
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 17, No. 1, pp. 133-142, February 2013
DOI: 10.11650/tjm.17.2013.1803
This paper is available online at http://journal.taiwanmathsoc.org.tw

ON PRIME SUBMODULES AND PRIMARY DECOMPOSITIONS IN
TWO-GENERATED FREE MODULES

Seçil Çeken and Mustafa Alkan

Abstract. In this paper, we consider the free R-module R ⊕ R, where R is
an arbitrary commutative ring with identity. We give a full characterization for
prime submodules of R ⊕ R and a useful primeness test for a finitely generated
submodule of R ⊕ R. We study the existence of primary decomposition of a
submodule of R ⊕ R and characterize the minimal primary decomposition. As
applications of our results, we give some examples of primary decompositions in
R ⊕ R.

1. INTRODUCTION

Throughout this paper, all rings are commutative with identity and all modules are
unitary.
Let R be a ring and M be an R-module. For any submodule N of M we set

(N : M) = {r ∈ R : rM ⊆ N}. A proper submodule N of M is called a P -
prime submodule if rm ∈ N for r ∈ R and m ∈ M implies that either m ∈ N or
r ∈ P = (N : M). It is well-known that a proper submodule N of M is prime if and
only if P is a prime ideal of R and M/N is torsion-free as an R/P -module.
A proper submodule Q of M is called a primary submodule provided that for any

s ∈ R and m ∈ M, sm ∈ Q implies that m ∈ Q or sn ∈ (Q : M) for some positive
integer n. Let Q be a primary submodule of M , then the radical of the ideal (Q : M)
is a prime ideal of R. If P =

√
(Q : M), then Q is called a P -primary submodule of

M .
A submodule N of M has a primary decomposition if N = Q1 ∩ ... ∩ Qk with

each Qi a Pi-primary submodule of M for some prime ideal Pi. If no Qi contains
Q1 ∩ ... ∩ Qi−1 ∩ Qi+1 ∩ ... ∩ Qk and the ideals P1, ..., Pk are all distinct, then the
primary decomposition is said to be minimal and the set Ass(N ) = {P1, ..., Pk} is
said to be the set of associated prime ideals of N.
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Let I be an ideal of R such that I has a primary decomposition. It is well-known
that the minimal members of Ass(I) are precisely the minimal prime ideals of I. These
prime ideals are called the minimal primes of I . The remaining associated primes of
I , that is, the associated primes of I which are not minimal, are called the embedded
primes of I.

Prime submodules and primary decompositions of submodules of a module over a
commutative ring have been studied by many authors (see, [6], [7], and [11]). In [10],
Tlraş and Harmancl gave some characterizations of prime and primary submodules of
R ⊕ R, where R is a PID (Principal Ideal Domain). Moreover, these submodules of
finitely generated free modules over a PID were studied in [3], [4], [5] and [1]. Pusat-
Yllmaz in [9] also studied prime submodules of finitely generated free modules over
arbitrary commutative domains.
In this paper, we completely determine prime submodules of R⊕R for an arbitrary

commutative ring R, and we generalize some known results in [10] and [9]. We
also study the existence of the primary decomposition of a submodule of R ⊕ R, and
characterize the minimal primary decomposition. As applications of our results, we
give some examples of primary decompositions in R ⊕ R, where R is not a PID.

2. PRIME SUBMODULES AND PRIMARY DECOMPOSITIONS

In the rest of this paper we fix the following notations: LetR be a commutative ring
with identity and F = R ⊕ R. We use N to be a non–zero submodule of F generated
by the set {(ai,bi) ∈ F : i ∈ Λ} and L =

∑
i,j∈Λ RΔij where Δij = aibj − biaj for

i, j ∈ Λ.
The following Lemma can be found in [2]. But we give its proof for completeness.

Lemma 2.1. Let F and N be as above. Then L ⊆ (N : F ) ⊆ √L.
Proof. For all i, j ∈ Λ, we have

Δij(1, 0) = (ai, bi)bj − (aj, bj)bi ∈ N

Δij(0, 1) = (aj, bj)ai − (ai,bi)aj ∈ N

and so
∑

i,j∈Λ RΔij ⊆ (N : F ).
Let x ∈ (N : F ). Then there exists a finite subset Υ of Λ such that x(1, 0) =∑

i∈Υ ti(ai, bi) and x(0, 1) =
∑

i∈Υ ki(ai, bi), where ti, ki ∈ R for all i ∈ Υ. Then
x =

∑
i∈Υ tiai, x =

∑
i∈Υ kibi, 0 =

∑
i∈Υ tibi and 0 =

∑
i∈Υ kiai. Thus we have

x2 =
∑

i∈Υ
tikiaibi +

∑
i∈Υ

(
∑

j∈Υ, i�=j
tiaikjbj)

0 =
∑

i∈Υ
tikiaibi +

∑
i∈Υ

(
∑

j∈Υ, i�=j
tibikjaj).

Therefore, x2 =
∑

i∈Υ(
∑

j∈Υ, i�=j tikjΔij) ∈
∑

i,j∈Υ RΔij and so x ∈ √L.
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Theorem 2.2. Let N be a submodule of F with (N : F ) = P .

(a) If P is a prime ideal of R and ai, bi ∈ P for all i ∈ Λ, then N = P ⊕ P and
N is a prime submodule.

(b) If P is a maximal ideal of R, ai /∈ P for some i ∈ Λ and bj /∈ P for some
j ∈ Λ, then N = (aibj)N + PF and N is a prime submodule.

(c) If {ai : i ∈ Λ} ∪ {bi : i ∈ Λ} � P and N is a prime submodule, then N =
{(m, n) ∈ F : mbi − nai ∈ P for all i ∈ Λ}. In particular,
(i) If ai ∈ P for all i ∈ Λ and bj /∈ P for some j ∈ Λ (resp. bi ∈ P for all

i ∈ Λ and aj /∈ P for some j ∈ Λ) then N = P ⊕R (resp. N = R⊕P ).
(ii) If ai /∈ P and bi ∈ P for some i ∈ Λ (resp. bi /∈ P and ai ∈ P for some

i ∈ Λ) then N = R ⊕ P (resp. N = P ⊕ R).

Proof.

(a) It is clear that PF is a prime submodule of F contained in N . If ai, bi ∈ P for
all i ∈ Λ then PF = P ⊕ P contains N .

(b) Let P be a maximal ideal of R and let ai /∈ P for some i ∈ Λ and bj /∈ P
for some j ∈ Λ. Then we get that (aibj)R + P = R. Let (x, y) ∈ N . Then
x = raibj +p1 and y = saibj +p2 for some r, s ∈ R and p1, p2 ∈ P . It follows
that (x, y) = aibj(r, s)+(p1, p2) and then aibj(r, s) ∈ N as (p1, p2) ∈ PF ⊆ N.
Since (N : F ) = P is a maximal ideal of R, N is a prime submodule of F and
hence (r, s) ∈ N . Thus (x, y) ∈ (aibj)N + PF and so N ⊆ (aibj)N + PF .
The other inclusion is clear.

(c) We may assume that a1 /∈ P . Consider the submodule

TP = {(m, n) ∈ F : mbi − nai ∈ P for all i ∈ Λ}.
By Lemma 2.1, it is clear that N ⊆ TP . Let (m, n) ∈ TP . Then there exists a

p ∈ P such that na1 = mb1 + p and so
a1(m, n) = (a1m, a1n) = (a1m, b1m)+ (0, p) = m(a1, b1)+ (0, p) ∈ N +PF =

N. Since a1 /∈ P, we get that (m, n) ∈ N and so TP = N.
(i) Let ai ∈ P for all i ∈ Λ and bj /∈ P for some j ∈ Λ. It is clear that N ⊆ P ⊕R.

N = {(m, n) ∈ F : mbi − nai ∈ P for all i ∈ Λ} by (c). Let (x, y) ∈ P ⊕ R. Then
xbi − yai ∈ P for all i ∈ Λ and so (x, y) ∈ N. Thus N = P ⊕ R.

By using the same argument as above it can be proved that N = R ⊕ P if bi ∈ P
for all i ∈ Λ and aj /∈ P for some j ∈ Λ.

(ii) Let ai /∈ P and bi ∈ P for some i ∈ Λ. Let (x, y) ∈ N. Then xbi − yai ∈ P
and so N ⊆ R ⊕ P . Since xbj − yaj ∈ P for all j ∈ Λ, we get xbj ∈ P. If x ∈ P
then N = P ⊕P . This is a contradiction as (ai, bi) ∈ N −(P ⊕ P ) . Therefore bj ∈ P

for all j ∈ Λ. Now the result follows from (i).
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By using the same argument as above it can be proved that N = P ⊕ R if bi /∈ P

and ai ∈ P for some i ∈ Λ.

By using Theorem 2.2, we prove the following corollary which is a generalization
of [10, Proposition 2.3] with a different proof.

Corollary 2.3. Let N be a prime submodule of F. Then
(a) If (1, 0) ∈ N then N = R ⊕ (N : F ).
(b) If (0, 1) ∈ N then N = (N : F ) ⊕ R.

Proof. (a) Let (1, 0) ∈ N. It is clear that N �= P ⊕P. Then bi ∈ P, for all i ∈ Λ
by Theorem 2.2 (c). We get that N = R ⊕ (N : F ) by Theorem 2.2 (c − i).

Let N be a P -prime submodule of a moduleM. It is said thatN has P–height n for
some non-negative integer n, if there exists a chainKn ⊂ Kn−1 ⊂ ... ⊂ K1 ⊂ K0 = N

of P–prime submodules Ki of M , but no longer such chain.

Proposition 2.4. Let N be a P -prime submodule of F. If N �= P ⊕ P then the
P -height of N is 1.

Proof. Since N �= P ⊕ P , we have that ai /∈ P for some i ∈ Λ or bj /∈ P for
some j ∈ Λ. By Theorem 2.2, N = {(m, n) ∈ F : mbi − nai ∈ P for all i ∈ Λ}. Let
K be a P -prime submodule of F with K ⊆ N and let {(ci, di) ∈ F : i ∈ Ω} be a
generating set for K. If ci, di ∈ P for all i ∈ Ω then K = P ⊕P. Suppose that ck /∈ P

for some k ∈ Ω or dl /∈ P for some l ∈ Ω. Then K = {(x, y) ∈ F : xdi − yci ∈ P
for all i ∈ Ω} by Theorem 2.2-(c). Since (ci, di) ∈ N for all i ∈ Ω we get that
cibj − diaj ∈ P and so (aj, bj) ∈ K for all j ∈ Λ. Hence K = N.

Corollary 2.5. Let N be a P -prime submodule of F. If (R⊕P )∩N �= PF (resp.
(P ⊕ R) ∩ N �= PF ), then N = R ⊕ P (resp. P ⊕ R).

Proof. Let N be a P–prime submodule of F . Then (R ⊕ P ) ∩ N is a P -prime
submodule. By Proposition 2.4, we get that N = (R ⊕P ) ∩ N and so P ⊕ P ⊂ N ⊆
R⊕P . The P -height of R⊕P is 1 by Proposition 2.4. Thus we have R⊕P = N .

Theorem 2.6. Let N be a submodule of F which doesn’t contain (1, 0) and (0, 1).
Let P = (N : F ) be a maximal ideal of R and (a, b) ∈ N with Ra + Rb � P. Then
N = {(x, y) ∈ F : ay − bx ∈ P} and N is a prime submodule of F .

Proof. Since (N : F ) = P is a maximal ideal of R, N is prime.
Assume that a ∈ P. Since (a, 0) ∈ N, we have (0, b) = b(0, 1) ∈ N and so

b ∈ P . Thus Ra + Rb ⊆ P , a contradiction, and we get that a, b /∈ P . Therefore,
there exist x1, y1 ∈ R and p1, p2 ∈ P such that ax1 + p1 = 1, by1 + p2 = 1. Let
K = {(x, y) ∈ F : ay − bx ∈ P}. Clearly, K is a P–prime submodule of F.
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To show the equality N = K, take (c, d) ∈ N . Since (ad − bc, 0) = d(a, b) −
b(c, d) ∈ N and (1, 0) /∈ N , we get that ad − bc ∈ P and so N ⊆ K . For the reverse
inclusion, take (c, d) ∈ K. Then we get that

(c, d) = (by1c + p2c, ax1d + p1d) = (by1c, ax1d) + (p2c, p1d)

Since (p2c, p1d) ∈ P ⊕ P , it is enough to show that (by1c, ax1d) ∈ N .
Since x1(a, b) ∈ N, it follows that

(ax1, bx1) + (p1, 0) = (1, bx1) = (by1, bx1) + (p2, 0) ∈ N

and so b(y1, x1) ∈ N . Then we have (y1, x1) ∈ N as b /∈ P . On the other hand, there
exists q ∈ P such that bc = q + ad. Then we get that

(y1(bc), ax1d) = (y1ad + y1q, ax1d) = ad(y1, x1) + (qy1, 0).

Therefore, (by1c, ax1d) ∈ N and so K = N .

In [8], Pusat-Yllmaz and Smith defined the submodule K(N, P ) = {m ∈ M :
cm ∈ N + PM for c ∈ R\P} for an R-module M and N ≤ M . Then they showed
that K(N, P ) = M or K(N, P ) is the smallest P -prime submodule containing N .
As a consequence of Theorem 2.6, we obtain the following corollary which charac-
terizes K(N, P ) and the structure of a prime submodule of F. Corollary 2.7-(2) is a
generalization of [10, Theorem 2.7].

Corollary 2.7. (1) Let N be a submodule of F , P = (N : F ) be a prime ideal
and (a, b) ∈ N with Ra + Rb � P . If NP doesn’t contain ( 1

1 , 0
1) and ( 0

1 , 1
1 ), then

{(x, y) ∈ F : ay − bx ∈ P} = K(N, P ).
(2) Let N be a submodule of F which doesn’t contain (1, 0) and (0, 1). Suppose

that P = (N : F ) is a prime ideal of R and (a, b) ∈ N with Ra + Rb � P . Then N
is a P -prime submodule of F if and only if N = {(x, y) ∈ F : ay − bx ∈ P}.
Proof. (1) Since PP = (N : F )P = (NP : FP ) is a maximal ideal of RP ,

NP = {(x
s , y

t ) ∈ FP : say − tbx ∈ P} by Theorem 2.6. Let ϕ : F −→ FP ,
be the natural homomorphism. Then we have ϕ−1(NP ) = {(x, y) ∈ F : (x

1 , y
1 ) ∈

NP} = {(x, y) ∈ F : ay − bx ∈ P} = {(x, y) ∈ F : r(x, y) ∈ N for some
r ∈ R\P} = K(N, P ).

(2) Suppose that N is a prime submodule and ( 1
1 , 0

1 ) ∈ NP . Then (1,0)
1 = (x,y)

s for
some (x, y) ∈ N and s ∈ R\P . We have u(s(1, 0)− (x, y)) = 0 for some u ∈ R\P .
Since us(1, 0) ∈ N and (1, 0) /∈ N , we get that us ∈ P , a contradiction. Thus ( 1

1 , 0
1 ) /∈

NP . Similarly ( 0
1 , 1

1) /∈ NP . By (1), K(N, P ) = {(x, y) ∈ F : ay − bx ∈ P} = N as
K(N, P ) is the smallest P -prime submodule containing N .
Conversely, it can be easily seen that {(x, y) ∈ F : ay − bx ∈ P} is a P -prime

submodule of F .
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To sum up our results about prime submodules of F , combining Corollary 2.3 and
Corollary 2.7, we give the following theorem which characterizes all prime submodules
of F.

Theorem 2.8. Let N be a submodule of F.
(1) Assume that N contains (1, 0) or (0, 1). Then, N is a prime submodule of F

if and only if (N : F ) = P is a prime ideal of R and N = R ⊕ P or N = P ⊕ R.
(2) Assume thatN does not contain (1, 0) and (0, 1). ThenN is a prime submodule

of F if and only if (N : F ) = P is a prime ideal of R and N = P ⊕ P or
N = {(x, y) ∈ F : ay − bx ∈ P}, where (a, b) ∈ N with Ra + Rb � P .

In the following theorem, we determine whether N is a prime submodule of F or
not, by using primeness of a certain ideal of R. This theorem is a generalization of [9,
Proposition 3.4] and a useful primeness test for a finitely generated submodule of F .

Theorem 2.9. Let N be an n–generated submodule of F with R = Ran + Rbn.
Then N is a prime submodule of F if and only if

∑n−1
i=1 RΔni is a prime ideal of R.

Proof. By the hypothesis, there exist elements s1, s2 ∈ R such that 1 =
s1an + s2bn. Let L = R(an, bn) and L′ = {(x, y) ∈ F : s1x + s2y = 0}. Consider
the functions Ψ : R → F defined by Ψ(r) = r(an, bn) and Φ : F → R defined
by Φ((r1, r2)) = s1r1 + s2r2. Then since Φ is onto and R is projective, we get that
F = ImΨ ⊕ kerΦ = L ⊕ L′. On the other hand by the modularity law, we have
N = L ⊕ (N ∩ L′). Set ci = s1ai + s2bi (1 ≤ i ≤ n − 1). Then

∑n−1
i=1 R((ai, bi) −

ci(an, bn)) ⊆ N ∩ L′ .
To show that N =

(∑n−1
i=1 R((ai, bi) − ci(an, bn))

)
⊕ L, take (x, y) ∈ N . Then

(x, y) =
∑n

i=1 ri(ai, bi) for some ri ∈ R and so

(x, y) =
n∑

i=1

ri(ai, bi) −
n−1∑
i=1

rici(an, bn)

+
n−1∑
i=1

rici(an, bn) ∈
(

n−1∑
i=1

R((ai, bi) − ci(an, bn))

)
⊕ L

and so N =
(∑n−1

i=1 R((ai, bi) − ci(an, bn))
)
⊕ L. Therefore we get the equality

N ∩ L′ =
∑n−1

i=1 R((ai, bi) − ci(an, bn)).
Now we show that F = L + R(−s2, s1). We have that

(1, 0) = s1(an, bn) + (−bn)(−s2, s1)

(0, 1) = s2(an, bn) + an(−s2, s1)

These imply that F = L + R(−s2, s1). Then since R(−s2, s1) ⊆ L′ and by the
modularity law, it follows that L′ = R(−s2, s1) + (L ∩ L′) = R(−s2, s1). Note that
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−s2Δni = −s2(anbi − bnai) = −s2anbi + s2bnai

= −s2anbi + (1 − s1an)ai = ai − an(s1ai + s2bi)
= ai − cian,

and similarly, we get that s1Δni = bi − cibn.
Then (ai, bi)−ci(an, bn) = (ai−cian, bi−cibn) = Δni(−s2, s1) (1 ≤ i ≤ n−1).
Let I =

∑n−1
i=1 RΔni. Then N ∩ L′ = I(−s2, s1). Now since F = L ⊕ L′ and

N = L ⊕ (N ∩ L′), it follows that

F/N � L′/(N ∩ L′) = R(−s2, s1)/I(−s2, s1)

On the other hand, if r ∈ R and r(−s2, s1) = (0, 0), then rs2 = rs1 = 0 and hence r

= r1=(rs1)an+(rs2)bn =0. Thus we get that F/N �R/I =R/
∑n−1

i=1 RΔni. Thus
N is a prime submodule of F if and only if

∑n−1
i=1 RΔni is a prime ideal of R.

Corollary 2.10. Let R be a domain and a, b ∈ R such that Ra + Rb = R. Then
N = R(a, b) is a prime submodule of F.

Now we determine a primary decomposition of N when R is a domain.

Lemma 2.11. LetQ be a P -primary ideal ofR containingL and TQ = {(m1, m2) ∈
F : aim2 − bim1 ∈ Q for all i ∈ Λ}. Then TQ = F or TQ is a P -primary submodule
of F containing N.

Proof. If ai, bi ∈ Q for all i ∈ Λ, then TQ = F. Suppose that aj /∈ Q for some
j ∈ Λ. Now we prove that TQ is a P -primary submodule of F.
Let r ∈ √(TQ : F ). Then rn(0, 1) ∈ TQ for some n ∈ Z+ and so rnaj ∈ Q.

Since aj /∈ Q, we have r ∈ P . Hence
√

(TQ : F ) ⊆ P. Let r ∈ P. rn ∈ Q for some
n ∈ Z+. It follows that rn(x, y) ∈ TQ for all (x, y) ∈ F. Therefore

√
(TQ : F ) = P.

Assume that rm ∈ TQ for r ∈ R − P and m = (m1, m2) ∈ F. Then r(aim2 −
bim1) ∈ Q for all i ∈ Λ. Since r /∈ P, we get that m ∈ TQ. Thus TQ is a P -primary
submodule of F. Since L ⊆ Q we have N ⊆ TQ.

Theorem 2.12. Let R be a domain, N be a proper submodule of F with | Λ |≥ 2
and let L be a non-zero ideal of R such that L = RΔkl for some k, l ∈ Λ. Let
L = ∩n

i=1Qi be a minimal primary decomposition of L with Ass(L) = {Pi}n
i=1.

Then,

(a) ∩n
i=1TQi is a primary decomposition of N .

(b) If {aj : j ∈ Λ} ∪ {bj : j ∈ Λ} � Pi for all 1 ≤ i ≤ n, then ∩n
i=1TQi is a

minimal primary decomposition of N with Ass(N ) = {Pi}n
i=1

(c) If L has no embedded prime ideal, then ∩n
i=1TQi is a minimal primary decom-

position of N with Ass(N ) = {Pi}n
i=1.
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Proof.
(a) Since N ⊆ TQi for all i ∈ {1, .., n}, we have N ⊆ ∩n

i=1TQi. Take an element
(x, y) ∈ ∩n

i=1TQi . Then ajy − bjx ∈ Qi for all j ∈ Λ and i ∈ {1, ..., n} and
so ajy − bjx ∈ ∩n

i=1Qi = L = RΔkl. In particular, there exist t1, t2 ∈ R such
that aky − bkx = t1Δkl and aly − blx = t2Δkl. It is easily seen that (x, y) =
(ak, bk)(−t2) + (al, bl)t1 ∈ N. Hence N = ∩n

i=1TQi . Let S = {s ∈ {1, ..., n} :
ai /∈ Ps for some i ∈ Λ or bj /∈ Ps for some j ∈ Λ} and i ∈ {1, ..., n} − S.
Then N ⊆ Qi ⊕ Qi and TQi = F . Therefore, N = ∩s∈STQs ⊆ ∩i/∈S(Qi ⊕Qi).
Then we get that ∩s∈SQs ⊆ (∩s∈STQs : F ) ⊆ ∩i/∈S(Qi ⊕ Qi : F ) = ∩i/∈SQi.
It follows that ∩n

i=1,i�=jQi ⊆ Qj for every j /∈ S, a contradiction. Thus S =
{1, ..., n} and so N = ∩n

i=1TQi is a primary decomposition of N .
(b) Suppose that ∩n

i=1, i�=jTQi ⊆ TQj for some 1 ≤ j ≤ n. Take an element r ∈
∩n

i=1, i�=jQi − Qj . Then (0, r) ∈ ∩n
i=1, i�=jTQi . We can assume that at /∈ Pj for

some t ∈ Λ. Since (0, r) ∈ TQj we have (−rat) ∈ Qj and so r ∈ Qj . But this
is a contradiction. Thus ∩n

i=1, i�=jTQi � TQj for all 1 ≤ j ≤ n. So ∩n
i=1TQi is

a minimal primary decomposition of N with Ass(N ) = {Pi}n
i=1.

(c) Suppose that ∩n
i=1,i�=jTQi ⊆ TQj for some 1 ≤ j ≤ n. Then

√
(∩n

i=1,i�=j
TQi : F )

⊆
√

(TQj : F ) and so ∩n
i=1,i�=jPi ⊆ Pj. It follows that Pi ⊆ Pj for some

1 ≤ i ≤ n, i �= j. Since L has no embedded prime, we get that Pi = Pj, a
contradiction.

Note that the first condition on L in Theorem 2.12 is satisfied if N is two-generated
or N is finitely generated and R is a valuation domain.

Corollary 2.13. Let R be a domain, N be a proper submodule of F with | Λ |≥ 2
and let L be a non-zero ideal of R such that L = RΔkl for some k, l ∈ Λ. If
L has the unique prime ideal factorization P t1

1 ...P tn
n with distinct maximal ideals

Pi, (1 ≤ i ≤ n), then ∩n
i=1T

P
ti
i

is a minimal primary decomposition of N with

Ass(N ) = {Pi}n
i=1.

Proof. L = P t1
1 ∩ ... ∩ P tn

n is a minimal primary decomposition of L with
Ass(L) = {Pi}n

i=1. Suppose that there exists an i ∈ {1, ..., n} such that aj, bj ∈ P ti
i

for all j ∈ Λ. Then we get that L = P t1
1 ...P 2ti

i ...P tn
n . But this contradicts with the

unique prime ideal factorization of L. So ∩n
i=1T

P
ti
i

is a minimal primary decomposition

of L by Theorem 2.12-(b).
Finally we give two examples as applications of our results for free modules with

two generators over domains which are not principal ideal domains.

Example 2.14. Let R be the polynomial ring Z[X ] and N the submodule R(X −
2, X − 2) + R(1, X). Then L = RΔ12 = R(X − 2)(X − 1) and R(X − 2)∩ R(X −
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1) is a minimal primary decomposition of L. By applying Theorem 2.12-(b), we
get that N = TR(X−2) ∩ TR(X−1) is a minimal primary decomposition of N, where
TR(X−2) = {(f, g) ∈ F : Xf − g ∈ R(X − 2)} and TR(X−1) = {(f, g) ∈ F : f − g,

Xf − g ∈ R(X − 1)}.
Example 2.15. Let R = Z[

√−5] and N = R(1+
√−5, 3)+R(1, 1−√−5). Then

L = R3. It is well-known that R is a Dedekind domain and the unique prime ideal
factorization of L is P1P2, where P1 = R3+R(1+

√−5), P2 = R3+R(1−√−5). By
applying Corollary 2.13, we get thatN = TP1∩TP2 is a minimal primary decomposition
of N, where TP1 = {(x, y) ∈ F : y − x(1 −√−5) ∈ P1} and TP2 = R ⊕ P2.
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