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LITTLEWOOD-PALEY CHARACTERIZATION OF WEIGHTED
ANISOTROPIC HARDY SPACES

Guorong Hu

Abstract. We obtain the weighted anisotropic Hardy space estimate for anisotropic
singular integrals of convolution type, and apply it to derive Littlewood-Paley
characterization of weighted anisotropic Hardy spaces.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The real-variable theory of Hardy spaces Hp(Rn) was developed by Fefferman
and Stein [13] in the early 1970’s. Since then these classes of function spaces play
an important role in harmonic analysis, naturally continuing the scale of Lp spaces to
the range p ≤ 1. For example, when 0 < p ≤ 1, Riesz transforms on Rn are not
bounded on Lp(Rn), however, they are bounded on Hardy spaces Hp(Rn). On the
other hand, a local version of real Hardy spaces more suited to problems associated
with partial differential equations, was introduced by Goldberg [17]. Indeed, quite a
few results concerning Lp-boundedness (1 < p < ∞) of pseudodifferential operators
were generalized to hp-boundedness (0 < p ≤ 1); see, for example, [21] and [22].
Extensions of classical real Hardy spaces were carried out in several directions. In

particular, Garcia-Cuerva [15] and Strömberg and Torchinsky [26] studied weighted
Hardy spaces associated with Muckenhoupt A∞ weights. Another possible direction
is to extend the classical real Hardy spaces to nonisotropic settings. This direction of
study was initiated by Calderón and Torchinsky [10, 11], who studied parabolic Hardy
spaces. Bownik et al. [2, 6, 7] developed a more general theory of anisotropic Hardy
spaces (and their weighted counterparts) associated with expansive dilations. Recently,
anisotropic local Hardy spaces were studied by Betancor and Damián [1].
The first aim of this paper is to obtain the weighted anisotropic Hardy space estimate

for anisotropic singular integrals of convolution type. Suppose A is an expansive
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dilation, i.e., n× n real matrix all of whose eigenvalues λ satisfy |λ| > 1. Let λ−, λ+

be two positive numbers such that

1 < λ− < min{|λ|, λ ∈ σ(A)|} ≤ max{|λ|, λ ∈ σ(A)|} < λ+,

where σ(A) denotes the set of eigenvalues of A. Set ζ− := ln(λ−)/ ln | detA|
and ζ+ := ln(λ+)/ ln | detA|. If ψ ∈ S(Rn) with

∫
Rn ψ(x)dx �= 0, we define its

anisotropic dilation by

ψk(x) = | detA|kψ(Akx), k ∈ Z.

Then the nontangential maximal function (resp. local nontangential maximal function)
of f ∈ S ′(Rn), with respect to ψ, is given by

Mψf(x) = sup
k∈Z

sup
y∈x+B−k

|f ∗ ψk(y)|

(resp. M loc
ψ f(x) = supk∈N∪{0} supy∈x+B−k

|f ∗ψk(y)|), where Bk , k ∈ Z, is a family
of dilated balls defined in Section 2. Let 0 < p <∞ and let w ∈ A∞(A), that is, the
class of Muckenhoupt weights associated with A (see Definition 2.2 below). We define
the weighted anisotropic Hardy space Hp

w(Rn;A) (resp. weighted anisotropic local
Hardy space hpw(Rn;A)) as the collection of those tempered distributions f ∈ S ′(Rn)
for which Mψf ∈ Lpw(Rn) (resp. M loc

ψ f ∈ Lpw(Rn)) with the (quasi-)norm

‖f‖Hp
w(Rn;A) := ‖Mψf‖Lp

w(Rn)

(resp. ‖f‖hp
w(Rn;A) := ‖M loc

ψ f‖Lp
w(Rn)). Here, for 0 < p < ∞, Lpw(Rn) denotes the

space of Lebesgue measurable functions f satisfying

‖f‖Lp
w(Rn) :=

(∫
Rn

|f(x)|pw(x)dx
)1/p

<∞.

We shall show that (see Proposition 2.2 and 2.3 below) this definition of Hp
w(Rn;A)

(resp. hpw(Rn;A)) is independent of the choice of ψ and is equivalent to the radial and
grand maximal function formulation.
Let ρA be the step homogeneous quasi-norm associated with A defined by (2.3)

below. We define the anisotropic singular integrals of convolution type as follows.

Definition 1.1. Let m be a positive integer. An anisotropic kernel of order m is
a distribution K ∈ S ′(Rn) which coincides with a Cm function away from the origin
and satisfies the following conditions:
(i) There exists a constant C > 0 such that for all � ∈ Z, all x ∈ R

n\{0} with
ρA(x) = | detA|�, and for all multi-indices α with |α| ≤ m,

|∂α[K(A�·)](A−�x)| ≤ C[ρA(x)]−1;(1.1)
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(ii) There exists a constant C > 0 such that ‖f ∗K‖L2(Rn) ≤ C‖f‖L2(Rn) for all
f ∈ S(Rn).
The convolution operator T with anisotropic kernel of orderm is called anisotropic

singular integral operator of order m.

In the unweighted isotropic setting, i.e., A = 2In and w ≡ 1, the Hp-boundedness
of singular integrals of convolution type was first obtained by C. Fefferman and Stein
(see [13, Theorem 12]). In the weighted isotropic setting, when w ∈ A1, Lee et al.
[19, 20] applied the weighted molecular theory and atomic decomposition to obtain the
H
p
w(Rn)-boundedness of a class of convolution singular integrals. This was recently

extended to the case w ∈ A∞ by Ding et al. [12], who achieved their goal by
applying the discrete version of Calderón’s identity and Littlewood-Paley-Stein theory.
In the unweighted anisotropic setting, Bownik obtained the Hp

A(Rn)-boundedness of
a class of anisotropic singular integrals of nonconvolution type by using molecular
characterization of (unweighted) anisotropic Hardy spaces (see [2, Theorem 9.8]). The
first main result of the present paper, which concerns the Hp

w(Rn;A)-boundedness of
anisotropic singular integrals of convolution type, is stated as follows.

Theorem 1.1. Suppose A is an expansive dilation, w ∈ A∞(A), m is a positive
integer, and T is an anisotropic singular integral operator of order m. Then T is
bounded on Hp

w(Rn;A), for p ∈ ( qw
1+mζ− , 1]. Here, qw is defined in Section 2.

Theorem 1.1 is proved in Section 3, by using atomic decomposition and radial max-
imal function characterization of Hp

w(Rn;A). Note that the classical Riesz transforms
Rj, j = 1, · · · , n, satisfy the conditions in Definition 1.1 with A = 2In for all m ∈ N.
Hence it follows from Theorem 1.1 that R′

js are bounded on H
p
w(Rn), for 0 < p ≤ 1

and w ∈ A∞. This has already been obtained by Lee et al. [19, 20] and Ding et al.
[12], whose methods seem more complicated than that used in the present paper.
The second aim of this paper is to obtain the Littlewood-Paley characterization of

weighted anisotropic Hardy spaces, that is, to demonstrate that weighted anisotropic
Hardy spaces fit into the scales of weighted anisotropic Triebel-Lizorkin spaces studied
by Bownik et. al. [5, 3, 4]. Let ϕ be a Schwartz function such that supp ϕ̂ (whereˆ
denotes the Fourier transform) is compact and does not contain the origin, and that∑

j∈Z

ϕ̂((A∗)−jξ) = 1 for all ξ ∈ R
n\{0},(1.2)

where A∗ is the transpose of A. Let Φ ∈ S(Rn) be given by

Φ̂(ξ) =

⎧⎪⎪⎨⎪⎪⎩
0∑

j=−∞
ϕ̂((A∗)−jξ), ξ ∈ Rn\{0},

1, ξ = 0.

(1.3)
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Given a smoothness parameter α ∈ R, an integrability exponent 0 < p < ∞, and a
summability exponent 0 < q ≤ ∞, the weighted anisotropic homogeneous Triebel-
Lizorkin norm is defined by (see [4, p. 132])

‖f‖Ḟα,q
p (Rn,A,wdx) :=

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

(| detA|jα|f ∗ ϕj|)q
⎞⎠1/q

∥∥∥∥∥∥∥
Lp

w(Rn)

,

and the weighted anisotropic inhomogeneous Triebel-Lizorkin norm is defined by

‖f‖Fα,q
p (Rn,A,wdx) := ‖f ∗ Φ‖Lp

w(Rn) +

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=1

(| detA|jα|f ∗ ϕj|)q
⎞⎠1/q

∥∥∥∥∥∥∥
Lp

w(Rn)

,

where ϕj(x) := | detA|jϕ(Ajx). It was proved in [5, 3] that the spaces Ḟα,qp (Rn, A,

wdx) and Fα,qp (Rn, A, wdx) are independent of ϕ.
In the unweighted isotropic setting, i.e., A = 2In and w ≡ 1, it is well-known

that Hp(Rn) = Ḟ 0,2
p (Rn) (modulo polynomials) (resp. hp(Rn) = F 0,2

p (Rn)) with
equivalent norms; see Peetre [23] (resp. Triebel [27]). Bui [9] obtained such results
in weighted isotropic setting. In the unweighted anisotropic setting, i.e., when A is an
expansive dilation and w ≡ 1, Bownik in [3] identified Hp(Rn;A) with Ḟ 0,2

p (Rn;A)
by applying wavelet characterizations (see [3, Theorem 7.1]). In the present paper, we
obtain the Littlewood-Paley characterization of weighted anisotropic Hardy spaces and
weighted anisotropic local Hardy spaces.

Theorem 1.2. Let A be an expansive dilation, w ∈ A∞(A) and 0 < p ≤ 1.
(i) If f ∈ Hp

w(Rn;A), then f ∈ Ḟ 0,2
p (Rn, A, wdx), and there exists a positive

constant C, which is independent of f , such that

‖f‖
Ḟ

0,2
p (Rn,A,wdx)

≤ C‖f‖Hp
w(Rn;A).

Conversely, if f ∈ S ′(Rn) is in Ḟ 0,2
p (Rn, A, wdx), then there exists a polynomial P

such that f −P ∈ Hp
w(Rn;A); moreover, there exists a positive constant C′, which is

independent of f , such that

‖f − P‖Hp
w(Rn;A) ≤ C′‖f‖

Ḟ
0,2
p (Rn,A,wdx)

.

(ii) There exist positive constants C and C′ such that

C‖f‖hp
w(Rn;A) ≤ ‖f‖

F
0,2
p (Rn,A,wdx)

≤ C′‖f‖hp
w(Rn;A)

for all f ∈ S ′(Rn).
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Theorem 1.2 is proved in Section 4. We conclude this introduction by making
some notation conventions. Throughout this paper, the letter C denotes a positive
constant which is independent of the main parameters involved but whose value may
differ from line to line. The notation a � b or b � a for some variable quantities a
and b means that a ≤ Cb for some constant C > 0; a ∼ b stands for a � b � a.
Denote by N the set {1, 2, · · ·}. The meaning of | · | depends on context: |x| is the
Euclidean norm for x ∈ Rn, |α| is the �1-norm for a multi-index α = (α1, · · · , αn),
while |E| is the Lebesgue measure for a measurable set E ⊂ R

n. Finally, we denote
‖A‖ := sup{|Ax| : x ∈ Rn with |x| = 1} for any n× n real matrix A.

2. PRELIMINARIES AND NOTATIONS

Definition 2.1. A real n × n matrix A is said to be an expansive dilation, if
minλ∈σ(A) |λ| > 1, where σ(A) is the set of eigenvalues of A. A homogeneous quasi-
norm associated with an expansive dilationA is a measurable function ρ : Rn → [0,∞)
satisfying that
(i) ρ(x) > 0 if and only if x �= 0;
(ii) ρ(Ax) = |detA|ρ(x) for all x ∈ R

n;
(iii) ρ(x+y)≤H(ρ(x)+ρ(y)) for x, y∈R

n, where H is a constant no less than 1.

We follow the notations in Bownik’s monograph [2] (see also [3-7]). For a given
expansive dilation A, there exists an ellipsoid Δ and r > 1 such that Δ ⊂ rΔ ⊂ AΔ
and |Δ| = 1. Then, we can define a family of dilated balls around the origin Bk :=
AkΔ, k ∈ Z, that satisfy Bk ⊂ rBk ⊂ Bk+1. Let ω be the smallest integer such that
2B0 ⊂ AωB0 = Bω. Obviously ω ≥ 1. For any set E ⊂ R

n, let Ec := R
n\E . Then

for all k, � ∈ Z we have

Bk +B� ⊂ Bmax{k,�}+ω ,(2.1)

Bk + (Bk+ω)c ⊂ (Bk)c.(2.2)

It is known that any two homogeneous quasi-norms associated withA are equivalent
(cf. [2, Lemma 2.4]). Throughout this paper, for convenience we always use the step
homogeneous quasi-norm ρA defined by

(2.3) ρA(x) =
{ | detA|j, if x ∈ Bj+1\Bj,

0, if x = 0.

Using (2.1) and (2.2), it is straightforward to verify that ρA satisfies a triangle inequality
up to a constant and the homogeneity condition ρA(Ax) = | detA|ρA(x), x ∈ Rn.
We shall also consider a family of dilated balls {B∗

k : k ∈ Z} and the step homo-
geneous quasi-norm ρA∗ associated with A∗, the transpose of A.



680 Guorong Hu

Let λ−, λ+, ζ− and ζ+ be defined as in the introduction. We will frequently use
the following inequalities established in [2, Section 2]: There exists a positive constant
C such that

C−1[ρA(x)]ζ− ≤ |x| ≤ C[ρA(x)]ζ+ for all ρA(x) ≥ 1,(2.4)

C−1[ρA(x)]ζ+ ≤ |x| ≤ C[ρA(x)]ζ− for all ρA(x) < 1,(2.5)

C−1(λ−)j|x| ≤ |Ajx| ≤ C(λ+)j|x| for all j ≥ 0, and(2.6)

C−1(λ+)j|x| ≤ |Ajx| ≤ C(λ−)j|x| for all j < 0.(2.7)

Let us now recall from [5] and [6] the notion of the class of Muckenhoupt weights
associated with an expansive dilation A.

Definition 2.2. Let A be an expansive dilation and 1 ≤ p <∞. A nonnegative lo-
cally integrable function w belongs to the Muckenhoupt weight class Ap(A) associated
with A, say w ∈ Ap(A), if there exists a positive constant C so that

sup
x∈Rn

sup
k∈Z

(
1

|Bk|
∫
x+Bk

w(y)dy
)(

1
|Bk|

∫
x+Bk

w(y)−
1

p−1dy

)p−1

≤C, if 1<p<∞,

and

sup
x∈Rn

sup
k∈Z

(
1

|Bk|
∫
x+Bk

w(y)dy
)(

esssup
y∈x+Bk

1
w(y)

)
≤ C, if p = 1.

We say that w ∈ A∞(A) if w ∈ Ap(A) for some p ∈ [1,∞).

If w ∈ A∞(A), we write qw := inf{p ∈ [1,∞) : w ∈ Ap(A)} to denote the critical
index of w, and we write w(E) =

∫
E w(x)dx for any measurable set E ⊂ Rn.

For a locally integrable function f , the Hardy-Littlewood maximal function M(f)
is defined by

M(f)(x) := sup
k∈Z

sup
y∈x+Bk

1
|Bk|

∫
y+Bk

|f(z)|dz, x ∈ R
n.

Proposition 2.1. (see [6, Proposition 2.6]). (i) Let p ∈ [1,∞) and w ∈ Ap(A).
Then there exists a positive constant C such that for all x ∈ R

n and k,m ∈ Z with
k ≤ m,

C−1| detA|(m−k)/p ≤ w(x+Bm)
w(x+Bk)

≤ C| detA|(m−k)p.

(ii) Let p ∈ (1,∞). Then the Hardy-Littlewood operatorM is bounded on Lpw(Rn)
if and only if w ∈ Ap(A).
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We introduce the radial maximal function and local radial maximal function (cf.
[2] and [1]): If f ∈ S ′(Rn) and ψ ∈ S(Rn) with

∫
Rn ψ(x)dx �= 0, define

M0
ψf(x) = sup

k∈Z

|f ∗ ψk(x)| and M0,loc
ϕ f(x) = sup

k∈N∪{0}
|f ∗ ψk(x)|.

For N ∈ N ∪ {0}, we define the grand maximal function and local grand maximal
function of f ∈ S ′ by

MNf(x) = sup
ψ∈SN (Rn)

Mψf(x) and M loc
N f(x) = sup

ψ∈SN (Rn)
M loc
ψ f(x)

respectively, where

SN(Rn) =

{
ψ ∈ S(Rn) : ‖ψ‖SN(Rn) = sup

x∈Rn
sup

|α|≤N
|∂αψ(x)| [1 + ρA(x)]N ≤ 1

}
.

In the introduction we definedHp
w(Rn;A) via nontangential maximal function. The

following proposition, which is a weighted analogue of [2, Theorem 7.1], states that
this previous definition of Hp

w(Rn;A) is independent of ψ and is equivalent to the
radial and grand maximal formulation.

Proposition 2.2. Suppose thatA is an expansive dilation,w ∈ A∞(A), 0 < p <∞
and ψ ∈ S(Rn) such that

∫
Rn ψ(x)dx �= 0. Then for any f ∈ S ′(Rn) the following

are equivalent:
(i) M0

ψf ∈ Lpw(Rn) ;
(ii) Mψf ∈ Lpw(Rn);
(iii) MNf ∈ Lpw(Rn) for sufficiently large N .
Moreover, if N is sufficiently large, then ‖M0

ψf‖Lp
w(Rn) ∼ ‖Mψf‖Lp

w(Rn) ∼
‖MNf‖Lp

w(Rn).

Proof. The proof is similar to that given for the case w ≡ 1 in [2, Theorem 7.1],
so that we only sketch necessary modifications. If F : R

n×Z → [0,∞) is an arbitrary
(possibly nonmeasurable) function, we define, for � ∈ Z and K ∈ Z, the (truncated)
maximal type function of F with aperture � as

F ∗K
� (x) := sup

k∈Z,k≥K
sup

y∈x+B−k+�

F (y, k).

LetMω be the Hardy-Littlewood maximal operator with respect to the measurew(x)dx;
that is,

Mwf(x) = sup
k∈Z

sup
y∈x+Bk

1
w(y + Bk)

∫
y+Bk

|f(z)|w(z)dz, x ∈ R
n.
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Then we note that, instead of (7.6) in [2], we have∫
Rn

F ∗K
� (x)w(x)dx � | detA|q(�−�′)

∫
Rn

F ∗K
�′ (x)w(x)dx,(2.8)

for all � ≥ �′ ∈ Z, q > qw , K ∈ Z and all functions F : R
n × Z → [0,∞). To see

(2.8), we let q ∈ (qw,∞) and Ω = {x : F ∗K
�′ (x) > λ}. Suppose F ∗K

� (x) > λ for
some x ∈ R

n. Then there exists k ≥ K and y ∈ x + B−k+� such that F (y, k) > λ.
Clearly y+B−k+�′ ⊂ Ω. By (2.1), we also have y+B−k+�′ ⊂ x+B−k+� +B−k+�′ ⊂
x+ B−k+�+ω . Hence y + B−k+�′ ⊂ Ω ∩ (x+B−k+�+ω ). From this, Proposition 2.1
(i), and (2.1), it follows that

Mw(1Ω)(x) ≥ 1
w(x+ B−k+�+ω)

∫
Ω∩(x+B−k+�+ω)

w(x)dx ≥ w(y + B−k+�′ )
w(x+ B−k+�+ω )

≥ w(y + B−k+�′ )
w(y + B−k+� +B−k+�+ω )

≥ w(y + B−k+�′ )
w(y +B−k+�+2ω)

� | detA|−q(�−�′+2ω) � | detA|−q(�−�′).

Therefore, we have seen that
{
x : F ∗K

� (x)>λ
}⊂{x :Mw(1Ω)(x)≥C| detA|−q(�−�′)

}
.

Since (Rn, ρA, wdx) is a space of homogeneous type, Mw is bounded form L1(wdx)
into L1,∞(wdx). It follows that

(2.9)
w
({
x : F ∗K

� (x) > λ
}) ≤ w

({
x : Mw(1Ω)(x) ≥ C| detA|−q(�−�′)

})
� | detA|q(�−�′)‖1Ω‖L1(wdx) = | detA|q(�−�′)w ({x : F ∗K

�′ (x) > λ
})
.

Integrating both sides of (2.9) on (0,∞) with respect to λ yields (2.8).
For an integer K representing the truncation level and real number L ≥ 0 repre-

senting the decay level, we define the following maximal type functions

T
N(K,L)
ψ f(x)

= sup
k∈Z,k≥K

sup
y∈Rn

|f ∗ ψk(y)|
max(1, ρA(Ak(x− y)))N

(1 + | detA|k+K)−L

max(1, ρA(AKy))L
;

M
(K,L)
N f(x)

= sup
ψ∈SN (Rn)

sup
k∈Z

k≥K
sup

y∈x+B−k

|f ∗ ψk(y)|max(1, ρA(AKy))−L(1 + | detA|k+K)−L.

Using (2.8) together with an argument similar to that used in the proof of [2, Lemma
7.4], we obtain ∥∥∥TN(K,L)

ψ f
∥∥∥
Lp

w(Rn)
≤ C

∥∥∥M (K,L)
ψ f

∥∥∥
Lp

w(Rn)
(2.10)
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for all N > qw/p, K ∈ Z, L ≥ 0 and f ∈ S ′(Rn). With (2.10) in hand, the
equivalence of (i), (ii) and (iii) follows by an argument similar to that used in the proof
of [2, Theroem 7.1].

We also have the following local version of Proposition 2.2, which provides the
radial and grand maximal function characterizations of weighted anisotropic local Hardy
spaces hpw(Rn;A). The proof is similar to that of Proposition 2.2 with only minor
modifications, and hence we omit it.

Proposition 2.3. Suppose thatA is an expansive dilation,w ∈ A∞(A), 0 < p <∞
and ψ ∈ S(Rn) with

∫
Rn ψ(x)dx �= 0. Then for any f ∈ S ′(Rn) the following are

equivalent:
(i) M0,loc

ψ f ∈ Lpw(Rn) ;
(ii) M loc

ψ f ∈ Lpw(Rn);
(iii) M loc

N f ∈ Lpw(Rn) for sufficiently large N .
Moreover, if N is sufficiently large, then ‖M0,loc

ψ f‖Lp
w(Rn) ∼ ‖M loc

ψ f‖Lp
w(Rn) ∼

‖M loc
N f‖Lp

w(Rn).

In order to show the Hp
w(Rn;A)-boundedness of anisotropic singular integrals, we

will use the atomic characterization of Hp
w(Rn;A) obtained in [6].

Definition 2.3. (see [6]) Let A be an expansive dilation and w ∈ A∞(A). A triplet
(p, q, s)w is said to be admissible, if p ∈ (0, 1], q ∈ (qw,∞] and s ∈ N ∪ {0} such
that s ≥

⌊
( qwp − 1) ln | detA|

ln(λ−)

⌋
. Given an admissible triplet (p, q, s)w, we say that the

measurable function a on R
n is a (p, q, s)w-atom if

(i) supp a ⊂ x0 +Bj0 for some x0 ∈ Rn and j0 ∈ Z;
(ii) ‖a‖Lq

w(Rn) ≤ [w(x0 +Bj0)]
1/q−1/p;

(iii)
∫

Rn a(x)xαdx = 0 for all multi-indices α with |α| ≤ s.
Let Hp,q,s

w (Rn;A) denote the space consisting of those tempered distributions ad-
mitting a decomposition f =

∑∞
j=1 λjaj in S ′(Rn), where a′js are (p, q, s)w-atoms

and
∑∞

j=1 |λj|p <∞. And for every f ∈ Hp,q,s
w (Rn;A), we consider the (quasi-)norm

defined by

‖f‖Hp,q,s
w (Rn;A)

= inf

⎧⎪⎨⎪⎩
⎛⎝ ∞∑
j=1

|λj|p
⎞⎠1/p

:f=
∞∑
j=1

λjaj in S ′(Rn), {aj}∞j=1 are (p, q, s)w−atoms

⎫⎪⎬⎪⎭ .

Proposition 2.4. (see [6, Theorem 5.5]) Let A be an expansive dilation and w ∈
A∞(A). If (p, q, s)w is an admissible triplet, then Hp,q,s

w (Rn;A) = Hp
w(Rn;A) with

equivalent (quasi-)norms.
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The relation between Hp
w(Rn;A) and hpw(Rn;A) is as in the following lemma.

Lemma 2.1. Let A be an expansive dilation, w ∈ A∞(A) and 0 < p ≤ 1. Then
(i) Hp

w(Rn;A) is continuously embedded in hpw(Rn;A);
(ii) If Ψ is a function in S(Rn) such that

∫
Rn Ψ(x)dx = 1 and

∫
Rn Ψ(x)xαdx = 0

for all |α| ≤ N , where N = N (p, w) is a sufficiently large positive integer, then
f − f ∗ Ψ ∈ Hp

w(Rn, A) and there exists a constant C > 0 such that

‖f − f ∗ Ψ‖Hp
w(Rn,A) ≤ C‖f‖hp

w(Rn,A),

for all f ∈ hpw(Rn, A).

The proof of Lemma 2.1 is similar to that of [1, Lemma 2.1] with the only modi-
fication that one needs to use the radial and grand maximal function characterizations
of weighted anisotropic Hardy spaces (see Proposition 2.2 and 2.3) instead of their
unweighted counterparts; see also [8, Proposition 4.1]. We thus omit the details here.

3. PROOF OF THEOREM 1.1

We begin with a simple lemma.

Lemma 3.1. Suppose that K is a tempered distribution satisfying the condition (i)
in Definition 1.1, and k0 is a fixed positive integer. Then for all � ∈ Z, all x ∈ R

n\{0}
with | detA|�−k0 ≤ ρA(x) ≤ | detA|�+k0 , and for all multi-indices α with |α| ≤ m,
we have ∣∣∣∂α [K(A�·)

]
(A−�x)

∣∣∣ � [ρA(x)]−1 .

Proof. Let x ∈ Rn be such that ρA(x) = | detA|�′ with � − k0 ≤ �′ ≤ � + k0.
Let |α| ≤ m. By the chain rule, (2.6), (2.7) and (1.1), we have∣∣∂α [K(A�·)] (A−�x)

∣∣ =
∣∣∣∂α [K (A�′A�−�′ ·)] (A−�x)

∣∣∣
� ‖A�−�′‖|α|

∑
|β|=|α|

∣∣∣∂β [K(A�
′ ·)
]
(A−�′x)

∣∣∣
� (λ+)k0m [ρA(x)]−1 ∼ [ρA(x)]−1 ,

which completes the proof.

Lemma 3.2. Suppose K is an anisotropic singular kernel of order m, and ψ is a
Schwartz function such that supp ψ ⊂ B1. Then K ∗ ψk satisfies the condition (i) in
Definition 1.1 uniformly in k ∈ Z. More precisely, there exists a constant C > 0 such
that for all � ∈ Z, all x ∈ Rn\{0} with ρA(x) = | detA|�, and for all multi-indices α
with |α| ≤ m, we have

sup
k∈Z

∣∣∣∂α [(K ∗ ψk)(A�·)
]
(A−�x)

∣∣∣ ≤ C[ρA(x)]−1.
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Proof. Observe that (1.1) is dilation-invariant; that is, if we replace K by Kk

in (1.1), where Kk := | detA|kK(Ak·), we get the same inequality with the same
constant. In addition, we can write K ∗ ψk = (K−k ∗ ψ)k. Therefore, it suffices to
show that K̃ := K ∗ ψ satisfies (1.1).
To this end, we write

K̃(x) = (K̂ψ̂)∨(ξ) =
∫

Rn

e2πix·ξψ̂(ξ)K̂(ξ)dξ.

Then for all multi-indices β with |β| ≤ m, we have

(3.1) |∂βK̃(x)|=
∣∣∣∣∫

Rn
(2πiξ)βe2πix·ξψ̂(ξ)K̂(ξ)dξ

∣∣∣∣�‖K̂‖L∞(Rn)

∫
Rn

|ξβψ̂(ξ)|dξ�1,

where we have used the fact that the L2-boundedness of f �→ f ∗ K implies that
K̂ ∈ L∞(Rn). From (3.1) we see that the family {∂βK̃ : |β| ≤ m} is uniformly
bounded.
Let � ∈ Z and x ∈ Rn\{0} with ρA(x) = | detA|�, and let α be a multi-index

such that |α| ≤ m. To show that K̃ satisfies (1.1), we consider two cases.

Case I. � ≤ ω + 1. By the chain rule, (2.6), (2.7) and (3.1), we have∣∣∣∂α [K̃(A�·)
]
(A−�x)

∣∣∣ � ‖A�‖|α|
∑

|β|=|α|

∣∣∣(∂βK̃)(x)
∣∣∣

� (λ+)(ω+1)m � 1 � | detA|−� = [ρA(x)]−1 .

Case II. � > ω + 1. Since supp ψ ⊂ B1 we can write

(3.2)
∂α
[
K̃(A�·)

]
(A−�x) =

∫
Rn

∂α
{
K
[
A�(· −A−�y)

]}
(A−�x)ψ(y)dy

=
∫
B1

∂α
[
K(A�·)

](
A−�(x− y)

)
ψ(y)dy.

By (2.1) and (2.2), we see that for � > ω + 1, if x ∈ B�+1\B� and y ∈ B1 then
x− y ∈ B�+ω+1\B�−ω , i.e., | detA|�−ω ≤ ρA(x− y) ≤ | detA|�+ω . Hence it follows
from Lemma 3.1 that∣∣∣∂α [K(A�·)

]
(A−�(x− y))

∣∣∣ � [ρA(x− y)]−1 ≤ | detA|−�+ω ∼ [ρA(x)]−1 .

Inserting this into (3.2), we get∣∣∣∂α [K̃(A�·)
]
(A−�x)

∣∣∣ � ‖ψ‖L1 [ρA(x)]−1 ∼ [ρA(x)]−1 .

Combining both cases, we obtain the desired estimate and thus complete the proof
of Lemma 3.2.
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Lemma 3.3. Suppose 1 < q <∞ and w ∈ Aq(A). Then any anisotropic singular
integral operator of order 1 is bounded on Lqw(Rn).

Proof. By [7, Proposition 3.6], it suffices to verify that there exist positive
constants ε and C such that for all x, y ∈ Rn\{0} with ρA(x−y) ≤ | detA|−2ωρA(y),

|K(x)−K(y)| ≤ C
[ρA(x− y)]ε

[ρA(y)]1+ε .(3.3)

To this end, we assume without loss of generality that ρA(x − y) = | detA|j0 and
ρA(y) = | detA|j0+j1+2ω for certain j0 ∈ Z and j1 ∈ N∪{0}. Set K̃ = K(Aj0+j1+2ω ·).
By the Mean Value Theorem, we have

|K(x)−K(y)| =
∣∣∣K̃ (A−(j0+j1+2ω)x

)
− K̃

(
A−(j0+j1+2ω)y

)∣∣∣
≤
∣∣∣A−(j0+j1+2ω)(x− y)

∣∣∣ sup
ξ∈Bj0+1

∣∣∣∇K̃ (A−(j0+j1+2ω)(y + ξ)
)∣∣∣ .

From (2.1) and (2.2) we see that if ρA(y) = | detA|j0+j1+2ω and ξ ∈ Bj0+1 then
| detA|j0+j1+ω ≤ ρA(y + ξ) ≤ | detA|j0+j1+3ω. Hence by Lemma 3.1 we have

sup
ξ∈Bj0+1

∣∣∣∇K̃ (A−(j0+j1+2ω)(y + ξ)
)∣∣∣ � sup

ξ∈Bj0+1

[ρA(y + ξ)]−1 ∼ [ρA(y)]−1 .

It follows that

|K(x) −K(y)| �
∣∣∣A−(j0+j1+2ω)(x− y)

∣∣∣ [ρA(y)]−1

�
[
ρA

(
A−(j0+j1+2ω)(x− y)

)]ζ−
[ρA(y)]−1

∼ [ρA(x− y)]ζ−

[ρA(y)]1+ζ−
,

where, in the second inequality we have applied (2.5). Hence (3.3) holds with ε = ζ−,
and the proof of Lemma 3.3 is thus complete.

We are now ready to prove Theroem 1.1.

Proof of Theorem 1.1. Since qw
1+mζ− < p ≤ 1, we can find q ∈ (qw,∞) such that

p(1+mζ−)−q > 0. The latter implies that (p, q, m)w is an admissible triplet. Hence,
from [6, Theorem 7.2] we know that, to obtain the Hp

w(Rn;A)-boundedness of T , it
suffices to show that for all (p, q, m)w-atoms a, we have ‖Ta‖Hp

w(Rn;A) � 1. Take
ψ ∈ S(Rn) such that

∫
Rn ψ(x)dx �= 0 and supp ψ ⊂ B1. In view of the radial maximal

function characterization of Hp
w(Rn;A) (see Proposition 2.2), we have to show that∥∥∥∥sup

k∈Z

|(Ta) ∗ ψk|
∥∥∥∥
Lp

w(Rn)

� 1.(3.4)
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We assume that a is a (p, q, m)w-atom associated to the dilated ball x0 + Bj0 , where
x0 ∈ R

n and j0 ∈ Z. Note that by [6, Proposition 2.11 (i)] we have

sup
k∈Z

|(Ta) ∗ ψk(x)| ≤ CM(Ta)(x).(3.5)

To show (3.4) we first estimate the integration over the set x0 + Bj0+ω . Indeed,
by (3.5), Holder’s inequality, Proposition 2.1 and Lemma 3.3 we have

(3.6)

∫
x0+Bj0+ω

(
sup
k∈Z

|(Ta) ∗ ψk(x)|
)p

w(x)dx

�
∫
x0+Bj0+ω

|M(Ta)(x)|p w(x)dx

�
[∫

x0+Bj0+ω

|M(Ta)(x)|q w(x)dx

]p
q

[w(x0 + Bj0+ω)]1−
p
q

� ‖Ta‖p
Lq

w(Rn)
[w(x0 + Bj0)]

1−p
q

� ‖a‖p
Lq

w(Rn)
[w(x0 + Bj0)]

1−p
q

� 1.

Next we fix an arbitrary integer j ≥ j0 + ω. Set K(k) := (K ∗ ψk)(Aj·), k ∈ Z.
For x ∈ x0 + (Bj+1\Bj) and y ∈ x0 +Bj0 , by Taylor’s inequality we have

(3.7)

sup
k∈Z

∣∣∣∣∣∣K(k)
(
A−j(x−y))− ∑

|β|≤m−1

(∂βK(k))
(
A−j(x−x0)

) (
A−j(x0−y)

)β
β!

∣∣∣∣∣∣
� sup

k∈Z

sup
z∈Bj0

sup
|β|=m

∣∣∣(∂βK(k))
(
A−j(x− x0 + z)

)∣∣∣ ∣∣A−j(x0 − y)
∣∣m

= sup
k∈Z

sup
z∈Bj0

sup
|β|=m

∣∣∂β
[
(K ∗ ψk)(Aj·)] (A−j(x−x0+z)

)∣∣ ∣∣A−j(x0−y)
∣∣m .

Observe that if j ≥ j0 + ω, z ∈ Bj0 and x ∈ x0 + (Bj+1\Bj), then (by (2.1) and
(2.2)) we have | detA|j−ω ≤ ρA(x − x0 + z) ≤ | detA|j+ω . Hence, it follows from
Lemma 3.2 and Lemma 3.1 that

sup
k∈Z

sup
z∈Bj0

sup
|β|=m

∣∣∣∂β [(K ∗ ψk)(Aj·)
] (
A−j(x− x0 + z)

)∣∣∣
� [ρA(x− x0 + z)]−1 ∼ | detA|−j.

Inserting this into (3.7) and by using (2.5), we obtain that, for all x ∈ x0 +(Bj+1\Bj)
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and y ∈ x0 +Bj0 ,

sup
k∈Z

∣∣∣∣∣∣K(k)
(
A−j(x− y)

)− ∑
|β|≤m−1

(∂βK(k))
(
A−j(x− x0)

) (
A−j(x0 − y)

)β
β!

∣∣∣∣∣∣
� | detA|−j ∣∣A−j (x0 − y)

∣∣m
� | detA|−j [ρ (A−j(x0 − y)

)]mζ−
� | detA|−j+(j0−j)mζ− .

Then, by using the vanishing moment conditions satisfied by a and Hölder’s inequality,
we have, for x ∈ x0 + (Bj+1\Bj),

sup
k∈Z

|(Ta) ∗ ψk(x)|

= sup
k∈Z

∣∣∣∣∣
∫
x0+Bj0

(K ∗ ψk)(x− y)a(y)dy

∣∣∣∣∣
≤ sup

k∈Z

∫
x0+Bj0

∣∣∣K(k)
(
A−j(x− y)

)
−

∑
|β|≤m−1

(∂βK(k))
(
A−j(x− x0)

) (
A−j(x0 − y)

)β
β!

∣∣∣∣∣∣ |a(y)|dy
� | detA|−j+(j0−j)mζ−

∫
x0+Bj0

|a(y)|dy

� | detA|−j+(j0−j)mζ−‖a‖Lq
w(Rn)

(∫
x0+Bj0

w(y)−
q′
q dy

)1− 1
q

� | detA|−j+(j0−j)mζ− [w(x0 +Bj0)]
1
q
− 1

p |x0 + Bj0 |
q−1

q

( |x0 + Bj0 |
w(x0 + Bj0)

) 1
q

� | detA|(j0−j)(1+mζ−) [w(x0 + Bj0)]
− 1

p .

Hence, by Proposition 2.1 (i), we can estimate

(3.8)

∫
Rn\(x0+Bj0+ω)

sup
k∈Z

|(Ta) ∗ ψk(x)|pw(x)dx

=
∞∑

j=j0+ω

∫
x0+(Bj+1\Bj)

sup
k∈Z

|(Ta) ∗ ψk(x)|p w(x)dx

�
∞∑

j=j0+ω

| detA|p(j0−j)(1+mζ−) [w(x0 + Bj0)]
−1 w(x0 + Bj+1)
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�
∞∑

j=j0+ω

| detA|p(j0−j)(1+mζ−)+q(j−j0+1)

�
∞∑
j=ω

| detA|−j[p(1+mζ−)−q] � 1.

Here, in the last inequality, we have used that p(1 +mζ−) − q > 0.
Combining (3.6) and (3.8), we get (3.4) and thus complete the proof of Theorem

1.1.
We remark that, as in the isotropic setting and the homogeneous group setting (cf.

[25, pp. 28-29] and [14, pp. 106-107 and p. 201]), the result for anisotropic singular
integrals on anisotropic Hardy spaces in Theorem 1.1 goes through for functions that
take their values in Banach spaces. If B is a Banach spaces, we can consider the
B-valued tempered distributions on Rn, i.e., the space of continuous linear maps from
S(Rn) to B. Then for an expansive dilation A, 0 < p < ∞ and w ∈ A∞(A), we
define the B-valued weighted anisotropic Hardy space Hp

w(Rn,B;A) as the collection
of those B-valued tempered distributions f for which

Mψf(x) := sup
k∈Z

sup
y∈x+B−k

‖f ∗ ψk(y)‖B

belong to Lpw(Rn), where ψ ∈ S(Rn) such that
∫

Rn ψ(x)dx �= 0. Note that the atomic
decomposition can be carried out in the Banach space setting (see the remarks in [14,
pp. 106-107]). Moreover, Proposition 2.2 can be extended to the Banach space setting,
so that Hp

w(Rn,B;A) is independent of the choice of ψ and are equivalent to the radial
and grand maximal function formulation.
For later use we formulate a generalization of Theorem 1.1 in the Banach space

setting. In what follows, B1 and B2 is a pair of Banach spaces, L(B1,B2) denotes the
Banach space consisting of bounded linear operators form B1 to B2, and Lp(Rn,Bi)
(i = 1, 2) are Bochner spaces.

Theorem 3.1. SupposeA is an expansive dilation,w ∈ A∞(A) andm is a positive
integer. Suppose further thatK is an L(B1,B2)-valued tempered distribution satisfying
the following conditions:

(i) K coincides with an L(B1,B2)-valued Cm function away from the origin,
and there exist a constant C > 0 such that for all � ∈ Z, all x ∈ Rn\{0} with
ρA(x) = | detA|�, and for all multi-indices α with |α| ≤ m,

‖∂α[K(A�·)](A−�x)‖L(B1,B2) ≤ C[ρA(x)]−1;(3.9)

(ii) ‖f ∗ K‖L2(Rn,B2) ≤ C‖f‖L2(Rn,B1) for all B1-valued Schwartz functions f .
Then the operator Tf = f ∗K is bounded from Hp

w(Rn,B1;A) to Hp
w(Rn,B2;A),

for p ∈ ( qw
1+mζ− , 1].
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The proof is based on re-examining related assertions in the scalar-valued setting.
We, therefore, omit the details.

4. PROOF OF THEOREM 1.2

We begin with recalling the anisotropic Peetre’s inequality obtained in [5].

Lemma 4.1. (see [5, Lemma 3.4]). Suppose A is an expansive dilation, K is a
compact subset of R

n and r > 0. Then there exist constants C1, C2 > 0, depending
only on A, n, r and K such that for all g ∈ S ′(Rn) with supp ĝ ⊂ K,

sup
z∈Rn

|∇g(x− z)|
(1 + ρA(z))1/r

≤ C1 sup
z∈Rn

|g(x− z)|
(1 + ρA(z))1/r

≤ C2[M(|g|r)(x)]1/r for all x ∈ R
n.

Given f ∈ S ′(Rn), ϕ ∈ S(Rn) and a > 0, we define

(ϕ∗
jf)a(x) = sup

y∈Rn

|(f ∗ ϕj)(x− y)|
(1 + | detA|jρA(y))a

, j ∈ Z.

Lemma 4.2. Suppose A is an expansive dilation, w ∈ A∞(A), 0 < p, q <∞ and
a > max{qw/p, 1/q}. Suppose further that ϕ is a function in S(Rn) such that supp
ϕ̂ is compact. Then there exists a constant C > 0 such that for all f ∈ S ′(Rn),∥∥∥∥∥∥∥

⎡⎣ ∞∑
j=−∞

∣∣(ϕ∗
jf)a

∣∣q⎤⎦1/q
∥∥∥∥∥∥∥
Lp

w(Rn)

≤ C

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

|f ∗ ϕj|q
⎞⎠1/q

∥∥∥∥∥∥∥
Lp

w(Rn)

.

Proof. SetK = supp ϕ̂ and g(j)(x) = (f ∗ϕj)(A−jx), j ∈ Z. Then (g(j))∧(ξ) =
| detA|jϕ̂(ξ)f̂((A∗)jξ), from which we see that supp(g(j))∧ ⊂ K for all j ∈ Z. Hence,
by Lemma 4.1, there exists a constant C > 0 such that

(4.1) sup
z∈R

|g(j)(ζ − z)|
(1 + ρA(z))a

≤ C
[
M
(
|g(j)|1/a

)
(ζ)
]a

for all j ∈ Z and ζ ∈ R
n.

But we have

(4.2)

sup
z∈R

|g(j)(ζ − z)|
(1 + ρA(z))a

= sup
z∈Rn

|(f ∗ ϕj)(A−jζ − A−jz)|
(1 + ρA(z))a

= sup
z∈Rn

|(f ∗ ϕj)(A−jζ − z)|
(1 + | detA|jρA(z))a

= (ϕ∗
jf)a(A−jζ),
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and

(4.3)

M(|g(j)|1/a)(ζ) = sup
k∈Z

sup
y∈ζ+Bk

1
|Bk|

∫
y+Bk

|(f ∗ ϕj)(A−jz)|1/adz

� sup
k∈Z

1
|Bk|

∫
ζ+Bk

|(f ∗ ϕj)(A−jz)|1/adz

= sup
k∈Z

1
|Bk−j |

∫
A−jζ+Bk−j

|(f ∗ ϕj)(z)|1/adz

� M
(
|f ∗ ϕj|1/a

)
(A−jζ)

where, in the first inequality we have used the fact that the “uncentered” Hardy-
Littlewood maximal function of f is controlled by the “centered” one. Combining
(4.1), (4.2) and (4.3), we obtain

(ϕ∗
jf)a(x) ≤ C

[
M
(
|f ∗ ϕj|1/a

)
(x)
]a
,(4.4)

for all j ∈ Z and x ∈ R
n, where C is a constant independent of j. Since w ∈

Aap(A) and aq > 1, it follows from (4.4) and weighted Fefferman-Stein’s vector-
valued inequality (cf. [5, Theorem 2.5]) that∥∥∥∥∥∥∥

⎛⎝ ∞∑
j=−∞

∣∣(ϕ∗
jf)a

∣∣q⎞⎠1/q
∥∥∥∥∥∥∥
Lp

w(Rn)

�

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

[
M
(
|f ∗ ϕj|1/a

)]aq⎞⎠1/q
∥∥∥∥∥∥∥
Lp

w(Rn)

�

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

|f ∗ ϕj|q
⎞⎠1/q

∥∥∥∥∥∥∥
L

p
w(Rn)

.

This completes the proof of Lemma 4.2.

Lemma 4.3. Suppose A is an expansive dilation and ϕ ∈ S(Rn). Then, for
every multi-index α there exists a constant Cα > 0 such that for all � ∈ Z and all
x ∈ R

n\{0} with ρA(x) = | detA|�,∥∥∥∥∂α [{ϕj(A�·)}∞j=−∞

]
(A−�x)

∥∥∥∥
�2

≤ Cα[ρA(x)]−1.

Proof. Let � ∈ Z and let x ∈ R
n\{0} such that ρA(x) = | detA|�. We write∥∥∥∂α

[{
ϕj(A�·)}∞

j=−∞

]
(A−�x)

∥∥∥2
�2

=
∞∑

j=−∞
| detA|2j

∣∣∂α
[
ϕ(Aj+�·)] (A−�x)

∣∣2
=

⎛⎝ −�∑
j=−∞

+
∞∑

j=−�+1

⎞⎠ | detA|2j
∣∣∂α
[
ϕ(Aj+�·)] (A−�x)

∣∣2
:= I1 + I2.
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First we estimate I1. Let −∞ < j ≤ −�. By using the chain rule, (2.7), and that
∂βϕ ∈ L∞(Rn) (∀β), we have∣∣∣∂α [ϕ(Aj+�·)

]
(A−�x)

∣∣∣2 � ‖Aj+�‖2|α| ∑
|β|=|α|

∣∣∣(∂βϕ) (Ajx)
∣∣∣2 � (λ−)2(j+�)|α|.

It follows that,

I1 �
−�∑

j=−∞
| detA|2j(λ−)2(j+�)|α| � | detA|−2� = [ρA(x)]−2.(4.5)

Next we estimate I2. Let j ≥ −� + 1. Let M be a positive number such that
| detA|M−1 > (λ+)|α|. By using the chain rule, (2.6), and that ϕ ∈ S(Rn), we can
estimate as follows.∣∣∣∂α [ϕ(Aj+�·)

]
(A−�x)

∣∣∣2 � ‖Aj+�‖2|α| ∑
|β|=|α|

∣∣∣(∂βϕ) (Ajx)
∣∣∣2

� (λ+)2(j+�)|α| [ρA(Ajx)
]−2M =

(
(λ+)|α|

| detA|M
)2(j+�)

.

Hence,

(4.6)

I2 �
∞∑

j=−�+1

| detA|2j
(

(λ+)|α|

| detA|M
)2(j+�)

= | detA|−2�
∞∑

j=−�+1

(
(λ+)|α|

| detA|M−1

)2(j+�)

� | detA|−2� = [ρA(x)]−2.

Combining (4.5) and (4.6), we obtain the desired estimate.

In order to obtain the Littlewood-Paley characterization of weighted anisotropic
Hardy spaces, it is useful to introduce the �2-valued weighted anisotropic Hardy spaces
Hp
w(Rn, �2;A). Let A be an expansive dilation, 0 < p <∞ and w ∈ A∞(A). Define

Hp
w(Rn, �2;A) :=

{
f = {fj}∞j=−∞ ⊂ S ′(Rn) : ‖f‖Hp

w(Rn,�2;A)

=

∥∥∥∥∥∥∥sup
k∈Z

⎛⎝ ∞∑
j=−∞

|fj ∗ ψk|2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

w(Rn)

<∞

⎫⎪⎬⎪⎭ ,

where ψ ∈ S(Rn) such that
∫

Rn ψ(x)dx �= 0. As we mentioned in the previous section,
the definition of Hp

w(Rn, �2;A) is independent of the choice of ψ.
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Lemma 4.4. Suppose A is an expansive dilation, w ∈ A∞(A) and 0 < p ≤ 1.
Suppose further that ϕ is a Schwartz function satisfying (1.2) and the property that
supp ϕ̂ is compact and does not contain the origin. Then we have∥∥∥{f ∗ ϕj}∞j=−∞

∥∥∥
H

p
w(Rn,�2;A)

� ‖f‖Hp
w(Rn;A), f ∈ S ′(Rn).(4.7)

Conversely, given f ∈ S ′(Rn), there exists a polynomial P such that

‖f − P‖Hp
w(Rn;A) �

∥∥∥{f ∗ ϕj}∞j=−∞
∥∥∥
H

p
w(Rn,�2;A)

.(4.8)

Proof. Define a liner map K : S(Rn) → �2 by

K(φ) =
{∫

Rn

φ(x)ϕj(x)dx
}∞

j=−∞
, φ ∈ S(Rn).

Note that K(φ) does belong to �2. Indeed, since
∫

Rn ϕ(x)dx = ϕ̂(0) = 0, for j > 0
we have ∣∣∣∣∫

Rn

φ(x)ϕj(x)dx
∣∣∣∣ ≤ ∫

Rn

|φ(A−jx) − φ(0)||ϕ(x)|dx

≤ ‖∇φ‖L∞(Rn)

∫
Rn

|A−jx||ϕ(x)|dx� (λ−)−j,

where we have used the Mean Value Theorem and (2.7). For j ≤ 0, we have∣∣∣∣∫
Rn
φ(x)ϕj(x)dx

∣∣∣∣ ≤ | detA|j
∫

Rn
|φ(x)ϕ(Ajx)|dx � | detA|j.

Therefore, ‖K(φ)‖�2 <∞. The above computation also shows that K is a continuous
map from S(Rn) to �2, so that it is an �2-valued tempered distribution.
Since K coincides with the �2-valued smooth function {ϕj(x)}∞j=−∞ away from the

origin, from Lemma 4.3 we see that it satisfies the regularity conditions in Theorem 3.1
up to order m for arbitrarily large integer m. Furthermore, by the Plancherel theorem
and [7, Remark 2.13], we have

‖f ∗ K‖2
L2(Rn,�2) = ‖{f ∗ ϕj}∞j=−∞‖2

L2(Rn,�2) =
∞∑

j=−∞

∫
Rn

|f ∗ ϕj(x)|2dx

=
∫

Rn

|f̂(ξ)|2
⎛⎝ ∞∑
j=−∞

|ϕ̂((A∗)−jξ)|2
⎞⎠ dξ � ‖f‖2

L2(Rn).

Therefore, we may apply Theorem 3.1 to the L(C, �2)-valued kernel K, to get∥∥∥{f ∗ ϕj}∞j=−∞
∥∥∥
Hp

w(Rn,�2;A)
= ‖f ∗ K‖Hp

w(Rn,�2;A) � ‖f‖Hp
w(Rn;A),
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which proves (4.7).
Now let us show (4.8). Since supp ϕ̂ is compact and does not contain the origin,

we can find a (sufficiently large) positive integer k0 such that supp ϕ̂ ⊂ B∗
k0
\B∗

−k0 .
The latter implies that suppϕ̂((A∗)j·) ∩ suppϕ̂((A∗)j′ ·) = ∅ whenever |j − j ′| > 2k0.
Hence, if we define

θ(x) =
2k0∑

k=−2k0

ϕk(x),(4.9)

then it follows from (1.2) that θ̂(ξ) = 1 for ξ ∈ supp ϕ̂, and consequently ϕj ∗θj = ϕj
for all j ∈ Z. Define the linear map K̃ from the �2-valued Schwart class S(Rn, �2) to
C by setting, for all �φ = {φj}∞j=−∞ ∈ S(Rn, �2),

K̃(�φ) =
∞∑

j=−∞

∫
Rn

φj(x)θj(x)dx.

Similarly to above, one can use
∫

Rn θ(x)dx = 0 to show that the sum in the right-hand
side converges absolutely, and that the map K̃ : S(Rn, �2) → C is continuous, so that
K̃ is an L(�2,C)-valued tempered distribution. If we identify L(�2,C) with �2 (they
are isomorphic as Hilbert spaces), then K coincides with the �2-valued smooth function
{θj}∞j=−∞ away from the origin. Thus, by Lemma 4.3, the L(�2,C)-valued kernel K̃
satisfies the regularity conditions in Theorem 3.1 up to order m for arbitrarily large
integer m. Furthermore, K̃ satisfies the condition (ii) in Theorem 3.1. Indeed, by the
Plancherel theorem, the Cauchy-Schwartz inequality, and [7, Remark 2.13], we have

∥∥∥({fj}∞j=−∞
) ∗ K̃∥∥∥

L2(Rn)
=

∥∥∥∥∥∥
∞∑

j=−∞
fj ∗ θj

∥∥∥∥∥∥
L2(Rn)

=

∥∥∥∥∥∥
∞∑

j=−∞
f̂j θ̂j

∥∥∥∥∥∥
L2(Rn)

≤

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

|f̂j|2
⎞⎠1/2⎛⎝ ∞∑

j=−∞
|θ̂((A∗)−j·)|2

⎞⎠1/2
∥∥∥∥∥∥∥
L2(Rn)

�

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

|f̂j|2
⎞⎠1/2

∥∥∥∥∥∥∥
L2(Rn)

=

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

|fj|2
⎞⎠1/2

∥∥∥∥∥∥∥
L2(Rn)

=
∥∥∥{fj}∞j=−∞

∥∥∥
L2(Rn,�2)

.

Thus, we may apply Theorem 3.1 to the L(�2,C)-valued kernel K̃, which yields
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∥∥∥∥∥∥
∞∑

j=−∞
f ∗ ϕj

∥∥∥∥∥∥
Hp

w(Rn;A)

=

∥∥∥∥∥∥
∞∑

j=−∞
f ∗ ϕj ∗ θj

∥∥∥∥∥∥
Hp

w(Rn;A)

=
∥∥∥({f ∗ ϕj}) ∗ K̃

∥∥∥
Hp

w(Rn;A)
�
∥∥∥{ϕj ∗ f}∞j=−∞

∥∥∥
Hp

w(Rn,�2;A)
.

But note that f −∑j∈Z
f ∗ ϕj equals to a polynomial P , since its Fourier transform

is supported at the origin. It follows that f − P ∈ Hp
w(Rn;A) and satisfies (4.8).

Lemma 4.5. Suppose that A is an expansive dilation, ϕ is a Schwartz function
satisfying (1.2) and the property that supp ϕ̂ is compact and does not contain the
origin, and Φ ∈ S(Rn) is given by (1.3). Then we have the following (quasi-)norm
equivalence

‖f‖hp
w(Rn;A) ∼ ‖f − Φ ∗ f‖Hp

w(Rn;A) + ‖Φ ∗ f‖Lp
w(Rn), f ∈ S ′(Rn).

Proof. Since Φ̂ equals 1 near the origin, by Lemma 2.1 we have ‖f − Φ ∗
f‖Hp

w(Rn;A) � ‖f‖hp
w(Rn;A). Moreover, from the definition of h

p
w(Rn;A) we see that

‖Φ ∗ f‖Lp
w(Rn;A) ≤ ‖f‖hp

w(Rn;A). Therefore,

‖f − Φ ∗ f‖Hp
w(Rn;A) + ‖Φ ∗ f‖Lp

w(Rn) � ‖f‖hp
w(Rn;A).

To see the inverse inequality, we write, by virtue of the radial maximal function char-
acterization of hpw(Rn;A) (see Proposition 2.3),

(4.10)

‖f‖hp
w(Rn;A) � ‖f − Φ ∗ f‖hp

w(Rn;A) + ‖Φ ∗ f‖hp
w(Rn;A)

= ‖f − Φ ∗ f‖hp
w(Rn;A) +

∥∥∥∥∥ sup
j∈N∪{0}

|ψj ∗ Φ ∗ f |
∥∥∥∥∥
Lp

w(Rn)

,

where ψ ∈ S(Rn) such that
∫

Rn ψ(x)dx �= 0. Since Φ̂ has compact support, we may
apply (4.4), in which taking j = 0 yields that

|(Φ ∗ f)(x− y)| �
[
M
(
|Φ ∗ f |1/a

)
(x)
]a

(1 + ρA(y))a, ∀y ∈ R
n,

where a > 0 can be chosen to be arbitrarily large. By the above inequality and (2.4),
and using that ψ ∈ S(Rn), we can estimate as follows
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(4.11)

sup
j∈N∪{0}

|ψj ∗ Φ ∗ f(x)|

= sup
j∈N∪{0}

∣∣∣∣∫
Rn

| detA|jψ(Ajy)(Φ ∗ f)(x− y)dy
∣∣∣∣

� sup
j∈N∪{0}

∫
Rn

| detA|j
(1+ρA(Ajy))a+(n+1)ζ+[

M
(
|Φ ∗ f |1/a

)
(x)
]a

(1+ρA(y))ady

≤
[
M
(
|Φ ∗ f |1/a

)
(x)
]a ∫

Rn

1
(1 + ρA(y))(n+1)ζ+

dy

�
[
M
(
|Φ ∗ f |1/a

)
(x)
]a ∫

Rn

1
(1 + |x|)n+1

dy

�
[
M
(
|Φ ∗ f |1/a

)
(x)
]a
.

Inserting this into (4.10), and applying the weighted maximal inequality, we get

‖f‖hp
w(Rn;A) � ‖f − Φ ∗ f‖Hp

w(Rn;A) + ‖Φ ∗ f‖Lp
w(Rn).

The proof is therefore complete.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. (i) Let ϕ be a function in S(Rn) satisfying (1.2) and the
property that suppϕ̂ is compact and does not contain the origin. As above we let k0

be a positive integer such that suppϕ̂ ⊂ B∗
k0
\B∗

−k0 . Define the function θ by (4.9).
We first show that ‖f‖

Ḟ
0,2
p (Rn,A,wdx)

� ‖f‖Hp
w(Rn;A) for all f ∈ S ′. Indeed, by

(4.7) in Lemma 4.4 we have

‖f‖
Ḟ 0,2

p (Rn,A,wdx)
=
∥∥∥{f ∗ ϕj}∞j=−∞

∥∥∥
Lp

w(Rn,�2)

≤
∥∥∥{f ∗ ϕj}∞j=−∞

∥∥∥
Hp

w(Rn,�2;A)
� ‖f‖Hp

w(Rn;A).

To see the converse, we pick a function ψ ∈ S(Rn) such that
∫

Rn ψ(x)dx �= 0 and
suppψ̂ ⊂ B∗

−k0 . Then ψ̂((A∗)−�·)ϕ̂((A∗)−j·) ≡ 0 whenever � ≤ j (i, j ∈ Z). Hence,
for all f ∈ S ′(Rn) and j ∈ Z we have

(4.12)

sup
�∈Z

|ψ� ∗ ϕj ∗ f(x)|

= sup
�∈Z,�>j

∣∣∣∣∫
Rn
ψ�(y)(ϕj ∗ f)(x− y)dy

∣∣∣∣
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= sup
�∈Z,�>j

∣∣∣∣∫
Rn
ψ(y)(ϕj ∗ f)(x− A−�y)dy

∣∣∣∣
� sup

�∈Z,�>j
sup
z∈Rn

|(ϕj ∗ f)(x− A−�z)|
(1 + ρA(z))a

∫
Rn

(1 + ρA(y))a|ψ(y)|dy

� sup
�∈Z,�>j

sup
z∈Rn

|(ϕj ∗ f)(x− z)|
(1 + | detA|�ρA(z))a

≤ sup
z∈Rn

|(ϕj ∗ f)(x− z)|
(1 + | detA|jρA(z))a

= (ϕ∗
jf)a(x),

where a > 0 can be chosen to be arbitrarily large. Now, by using (4.8) in Lemma
4.4, (4.12), and Lemma 4.2, we can estimate as follows: Given f ∈ S ′, there exists a
polynomial P such that

‖f − P‖Hp
w(Rn;A)

�
∥∥∥{ϕj ∗ f}∞j=−∞

∥∥∥
Hp

w(Rn,�2;A)
=

∥∥∥∥∥∥∥sup
�∈Z

⎛⎝ ∞∑
j=−∞

|ψ� ∗ ϕj ∗ f |2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

w(Rn)

≤

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

sup
�∈Z

|ψ� ∗ ϕj ∗ f |2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

w(Rn)

�

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

|(ϕ∗
jf)a|2

⎞⎠1/2
∥∥∥∥∥∥∥
Lp

w(Rn)

�

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

|f ∗ ϕj|2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

w(Rn)

= ‖f‖Ḟ 0,2
p (Rn,A,wdx).

Therefore, the assertion (i) is established.
(ii) Let us now show that ‖f‖hp

w(Rn;A) ∼ ‖f‖
F 0,2

p (Rn,A,wdx)
for f ∈ S ′(Rn).

Indeed, let ϕ be the same as in the proof of (i) and define Φ by (1.3). By Lemma 4.5
and (i) we have

‖f‖hp
w(Rn;A) ∼ ‖Φ ∗ f‖Lp

w(Rn) + ‖f − Φ ∗ f‖Hp
w(Rn;A)

∼ ‖Φ ∗ f‖Lp
w(Rn) +

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

|ϕj ∗ (f − Φ ∗ f)|2
⎞⎠1/2

∥∥∥∥∥∥∥
L

p
w(Rn)

.

The polynomial P in the assertion (i) doesn’t appear in the above inequalities. This is
because the Fourier transform of f − Φ ∗ f equals 0 in a neighborhood of the origin.
Therefore, it remains to show that



698 Guorong Hu

(4.13)
‖Φ ∗ f‖Lp

w(Rn) +

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−∞

|ϕj ∗ (f − Φ ∗ f)|2
⎞⎠1/2

∥∥∥∥∥∥∥
L

p
w(Rn)

∼ ‖f‖F 0,2
p (Rn,A,wdx) .

Since suppϕ̂ ⊂ B∗
k0
\B∗

−k0 , we see (from (1.3)) that supp Φ̂ ⊂ B∗
k0
and that

Φ̂(ξ) = 1 for ξ ∈ B∗
−k0+1. Hence ϕj ∗ (f − Φ ∗ f) ≡ 0 whenever j ≤ −2k0 + 1.

Consequently we can write

lhs (4.13) � ‖Φ ∗ f‖Lp
w(Rn) +

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−2k0+2

|ϕj ∗ f |2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

w(Rn)

+

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−2k0+2

|Φ ∗ ϕj ∗ f |2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

w(Rn)

.

Since ϕ̂ has compact support, by (4.4) and a similar computation as in (4.11) it is
easy to obtain that |Φ ∗ ϕj ∗ f | � [M(|ϕj ∗ f |1/a)(x)]a, where a can be chosen to be
arbitrarily large. Hence, it follows from the weighted Fefferman-Stein inequality (cf.
[5, Theorem 2.5]) that

lhs (4.13) � ‖Φ ∗ f‖Lp
w(Rn) +

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=−2k0+2

|ϕj ∗ f |2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

w(Rn)

� ‖f‖
F

0,2
p (Rn,A,wdx)

.

To obtain the inverse inequality in (4.13), we note that by the support properties of
ϕ̂ and Φ̂ (which implies ϕj ∗ Φ ≡ 0 whenever j ≥ 2k0), (4.11), and the weighted
Hardy-Littlewood maximal inequality,

‖f‖
F

0,2
p (Rn,A,wdx)

= ‖Φ ∗ f‖Lp
w(Rn) +

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=1

|ϕj ∗ f |2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

w(Rn)

� ‖Φ ∗ f‖Lp
w(Rn) +

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=1

|ϕj ∗ (f − Φ ∗ f)|2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

w(Rn)

+

∥∥∥∥∥∥∥
⎛⎝2k0−1∑

j=1

|ϕj ∗ Φ ∗ f |2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

w(Rn)
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� ‖Φ ∗ f‖Lp
w(Rn) +

∥∥∥∥∥∥∥
⎛⎝ ∞∑
j=1

|ϕj ∗ (f − Φ ∗ f)|2
⎞⎠1/2

∥∥∥∥∥∥∥
L

p
w(Rn)

+
∥∥∥[M (|Φ ∗ f |1/a

)
(x)
]a∥∥∥

L
p
w(Rn)

� lhs (4.13).

Therefore, (4.13) is established and the proof Theorem 1.2 is complete.
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