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Pack Graphs with Subgraphs of Size Three

Zhen-Chun Chen, Hung-Lin Fu and Kuo-Ching Huang*

Abstract. An H-packing F of a graph G is a set of edge-disjoint subgraphs of G in

which each subgraph is isomorphic to H. The leave L or the remainder graph L of

a packing F is the subgraph induced by the set of edges of G that does not occur

in any subgraph of the packing F . If a leave L contains no edges, or simply L = φ,

then G is said to be H-decomposable, denoted by H | G. In this paper, we prove

a conjecture made by Chartrand, Saba and Mynhardt [13]: If G is a graph of size

q(G) ≡ 0 (mod 3) and δ(G) ≥ 2, then G is H-decomposable for some graph H of

size 3.

1. Introduction

By a graph G = (V,E) we mean a finite, simple and undirected graph. The order,

size, maximum and minimum degree of G are denoted by p(G), q(G), ∆(G) and δ(G),

respectively. The neighborhood of a vertex v, denoted by N(v), is the set of vertices

adjacent to v. The graphs Pn and Ck are a path of order n and a cycle of order k ≥ 3,

respectively. The graph G1 ∪G2 is the edge disjoint union of G1 and G2. The graph tH

is the union of t copies of H. For more graph theoretic terminologies we refer to [11].

A graph G is said to be H-decomposable, denoted by H | G, if the edge set E(G) of

G can be partitioned into subsets such that the edge-induced subgraph of each subset is

isomorphic to H. Graph decomposition is one of the most important topics in the study of

both graph theory and combinatorial designs, not to mention their applications on many

other fields. Quite a few research results are obtained in considering the decomposition

of complete graphs or complete multipartite graphs into complete subgraphs or cycles.

See [1–6, 8–10, 18–22, 25–31, 33–35] for references. Decomposition problems of a general

graphs could be more complicated, as a result of the failure of the tools and methods

used on decomposition of well-structured graphs. On the other hand, if we consider the

decomposition, packing or covering of a general graph, it is getting more complicate.

In [13], Chartrand, Saba and Mynhardt study prime graphs and proposed the following:
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Conjecture 1.1. [13] Suppose G is a graph of size q(G) ≡ 0 (mod 3) and δ(G) ≥ 2.

Then G is H-decomposable for some graph H of size 3.

Conjecture 1.2. [13] Suppose G is a 2-connected graph of order p(G) ≥ 4 and of size

q(G) ≡ 0 (mod 3). Then G is P4-decomposable.

These conjectures motivate our study of decomposing a graph of size 3k into k copies

of isomorphic graphs of size 3. If q(H) = 3, then H = K3, P4, K1,3, P3 ∪ P2 or M3

(a matching of size 3). There are many research results of decomposing graphs into

subgraphs of size three. See [7, 12, 14–17, 23, 24, 32]. For convenience, we use x1x2 · · ·xt
and x1x2 · · ·xtx1, respectively, to denote a path and a cycle of order t. Since the graph

D = {x1x2x3x4x5x6x1} ∪ {x1y1x2, x3y2x4, x5y3x6} disproves the Conjecture 1.2, we will

focus on the Conjecture 1.1. In order to prove the Conjecture 1.1, for each given graph

G such that q(G) ≡ 0 (mod 3), we have to find a graph H of size 3 and prove that

H | G. It is not difficult to see that G | G if q(G) = 3 and the complete graph K4 is

P4-decomposable. Moreover, the complete bipartite graph K2,3 is P4-decomposable and

(P3∪P2)-decomposable and the complete 3-partite graph K1,1,4 is P4-decomposable. Since

the graph K1,1,3c+1 = K1,1,4 ∪ (c− 1)K2,3, we have P4 | K1,1,3c+1, c ≥ 1. In this paper, we

prove the following to confirm the Conjecture 1.1.

Theorem 1.3. If G is a graph of size 6 ≤ q(G) ≡ 0 (mod 3) and δ(G) ≥ 2, then G is

(P3 ∪ P2)-decomposable if and only if G is different from K4 and K1,1,3c+1, c ≥ 0.

2. Main results

We start this section with the study of (P3 ∪ P2)-packings of graphs. An H-packing of

a graph G is a set of edge-disjoint subgraphs of G in which each subgraph is isomorphic

to H. An H-packing F is maximum if |F| ≥ |F ′| for all other H-packings F ′ of G. The

leave L of an H-packing F is the subgraph induced by the set of edges of G that does

not occur in any subgraph of the H-packing F . Therefore, a maximum packing has a

minimum leave. In what follows, all the leaves we consider are minimum. It is easy to see

that H | G if and only if G has an H-packing with empty leave L, that is, L contains no

edge, or simply L = φ.

The following lemmas are essential for proving the main theorem. Since they are easy

to be proved, we omit the proofs.

Lemma 2.1. If G ∼= Gi, 1 ≤ i ≤ 18, given in Figure 2.1, then P3 ∪ P2 | G.
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Figure 2.1

Lemma 2.2. If G ∼= Gi, 19 ≤ i ≤ 26, given in Figure 2.2, then G has a (P3∪P2)-packing

with a P2 as the leave.
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Figure 2.2

Lemma 2.3. If G ∼= Gi, 27 ≤ i ≤ 40, given in Figure 2.3, then G has a (P3∪P2)-packing

with a P3 as the leave.
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Figure 2.3
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The followings are our main results.

Lemma 2.4. Suppose G is a connected 3-regular graph of order p(G) ≥ 8. Then there is

an edge xy ∈ E(G) with N(x) = {y, a, b}, N(y) = {x, c, d}, ac /∈ E(G) and bd /∈ E(G)

such that the graph G′ = (G − {x, y}) ∪ {ac, bd} is a connected 3-regular graph of order

p(G′) = p(G)− 2.

Proof. If G has a cut vertex, since G is 3-regular, G has a cut edge xy such that G −
{xy} = H1 ∪H2, where H1 is a block containing x and H2 is connected containing y. Let

N(x) = {y, a, b} and N(y) = {x, c, d}. Since H1 is a block, H1 − x is connected. Hence,

a and b are connected in H1 − x and then the graph G′ = (G − {x, y}) ∪ {ac, bd} is a

connected 3-regular graph of order p(G′) = p(G)− 2.

Let G be 2-connected. Suppose there is an edge xy ∈ E(G) such that {x, y} is a cut set.

Then G−{x, y} contains exact two components H1 and H2. Otherwise, there a component

H3 of G − {x, y} such that N(x) ∩ V (H3) = φ. Then y is a cut vertex, a contradiction.

Moreover, |N(x) ∩ V (Hi)| = |N(y) ∩ V (Hi)| = 1 for i = 1, 2. Let N(x) = {y, a, b} and

N(y) = {x, c, d} such that a and c are in H1 and b and d are in H2. If a and c are coincide,

then a is a cut vertex, a contradiction. Hence, a 6= c. Similarly, b 6= d. Since H1 and H2

are components, the graph G′ = (G− {x, y}) ∪ {ad, bc} is a connected 3-regular graph of

order p(G′) = p(G)− 2.

Suppose G−{u, v} is connected for every edge uv ∈ E(G). Choose an edge xy ∈ E(G)

with N(x) = {y, a, b} and N(y) = {x, c, d}. If {a, b} = {c, d}, then ab /∈ E(G). Otherwise,

G = K4. Let N(a) = {x, y, z} and N(z) = {a, u, v}. If b ∈ N(z), then z is a cut vertex,

a contradiction. Hence, b /∈ N(z) and then N(x) ∩ {u, v} = N(y) ∩ {u, v} = φ. Thus, the

graph G′ = (G−{a, z})∪{xu, yv} is a connected 3-regular graph of order p(G′) = p(G)−2.

Suppose |{a, b}∩{c, d}| = 1, say a = c. If ab ∈ E(G) (similarly if ad ∈ E(G)), then N(a) =

{x, y, b}. Let N(b) = {x, a, z}. If z = d, then d is a cut vertex, a contradiction. Hence,

z 6= d. Let N(z) = {b, u, v}. Then the graph G′ = (G−{b, z})∪{xu, av} is a connected 3-

regular graph of order p(G′) = p(G)− 2. Suppose N(a)∩{b, d} = φ. Let N(a) = {x, y, z}
and N(z) = {a, u, v}. If {u, v} = {b, d}, then the graph G′ = (G − {a, z}) ∪ {xd, yb}
is a connected 3-regular graph of order p(G′) = p(G) − 2. If |{u, v} ∩ {b, d}| = 1, say

b = u, then the graph G′ = (G−{a, z})∪ {xv, yb} is a connected 3-regular graph of order

p(G′) = p(G) − 2. If {u, v} ∩ {b, d} = φ, then the graph G′ = (G − {a, z}) ∪ {xu, yv} is

a connected 3-regular graph of order p(G′) = p(G) − 2. Suppose {a, b} ∩ {c, d} = φ. If

|N(a) ∩ {c, d}| = 2 (similarly if N(b) = {x, c, d}, N(c) = {y, a, b} or N(d) = {y, a, b}),
then |N(b) ∩ {c, d}| ≤ 1. Otherwise, G = K3,3 and p(G) = 6, a contradiction. We may

assume that bd /∈ E(G). Let N(d) = {a, y, z} and N(z) = {d, u, v}. If z = c, then x is a

cut vertex, a contradiction. Hence, z 6= c. Since N(a) = {x, c, d} and N(y) = {x, c, d},
{a, y} ∩ {u, v} = φ and then the graph G′ = (G − {d, z}) ∪ {au, yv} is a connected 3-
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regular graph of order p(G′) = p(G)− 2. Suppose |N(a) ∩ {c, d}| ≤ 1, |N(b) ∩ {c, d}| ≤ 1,

|N(c) ∩ {a, b}| ≤ 1 and |N(d) ∩ {a, b}| ≤ 1. If ac ∈ E(G) or bd ∈ E(G), then ad /∈ E(G)

and bc /∈ E(G). If ad ∈ E(G) or bc ∈ E(G), then ac /∈ E(G) and bd /∈ E(G). We may

assume ac /∈ E(G) and bd /∈ E(G). Then the graph G′ = (G − {x, y}) ∪ {ac, bd} is a

connected 3-regular graph of order p(G′) = p(G)− 2.

Theorem 2.5. Suppose G is a graph different from K1,1,3c+1 with p(G) ≥ 5, q(G) ≥ 6

and δ(G) ≥ 2. Then G has a (P3 ∪ P2)-packing with leave L, where

L =


φ if q(G) ≡ 0 (mod 3),

P2 if q(G) ≡ 1 (mod 3),

P3 if q(G) ≡ 2 (mod 3).

Proof. If q(G) = 6, then G = Gi, 1 ≤ i ≤ 5, given in Figure 2.1 By Lemma 2.1, we have

P3 ∪ P2|G.

Let G be a counterexample with fewest edges. We shall prove that the assertion holds

for G and obtain a contradiction. There are three cases to be considered.

Case 1: ∆(G) ≥ 4 and δ(G) ≥ 3.

By degree-sum formula, q(G) = 1
2

∑
x∈V (G) d(x) ≥ 1

2(4 + 3× 4) = 8. If q(G) = 8, then

G = G27. By Lemma 2.3, G has a (P3 ∪ P2)-packing with a P3 as the leave.

Now, suppose q(G) > 8. Let v be a vertex with d(v) = ∆(G) and N(v) = {v1, v2, . . . ,

v∆(G)}. If v1 is adjacent to some vi for i ≥ 2, say v1v2 ∈ E(G), let F1 = {v3vv4, v1v2}
and G′ = G − F1; otherwise, let u be a neighbor of v1 which is different from v and

G′ = G − F2, where F2 = {v2vv3, v1u}. Then the assertion holds for G′ by the choice of

G. Since G = G′ ∪ (P3 ∪ P2), the assertion holds for the graph G.

Case 2: G is 3-regular.

Suppose G is connected. If p(G) = 6, then G = G6 or G7. By Lemma 2.1, P3∪P2 | G.

For p(G) ≥ 8, by Lemma 2.4, G has an edge xy withN(x) = {x1, x2, y}, N(y) = {y1, y2, x},
N(x)∩N(y) = φ, x1y1 /∈ E(G) and x2y2 /∈ E(G) such that G′ = (G−{x, y})∪{x1y1, x2y2}
is a connected 3-regular graph of order p(G)− 2. By the choice of G, G′ has a (P3 ∪ P2)-

packing F with empty leave. Without loss of generality, we may consider the following

cases.

(1) If there is an F = {x1y1v1, x2y2} in F , then G has a (P3∪P2)-packing (F −{F})∪
{x1xx2, yy1} ∪ {xyy2, y1v1} with empty leave.

(2) If there are F1 = {v1v2v3, x1y1} and F2 = {u1u2u3, x2y2} in F , then G has a

(P3∪P2)-packing (F −{F1, F2})∪{x1xx2, yy1}∪{v1v2v3, xy}∪{u1u2u3, yy2} with empty

leave.

(3) If there are F1 = {v1v2v3, x1y1} and F2 = {x2y2u1, u2u3} in F , then G has a

(P3∪P2)-packing (F −{F1, F2})∪{x1xx2, yy1}∪{v1v2v3, xy}∪{yy2u1, u2u3} with empty
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leave.

(4) Suppose there are F1 = {x1y1v1, v2v3} and F2 = {x2y2u1, u2u3} (or F2 = {y2x2u1,

u2u3}) in F . If x1 /∈ {u2, u3}, then G has a (P3∪P2)-packing (F−{F1, F2})∪{x1xy, u2u3}∪
{yy1v1, v2v3} ∪ {yy2u1, xx2} (or {xx2u1, yy2}) with empty leave. If x1 = u2 or u3 (say

x1 = u2) and u3 6= v1, then G has a (P3 ∪ P2)-packing (F − {F1, F2}) ∪ {xx1u3, y1v1} ∪
{xyy1, v2v3} ∪ {yy2u1, xx2} (or {xx2u1, yy2}) with empty leave. If x1 = u2 and u3 = v1,

then G has a (P3 ∪P2)-packing (F −{F1, F2})∪{x1xy, y2u1 (or x2u1)}∪ {x1v1y1, v2v3}∪
{y1yy2, xx2} with empty leave. Hence, we have P3 ∪ P2 | G for any connected 3-regular

graph G.

If G is disconnected, let G = (mK4) ∪ H1 ∪ · · · ∪ Hn such that each Hi is different

from K4 and a connected 3-regular component, where m ≥ 0 and 1 ≤ i ≤ n. Since

P3 ∪ P2 | Hi by the choice of G, G −mK4 has a (P3 ∪ P2)-packing F with empty leave.

If m = 1, choose an F in F . Since K4 = 3P3 and F = 3P2, K4 ∪ F = 3(P3 ∪ P2).

Hence, P3 ∪ P2 | G. If m 6= 1, then G = m
2 (2K4) ∪ H1 ∪ · · · ∪ Hn when m is even and

G = m−3
2 (2K4) ∪ (3K4) ∪H1 ∪ · · · ∪Hn when m is odd. Since K4 = 2P3 ∪ 2P2, it is not

difficult to see that P3 ∪ P2 | (tK4) for t = 2 or 3. Hence, P3 ∪ P2 | (mK4) for m ≥ 2 and

then P3 ∪ P2 | G.

Case 3: δ(G) = 2.

Suppose G has a cycle-component. Let Cn = x1x2 · · ·xnx1 be the minimum cycle-

component. If 3 ≤ n ≤ 5, let G′ = G − Cn. Suppose n = 3 and Cn = x1x2x3x1. If

G = G8, G9, G19, G28 or G29, by Lemmas 2.1, 2.2 and 2.3, the assertion holds for these

graphs G. Otherwise, by the choice of G, G′ has a (P3 ∪ P2)-packing F with leave L.

Choose an F = {v1v2v3, v4v5} in F . Hence, G has a (P3 ∪ P2)-packing (F − {F}) ∪
{x1x2x3, v4v5} ∪ {v1v2v3, x1x3} with leave L.

Suppose n = 4 and Cn = x1x2x3x4x1. If G = G10, G11, G20, G21 or G30, by Lem-

mas 2.1, 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by the choice of

G, G′ has a (P3∪P2)-packing F with leave L. For L = φ, choose an F = {v1v2v3, v4v5} in

F . Then G has a (P3∪P2)-packing (F −{F})∪{x1x2x3, v4v5}∪{v1v2v3, x3x4} with leave

x1x4. For L = v1v2, G has a (P3 ∪P2)-packing F ∪ {x1x2x3, v1v2} with leave x3x4x1. For

L = v1v2v3, G has a (P3 ∪ P2)-packing F ∪ {x1x2x3, v1v2} ∪ {x3x4x1, v2v3} with empty

leave.

Suppose n = 5 and Cn = x1x2x3x4x5x1. If G = G22, G23, G31 or G32, by Lemmas 2.2

and 2.3, the assertion holds for these graphs G. Otherwise, by the choice of G, G′ has a

(P3∪P2)-packing F with leave L. Choose an F = {v1v2v3, v4v5} in F . For L = φ, G has a

(P3∪P2)-packing (F −{F})∪{x1x2x3, v4v5}∪{v1v2v3, x3x4} with leave x4x5x1. For L =

u1u2, G has a (P3∪P2)-packing (F−{F})∪{x1x2x3, v4v5}∪{x3x4x5, u1u2}∪{v1v2v3, x1x5}
with empty leave. For L = u1u2u3, G has a (P3 ∪ P2)-packing F ∪ {x1x2x3, u1u2} ∪
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{x3x4x5, u2u3} with leave x1x5.

For n ≥ 6, let Cn = x1x2 · · ·xnx1. If q(G) ≡ 0 (mod 3), let G′ = (G− {x2, x3, x4}) ∪
{x1x5}. Then q(G′) = q(G) − 3 ≡ 0 (mod 3). By the choice of G, G′ has a (P3 ∪ P2)-

packing F with empty leave. Choose an F in F with x1x5 ∈ F . Since F = {x1x5x6, v4v5},
{xnx1x5, v4v5} or {v1v2v3, x1x5}, (F − {x1x5}) ∪ {x1x2x3x4x5} (= P6 ∪ {v4v5} or P5 ∪
{v1v2v3}) = 2(P3 ∪ P2). Hence, G has a (P3 ∪ P2)-packing with empty leave.

If q(G) ≡ 1 (mod 3), let G′ = (G − x2) ∪ {x1x3}. Then q(G′) = q(G) − 1 ≡ 0

(mod 3). By the choice of G, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an

F in F such that x1x3 ∈ F . Since F = {x1x3x4, v4v5}, {xnx1x3, v4v5} or {v1v2v3, x1x3},
(F − {x1x3}) ∪ {x1x2x3} (= P4 ∪ {v4v5} or P3 ∪ {v1v2v3}) = (P3 ∪ P2) ∪ {L}, where L =

x1x2 or x2x3. Hence, G has a (P3 ∪ P2)-packing with leave L.

If q(G) ≡ 2 (mod 3), let G′ = (G − {x2, x3}) ∪ {x1x4}. Then q(G′) = q(G) − 2 ≡ 0

(mod 3). By the choice of G, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an

F in F such that x1x4 ∈ F . Since F = {x1x4x5, v4v5}, {xnx1x4, v4v5} or {v1v2v3, x1x4},
(F − {x1x4}) ∪ {x1x2x3x4} (= P5 ∪ {v4v5} or P4 ∪ {v1v2v3}) = (P3 ∪ P2) ∪ {L}, where

L = x1x2x3 or x2x3x4. Hence, G has a (P3 ∪ P2)-packing with leave L.

Suppose G has no cycle-component. Since δ(G) = 2, there is a path x0x1x2 · · ·xt (not

necessary open), called 2-path, in G with d(x0) ≥ 3, d(xt) ≥ 3 and d(xi) = 2 for 1 ≤ i < t,

where t ≥ 2. We may choose a 2-path such that t is as small as possible. Note that if

t ≥ 3, then G1 = G − {x1, x2, · · · , xt−1}, G2 = (G − {x1, x2, · · · , xt−1}) ∪ {x0xt} and

G3 = (G − {x1, x2, · · · , xt−2}) ∪ {x0xt−1} are all different from K1,1,3c+1, since K1,1,3c+1

has a 2-path with t = 2. Consider the following cases.

(1) x0xt ∈ E(G).

Suppose q(G) ≡ 2 (mod 3). If t = 2, let G′ = G − x1. Then q(G′) ≡ 0 (mod 3). If

G = G33, G34 or G35, by Lemma 2.3, G has a (P3 ∪ P2)-packing with a P3 as the leave.

Otherwise, by the choice of G, P3 ∪ P2 | G′. Hence, G has a (P3 ∪ P2)-packing with leave

x0x1x2.

If t = 3, let G′ = G− {x1, x2}. Then q(G′) ≡ 2 (mod 3). If G = G36, by Lemma 2.3,

G has a (P3 ∪ P2)-packing with a P3 as the leave. Otherwise, by the choice of G, G′ has

a (P3 ∪ P2)-packing F with L = v1v2v3 as the leave. If x0x3 = v1v2 or v2v3, then {L} ∪
{x0x1x2x3} = (P3∪P2)∪{L′}, where L′ = x0x3x2 or x1x0x3. If {x0, x3}∩{v1, v2, v3} = φ or

{v2}, then {L}∪{x0x1x2x3} = (P3∪P2)∪{L′}, where L′ = x0x1x2 or x1x2x3. If {x0, x3}∩
{v1, v2, v3} = {v1} or {v3}, then {L} ∪ {x0x1x2x3} = P6 = (P3 ∪ P2) ∪ {L′}, where L′ =

x0x1x2 or x1x2x3. Suppose {x0, x3} = {v1, v3}. Choose an F in F with x0x3 ∈ F . Then

F = {x0x3u3, u4u5}, {x3x0u3, u4u5} or {u1u2u3, x0x3}. If F = {x0x3u3, u4u5}, then {L}∪
F∪{x0x1x2x3} = {x0v2x3, x1x2}∪{x2x3u3, u4u5}∪{x1x0x3}. If F = {x3x0u3, u4u5}, then

{L}∪F∪{x0x1x2x3} = {x0v2x3, x1x2}∪{x1x0u3, u4u5}∪{x2x3x0}. If F = {u1u2u3, x0x3},
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then {L} ∪ F ∪ {x0x1x2x3} = {x0x3v2, x1x2} ∪ {x1x0v2, x2x3} ∪ {u1u2u3}. Hence, G has

a (P3 ∪ P2)-packing with a P3 as the leave.

If t ≥ 4, let G′ = (G − {x1, x2}) ∪ {x0x3}. Then q(G′) ≡ 0 (mod 3). By the choice

of G, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with x0x3 ∈
F . Then F = {x0x3x4, v4v5}, {x3x0v3, v4v5} or {v1v2v3, x0x3}. Hence, (F − {x0x3}) ∪
{x0x1x2x3} (= P5 ∪ {v4v5} or P4 ∪ {v1v2v3}) = (P3 ∪ P2) ∪ {L}, where L = x0x1x2 or

x1x2x3. Hence, G has a (P3 ∪ P2)-packing with leave L.

Suppose q(G) ≡ 1 (mod 3). Let G′ = G− {x0xt}. Then q(G′) ≡ 0 (mod 3). Since x1

is of degree two in G′ and x0xt /∈ E(G′), G′ is neither K4 nor K1,1,3c+1. By the choice of

G, G′ has a (P3 ∪ P2)-packing with empty leave. Hence, G has a (P3 ∪ P2)-packing with

leave x0xt.

Suppose q(G) ≡ 0 (mod 3). If t = 2, let G′ = G − x1. Then q(G′) ≡ 1 (mod 3). By

the choice of G, G′ has a (P3 ∪ P2)-packing F with an edge e as the leave. If {x0x1x2, e}
forms a P3 ∪P2, then P3 ∪P2 | G. If e = x0z, z 6= x2 (similarly if e = x2z, z 6= x0), choose

an F in F with x0x2 ∈ F . Then F = {x0x2v3, v4v5}, {x2x0v3, v4v5} or {v1v2v3, x0x2}.
If F = {x2x0v3, v4v5}, then F ∪ {zx0x1x2} = {x1x0x2, v4v5} ∪ {zx0v3, x1x2}. Suppose

F = {v1v2v3, x0x2}. If z = v2, then F ∪ {zx0x1x2} = {x1x0x2, v1v2} ∪ {x0zv3, x1x2}.
If z = v1 (similarly if z = v3), then F ∪ {zx0x1x2} = {x1x0x2, v2v3} ∪ {x0zv2, x1x2}.
If z 6= vi, i = 1, 2, 3, then F ∪ {zx0x1x2} = {x0x1x2, v1v2} ∪ {zx0x2, v2v3}. Suppose

F = {x0x2v3, v4v5}. If z 6= v3, then F ∪ {zx0x1x2} = {x1x0x2, v4v5} ∪ {x1x2v3, x0z}.
Let z = v3. Choose an F1 = {u1u2u3, u4u5} in F − {F}. If {x0, x2} ∩ V (F1) = φ,

then F ∪ F1 ∪ {zx0x1x2} = {x0x1x2, u4u5} ∪ {x0zx2, v4v5} ∪ {u1u2u3, x0x2}. Suppose

{x0, x2} ∩ V (F1) = {x0} (similarly if {x0, x2} ∩ V (F1) = {x2}). If x0 = u4 (similarly if

x0 = u5), then F1 ∪ {zx0x1x2} = {zx0u5, x1x2} ∪ {u1u2u3, x0x1}. If x0 = u1 (similarly

if x0 = u3, then F ∪ F1 ∪ {zx0x1x2} = {x1x0x2, u4u5} ∪ {x0zx2, v4v5} ∪ {u1u2u3, x1x2}.
If x0 = u2, then F1 ∪ {zx0x1x2} = {zx0u1, x1x2} ∪ {x1x0u3, u4u5}. Suppose {x0, x2} ∩
V (F1) = {x0, x2}. If x0 = u1 and x2 = u3 (similarly if x0 = u3 and x2 = u1), then

F ∪ F1 ∪ {zx0x1x2} = {x2x0u2, u4u5} ∪ {x1x2z, v4v5} ∪ {x1x0z, x2u2}. If x0 = ui, i =

1, 2, 3 and x2 = u4 or u5 (similarly if x2 = ui, i = 1, 2, 3 and x0 = u4 or u5), then

F1 ∪ {zx0x1x2} = {zx0x1, u4u5} ∪ {u1u2u3, x1x2}. Hence, P3 ∪ P2 | G.

Suppose e = x0x2. Since G is different from K1,1,3c+1, there is an edge v1v2 such

that e and v1v2 are vertex disjoint edges. Choose an F in F with v1v2 ∈ F . Then F =

{u1u2u3, v1v2} or {v1v2v3, v4v5}. Suppose F = {u1u2u3, v1v2}. If u1u2u3 = x0u2x2, choose

an F1 in F − {F}. By the same argument as the last paragraph, F ∪ F1 ∪ {x0x1x2x0} =

3(P3 ∪ P2). Otherwise, |{x0, x2} ∩ V (F )| ≤ 1. We may assume x2 6= ui, i = 1, 2, 3.

Then F1 ∪{x0x1x2x0} = {x1x0x2, v1v2}∪ {u1u2u3, x1x2}. Suppose F = {v1v2v3, v4v5}. If

|{x0, x2} ∩ V (F )| = 2, then x0 = v3 and x2 = v4 or v5 (similarly if x2 = v3 and x0 = v4
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or v5). Hence, F ∪ {x0x1x2x0} = {x1x2x0, v1v2} ∪ {x1x0v2, v4v5}. If {x0, x2} ∩ V (F ) =

{x0} (similarly if{x0, x2} ∩ V (F ) = {x2}), then x0 = vi, i = 3, 4, 5. If x0 = v3, then

F ∪ {x0x1x2x0} = {v1v2x0, x1x2} ∪ {x1x0x2, v4v5}. If x0 = v4 (similarly if x0 = v5),

F ∪ {x0x1x2x0} = {x1x2x0, v1v2} ∪ {x1x0v5, v2v3}. Hence, P3 ∪ P2 | G.

If t = 3, let G′ = G− {x1, x2}. Then q(G′) ≡ 0 (mod 3). If G = G12, by Lemma 2.1,

P3 ∪ P2 | G. Otherwise, by the choice of G, G′ has a (P3 ∪ P2)-packing F with empty

leave. Choose an F in F with x0x3 ∈ F . Then F = {x0x3v3, v4v5}, {x3x0v3, v4v5}
or {v1v2v3, x0x3}. If F = {x0x3v3, v4v5}, then F ∪ {x0x1x2x3} = {x0x1x2, x3v3} ∪
{x0x3x2, v4v5}. If F = {x3x0v3, v4v5}, then F ∪ {x0x1x2x3} = {x1x2x3, x0v3} ∪ {x1x0x3,

v4v5}. If F = {v1v2v3, x0x3}, then F ∪ {x0x1x2x3} = {x0x1x2, v1v2} ∪ {x0x3x2, v2v3}.
Thus, P3 ∪ P2 | G.

If t = 4, let G′ = G−{x1, x2, x3}. Then q(G′) ≡ 2 (mod 3). If G = G13, by Lemma 2.1,

P3∪P2 | G. Otherwise, by the choice of G, G′ has a (P3∪P2)-packing F with leave v1v2v3.

Since {v1v2v3} ∪ {x0x1x2x3x4} = {x0x1x2, x3x4} ∪ {v1v2v3, x2x3}, P3 ∪ P2 | G.

If t ≥ 5, let G′ = (G − {x1, x2, x3}) ∪ {x0x4}. Then q(G′) ≡ 0 (mod 3). By the

choice of G, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with

x0x4 ∈ F . Then F = {x0x4x5, v4v5}, {x4x0v3, v4v5} or {v1v2v3, x0x4} and (F −{x0x4})∪
{x0x1x2x3x4} (= P6 ∪ P2 or P5 ∪ P3) = 2(P3 ∪ P2). Hence, P3 ∪ P2 | G.

(2) x0xt /∈ E(G) and x0 6= xt.

Suppose q(G) ≡ 2 (mod 3). If t = 2, let G′ = G − x1. Then q(G′) ≡ 0 (mod 3). If

G′ = K1,1,3c+1, then the three partite sets are {u}, {v} and {x0, x2, w3, . . . , w3c+1}. Hence,

G = G′ ∪ {x0x1x2} = {x0x1x2, uv} ∪ (cK2,3) ∪ P3 = {x0x1x2, uv} ∪ (2c(P3 ∪ P2)) ∪ P3.

Otherwise, by the choice of G, G′ has a (P3 ∪ P2)-packing F with empty leave. Hence, G

has a (P3 ∪ P2)-packing F with leave x0x1x2.

If t ≥ 3, let G′ = (G − {x1, x2}) ∪ {x0x3}. Then q(G′) ≡ 0 (mod 3). If G = G37,

by Lemma 2.3, G has a (P3 ∪ P2)-packing with a P3 as the leave. Otherwise, by the

choice of G, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with

x0x3 ∈ F . Then F = {x0x3v3, v4v5}, {x3x0v3, v4v5} or {v1v2v3, x0x3}. Hence, (F −
{x0x3}) ∪ {x0x1x2x3} (= P5 ∪ P2 or P4 ∪ P3) = (P3 ∪ P2) ∪ {L}, where L = x0x1x2 or

x1x2x3. Hence, G has a (P3 ∪ P2)-packing with leave L.

Suppose q(G) ≡ 1 (mod 3). Let G′ = (G − x1) ∪ {x0x2}. Then q(G′) ≡ 0 (mod 3).

If G = G24 or G25, by Lemma 2.2, G has a (P3 ∪ P2)-packing with a P2 as the leave.

Otherwise, by the choice of G, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose

an F in F with x0x2 ∈ F . Then F = {x0x2v3, v4v5}, {x2x0v3, v4v5} or {v1v2v3, x0x2} and

(F − {x0x2}) ∪ {x0x1x2} (= P4 ∪ P2 or P3 ∪ P3) = (P3 ∪ P2) ∪ {L}, where L = x0x1 or

x1x2. Hence, G has a (P3 ∪ P2)-packing with leave L.

Suppose q(G) ≡ 0 (mod 3). If t = 2, let G′ = G − x1. Then q(G′) ≡ 1 (mod 3). By
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the choice of G, G′ has a (P3 ∪ P2)-packing F with an edge e as the leave. If {x0x1x2, e}
forms a P3 ∪ P2, then P3 ∪ P2 | G. Let e = x0z (similarly e = x2z). Choose an F in

F with x2 ∈ V (F ). Then F = {v1v2v3, x2v5}, {v1x2v3, v4v5} or {x2v2v3, v4v5}. Suppose

F = {v1v2v3, x0v5}. If z 6= v5, then F ∪{zx0x1x2} = {x1x0z, x2v5}∪{v1v2v3, x1x2}. Sup-

pose z = v5. If x0 = v1 (similarly if x0 = v3), then F ∪ {zx0x1x2} = {x1x0z, v2v3} ∪
{x1x2z, x0v2}. If x0 = v2, then F ∪ {zx0x1x2} = {x1x0v1, x2z} ∪ {zx0v3, x1x2}. If

x0 6= vi, i = 1, 2, 3, then F ∪ {zx0x1x2} = {x0x1x2, v1v2} ∪ {x0zx2, v2v3}. Suppose

F = {v1x2v3, v4v5}. Then z 6= v1 (similarly if z 6= v3) and F∪{zx0x1x2} = {x1x0z, x2v1}∪
{x1x2v3, v4v5}. Suppose F = {x2v2v3, v4v5}. If z is neither v2 nor v3, then F∪{zx0x1x2} =

{x1x0z, v2v3} ∪ {x1x2v2, v4v5}. Suppose z = v2. If x0 = v4 (similarly if x0 = v5), then

F ∪{zx0x1x2} = {x2zv3, x0x1}∪{zx0v5, x1x2}. If x0 6= vi, i = 4, 5, then F ∪{zx0x1x2} =

{x0x1x2, v2v3} ∪ {x0zx2, v4v5}. Suppose z = v3. If x0 = v4 (similarly if x0 = v5),

then F ∪ {zx0x1x2} = {x1x0v5, v2z} ∪ {x1x2v2, x0z}. Suppose x0 6= vi, i = 4, 5, then

F ∪ {zx0x1x2} is the disjoint union of 5-cycle x0x1x2v2zx0 and an edge v4v5. Since

d(x2) ≥ 3, there is an F1 in F − {F} such that x2 ∈ V (F1). By the same argument

as above, F1 ∪ {zx0x1x2} = 2(P3 ∪ P2) except F1 ∪ {zx0x1x2} is the disjoint union of

5-cycle x0x1x2u2zx0 and an edge u4u5. In this case, if v2 = u4 (similarly if v2 = u5,

then F ∪ F1 ∪ {zx0x1x2} = {x0x1x2, v4v5} ∪ {x0zv2, x2u2} ∪ {x2v2u5, zu2}; otherwise,

F ∪ F1 ∪ {zx0x1x2} = {x0x1x2, v4v5} ∪ {u2x2v2, x0z} ∪ {u2zv2, u4u5}. Hence, G has a

(P3 ∪ P2)-packing with empty leave.

If t = 3, let G′ = G − {x1, x2}. Then q(G′) ≡ 0 (mod 3). By the choice of G,

G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with x0 ∈ V (F ).

Then F = {x0v2x3, v4v5}, {x0v2v3, v4v5} (v3 6= x3), {v1x0v3, v4v5} or {v1v2v3, x0v5}. If

F = {x0v2x3, v4v5}, then F ∪ {x0x1x2x3} is a union of 5-cycle x0x1x2x3v2x0 and an edge

v4v5. By the same argument as above, we have P3 ∪ P2 | G. If F = {x0v2v3, v4v5} or

{v1x0v3, v4v5}, then F ∪ {x0x1x2x3} = {x0x1x2, v4v5} ∪ {x0v2v3 (or v1x0v3), x2x3}. If

F = {v1v2v3, x0v5}, then F ∪ {x0x1x2x3} = {x1x2x3, x0v5} ∪ {v1v2v3, x0x1}. Hence, G

has a (P3 ∪ P2)-packing with empty leave.

If t ≥ 4, let G′ = G − {x1, x2, x3} ∪ {x0x4}. Then q(G′) ≡ 0 (mod 3). By the

choice of G, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with

x0x4 ∈ F . Then F = {x0x4v3, v4v5}, {x4x0v3, v4v5} or {v1v2v3, x0x4} and (F −{x0x4})∪
{x0x1x2x3x4} (= P6 ∪ P2 or P5 ∪ P3) = 2(P3∪P2). Hence, G has a (P3∪P2)-packing with

empty leave.

(3) x0 = xt and t ≥ 3.

Suppose q(G) ≡ 2 (mod 3). For t = 3 or 4, if d(x0) ≥ 4, let G′ = G−{x1, x2, . . . , xt−1}.
If G = G38 or G39, by Lemma 2.3, G has a (P3 ∪ P2)-packing with a P3 as the leave.

Otherwise, by the choice of G, G′ has a (P3 ∪ P2)-packing F with leave L. If t = 3,
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then L = P3 and {L} ∪ {x0x1x2x0} = {L, x1x2} ∪ {x1x0x2}. If t = 4, then L = P2 and

{L} ∪ {x0x1x2x3x0} = {L, x1x2x3} ∪ {x1x0x3}. Hence, G has a (P3 ∪ P2)-packing with

a P3 as the leave. Suppose d(x0) = 3. Let N(x0) = {x1, xt−1, z}. In this case, d(z) ≥ 3.

Let G′ = G − {x0, x1, . . . , xt−1}. If G = G40, by Lemma 2.3, G has a (P3 ∪ P2)-packing

with a P3 as the leave. Otherwise, by the choice of G, G′ has a (P3 ∪ P2)-packing F with

leave L. If t = 3, then L = P2 and {L} ∪ {x0x1x2x0} ∪ {x0z} = {L, x0x1x2} ∪ {x2x0z}. If

t = 4, then L = φ and {x0x1x2x3x0} ∪ {x0z} = {x1x2x3, x0z} ∪ {x1x0x3}. Hence, G has

a (P3 ∪ P2)-packing with a P3 as the leave.

For t ≥ 5, let G′ = (G − {x2, x3}) ∪ {x1x4}. Then q(G′) ≡ 0 (mod 3). By the

choice of G, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with

x1x4 ∈ F . Then F = {x0x1x4, v4v5}, {x1x4x5, v4v5} or {v1v2v3, x1x4} and (F −{x1x4})∪
{x1x2x3x4} (= P5 ∪ P2 or P4 ∪ P3) = (P3∪P2)∪{L}, where L = x1x2x3 or x2x3x4. Hence,

G has a (P3 ∪ P2)-packing with leave L.

Suppose q(G) ≡ 1 (mod 3). For t = 3, if d(x0) ≥ 4, let G′ = G−{x1, x2}. If G = G26,

by Lemma 2.2, G has a (P3∪P2)-packing with a P2 as the leave. Otherwise, by the choice of

G, G′ has a (P3∪P2)-packing F with a P2 as the leave. Choose an F in F with x0 ∈ V (F ).

Then F = {x0v2v3, v4v5}, {v1x0v3, v4v5} or {v1v2v3, x0v5}. If F = {x0v2v3, v4v5} or

{v1x0v3, v4v5} , then F ∪ {x0x1x2x0} = {x1x0x2, v4v5} ∪ {x0v2v3 (or v1x0v3), x1x2}. If

F = {v1v2v3, x0v5}, then F ∪{x0x1x2x0} = {x0x1x2, v1v2}∪{x2x0v5, v2v3}. Hence, G has

a (P3 ∪ P2)-packing with a P2 as the leave. Suppose d(x0) = 3. Let N(x0) = {x1, x2, z}.
In this case, d(z) ≥ 3. Let G′ = G − x0z. Then q(G′) ≡ 0 (mod 3). By the choice of G,

G′ has a (P3 ∪ P2)-packing F with empty leave. Hence, G has a (P3 ∪ P2)-packing with

leave x0z.

For t ≥ 4, let G′ = (G − x2) ∪ {x1x3}. Then q(G′) ≡ 0 (mod 3). By the choice of

G, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with x1x3 ∈
F . Then F = {x0x1x3, v4v5}, {x1x3x4, v4v5} or {v1v2v3, x1x3} and (F − {x1x3}) ∪
{x1x2x3} (= P4 ∪ P2 or P3 ∪ P3) = (P3 ∪ P2) ∪ {L}, where L = x1x2 or x2x3. Hence,

G has a (P3 ∪ P2)-packing with a P2 as the leave.

Suppose q(G) ≡ 0 (mod 3). For 3 ≤ t ≤ 5, if d(x0) ≥ 4, let G′ = G−{x1, x2, . . . , xt−1}.
If G = G14 or G15, by Lemma 2.1, G has a (P3 ∪ P2)-packing with empty leave. Oth-

erwise, by the choice of G, G′ has a (P3 ∪ P2)-packing F with leave L. If t = 3, then

L = φ. Choose an F in F with x0 ∈ V (F ). Then F = {x0v2v3, v4v5}, {v1x0v3, v4v5}
or {v1v2v3, x0v5}. If F = {x0v2v3, v4v5} or {v1x0v3, v4v5}, then F ∪ {x0x1x2x0} =

{x1x0x2, v4v5}∪{x0v2v3 (or v1x0v3), x1x2}. If F = {v1v2v3, x0v5}, then F ∪{x0x1x2x0} =

{x0x1x2, v1v2} ∪ {x2x0v5, v2v3}. If t = 4, then L = P3 = x0 (= v1) v2v3, v1v2v3 or v1x0v3.

If L = x0v2v3 or v1v2v3, then {L} ∪ {x0x1x2x3x0} = {x1x2x3, v1v2} ∪ {x1x0x3, v2v3}.
If L = v1x0v3, then {L} ∪ {x0x1x2x3x0} = {x1x0v1, x2x3} ∪ {x3x0v3, x1x2}. If t = 5,
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then L = uv. If x0 is incident with uv, say x0 = u, then {x0x1x2x3x4x0} ∪ {uv} =

{x0x1x2, x3x4} ∪ {vx0x4, x2x3}. Otherwise, choose an F = {v1v2v3, v4v5} in F with

x0 ∈ V (F ). If x0 = v4 or v5, then F ∪ {x0x1x2x3x4x0} ∪ {uv} = {x0x1x2, uv} ∪
{x2x3x4, v4v5} ∪ {v1v2v3, x4x0}. If x0 = v1, v2 or v3, then F ∪ {x0x1x2x3x4x0} ∪ {uv} =

{x0x1x2, uv} ∪ {x3x4x0, v4v5} ∪ {v1v2v3, x2x3}. Hence, G has a (P3 ∪ P2)-packing with

empty leave.

Suppose d(x0) = 3. Let N(x0) = {x1, xt−1, z}. In this case, d(z) ≥ 3. Let G′ =

G−{x0, x1, . . . , xt−1}. If G = G16, G17 or G18, by Lemma 2.1, G has a (P3 ∪P2)-packing

with empty leave. Otherwise, by the choice of G, G′ has a (P3 ∪P2)-packing F with leave

L. If t = 3, then L = zv2v3, v1zv3 or v1v2v3. If L = zv2v3, then {L} ∪ {x0x1x2x0, x0z} =

{x0x1x2, zv2}∪{x2x0z, v2v3}. If L = v1zv3, then {L}∪{x0x1x2x0, x0z} = {x1x0x2, zv1}∪
{x0zv3, x1x2}. If L = v1v2v3, then {L}∪{x0x1x2x0, x0z} = {x0x1x2, v1v2}∪{x2x0z, v2v3}.
If t = 4, then L = v1v2 and {L} ∪ {x0x1x2x3x0, x0z} = {x1x2x3, x0z} ∪ {x1x0x3, v1v2}. If

t = 5, then L = φ and {x0x1x2x3x4x0, x0z} = {x0x1x2, x3x4} ∪ {x4x0z, x2x3}. Hence, G

has a (P3 ∪ P2)-packing with empty leave.

For t ≥ 6, let G′ = (G − {x2, x3, x4}) ∪ {x1x5}. Then q(G′) ≡ 0 (mod 3). By the

choice of G, G′ has a (P3 ∪ P2)-packing F with empty leave. Choose an F in F with

x1x5 ∈ F . Then F = {x0x1x5, v4v5}, {x1x5x6, v4v5} or {v1v2v3, x1x5} and (F −{x1x5})∪
{x0x1x2x3x4x5} (= P6 ∪ P2 or P5 ∪ P3) = 2(P3 ∪ P2). Hence, G has a (P3 ∪ P2)-packing

with empty leave.

Therefore, we complete the proof.

Now, we are ready to prove the Conjecture 1.1.

Theorem 2.6. If G is a graph with q(G) ≡ 0 (mod 3) and δ(G) ≥ 2, then H | G for

some graph H of size 3.

Proof. If q(G) = 3, then it is trivial that G | G. It have been argued that P4 | G if G = K4

or K1,1,3c+1. By Theorem 2.5, we have P3 ∪P2 | G. Therefore, we complete the proof.
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