0,− arctan(x2)} ,

|arctan (x1) − arctan (x2)|} → min .

(P1∞(c))

Note that x = (0, 0) is such a feasible solution in problem (P1) at which the Karush-
Kuhn-Tucker necessary optimality conditions (1)-(3) are satisfied with the Lagrange
multipliers ξ =

(
ξ1, ξ2

)
, where ξ1 = μ + 1, ξ2 = −μ + 1 and −1 ≤ μ ≤ 1. Further, it

is can be showed, by Definition 11, that
(
x, ξ, μ

) ∈ D×R2
+×R is a saddle point of the

Lagrange function in the considered constrained optimization problem (P1). Therefore,
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by Theorem 12, for every penalty parameter c ≥ ∑2
i=1 ξi + |μ| = 2 + |μ| = 3, it

follows that x = (0, 0) is a minimizer in any associated penalized optimization problem
(P1∞(c)) with the exact minimax penalty function. Now, we show the converse result.
In fact, it can be established, by Definition 3, that both the objective function f and
the constraint function g = (g1, g2) are invex on R2 with respect to the same function
η defined by

η (x, u) =

[
η1 (x, u)

η2 (x, u)

]
=

[ (
1 + u2

1

)
(arctan (x1) − arctan (u1))(

1 + u2
2

)
(arctan (x2) − arctan (u2))

]
.

Also it can be showed that, if μ is positive, then the equality constraint h is invex on
R2 with respect to the function η defined above and, in the case when μ is negative,
then the equality constraint h is incave on R2 with respect to the function η defined
above. Further, the set D is a compact subset of R2. Thus, all hypotheses of Theorem
14 are fulfilled. Since the point x = (0, 0) is a minimizer in the penalized optimization
problem (P1∞(c)) with the exact minimax penalty function for any penalty parameter
c satisfying c > ξ1 + ξ2 + |μ| = 3, therefore

(
x, ξ, μ

) ∈ D×R2
+ ×R is a saddle point

of the Lagrange function in the considered optimization problem (P1). Thus, there
exists the lower bound c equal to

∑2
i=1 ξi + |μ| such that, for every penalty parameter

c exceeding this threshold value, the considered minimization problem (P1) and any its
penalized optimization problem (P1∞(c)) with the exact minimax penalty function are
equivalent in the sense discussed in the paper.

In the next example, we consider a constrained optimization problem in which not
all functions are invex. It turns out that, for such constrained optimization problems,
the equivalence might not hold between the set of saddle points in the given constrained
optimization problem and the set of minimizers in its associated penalized optimization
problem with exact minimax penalty function.

Example 16. Consider the following constrained optimization problem

f(x) = 1
4x4 − 1

3x3 − x2 + 1 → min

g1(x) = 2 − x ≤ 0,

g2(x) = −x2 + 3x − 2 ≤ 0.

(P2)

Note that D = {x ∈ R : x ≥ 2} and a point
(
x, ξ1, ξ2

)
= (2, 0, 0) is a saddle point in

the considered optimization problem (P2). Further, by Theorem 1 [10], it follows that
the objective function f and the constraint function g2 are not invex on R with respect
to any function η defined by η : R × R → R. However, we use the exact minimax
penalty function method to solve problem (P2). Then, in order to solve (P2) by this
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method, we construct the following unconstrained optimization problem

P2∞(x, c) = 1
4x4 − 1

3x3 − x2 + 1+

c max
{
max {0, 2− x} , max

{
0,−x2 + 3x − 2

}} → min .
(P2∞(c))

It is not difficult to show that P2∞ (x, c) does not have a minimizer at x = 2 for
any c > 0, that is, for every penalty parameter exceeding the treshold given in the
paper. This is a consequence of the fact that not all functions constituting problem
(P2) are not invex on R (with respect to any function η : R × R → R). Therefore,
since all functions constituting the given constrained optimization problem are not invex
with respect to any function η : R × R → R, then the treshold value of the penalty
parameter is not equal to the sum of the absolute value of the Lagrange multipliers
satisfying the Karush-Kuhn-Tucker necessary optimality conditions. As it follows even
from this example, if this assumption is violated, then the equivalence between the
given optimization problem (P) and its penalized optimization problem with the exact
minimax penalty function might not hold for every penalty parameter exceeding this
threshold.

Remark 17. Note that the objective function f in the optimization problem (P2) in
Example 16 is coercive (see [28]). Hence, as it follows from Example 16, the coercive
assumption of the objective function is not sufficient condition to prove the equivalence
between the set of saddle points of the Lagrange function in the given constrained
optimization problem and the set of minimizers in its penalized optimization problem
with the exact minimax penalty function. This is also a consequence of the fact that
not all functions constituting problem (P2) are invex on R (with respect to any function
η : R × R → R).

4. CONCLUSION

In the paper, the exact minimax penalty function method has been used for solving
nonconvex differentiable optimization problems involving both inequality and equality
constraints. In this method, for the considered constrained minimization problem (P),
an associated penalized optimization problem (P∞(c)) with the exact minimax penalty
function is constructed. A lower bound on the penalty parameter c has been given in the
paper such that, for every penalty parameter c exceeding this treshold, the equivalence
holds between a saddle point

(
x, ξ, μ

) ∈ D × Rm
+ × Rs in the given nonconvex

constrained optimization problem (P) and a minimizer x in its associated penalized
optimization problem (P∞(c)) with the exact minimax penalty function. This result has
been established under assumption that the functions constituting the given constrained
optimization problem (P) are invex with respect to the same function η (exception with
these equality constraints for which the associated Lagrange multipliers are negative -
those functions should be assumed incave with respect to η). Further, it has been shown
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that, in the absence of invexity assumption, the equivalence between the set of saddle
points of the Lagrange function in the given constrained optimization problem and the
set of minimizers in its penalized optimization problem with the exact minimax penalty
function might not hold for every penalty parameter exceeding the threshold given in the
paper. Also the coercive assumption of the objective function is not sufficient to prove
this equivalence for all penalty parameters above the given treshold. As it follows from
the paper, the concept of invexity is a useful tool to prove the the equivalence between
the set of saddle points of the Lagrange function in the given constrained optimization
problem and the set of minimizers in its penalized optimization problem with the exact
minimax penalty function. The principal motivation for the exact minimax penalty
function method presented in this paper is that, in the comparison to the classical exact
l1 function method (see [2]), there is no the lower bound on the penalty parameter
c in the optimization literature such that, for all penalty parameters exceeding this
treshold, the equivalence mentioned above holds for nonconvex constrained extremum
problem and its associated penalized optimization problem with the exact minimax
penalty function.
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Banacha 22, 90-238 Lódź
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