ON PRIME SUBMODULES AND PRIMARY DECOMPOSITIONS IN TWO-GENERATED FREE MODULES

Seçil Çeken and Mustafa Alkan

Abstract

In this paper, we consider the free R-module $R \oplus R$, where R is an arbitrary commutative ring with identity. We give a full characterization for prime submodules of $R \oplus R$ and a useful primeness test for a finitely generated submodule of $R \oplus R$. We study the existence of primary decomposition of a submodule of $R \oplus R$ and characterize the minimal primary decomposition. As applications of our results, we give some examples of primary decompositions in $R \oplus R$.

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unitary.

Let R be a ring and M be an R-module. For any submodule N of M we set $(N: M)=\{r \in R: r M \subseteq N\}$. A proper submodule N of M is called a P prime submodule if $r m \in N$ for $r \in R$ and $m \in M$ implies that either $m \in N$ or $r \in P=(N: M)$. It is well-known that a proper submodule N of M is prime if and only if P is a prime ideal of R and M / N is torsion-free as an R / P-module.

A proper submodule Q of M is called a primary submodule provided that for any $s \in R$ and $m \in M, s m \in Q$ implies that $m \in Q$ or $s^{n} \in(Q: M)$ for some positive integer n. Let Q be a primary submodule of M, then the radical of the ideal ($Q: M$) is a prime ideal of R. If $P=\sqrt{(Q: M)}$, then Q is called a P-primary submodule of M.

A submodule N of M has a primary decomposition if $N=Q_{1} \cap \ldots \cap Q_{k}$ with each Q_{i} a P_{i}-primary submodule of M for some prime ideal P_{i}. If no Q_{i} contains $Q_{1} \cap \ldots \cap Q_{i-1} \cap Q_{i+1} \cap \ldots \cap Q_{k}$ and the ideals P_{1}, \ldots, P_{k} are all distinct, then the primary decomposition is said to be minimal and the set $\operatorname{Ass}(N)=\left\{P_{1}, \ldots, P_{k}\right\}$ is said to be the set of associated prime ideals of N.

Received April 5, 2012, accepted June 7, 2012.
Communicated by Bernd Ulrich.
2010 Mathematics Subject Classification: 13A99, 13C10, 13 C99.
Key words and phrases: Prime submodule, Primary submodule, Primary decomposition.

Let I be an ideal of R such that I has a primary decomposition. It is well-known that the minimal members of $\operatorname{Ass}(I)$ are precisely the minimal prime ideals of I. These prime ideals are called the minimal primes of I. The remaining associated primes of I, that is, the associated primes of I which are not minimal, are called the embedded primes of I.

Prime submodules and primary decompositions of submodules of a module over a commutative ring have been studied by many authors (see, [6], [7], and [11]). In [10], TIraş and Harmancı gave some characterizations of prime and primary submodules of $R \oplus R$, where R is a PID (Principal Ideal Domain). Moreover, these submodules of finitely generated free modules over a PID were studied in [3], [4], [5] and [1]. PusatYılmaz in [9] also studied prime submodules of finitely generated free modules over arbitrary commutative domains.

In this paper, we completely determine prime submodules of $R \oplus R$ for an arbitrary commutative ring R, and we generalize some known results in [10] and [9]. We also study the existence of the primary decomposition of a submodule of $R \oplus R$, and characterize the minimal primary decomposition. As applications of our results, we give some examples of primary decompositions in $R \oplus R$, where R is not a PID.

2. Prime Submodules and Primary Decompositions

In the rest of this paper we fix the following notations: Let R be a commutative ring with identity and $F=R \oplus R$. We use N to be a non-zero submodule of F generated by the set $\left\{\left(a_{i}, b_{i}\right) \in F: i \in \Lambda\right\}$ and $\mathcal{L}=\sum_{i, j \in \Lambda} R \Delta_{i j}$ where $\Delta_{i j}=a_{i} b_{j}-b_{i} a_{j}$ for $i, j \in \Lambda$.

The following Lemma can be found in [2]. But we give its proof for completeness.
Lemma 2.1. Let F and N be as above. Then $\mathcal{L} \subseteq(N: F) \subseteq \sqrt{\mathcal{L}}$.
Proof. For all $i, j \in \Lambda$, we have

$$
\begin{aligned}
& \Delta_{i j}(1,0)=\left(a_{i}, b_{i}\right) b_{j}-\left(a_{j}, b_{j}\right) b_{i} \in N \\
& \Delta_{i j}(0,1)=\left(a_{j}, b_{j}\right) a_{i}-\left(a_{i}, b_{i}\right) a_{j} \in N
\end{aligned}
$$

and so $\sum_{i, j \in \Lambda} R \Delta_{i j} \subseteq(N: F)$.
Let $x \in(N: F)$. Then there exists a finite subset Υ of Λ such that $x(1,0)=$ $\sum_{i \in \Upsilon} t_{i}\left(a_{i}, b_{i}\right)$ and $x(0,1)=\sum_{i \in \Upsilon} k_{i}\left(a_{i}, b_{i}\right)$, where $t_{i}, k_{i} \in R$ for all $i \in \Upsilon$. Then $x=\sum_{i \in \Upsilon} t_{i} a_{i}, x=\sum_{i \in \Upsilon} k_{i} b_{i}, 0=\sum_{i \in \Upsilon} t_{i} b_{i}$ and $0=\sum_{i \in \Upsilon} k_{i} a_{i}$. Thus we have

$$
\begin{aligned}
x^{2} & =\sum_{i \in \Upsilon} t_{i} k_{i} a_{i} b_{i}+\sum_{i \in \Upsilon}\left(\sum_{j \in \Upsilon, i \neq j} t_{i} a_{i} k_{j} b_{j}\right) \\
0 & =\sum_{i \in \Upsilon} t_{i} k_{i} a_{i} b_{i}+\sum_{i \in \Upsilon}\left(\sum_{j \in \Upsilon, i \neq j} t_{i} b_{i} k_{j} a_{j}\right) .
\end{aligned}
$$

Therefore, $x^{2}=\sum_{i \in \Upsilon}\left(\sum_{j \in \Upsilon, i \neq j} t_{i} k_{j} \Delta_{i j}\right) \in \sum_{i, j \in \Upsilon} R \Delta_{i j}$ and so $x \in \sqrt{\mathcal{L}}$.

Theorem 2.2. Let N be a submodule of F with $(N: F)=P$.
(a) If P is a prime ideal of R and $a_{i}, b_{i} \in P$ for all $i \in \Lambda$, then $N=P \oplus P$ and N is a prime submodule.
(b) If P is a maximal ideal of $R, a_{i} \notin P$ for some $i \in \Lambda$ and $b_{j} \notin P$ for some $j \in \Lambda$, then $N=\left(a_{i} b_{j}\right) N+P F$ and N is a prime submodule.
(c) If $\left\{a_{i}: i \in \Lambda\right\} \cup\left\{b_{i}: i \in \Lambda\right\} \nsubseteq P$ and N is a prime submodule, then $N=$ $\left\{(m, n) \in F: m b_{i}-n a_{i} \in P\right.$ for all $\left.i \in \Lambda\right\}$. In particular,
(i) If $a_{i} \in P$ for all $i \in \Lambda$ and $b_{j} \notin P$ for some $j \in \Lambda$ (resp. $b_{i} \in P$ for all $i \in \Lambda$ and $a_{j} \notin P$ for some $j \in \Lambda$) then $N=P \oplus R($ resp. $N=R \oplus P)$.
(ii) If $a_{i} \notin P$ and $b_{i} \in P$ for some $i \in \Lambda$ (resp. $b_{i} \notin P$ and $a_{i} \in P$ for some $i \in \Lambda)$ then $N=R \oplus P($ resp. $N=P \oplus R)$.

Proof.

(a) It is clear that $P F$ is a prime submodule of F contained in N. If $a_{i}, b_{i} \in P$ for all $i \in \Lambda$ then $P F=P \oplus P$ contains N.
(b) Let P be a maximal ideal of R and let $a_{i} \notin P$ for some $i \in \Lambda$ and $b_{j} \notin P$ for some $j \in \Lambda$. Then we get that $\left(a_{i} b_{j}\right) R+P=R$. Let $(x, y) \in N$. Then $x=r a_{i} b_{j}+p_{1}$ and $y=s a_{i} b_{j}+p_{2}$ for some $r, s \in R$ and $p_{1}, p_{2} \in P$. It follows that $(x, y)=a_{i} b_{j}(r, s)+\left(p_{1}, p_{2}\right)$ and then $a_{i} b_{j}(r, s) \in N$ as $\left(p_{1}, p_{2}\right) \in P F \subseteq N$. Since $(N: F)=P$ is a maximal ideal of R, N is a prime submodule of F and hence $(r, s) \in N$. Thus $(x, y) \in\left(a_{i} b_{j}\right) N+P F$ and so $N \subseteq\left(a_{i} b_{j}\right) N+P F$. The other inclusion is clear.
(c) We may assume that $a_{1} \notin P$. Consider the submodule

$$
T_{P}=\left\{(m, n) \in F: m b_{i}-n a_{i} \in P \text { for all } i \in \Lambda\right\} .
$$

By Lemma 2.1, it is clear that $N \subseteq T_{P}$. Let $(m, n) \in T_{P}$. Then there exists a $p \in P$ such that $n a_{1}=m b_{1}+p$ and so
$a_{1}(m, n)=\left(a_{1} m, a_{1} n\right)=\left(a_{1} m, b_{1} m\right)+(0, p)=m\left(a_{1}, b_{1}\right)+(0, p) \in N+P F=$ N. Since $a_{1} \notin P$, we get that $(m, n) \in N$ and so $T_{P}=N$.
(i) Let $a_{i} \in P$ for all $i \in \Lambda$ and $b_{j} \notin P$ for some $j \in \Lambda$. It is clear that $N \subseteq P \oplus R$. $N=\left\{(m, n) \in F: m b_{i}-n a_{i} \in P\right.$ for all $\left.i \in \Lambda\right\}$ by (c). Let $(x, y) \in P \oplus R$. Then $x b_{i}-y a_{i} \in P$ for all $i \in \Lambda$ and so $(x, y) \in N$. Thus $N=P \oplus R$.

By using the same argument as above it can be proved that $N=R \oplus P$ if $b_{i} \in P$ for all $i \in \Lambda$ and $a_{j} \notin P$ for some $j \in \Lambda$.
(ii) Let $a_{i} \notin P$ and $b_{i} \in P$ for some $i \in \Lambda$. Let $(x, y) \in N$. Then $x b_{i}-y a_{i} \in P$ and so $N \subseteq R \oplus P$. Since $x b_{j}-y a_{j} \in P$ for all $j \in \Lambda$, we get $x b_{j} \in P$. If $x \in P$ then $N=P \oplus P$. This is a contradiction as $\left(a_{i}, b_{i}\right) \in N-(P \oplus P)$. Therefore $b_{j} \in P$ for all $j \in \Lambda$. Now the result follows from (i).

By using the same argument as above it can be proved that $N=P \oplus R$ if $b_{i} \notin P$ and $a_{i} \in P$ for some $i \in \Lambda$.

By using Theorem 2.2, we prove the following corollary which is a generalization of [10, Proposition 2.3] with a different proof.

Corollary 2.3. Let N be a prime submodule of F. Then
(a) If $(1,0) \in N$ then $N=R \oplus(N: F)$.
(b) If $(0,1) \in N$ then $N=(N: F) \oplus R$.

Proof. (a) Let $(1,0) \in N$. It is clear that $N \neq P \oplus P$. Then $b_{i} \in P$, for all $i \in \Lambda$ by Theorem $2.2(c)$. We get that $N=R \oplus(N: F)$ by Theorem $2.2(c-i)$.

Let N be a P-prime submodule of a module M. It is said that N has P-height n for some non-negative integer n, if there exists a chain $K_{n} \subset K_{n-1} \subset \ldots \subset K_{1} \subset K_{0}=N$ of P-prime submodules K_{i} of M, but no longer such chain.

Proposition 2.4. Let N be a P-prime submodule of F. If $N \neq P \oplus P$ then the P-height of N is 1 .

Proof. \quad Since $N \neq P \oplus P$, we have that $a_{i} \notin P$ for some $i \in \Lambda$ or $b_{j} \notin P$ for some $j \in \Lambda$. By Theorem 2.2, $N=\left\{(m, n) \in F: m b_{i}-n a_{i} \in P\right.$ for all $\left.i \in \Lambda\right\}$. Let K be a P-prime submodule of F with $K \subseteq N$ and let $\left\{\left(c_{i}, d_{i}\right) \in F: i \in \Omega\right\}$ be a generating set for K. If $c_{i}, d_{i} \in P$ for all $i \in \Omega$ then $K=P \oplus P$. Suppose that $c_{k} \notin P$ for some $k \in \Omega$ or $d_{l} \notin P$ for some $l \in \Omega$. Then $K=\left\{(x, y) \in F: x d_{i}-y c_{i} \in P\right.$ for all $i \in \Omega\}$ by Theorem 2.2-(c). Since $\left(c_{i}, d_{i}\right) \in N$ for all $i \in \Omega$ we get that $c_{i} b_{j}-d_{i} a_{j} \in P$ and so $\left(a_{j}, b_{j}\right) \in K$ for all $j \in \Lambda$. Hence $K=N$.

Corollary 2.5. Let N be a P-prime submodule of F. If $(R \oplus P) \cap N \neq P F$ (resp. $(P \oplus R) \cap N \neq P F)$, then $N=R \oplus P(r e s p . P \oplus R)$.

Proof. Let N be a P-prime submodule of F. Then $(R \oplus P) \cap N$ is a P-prime submodule. By Proposition 2.4, we get that $N=(R \oplus P) \cap N$ and so $P \oplus P \subset N \subseteq$ $R \oplus P$. The P-height of $R \oplus P$ is 1 by Proposition 2.4. Thus we have $R \oplus P=N$.

Theorem 2.6. Let N be a submodule of F which doesn't contain $(1,0)$ and $(0,1)$. Let $P=(N: F)$ be a maximal ideal of R and $(a, b) \in N$ with $R a+R b \nsubseteq P$. Then $N=\{(x, y) \in F: a y-b x \in P\}$ and N is a prime submodule of F.

Proof. \quad Since $(N: F)=P$ is a maximal ideal of R, N is prime.
Assume that $a \in P$. Since $(a, 0) \in N$, we have $(0, b)=b(0,1) \in N$ and so $b \in P$. Thus $R a+R b \subseteq P$, a contradiction, and we get that $a, b \notin P$. Therefore, there exist $x_{1}, y_{1} \in R$ and $p_{1}, p_{2} \in P$ such that $a x_{1}+p_{1}=1, b y_{1}+p_{2}=1$. Let $K=\{(x, y) \in F: a y-b x \in P\}$. Clearly, K is a P-prime submodule of F.

To show the equality $N=K$, take $(c, d) \in N$. Since $(a d-b c, 0)=d(a, b)-$ $b(c, d) \in N$ and $(1,0) \notin N$, we get that $a d-b c \in P$ and so $N \subseteq K$. For the reverse inclusion, take $(c, d) \in K$. Then we get that

$$
(c, d)=\left(b y_{1} c+p_{2} c, a x_{1} d+p_{1} d\right)=\left(b y_{1} c, a x_{1} d\right)+\left(p_{2} c, p_{1} d\right)
$$

Since $\left(p_{2} c, p_{1} d\right) \in P \oplus P$, it is enough to show that $\left(b y_{1} c, a x_{1} d\right) \in N$.
Since $x_{1}(a, b) \in N$, it follows that

$$
\left(a x_{1}, b x_{1}\right)+\left(p_{1}, 0\right)=\left(1, b x_{1}\right)=\left(b y_{1}, b x_{1}\right)+\left(p_{2}, 0\right) \in N
$$

and so $b\left(y_{1}, x_{1}\right) \in N$. Then we have $\left(y_{1}, x_{1}\right) \in N$ as $b \notin P$. On the other hand, there exists $q \in P$ such that $b c=q+a d$. Then we get that

$$
\left(y_{1}(b c), a x_{1} d\right)=\left(y_{1} a d+y_{1} q, a x_{1} d\right)=a d\left(y_{1}, x_{1}\right)+\left(q y_{1}, 0\right) .
$$

Therefore, $\left(b y_{1} c, a x_{1} d\right) \in N$ and so $K=N$.
In [8], Pusat-Yılmaz and Smith defined the submodule $K(N, P)=\{m \in M$: $c m \in N+P M$ for $c \in R \backslash P\}$ for an R-module M and $N \leq M$. Then they showed that $K(N, P)=M$ or $K(N, P)$ is the smallest P-prime submodule containing N. As a consequence of Theorem 2.6, we obtain the following corollary which characterizes $K(N, P)$ and the structure of a prime submodule of F. Corollary 2.7-(2) is a generalization of [10, Theorem 2.7].

Corollary 2.7. (1) Let N be a submodule of $F, P=(N: F)$ be a prime ideal and $(a, b) \in N$ with $R a+R b \nsubseteq P$. If N_{P} doesn't contain $\left(\frac{1}{1}, \frac{0}{1}\right)$ and $\left(\frac{0}{1}, \frac{1}{1}\right)$, then $\{(x, y) \in F: a y-b x \in P\}=K(N, P)$.
(2) Let N be a submodule of F which doesn't contain $(1,0)$ and $(0,1)$. Suppose that $P=(N: F)$ is a prime ideal of R and $(a, b) \in N$ with $R a+R b \nsubseteq P$. Then N is a P-prime submodule of F if and only if $N=\{(x, y) \in F: a y-b x \in P\}$.

Proof. (1) Since $P_{P}=(N: F)_{P}=\left(N_{P}: F_{P}\right)$ is a maximal ideal of R_{P}, $N_{P}=\left\{\left(\frac{x}{s}, \frac{y}{t}\right) \in F_{P}:\right.$ say $\left.-t b x \in P\right\}$ by Theorem 2.6. Let $\varphi: F \longrightarrow F_{P}$, be the natural homomorphism. Then we have $\varphi^{-1}\left(N_{P}\right)=\left\{(x, y) \in F:\left(\frac{x}{1}, \frac{y}{1}\right) \in\right.$ $\left.N_{P}\right\}=\{(x, y) \in F: a y-b x \in P\}=\{(x, y) \in F: r(x, y) \in N$ for some $r \in R \backslash P\}=K(N, P)$.
(2) Suppose that N is a prime submodule and $\left(\frac{1}{1}, \frac{0}{1}\right) \in N_{P}$. Then $\frac{(1,0)}{1}=\frac{(x, y)}{s}$ for some $(x, y) \in N$ and $s \in R \backslash P$. We have $u(s(1,0)-(x, y))=0$ for some $u \in R \backslash P$. Since $u s(1,0) \in N$ and $(1,0) \notin N$, we get that $u s \in P$, a contradiction. Thus $\left(\frac{1}{1}, \frac{0}{1}\right) \notin$ N_{P}. Similarly $\left(\frac{0}{1}, \frac{1}{1}\right) \notin N_{P}$. By (1), $K(N, P)=\{(x, y) \in F: a y-b x \in P\}=N$ as $K(N, P)$ is the smallest P-prime submodule containing N.

Conversely, it can be easily seen that $\{(x, y) \in F: a y-b x \in P\}$ is a P-prime submodule of F.

To sum up our results about prime submodules of F, combining Corollary 2.3 and Corollary 2.7, we give the following theorem which characterizes all prime submodules of F.

Theorem 2.8. Let N be a submodule of F.
(1) Assume that N contains $(1,0)$ or $(0,1)$. Then, N is a prime submodule of F if and only if $(N: F)=P$ is a prime ideal of R and $N=R \oplus P$ or $N=P \oplus R$.
(2) Assume that N does not contain $(1,0)$ and $(0,1)$. Then N is a prime submodule of F if and only if $(N: F)=P$ is a prime ideal of R and $N=P \oplus P$ or $N=\{(x, y) \in F: a y-b x \in P\}$, where $(a, b) \in N$ with $R a+R b \nsubseteq P$.

In the following theorem, we determine whether N is a prime submodule of F or not, by using primeness of a certain ideal of R. This theorem is a generalization of [9 , Proposition 3.4] and a useful primeness test for a finitely generated submodule of F.

Theorem 2.9. Let N be an n-generated submodule of F with $R=R a_{n}+R b_{n}$. Then N is a prime submodule of F if and only if $\sum_{i=1}^{n-1} R \Delta_{n i}$ is a prime ideal of R.

Proof. By the hypothesis, there exist elements $s_{1}, s_{2} \in R$ such that $1=$ $s_{1} a_{n}+s_{2} b_{n}$. Let $L=R\left(a_{n}, b_{n}\right)$ and $L^{\prime}=\left\{(x, y) \in F: s_{1} x+s_{2} y=0\right\}$. Consider the functions $\Psi: R \rightarrow F$ defined by $\Psi(r)=r\left(a_{n}, b_{n}\right)$ and $\Phi: F \rightarrow R$ defined by $\Phi\left(\left(r_{1}, r_{2}\right)\right)=s_{1} r_{1}+s_{2} r_{2}$. Then since Φ is onto and R is projective, we get that $F=\operatorname{Im} \Psi \oplus \operatorname{ker} \Phi=L \oplus L^{\prime}$. On the other hand by the modularity law, we have $N=L \oplus\left(N \cap L^{\prime}\right)$. Set $c_{i}=s_{1} a_{i}+s_{2} b_{i}(1 \leq i \leq n-1)$. Then $\sum_{i=1}^{n-1} R\left(\left(a_{i}, b_{i}\right)-\right.$ $\left.c_{i}\left(a_{n}, b_{n}\right)\right) \subseteq N \cap L^{\prime}$.

To show that $N=\left(\sum_{i=1}^{n-1} R\left(\left(a_{i}, b_{i}\right)-c_{i}\left(a_{n}, b_{n}\right)\right)\right) \oplus L$, take $(x, y) \in N$. Then $(x, y)=\sum_{i=1}^{n} r_{i}\left(a_{i}, b_{i}\right)$ for some $r_{i} \in R$ and so

$$
\begin{aligned}
(x, y)= & \sum_{i=1}^{n} r_{i}\left(a_{i}, b_{i}\right)-\sum_{i=1}^{n-1} r_{i} c_{i}\left(a_{n}, b_{n}\right) \\
& +\sum_{i=1}^{n-1} r_{i} c_{i}\left(a_{n}, b_{n}\right) \in\left(\sum_{i=1}^{n-1} R\left(\left(a_{i}, b_{i}\right)-c_{i}\left(a_{n}, b_{n}\right)\right)\right) \oplus L
\end{aligned}
$$

and so $N=\left(\sum_{i=1}^{n-1} R\left(\left(a_{i}, b_{i}\right)-c_{i}\left(a_{n}, b_{n}\right)\right)\right) \oplus L$. Therefore we get the equality $N \cap L^{\prime}=\sum_{i=1}^{n-1} R\left(\left(a_{i}, b_{i}\right)-c_{i}\left(a_{n}, b_{n}\right)\right)$.

Now we show that $F=L+R\left(-s_{2}, s_{1}\right)$. We have that

$$
\begin{aligned}
& (1,0)=s_{1}\left(a_{n}, b_{n}\right)+\left(-b_{n}\right)\left(-s_{2}, s_{1}\right) \\
& (0,1)=s_{2}\left(a_{n}, b_{n}\right)+a_{n}\left(-s_{2}, s_{1}\right)
\end{aligned}
$$

These imply that $F=L+R\left(-s_{2}, s_{1}\right)$. Then since $R\left(-s_{2}, s_{1}\right) \subseteq L^{\prime}$ and by the modularity law, it follows that $L^{\prime}=R\left(-s_{2}, s_{1}\right)+\left(L \cap L^{\prime}\right)=R\left(-s_{2}, s_{1}\right)$. Note that

$$
\begin{aligned}
-s_{2} \Delta_{n i} & =-s_{2}\left(a_{n} b_{i}-b_{n} a_{i}\right)=-s_{2} a_{n} b_{i}+s_{2} b_{n} a_{i} \\
& =-s_{2} a_{n} b_{i}+\left(1-s_{1} a_{n}\right) a_{i}=a_{i}-a_{n}\left(s_{1} a_{i}+s_{2} b_{i}\right) \\
& =a_{i}-c_{i} a_{n}
\end{aligned}
$$

and similarly, we get that $s_{1} \Delta_{n i}=b_{i}-c_{i} b_{n}$.
Then $\left(a_{i}, b_{i}\right)-c_{i}\left(a_{n}, b_{n}\right)=\left(a_{i}-c_{i} a_{n}, b_{i}-c_{i} b_{n}\right)=\Delta_{n i}\left(-s_{2}, s_{1}\right)(1 \leq i \leq n-1)$.
Let $I=\sum_{i=1}^{n-1} R \Delta_{n i}$. Then $N \cap L^{\prime}=I\left(-s_{2}, s_{1}\right)$. Now since $F=L \oplus L^{\prime}$ and $N=L \oplus\left(N \cap L^{\prime}\right)$, it follows that

$$
F / N \simeq L^{\prime} /\left(N \cap L^{\prime}\right)=R\left(-s_{2}, s_{1}\right) / I\left(-s_{2}, s_{1}\right)
$$

On the other hand, if $r \in R$ and $r\left(-s_{2}, s_{1}\right)=(0,0)$, then $r s_{2}=r s_{1}=0$ and hence r $=r 1=\left(r s_{1}\right) a_{n}+\left(r s_{2}\right) b_{n}=0$. Thus we get that $F / N \simeq R / I=R / \sum_{i=1}^{n-1} R \Delta_{n i}$. Thus N is a prime submodule of F if and only if $\sum_{i=1}^{n-1} R \Delta_{n i}$ is a prime ideal of R.

Corollary 2.10. Let R be a domain and $a, b \in R$ such that $R a+R b=R$. Then $N=R(a, b)$ is a prime submodule of F.

Now we determine a primary decomposition of N when R is a domain.
Lemma 2.11. Let Q be a P-primary ideal of R containing \mathcal{L} and $T_{Q}=\left\{\left(m_{1}, m_{2}\right) \in\right.$ $F: a_{i} m_{2}-b_{i} m_{1} \in Q$ for all $\left.i \in \Lambda\right\}$. Then $T_{Q}=F$ or T_{Q} is a P-primary submodule of F containing N.

Proof. If $a_{i}, b_{i} \in Q$ for all $i \in \Lambda$, then $T_{Q}=F$. Suppose that $a_{j} \notin Q$ for some $j \in \Lambda$. Now we prove that T_{Q} is a P-primary submodule of F.

Let $r \in \sqrt{\left(T_{Q}: F\right)}$. Then $r^{n}(0,1) \in T_{Q}$ for some $n \in \mathbb{Z}^{+}$and so $r^{n} a_{j} \in Q$. Since $a_{j} \notin Q$, we have $r \in P$. Hence $\sqrt{\left(T_{Q}: F\right)} \subseteq P$. Let $r \in P . r^{n} \in Q$ for some $n \in \mathbb{Z}^{+}$. It follows that $r^{n}(x, y) \in T_{Q}$ for all $(x, y) \in F$. Therefore $\sqrt{\left(T_{Q}: F\right)}=P$.

Assume that $r m \in T_{Q}$ for $r \in R-P$ and $m=\left(m_{1}, m_{2}\right) \in F$. Then $r\left(a_{i} m_{2}-\right.$ $\left.b_{i} m_{1}\right) \in Q$ for all $i \in \Lambda$. Since $r \notin P$, we get that $m \in T_{Q}$. Thus T_{Q} is a P-primary submodule of F. Since $\mathcal{L} \subseteq \mathcal{Q}$ we have $N \subseteq T_{Q}$.

Theorem 2.12. Let R be a domain, N be a proper submodule of F with $|\Lambda| \geq 2$ and let \mathcal{L} be a non-zero ideal of R such that $\mathcal{L}=R \Delta_{k l}$ for some $k, l \in \Lambda$. Let $\mathcal{L}=\cap_{i=1}^{n} Q_{i}$ be a minimal primary decomposition of \mathcal{L} with $\operatorname{Ass}(\mathcal{L})=\left\{P_{i}\right\}_{i=1}^{n}$. Then,
(a) $\cap_{i=1}^{n} T_{Q_{i}}$ is a primary decomposition of N.
(b) If $\left\{a_{j}: j \in \Lambda\right\} \cup\left\{b_{j}: j \in \Lambda\right\} \nsubseteq P_{i}$ for all $1 \leq i \leq n$, then $\cap_{i=1}^{n} T_{Q_{i}}$ is a minimal primary decomposition of N with Ass $(N)=\left\{P_{i}\right\}_{i=1}^{n}$
(c) If \mathcal{L} has no embedded prime ideal, then $\cap_{i=1}^{n} T_{Q_{i}}$ is a minimal primary decomposition of N with $\operatorname{Ass}(N)=\left\{P_{i}\right\}_{i=1}^{n}$.

Proof.

(a) Since $N \subseteq T_{Q_{i}}$ for all $i \in\{1, . ., n\}$, we have $N \subseteq \cap_{i=1}^{n} T_{Q_{i}}$. Take an element $(x, y) \in \cap_{i=1}^{n} T_{Q_{i}}$. Then $a_{j} y-b_{j} x \in Q_{i}$ for all $j \in \Lambda$ and $i \in\{1, \ldots, n\}$ and so $a_{j} y-b_{j} x \in \cap_{i=1}^{n} Q_{i}=\mathcal{L}=R \Delta_{k l}$. In particular, there exist $t_{1}, t_{2} \in R$ such that $a_{k} y-b_{k} x=t_{1} \Delta_{k l}$ and $a_{l} y-b_{l} x=t_{2} \Delta_{k l}$. It is easily seen that $(x, y)=$ $\left(a_{k}, b_{k}\right)\left(-t_{2}\right)+\left(a_{l}, b_{l}\right) t_{1} \in N$. Hence $N=\cap_{i=1}^{n} T_{Q_{i}}$. Let $S=\{s \in\{1, \ldots, n\}$: $a_{i} \notin P_{s}$ for some $i \in \Lambda$ or $b_{j} \notin P_{s}$ for some $\left.j \in \Lambda\right\}$ and $i \in\{1, \ldots, n\}-S$. Then $N \subseteq Q_{i} \oplus Q_{i}$ and $T_{Q_{i}}=F$. Therefore, $N=\cap_{s \in S} T_{Q_{s}} \subseteq \cap_{i \notin S}\left(Q_{i} \oplus Q_{i}\right)$. Then we get that $\cap_{s \in S} Q_{s} \subseteq\left(\cap_{s \in S} T_{Q_{s}}: F\right) \subseteq \cap_{i \notin S}\left(Q_{i} \oplus Q_{i}: F\right)=\cap_{i \notin S} Q_{i}$. It follows that $\cap_{i=1, i \neq j}^{n} Q_{i} \subseteq Q_{j}$ for every $j \notin S$, a contradiction. Thus $S=$ $\{1, \ldots, n\}$ and so $N=\cap_{i=1}^{n} T_{Q_{i}}$ is a primary decomposition of N.
(b) Suppose that $\cap_{i=1, i \neq j}^{n} T_{Q_{i}} \subseteq T_{Q_{j}}$ for some $1 \leq j \leq n$. Take an element $r \in$ $\cap_{i=1, i \neq j}^{n} Q_{i}-Q_{j}$. Then $(0, r) \in \cap_{i=1, i \neq j}^{n} T_{Q_{i}}$. We can assume that $a_{t} \notin P_{j}$ for some $t \in \Lambda$. Since $(0, r) \in T_{Q_{j}}$ we have $\left(-r a_{t}\right) \in Q_{j}$ and so $r \in Q_{j}$. But this is a contradiction. Thus $\cap_{i=1, i \neq j}^{n} T_{Q_{i}} \nsubseteq T_{Q_{j}}$ for all $1 \leq j \leq n$. So $\cap_{i=1}^{n} T_{Q_{i}}$ is a minimal primary decomposition of N with $\operatorname{Ass}(N)=\left\{P_{i}\right\}_{i=1}^{n}$.
(c) Suppose that $\cap_{i=1, i \neq j}^{n} T_{Q_{i}} \subseteq T_{Q_{j}}$ for some $1 \leq j \leq n$. Then $\sqrt{\left(\cap_{i=1, i \neq j}^{n} T_{Q_{i}}: F\right)}$ $\subseteq \sqrt{\left(T_{Q_{j}}: F\right)}$ and so $\cap_{i=1, i \neq j}^{n} P_{i} \subseteq P_{j}$. It follows that $P_{i} \subseteq P_{j}$ for some $1 \leq i \leq n, i \neq j$. Since \mathcal{L} has no embedded prime, we get that $P_{i}=P_{j}$, a contradiction.

Note that the first condition on \mathcal{L} in Theorem 2.12 is satisfied if N is two-generated or N is finitely generated and R is a valuation domain.

Corollary 2.13. Let R be a domain, N be a proper submodule of F with $|\Lambda| \geq 2$ and let \mathcal{L} be a non-zero ideal of R such that $\mathcal{L}=R \Delta_{k l}$ for some $k, l \in \Lambda$. If \mathcal{L} has the unique prime ideal factorization $P_{1}^{t_{1}} \ldots P_{n}^{t_{n}}$ with distinct maximal ideals $P_{i},(1 \leq i \leq n)$, then $\cap_{i=1}^{n} T_{P_{i}^{t_{i}}}$ is a minimal primary decomposition of N with $\operatorname{Ass}(N)=\left\{P_{i}\right\}_{i=1}^{n}$.

Proof. $\quad \mathcal{L}=P_{1}^{t_{1}} \cap \ldots \cap P_{n}^{t_{n}}$ is a minimal primary decomposition of \mathcal{L} with $\operatorname{Ass}(\mathcal{L})=\left\{P_{i}\right\}_{i=1}^{n}$. Suppose that there exists an $i \in\{1, \ldots, n\}$ such that $a_{j}, b_{j} \in P_{i}^{t_{i}}$ for all $j \in \Lambda$. Then we get that $\mathcal{L}=P_{1}^{t_{1}} \ldots P_{i}^{2 t_{i}} \ldots P_{n}^{t_{n}}$. But this contradicts with the unique prime ideal factorization of \mathcal{L}. So $\cap_{i=1}^{n} T_{P_{i}^{t i}}$ is a minimal primary decomposition of \mathcal{L} by Theorem 2.12-(b).

Finally we give two examples as applications of our results for free modules with two generators over domains which are not principal ideal domains.

Example 2.14. Let R be the polynomial ring $\mathbb{Z}[X]$ and N the submodule $R(X-$ $2, X-2)+R(1, X)$. Then $\mathcal{L}=R \Delta_{12}=R(X-2)(X-1)$ and $R(X-2) \cap R(X-$

1) is a minimal primary decomposition of \mathcal{L}. By applying Theorem 2.12-(b), we get that $N=T_{R(X-2)} \cap T_{R(X-1)}$ is a minimal primary decomposition of N, where $T_{R(X-2)}=\{(f, g) \in F: X f-g \in R(X-2)\}$ and $T_{R(X-1)}=\{(f, g) \in F: f-g$, $X f-g \in R(X-1)\}$.

Example 2.15. Let $R=\mathbb{Z}[\sqrt{-5}]$ and $N=R(1+\sqrt{-5}, 3)+R(1,1-\sqrt{-5})$. Then $\mathcal{L}=R 3$. It is well-known that R is a Dedekind domain and the unique prime ideal factorization of \mathcal{L} is $P_{1} P_{2}$, where $P_{1}=R 3+R(1+\sqrt{-5}), P_{2}=R 3+R(1-\sqrt{-5})$. By applying Corollary 2.13, we get that $N=T_{P_{1}} \cap T_{P_{2}}$ is a minimal primary decomposition of N, where $T_{P_{1}}=\left\{(x, y) \in F: y-x(1-\sqrt{-5}) \in P_{1}\right\}$ and $T_{P_{2}}=R \oplus P_{2}$.

Acknowledgment

The first author thanks the Scientific Technological Research Council of Turkey (TUBITAK) for the financial support.

The authors were supported by the Scientific Research Project Administration of Akdeniz University.

References

1. M. Alkan and B. Saraç, On Primary Decompositions and Radicals of Submodules, Proc. Jangjeon Math. Soc., 10(1) (2007), 71-81.
2. S. Çeken and M. Alkan, On Radical Formula over Free Modules with Two Generators, Book Series: AIP Conference Proceedings, Vol. 1389-1, 2011, pp. 333-336.
3. S. Hedayat and R. Nekooei, Characterization of Prime Submodules of a Finitely Generated Free Module Over a PID, Houston J. Math., 31(1) (2005), 75-85.
4. S. Hedayat and R. Nekooei, Prime and Radical Submodules of Free Modules Over a PID, Houston J. Math., 32(2) (2006), 355-367.
5. S. Hedayat and R. Nekooei, Primary Decomposition of Submodules of a Finitely Generated Module Over a PID, Houston J. Math., 32(2) (2006), 369-377.
6. C. P. Lu, Prime Submodules of Modules, Comment. Math. Univ. Sancti Paulli, 33(1) (1984), 61-69.
7. R. L. McCasland and M. E. Moore, Prime Submodules, Comm. Algebra, 20(6) (1992), 1803-1817.
8. D. Pusat-Yılmaz and P. F. Smith, Radicals of Submodules of Free Modules, Comm. in Alg., 27(5) (1999), 2253-2266.
9. D. Pusat-Yılmaz, On Prime Submodules of Finitely Generated Free Modules, Turk. J. Math., 27 (2003), 329-342.
10. Y. Tiraş and A. Harmancl, On Prime Submodules and Primary Decomposition, Czech. Math. J., 50(125) (2000), 83-90.
11. Y. Tıraş, A. Harmancl and P. F. Smith, A Characterization of Prime Submodules, J. Algebra, 212(2) (1999), 743-752.

Seçil Çeken and Mustafa Alkan
Akdeniz University
Department of Mathematics
Antalya, Turkey
E-mail: secilceken@akdeniz.edu.tr alkan@akdeniz.edu.tr

