Pack Graphs with Subgraphs of Size Three

Zhen-Chun Chen, Hung-Lin Fu and Kuo-Ching Huang*

Abstract

An H-packing \mathcal{F} of a graph G is a set of edge-disjoint subgraphs of G in which each subgraph is isomorphic to H. The leave L or the remainder graph L of a packing \mathcal{F} is the subgraph induced by the set of edges of G that does not occur in any subgraph of the packing \mathcal{F}. If a leave L contains no edges, or simply $L=\phi$, then G is said to be H-decomposable, denoted by $H \mid G$. In this paper, we prove a conjecture made by Chartrand, Saba and Mynhardt [13: If G is a graph of size $q(G) \equiv 0(\bmod 3)$ and $\delta(G) \geq 2$, then G is H-decomposable for some graph H of size 3 .

1. Introduction

By a graph $G=(V, E)$ we mean a finite, simple and undirected graph. The order, size, maximum and minimum degree of G are denoted by $p(G), q(G), \Delta(G)$ and $\delta(G)$, respectively. The neighborhood of a vertex v, denoted by $N(v)$, is the set of vertices adjacent to v. The graphs P_{n} and C_{k} are a path of order n and a cycle of order $k \geq 3$, respectively. The graph $G_{1} \cup G_{2}$ is the edge disjoint union of G_{1} and G_{2}. The graph $t H$ is the union of t copies of H. For more graph theoretic terminologies we refer to [11.

A graph G is said to be H-decomposable, denoted by $H \mid G$, if the edge set $E(G)$ of G can be partitioned into subsets such that the edge-induced subgraph of each subset is isomorphic to H. Graph decomposition is one of the most important topics in the study of both graph theory and combinatorial designs, not to mention their applications on many other fields. Quite a few research results are obtained in considering the decomposition of complete graphs or complete multipartite graphs into complete subgraphs or cycles. See [1,6, 8, 10, $18,22,25,31,33,35]$ for references. Decomposition problems of a general graphs could be more complicated, as a result of the failure of the tools and methods used on decomposition of well-structured graphs. On the other hand, if we consider the decomposition, packing or covering of a general graph, it is getting more complicate.

In [13, Chartrand, Saba and Mynhardt study prime graphs and proposed the following:

[^0]Conjecture 1.1. 13] Suppose G is a graph of size $q(G) \equiv 0(\bmod 3)$ and $\delta(G) \geq 2$. Then G is H-decomposable for some graph H of size 3 .

Conjecture 1.2. 13 Suppose G is a 2 -connected graph of order $p(G) \geq 4$ and of size $q(G) \equiv 0(\bmod 3)$. Then G is P_{4}-decomposable.

These conjectures motivate our study of decomposing a graph of size $3 k$ into k copies of isomorphic graphs of size 3. If $q(H)=3$, then $H=K_{3}, P_{4}, K_{1,3}, P_{3} \cup P_{2}$ or M_{3} (a matching of size 3). There are many research results of decomposing graphs into subgraphs of size three. See $\left[7,12,14,17,23,24,32\right.$. For convenience, we use $x_{1} x_{2} \cdots x_{t}$ and $x_{1} x_{2} \cdots x_{t} x_{1}$, respectively, to denote a path and a cycle of order t. Since the graph $D=\left\{x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{1}\right\} \cup\left\{x_{1} y_{1} x_{2}, x_{3} y_{2} x_{4}, x_{5} y_{3} x_{6}\right\}$ disproves the Conjecture 1.2 , we will focus on the Conjecture 1.1. In order to prove the Conjecture 1.1, for each given graph G such that $q(G) \equiv 0(\bmod 3)$, we have to find a graph H of size 3 and prove that $H \mid G$. It is not difficult to see that $G \mid G$ if $q(G)=3$ and the complete graph K_{4} is P_{4}-decomposable. Moreover, the complete bipartite graph $K_{2,3}$ is P_{4}-decomposable and $\left(P_{3} \cup P_{2}\right)$-decomposable and the complete 3-partite graph $K_{1,1,4}$ is P_{4}-decomposable. Since the graph $K_{1,1,3 c+1}=K_{1,1,4} \cup(c-1) K_{2,3}$, we have $P_{4} \mid K_{1,1,3 c+1}, c \geq 1$. In this paper, we prove the following to confirm the Conjecture 1.1.

Theorem 1.3. If G is a graph of size $6 \leq q(G) \equiv 0(\bmod 3)$ and $\delta(G) \geq 2$, then G is $\left(P_{3} \cup P_{2}\right)$-decomposable if and only if G is different from K_{4} and $K_{1,1,3 c+1}, c \geq 0$.

2. Main results

We start this section with the study of $\left(P_{3} \cup P_{2}\right)$-packings of graphs. An H-packing of a graph G is a set of edge-disjoint subgraphs of G in which each subgraph is isomorphic to H. An H-packing \mathcal{F} is maximum if $|\mathcal{F}| \geq\left|\mathcal{F}^{\prime}\right|$ for all other H-packings \mathcal{F}^{\prime} of G. The leave L of an H-packing \mathcal{F} is the subgraph induced by the set of edges of G that does not occur in any subgraph of the H-packing \mathcal{F}. Therefore, a maximum packing has a minimum leave. In what follows, all the leaves we consider are minimum. It is easy to see that $H \mid G$ if and only if G has an H-packing with empty leave L, that is, L contains no edge, or simply $L=\phi$.

The following lemmas are essential for proving the main theorem. Since they are easy to be proved, we omit the proofs.

Lemma 2.1. If $G \cong G_{i}, 1 \leq i \leq 18$, given in Figure 2.1, then $P_{3} \cup P_{2} \mid G$.

Lemma 2.2. If $G \cong G_{i}, 19 \leq i \leq 26$, given in Figure 2.2, then G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{2} as the leave.

Figure 2.2

Lemma 2.3. If $G \cong G_{i}, 27 \leq i \leq 40$, given in Figure 2.3, then G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{3} as the leave.

Figure 2.3

The followings are our main results.
Lemma 2.4. Suppose G is a connected 3 -regular graph of order $p(G) \geq 8$. Then there is an edge $x y \in E(G)$ with $N(x)=\{y, a, b\}, N(y)=\{x, c, d\}$, ac $\notin E(G)$ and $b d \notin E(G)$ such that the graph $G^{\prime}=(G-\{x, y\}) \cup\{a c, b d\}$ is a connected 3-regular graph of order $p\left(G^{\prime}\right)=p(G)-2$.

Proof. If G has a cut vertex, since G is 3-regular, G has a cut edge $x y$ such that G $\{x y\}=H_{1} \cup H_{2}$, where H_{1} is a block containing x and H_{2} is connected containing y. Let $N(x)=\{y, a, b\}$ and $N(y)=\{x, c, d\}$. Since H_{1} is a block, $H_{1}-x$ is connected. Hence, a and b are connected in $H_{1}-x$ and then the graph $G^{\prime}=(G-\{x, y\}) \cup\{a c, b d\}$ is a connected 3-regular graph of order $p\left(G^{\prime}\right)=p(G)-2$.

Let G be 2-connected. Suppose there is an edge $x y \in E(G)$ such that $\{x, y\}$ is a cut set. Then $G-\{x, y\}$ contains exact two components H_{1} and H_{2}. Otherwise, there a component H_{3} of $G-\{x, y\}$ such that $N(x) \cap V\left(H_{3}\right)=\phi$. Then y is a cut vertex, a contradiction. Moreover, $\left|N(x) \cap V\left(H_{i}\right)\right|=\left|N(y) \cap V\left(H_{i}\right)\right|=1$ for $i=1,2$. Let $N(x)=\{y, a, b\}$ and $N(y)=\{x, c, d\}$ such that a and c are in H_{1} and b and d are in H_{2}. If a and c are coincide, then a is a cut vertex, a contradiction. Hence, $a \neq c$. Similarly, $b \neq d$. Since H_{1} and H_{2} are components, the graph $G^{\prime}=(G-\{x, y\}) \cup\{a d, b c\}$ is a connected 3-regular graph of order $p\left(G^{\prime}\right)=p(G)-2$.

Suppose $G-\{u, v\}$ is connected for every edge $u v \in E(G)$. Choose an edge $x y \in E(G)$ with $N(x)=\{y, a, b\}$ and $N(y)=\{x, c, d\}$. If $\{a, b\}=\{c, d\}$, then $a b \notin E(G)$. Otherwise, $G=K_{4}$. Let $N(a)=\{x, y, z\}$ and $N(z)=\{a, u, v\}$. If $b \in N(z)$, then z is a cut vertex, a contradiction. Hence, $b \notin N(z)$ and then $N(x) \cap\{u, v\}=N(y) \cap\{u, v\}=\phi$. Thus, the graph $G^{\prime}=(G-\{a, z\}) \cup\{x u, y v\}$ is a connected 3-regular graph of order $p\left(G^{\prime}\right)=p(G)-2$. Suppose $|\{a, b\} \cap\{c, d\}|=1$, say $a=c$. If $a b \in E(G)$ (similarly if $a d \in E(G)$), then $N(a)=$ $\{x, y, b\}$. Let $N(b)=\{x, a, z\}$. If $z=d$, then d is a cut vertex, a contradiction. Hence, $z \neq d$. Let $N(z)=\{b, u, v\}$. Then the graph $G^{\prime}=(G-\{b, z\}) \cup\{x u, a v\}$ is a connected 3regular graph of order $p\left(G^{\prime}\right)=p(G)-2$. Suppose $N(a) \cap\{b, d\}=\phi$. Let $N(a)=\{x, y, z\}$ and $N(z)=\{a, u, v\}$. If $\{u, v\}=\{b, d\}$, then the graph $G^{\prime}=(G-\{a, z\}) \cup\{x d, y b\}$ is a connected 3-regular graph of order $p\left(G^{\prime}\right)=p(G)-2$. If $|\{u, v\} \cap\{b, d\}|=1$, say $b=u$, then the graph $G^{\prime}=(G-\{a, z\}) \cup\{x v, y b\}$ is a connected 3-regular graph of order $p\left(G^{\prime}\right)=p(G)-2$. If $\{u, v\} \cap\{b, d\}=\phi$, then the graph $G^{\prime}=(G-\{a, z\}) \cup\{x u, y v\}$ is a connected 3-regular graph of order $p\left(G^{\prime}\right)=p(G)-2$. Suppose $\{a, b\} \cap\{c, d\}=\phi$. If $|N(a) \cap\{c, d\}|=2$ (similarly if $N(b)=\{x, c, d\}, N(c)=\{y, a, b\}$ or $N(d)=\{y, a, b\}$), then $|N(b) \cap\{c, d\}| \leq 1$. Otherwise, $G=K_{3,3}$ and $p(G)=6$, a contradiction. We may assume that $b d \notin E(G)$. Let $N(d)=\{a, y, z\}$ and $N(z)=\{d, u, v\}$. If $z=c$, then x is a cut vertex, a contradiction. Hence, $z \neq c$. Since $N(a)=\{x, c, d\}$ and $N(y)=\{x, c, d\}$, $\{a, y\} \cap\{u, v\}=\phi$ and then the graph $G^{\prime}=(G-\{d, z\}) \cup\{a u, y v\}$ is a connected 3-
regular graph of order $p\left(G^{\prime}\right)=p(G)-2$. Suppose $|N(a) \cap\{c, d\}| \leq 1,|N(b) \cap\{c, d\}| \leq 1$, $|N(c) \cap\{a, b\}| \leq 1$ and $|N(d) \cap\{a, b\}| \leq 1$. If $a c \in E(G)$ or $b d \in E(G)$, then $a d \notin E(G)$ and $b c \notin E(G)$. If $a d \in E(G)$ or $b c \in E(G)$, then $a c \notin E(G)$ and $b d \notin E(G)$. We may assume $a c \notin E(G)$ and $b d \notin E(G)$. Then the graph $G^{\prime}=(G-\{x, y\}) \cup\{a c, b d\}$ is a connected 3-regular graph of order $p\left(G^{\prime}\right)=p(G)-2$.

Theorem 2.5. Suppose G is a graph different from $K_{1,1,3 c+1}$ with $p(G) \geq 5, q(G) \geq 6$ and $\delta(G) \geq 2$. Then G has a $\left(P_{3} \cup P_{2}\right)$-packing with leave L, where

$$
L=\left\{\begin{array}{ll}
\phi & \text { if } q(G) \equiv 0 \\
P_{2} & \text { if } q(G) \equiv 1 \\
P_{3} & \text { if } q(G) \equiv 2
\end{array}(\bmod 3), ~(\bmod 3) . ~ \$\right.
$$

Proof. If $q(G)=6$, then $G=G_{i}, 1 \leq i \leq 5$, given in Figure 2.1 By Lemma 2.1, we have $P_{3} \cup P_{2} \mid G$.

Let G be a counterexample with fewest edges. We shall prove that the assertion holds for G and obtain a contradiction. There are three cases to be considered.

Case 1: $\Delta(G) \geq 4$ and $\delta(G) \geq 3$.
By degree-sum formula, $q(G)=\frac{1}{2} \sum_{x \in V(G)} d(x) \geq \frac{1}{2}(4+3 \times 4)=8$. If $q(G)=8$, then $G=G_{27}$. By Lemma 2.3, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{3} as the leave.

Now, suppose $q(G)>8$. Let v be a vertex with $d(v)=\Delta(G)$ and $N(v)=\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{\Delta(G)}\right\}$. If v_{1} is adjacent to some v_{i} for $i \geq 2$, say $v_{1} v_{2} \in E(G)$, let $F_{1}=\left\{v_{3} v v_{4}, v_{1} v_{2}\right\}$ and $G^{\prime}=G-F_{1}$; otherwise, let u be a neighbor of v_{1} which is different from v and $G^{\prime}=G-F_{2}$, where $F_{2}=\left\{v_{2} v v_{3}, v_{1} u\right\}$. Then the assertion holds for G^{\prime} by the choice of G. Since $G=G^{\prime} \cup\left(P_{3} \cup P_{2}\right)$, the assertion holds for the graph G.

Case 2: G is 3 -regular.
Suppose G is connected. If $p(G)=6$, then $G=G_{6}$ or G_{7}. By Lemma 2.1, $P_{3} \cup P_{2} \mid G$. For $p(G) \geq 8$, by Lemma 2.4, G has an edge $x y$ with $N(x)=\left\{x_{1}, x_{2}, y\right\}, N(y)=\left\{y_{1}, y_{2}, x\right\}$, $N(x) \cap N(y)=\phi, x_{1} y_{1} \notin E(G)$ and $x_{2} y_{2} \notin E(G)$ such that $G^{\prime}=(G-\{x, y\}) \cup\left\{x_{1} y_{1}, x_{2} y_{2}\right\}$ is a connected 3 -regular graph of order $p(G)-2$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$ packing \mathcal{F} with empty leave. Without loss of generality, we may consider the following cases.
(1) If there is an $F=\left\{x_{1} y_{1} v_{1}, x_{2} y_{2}\right\}$ in \mathcal{F}, then G has a $\left(P_{3} \cup P_{2}\right)$-packing $(\mathcal{F}-\{F\}) \cup$ $\left\{x_{1} x x_{2}, y y_{1}\right\} \cup\left\{x y y_{2}, y_{1} v_{1}\right\}$ with empty leave.
(2) If there are $F_{1}=\left\{v_{1} v_{2} v_{3}, x_{1} y_{1}\right\}$ and $F_{2}=\left\{u_{1} u_{2} u_{3}, x_{2} y_{2}\right\}$ in \mathcal{F}, then G has a $\left(P_{3} \cup P_{2}\right)$-packing $\left(\mathcal{F}-\left\{F_{1}, F_{2}\right\}\right) \cup\left\{x_{1} x x_{2}, y y_{1}\right\} \cup\left\{v_{1} v_{2} v_{3}, x y\right\} \cup\left\{u_{1} u_{2} u_{3}, y y_{2}\right\}$ with empty leave.
(3) If there are $F_{1}=\left\{v_{1} v_{2} v_{3}, x_{1} y_{1}\right\}$ and $F_{2}=\left\{x_{2} y_{2} u_{1}, u_{2} u_{3}\right\}$ in \mathcal{F}, then G has a $\left(P_{3} \cup P_{2}\right)$-packing $\left(\mathcal{F}-\left\{F_{1}, F_{2}\right\}\right) \cup\left\{x_{1} x x_{2}, y y_{1}\right\} \cup\left\{v_{1} v_{2} v_{3}, x y\right\} \cup\left\{y y_{2} u_{1}, u_{2} u_{3}\right\}$ with empty
leave.
(4) Suppose there are $F_{1}=\left\{x_{1} y_{1} v_{1}, v_{2} v_{3}\right\}$ and $F_{2}=\left\{x_{2} y_{2} u_{1}, u_{2} u_{3}\right\}$ (or $F_{2}=\left\{y_{2} x_{2} u_{1}\right.$, $\left.\left.u_{2} u_{3}\right\}\right)$ in \mathcal{F}. If $x_{1} \notin\left\{u_{2}, u_{3}\right\}$, then G has a $\left(P_{3} \cup P_{2}\right)$-packing $\left(\mathcal{F}-\left\{F_{1}, F_{2}\right\}\right) \cup\left\{x_{1} x y, u_{2} u_{3}\right\} \cup$ $\left\{y y_{1} v_{1}, v_{2} v_{3}\right\} \cup\left\{y y_{2} u_{1}, x x_{2}\right\}$ (or $\left\{x x_{2} u_{1}, y y_{2}\right\}$) with empty leave. If $x_{1}=u_{2}$ or u_{3} (say $\left.x_{1}=u_{2}\right)$ and $u_{3} \neq v_{1}$, then G has a $\left(P_{3} \cup P_{2}\right)$-packing $\left(\mathcal{F}-\left\{F_{1}, F_{2}\right\}\right) \cup\left\{x x_{1} u_{3}, y_{1} v_{1}\right\} \cup$ $\left\{x y y_{1}, v_{2} v_{3}\right\} \cup\left\{y y_{2} u_{1}, x x_{2}\right\}$ (or $\left\{x x_{2} u_{1}, y y_{2}\right\}$) with empty leave. If $x_{1}=u_{2}$ and $u_{3}=v_{1}$, then G has a $\left(P_{3} \cup P_{2}\right)$-packing $\left(\mathcal{F}-\left\{F_{1}, F_{2}\right\}\right) \cup\left\{x_{1} x y, y_{2} u_{1}\left(\right.\right.$ or $\left.\left.x_{2} u_{1}\right)\right\} \cup\left\{x_{1} v_{1} y_{1}, v_{2} v_{3}\right\} \cup$ $\left\{y_{1} y y_{2}, x x_{2}\right\}$ with empty leave. Hence, we have $P_{3} \cup P_{2} \mid G$ for any connected 3-regular graph G.

If G is disconnected, let $G=\left(m K_{4}\right) \cup H_{1} \cup \cdots \cup H_{n}$ such that each H_{i} is different from K_{4} and a connected 3-regular component, where $m \geq 0$ and $1 \leq i \leq n$. Since $P_{3} \cup P_{2} \mid H_{i}$ by the choice of $G, G-m K_{4}$ has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. If $m=1$, choose an F in \mathcal{F}. Since $K_{4}=3 P_{3}$ and $F=3 P_{2}, K_{4} \cup F=3\left(P_{3} \cup P_{2}\right)$. Hence, $P_{3} \cup P_{2} \mid G$. If $m \neq 1$, then $G=\frac{m}{2}\left(2 K_{4}\right) \cup H_{1} \cup \cdots \cup H_{n}$ when m is even and $G=\frac{m-3}{2}\left(2 K_{4}\right) \cup\left(3 K_{4}\right) \cup H_{1} \cup \cdots \cup H_{n}$ when m is odd. Since $K_{4}=2 P_{3} \cup 2 P_{2}$, it is not difficult to see that $P_{3} \cup P_{2} \mid\left(t K_{4}\right)$ for $t=2$ or 3. Hence, $P_{3} \cup P_{2} \mid\left(m K_{4}\right)$ for $m \geq 2$ and then $P_{3} \cup P_{2} \mid G$.

Case 3: $\delta(G)=2$.
Suppose G has a cycle-component. Let $C_{n}=x_{1} x_{2} \cdots x_{n} x_{1}$ be the minimum cyclecomponent. If $3 \leq n \leq 5$, let $G^{\prime}=G-C_{n}$. Suppose $n=3$ and $C_{n}=x_{1} x_{2} x_{3} x_{1}$. If $G=G_{8}, G_{9}, G_{19}, G_{28}$ or G_{29}, by Lemmas 2.1, 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with leave L. Choose an $F=\left\{v_{1} v_{2} v_{3}, v_{4} v_{5}\right\}$ in \mathcal{F}. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing $(\mathcal{F}-\{F\}) \cup$ $\left\{x_{1} x_{2} x_{3}, v_{4} v_{5}\right\} \cup\left\{v_{1} v_{2} v_{3}, x_{1} x_{3}\right\}$ with leave L.

Suppose $n=4$ and $C_{n}=x_{1} x_{2} x_{3} x_{4} x_{1}$. If $G=G_{10}, G_{11}, G_{20}, G_{21}$ or G_{30}, by Lemmas 2.1, 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with leave L. For $L=\phi$, choose an $F=\left\{v_{1} v_{2} v_{3}, v_{4} v_{5}\right\}$ in \mathcal{F}. Then G has a $\left(P_{3} \cup P_{2}\right)$-packing $(\mathcal{F}-\{F\}) \cup\left\{x_{1} x_{2} x_{3}, v_{4} v_{5}\right\} \cup\left\{v_{1} v_{2} v_{3}, x_{3} x_{4}\right\}$ with leave $x_{1} x_{4}$. For $L=v_{1} v_{2}, G$ has a $\left(P_{3} \cup P_{2}\right)$-packing $\mathcal{F} \cup\left\{x_{1} x_{2} x_{3}, v_{1} v_{2}\right\}$ with leave $x_{3} x_{4} x_{1}$. For $L=v_{1} v_{2} v_{3}, G$ has a $\left(P_{3} \cup P_{2}\right)$-packing $\mathcal{F} \cup\left\{x_{1} x_{2} x_{3}, v_{1} v_{2}\right\} \cup\left\{x_{3} x_{4} x_{1}, v_{2} v_{3}\right\}$ with empty leave.

Suppose $n=5$ and $C_{n}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$. If $G=G_{22}, G_{23}, G_{31}$ or G_{32}, by Lemmas 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with leave L. Choose an $F=\left\{v_{1} v_{2} v_{3}, v_{4} v_{5}\right\}$ in \mathcal{F}. For $L=\phi, G$ has a $\left(P_{3} \cup P_{2}\right)$-packing $(\mathcal{F}-\{F\}) \cup\left\{x_{1} x_{2} x_{3}, v_{4} v_{5}\right\} \cup\left\{v_{1} v_{2} v_{3}, x_{3} x_{4}\right\}$ with leave $x_{4} x_{5} x_{1}$. For $L=$ $u_{1} u_{2}, G$ has a $\left(P_{3} \cup P_{2}\right)$-packing $(\mathcal{F}-\{F\}) \cup\left\{x_{1} x_{2} x_{3}, v_{4} v_{5}\right\} \cup\left\{x_{3} x_{4} x_{5}, u_{1} u_{2}\right\} \cup\left\{v_{1} v_{2} v_{3}, x_{1} x_{5}\right\}$ with empty leave. For $L=u_{1} u_{2} u_{3}, G$ has a $\left(P_{3} \cup P_{2}\right)$-packing $\mathcal{F} \cup\left\{x_{1} x_{2} x_{3}, u_{1} u_{2}\right\} \cup$
$\left\{x_{3} x_{4} x_{5}, u_{2} u_{3}\right\}$ with leave $x_{1} x_{5}$.
For $n \geq 6$, let $C_{n}=x_{1} x_{2} \cdots x_{n} x_{1}$. If $q(G) \equiv 0(\bmod 3)$, let $G^{\prime}=\left(G-\left\{x_{2}, x_{3}, x_{4}\right\}\right) \cup$ $\left\{x_{1} x_{5}\right\}$. Then $q\left(G^{\prime}\right)=q(G)-3 \equiv 0(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$ packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{1} x_{5} \in F$. Since $F=\left\{x_{1} x_{5} x_{6}, v_{4} v_{5}\right\}$, $\left\{x_{n} x_{1} x_{5}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{1} x_{5}\right\},\left(F-\left\{x_{1} x_{5}\right\}\right) \cup\left\{x_{1} x_{2} x_{3} x_{4} x_{5}\right\}\left(=P_{6} \cup\left\{v_{4} v_{5}\right\}\right.$ or $P_{5} \cup$ $\left.\left\{v_{1} v_{2} v_{3}\right\}\right)=2\left(P_{3} \cup P_{2}\right)$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with empty leave.

If $q(G) \equiv 1(\bmod 3)$, let $G^{\prime}=\left(G-x_{2}\right) \cup\left\{x_{1} x_{3}\right\}$. Then $q\left(G^{\prime}\right)=q(G)-1 \equiv 0$ $(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} such that $x_{1} x_{3} \in F$. Since $F=\left\{x_{1} x_{3} x_{4}, v_{4} v_{5}\right\},\left\{x_{n} x_{1} x_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{1} x_{3}\right\}$, $\left(F-\left\{x_{1} x_{3}\right\}\right) \cup\left\{x_{1} x_{2} x_{3}\right\}\left(=P_{4} \cup\left\{v_{4} v_{5}\right\}\right.$ or $\left.P_{3} \cup\left\{v_{1} v_{2} v_{3}\right\}\right)=\left(P_{3} \cup P_{2}\right) \cup\{L\}$, where $L=$ $x_{1} x_{2}$ or $x_{2} x_{3}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with leave L.

If $q(G) \equiv 2(\bmod 3)$, let $G^{\prime}=\left(G-\left\{x_{2}, x_{3}\right\}\right) \cup\left\{x_{1} x_{4}\right\}$. Then $q\left(G^{\prime}\right)=q(G)-2 \equiv 0$ $(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} such that $x_{1} x_{4} \in F$. Since $F=\left\{x_{1} x_{4} x_{5}, v_{4} v_{5}\right\},\left\{x_{n} x_{1} x_{4}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{1} x_{4}\right\}$, $\left(F-\left\{x_{1} x_{4}\right\}\right) \cup\left\{x_{1} x_{2} x_{3} x_{4}\right\}\left(=P_{5} \cup\left\{v_{4} v_{5}\right\}\right.$ or $\left.P_{4} \cup\left\{v_{1} v_{2} v_{3}\right\}\right)=\left(P_{3} \cup P_{2}\right) \cup\{L\}$, where $L=x_{1} x_{2} x_{3}$ or $x_{2} x_{3} x_{4}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with leave L.

Suppose G has no cycle-component. Since $\delta(G)=2$, there is a path $x_{0} x_{1} x_{2} \cdots x_{t}$ (not necessary open), called 2-path, in G with $d\left(x_{0}\right) \geq 3, d\left(x_{t}\right) \geq 3$ and $d\left(x_{i}\right)=2$ for $1 \leq i<t$, where $t \geq 2$. We may choose a 2-path such that t is as small as possible. Note that if $t \geq 3$, then $G_{1}=G-\left\{x_{1}, x_{2}, \cdots, x_{t-1}\right\}, G_{2}=\left(G-\left\{x_{1}, x_{2}, \cdots, x_{t-1}\right\}\right) \cup\left\{x_{0} x_{t}\right\}$ and $G_{3}=\left(G-\left\{x_{1}, x_{2}, \cdots, x_{t-2}\right\}\right) \cup\left\{x_{0} x_{t-1}\right\}$ are all different from $K_{1,1,3 c+1}$, since $K_{1,1,3 c+1}$ has a 2 -path with $t=2$. Consider the following cases.
(1) $x_{0} x_{t} \in E(G)$.

Suppose $q(G) \equiv 2(\bmod 3)$. If $t=2$, let $G^{\prime}=G-x_{1}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. If $G=G_{33}, G_{34}$ or G_{35}, by Lemma 2.3, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{3} as the leave. Otherwise, by the choice of $G, P_{3} \cup P_{2} \mid G^{\prime}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with leave $x_{0} x_{1} x_{2}$.

If $t=3$, let $G^{\prime}=G-\left\{x_{1}, x_{2}\right\}$. Then $q\left(G^{\prime}\right) \equiv 2(\bmod 3)$. If $G=G_{36}$, by Lemma 2.3 , G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{3} as the leave. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with $L=v_{1} v_{2} v_{3}$ as the leave. If $x_{0} x_{3}=v_{1} v_{2}$ or $v_{2} v_{3}$, then $\{L\} \cup$ $\left\{x_{0} x_{1} x_{2} x_{3}\right\}=\left(P_{3} \cup P_{2}\right) \cup\left\{L^{\prime}\right\}$, where $L^{\prime}=x_{0} x_{3} x_{2}$ or $x_{1} x_{0} x_{3}$. If $\left\{x_{0}, x_{3}\right\} \cap\left\{v_{1}, v_{2}, v_{3}\right\}=\phi$ or $\left\{v_{2}\right\}$, then $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}=\left(P_{3} \cup P_{2}\right) \cup\left\{L^{\prime}\right\}$, where $L^{\prime}=x_{0} x_{1} x_{2}$ or $x_{1} x_{2} x_{3}$. If $\left\{x_{0}, x_{3}\right\} \cap$ $\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{v_{1}\right\}$ or $\left\{v_{3}\right\}$, then $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}=P_{6}=\left(P_{3} \cup P_{2}\right) \cup\left\{L^{\prime}\right\}$, where $L^{\prime}=$ $x_{0} x_{1} x_{2}$ or $x_{1} x_{2} x_{3}$. Suppose $\left\{x_{0}, x_{3}\right\}=\left\{v_{1}, v_{3}\right\}$. Choose an F in \mathcal{F} with $x_{0} x_{3} \in F$. Then $F=\left\{x_{0} x_{3} u_{3}, u_{4} u_{5}\right\},\left\{x_{3} x_{0} u_{3}, u_{4} u_{5}\right\}$ or $\left\{u_{1} u_{2} u_{3}, x_{0} x_{3}\right\}$. If $F=\left\{x_{0} x_{3} u_{3}, u_{4} u_{5}\right\}$, then $\{L\} \cup$ $F \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}=\left\{x_{0} v_{2} x_{3}, x_{1} x_{2}\right\} \cup\left\{x_{2} x_{3} u_{3}, u_{4} u_{5}\right\} \cup\left\{x_{1} x_{0} x_{3}\right\}$. If $F=\left\{x_{3} x_{0} u_{3}, u_{4} u_{5}\right\}$, then $\{L\} \cup F \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}=\left\{x_{0} v_{2} x_{3}, x_{1} x_{2}\right\} \cup\left\{x_{1} x_{0} u_{3}, u_{4} u_{5}\right\} \cup\left\{x_{2} x_{3} x_{0}\right\}$. If $F=\left\{u_{1} u_{2} u_{3}, x_{0} x_{3}\right\}$,
then $\{L\} \cup F \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}=\left\{x_{0} x_{3} v_{2}, x_{1} x_{2}\right\} \cup\left\{x_{1} x_{0} v_{2}, x_{2} x_{3}\right\} \cup\left\{u_{1} u_{2} u_{3}\right\}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{3} as the leave.

If $t \geq 4$, let $G^{\prime}=\left(G-\left\{x_{1}, x_{2}\right\}\right) \cup\left\{x_{0} x_{3}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{0} x_{3} \in$ F. Then $F=\left\{x_{0} x_{3} x_{4}, v_{4} v_{5}\right\},\left\{x_{3} x_{0} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{0} x_{3}\right\}$. Hence, $\left(F-\left\{x_{0} x_{3}\right\}\right) \cup$ $\left\{x_{0} x_{1} x_{2} x_{3}\right\}\left(=P_{5} \cup\left\{v_{4} v_{5}\right\}\right.$ or $\left.P_{4} \cup\left\{v_{1} v_{2} v_{3}\right\}\right)=\left(P_{3} \cup P_{2}\right) \cup\{L\}$, where $L=x_{0} x_{1} x_{2}$ or $x_{1} x_{2} x_{3}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with leave L.

Suppose $q(G) \equiv 1(\bmod 3)$. Let $G^{\prime}=G-\left\{x_{0} x_{t}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. Since x_{1} is of degree two in G^{\prime} and $x_{0} x_{t} \notin E\left(G^{\prime}\right), G^{\prime}$ is neither K_{4} nor $K_{1,1,3 c+1}$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing with empty leave. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with leave $x_{0} x_{t}$.

Suppose $q(G) \equiv 0(\bmod 3)$. If $t=2$, let $G^{\prime}=G-x_{1}$. Then $q\left(G^{\prime}\right) \equiv 1(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with an edge e as the leave. If $\left\{x_{0} x_{1} x_{2}, e\right\}$ forms a $P_{3} \cup P_{2}$, then $P_{3} \cup P_{2} \mid G$. If $e=x_{0} z, z \neq x_{2}$ (similarly if $e=x_{2} z, z \neq x_{0}$), choose an F in \mathcal{F} with $x_{0} x_{2} \in F$. Then $F=\left\{x_{0} x_{2} v_{3}, v_{4} v_{5}\right\},\left\{x_{2} x_{0} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{0} x_{2}\right\}$. If $F=\left\{x_{2} x_{0} v_{3}, v_{4} v_{5}\right\}$, then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{1} x_{0} x_{2}, v_{4} v_{5}\right\} \cup\left\{z x_{0} v_{3}, x_{1} x_{2}\right\}$. Suppose $F=\left\{v_{1} v_{2} v_{3}, x_{0} x_{2}\right\}$. If $z=v_{2}$, then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{1} x_{0} x_{2}, v_{1} v_{2}\right\} \cup\left\{x_{0} z v_{3}, x_{1} x_{2}\right\}$. If $z=v_{1}$ (similarly if $z=v_{3}$), then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{1} x_{0} x_{2}, v_{2} v_{3}\right\} \cup\left\{x_{0} z v_{2}, x_{1} x_{2}\right\}$. If $z \neq v_{i}, i=1,2,3$, then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{0} x_{1} x_{2}, v_{1} v_{2}\right\} \cup\left\{z x_{0} x_{2}, v_{2} v_{3}\right\}$. Suppose $F=\left\{x_{0} x_{2} v_{3}, v_{4} v_{5}\right\}$. If $z \neq v_{3}$, then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{1} x_{0} x_{2}, v_{4} v_{5}\right\} \cup\left\{x_{1} x_{2} v_{3}, x_{0} z\right\}$. Let $z=v_{3}$. Choose an $F_{1}=\left\{u_{1} u_{2} u_{3}, u_{4} u_{5}\right\}$ in $\mathcal{F}-\{F\}$. If $\left\{x_{0}, x_{2}\right\} \cap V\left(F_{1}\right)=\phi$, then $F \cup F_{1} \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{0} x_{1} x_{2}, u_{4} u_{5}\right\} \cup\left\{x_{0} z x_{2}, v_{4} v_{5}\right\} \cup\left\{u_{1} u_{2} u_{3}, x_{0} x_{2}\right\}$. Suppose $\left\{x_{0}, x_{2}\right\} \cap V\left(F_{1}\right)=\left\{x_{0}\right\}$ (similarly if $\left\{x_{0}, x_{2}\right\} \cap V\left(F_{1}\right)=\left\{x_{2}\right\}$). If $x_{0}=u_{4}$ (similarly if $x_{0}=u_{5}$), then $F_{1} \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{z x_{0} u_{5}, x_{1} x_{2}\right\} \cup\left\{u_{1} u_{2} u_{3}, x_{0} x_{1}\right\}$. If $x_{0}=u_{1}$ (similarly if $x_{0}=u_{3}$, then $F \cup F_{1} \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{1} x_{0} x_{2}, u_{4} u_{5}\right\} \cup\left\{x_{0} z x_{2}, v_{4} v_{5}\right\} \cup\left\{u_{1} u_{2} u_{3}, x_{1} x_{2}\right\}$. If $x_{0}=u_{2}$, then $F_{1} \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{z x_{0} u_{1}, x_{1} x_{2}\right\} \cup\left\{x_{1} x_{0} u_{3}, u_{4} u_{5}\right\}$. Suppose $\left\{x_{0}, x_{2}\right\} \cap$ $V\left(F_{1}\right)=\left\{x_{0}, x_{2}\right\}$. If $x_{0}=u_{1}$ and $x_{2}=u_{3}$ (similarly if $x_{0}=u_{3}$ and $x_{2}=u_{1}$), then $F \cup F_{1} \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{2} x_{0} u_{2}, u_{4} u_{5}\right\} \cup\left\{x_{1} x_{2} z, v_{4} v_{5}\right\} \cup\left\{x_{1} x_{0} z, x_{2} u_{2}\right\}$. If $x_{0}=u_{i}, i=$ $1,2,3$ and $x_{2}=u_{4}$ or u_{5} (similarly if $x_{2}=u_{i}, i=1,2,3$ and $x_{0}=u_{4}$ or u_{5}), then $F_{1} \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{z x_{0} x_{1}, u_{4} u_{5}\right\} \cup\left\{u_{1} u_{2} u_{3}, x_{1} x_{2}\right\}$. Hence, $P_{3} \cup P_{2} \mid G$.

Suppose $e=x_{0} x_{2}$. Since G is different from $K_{1,1,3 c+1}$, there is an edge $v_{1} v_{2}$ such that e and $v_{1} v_{2}$ are vertex disjoint edges. Choose an F in \mathcal{F} with $v_{1} v_{2} \in F$. Then $F=$ $\left\{u_{1} u_{2} u_{3}, v_{1} v_{2}\right\}$ or $\left\{v_{1} v_{2} v_{3}, v_{4} v_{5}\right\}$. Suppose $F=\left\{u_{1} u_{2} u_{3}, v_{1} v_{2}\right\}$. If $u_{1} u_{2} u_{3}=x_{0} u_{2} x_{2}$, choose an F_{1} in $\mathcal{F}-\{F\}$. By the same argument as the last paragraph, $F \cup F_{1} \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\}=$ $3\left(P_{3} \cup P_{2}\right)$. Otherwise, $\left|\left\{x_{0}, x_{2}\right\} \cap V(F)\right| \leq 1$. We may assume $x_{2} \neq u_{i}, i=1,2,3$. Then $F_{1} \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\}=\left\{x_{1} x_{0} x_{2}, v_{1} v_{2}\right\} \cup\left\{u_{1} u_{2} u_{3}, x_{1} x_{2}\right\}$. Suppose $F=\left\{v_{1} v_{2} v_{3}, v_{4} v_{5}\right\}$. If $\left|\left\{x_{0}, x_{2}\right\} \cap V(F)\right|=2$, then $x_{0}=v_{3}$ and $x_{2}=v_{4}$ or v_{5} (similarly if $x_{2}=v_{3}$ and $x_{0}=v_{4}$
or v_{5}). Hence, $F \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\}=\left\{x_{1} x_{2} x_{0}, v_{1} v_{2}\right\} \cup\left\{x_{1} x_{0} v_{2}, v_{4} v_{5}\right\}$. If $\left\{x_{0}, x_{2}\right\} \cap V(F)=$ $\left\{x_{0}\right\}$ (similarly if $\left\{x_{0}, x_{2}\right\} \cap V(F)=\left\{x_{2}\right\}$), then $x_{0}=v_{i}, i=3,4,5$. If $x_{0}=v_{3}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\}=\left\{v_{1} v_{2} x_{0}, x_{1} x_{2}\right\} \cup\left\{x_{1} x_{0} x_{2}, v_{4} v_{5}\right\}$. If $x_{0}=v_{4}$ (similarly if $x_{0}=v_{5}$), $F \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\}=\left\{x_{1} x_{2} x_{0}, v_{1} v_{2}\right\} \cup\left\{x_{1} x_{0} v_{5}, v_{2} v_{3}\right\}$. Hence, $P_{3} \cup P_{2} \mid G$.

If $t=3$, let $G^{\prime}=G-\left\{x_{1}, x_{2}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. If $G=G_{12}$, by Lemma 2.1, $P_{3} \cup P_{2} \mid G$. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{0} x_{3} \in F$. Then $F=\left\{x_{0} x_{3} v_{3}, v_{4} v_{5}\right\}$, $\left\{x_{3} x_{0} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{0} x_{3}\right\}$. If $F=\left\{x_{0} x_{3} v_{3}, v_{4} v_{5}\right\}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}=\left\{x_{0} x_{1} x_{2}, x_{3} v_{3}\right\} \cup$ $\left\{x_{0} x_{3} x_{2}, v_{4} v_{5}\right\}$. If $F=\left\{x_{3} x_{0} v_{3}, v_{4} v_{5}\right\}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}=\left\{x_{1} x_{2} x_{3}, x_{0} v_{3}\right\} \cup\left\{x_{1} x_{0} x_{3}\right.$, $\left.v_{4} v_{5}\right\}$. If $F=\left\{v_{1} v_{2} v_{3}, x_{0} x_{3}\right\}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}=\left\{x_{0} x_{1} x_{2}, v_{1} v_{2}\right\} \cup\left\{x_{0} x_{3} x_{2}, v_{2} v_{3}\right\}$. Thus, $P_{3} \cup P_{2} \mid G$.

If $t=4$, let $G^{\prime}=G-\left\{x_{1}, x_{2}, x_{3}\right\}$. Then $q\left(G^{\prime}\right) \equiv 2(\bmod 3)$. If $G=G_{13}$, by Lemma 2.1 , $P_{3} \cup P_{2} \mid G$. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with leave $v_{1} v_{2} v_{3}$. Since $\left\{v_{1} v_{2} v_{3}\right\} \cup\left\{x_{0} x_{1} x_{2} x_{3} x_{4}\right\}=\left\{x_{0} x_{1} x_{2}, x_{3} x_{4}\right\} \cup\left\{v_{1} v_{2} v_{3}, x_{2} x_{3}\right\}, P_{3} \cup P_{2} \mid G$.

If $t \geq 5$, let $G^{\prime}=\left(G-\left\{x_{1}, x_{2}, x_{3}\right\}\right) \cup\left\{x_{0} x_{4}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{0} x_{4} \in F$. Then $F=\left\{x_{0} x_{4} x_{5}, v_{4} v_{5}\right\},\left\{x_{4} x_{0} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{0} x_{4}\right\}$ and $\left(F-\left\{x_{0} x_{4}\right\}\right) \cup$ $\left\{x_{0} x_{1} x_{2} x_{3} x_{4}\right\}\left(=P_{6} \cup P_{2}\right.$ or $\left.P_{5} \cup P_{3}\right)=2\left(P_{3} \cup P_{2}\right)$. Hence, $P_{3} \cup P_{2} \mid G$.
(2) $x_{0} x_{t} \notin E(G)$ and $x_{0} \neq x_{t}$.

Suppose $q(G) \equiv 2(\bmod 3)$. If $t=2$, let $G^{\prime}=G-x_{1}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. If $G^{\prime}=K_{1,1,3 c+1}$, then the three partite sets are $\{u\},\{v\}$ and $\left\{x_{0}, x_{2}, w_{3}, \ldots, w_{3 c+1}\right\}$. Hence, $G=G^{\prime} \cup\left\{x_{0} x_{1} x_{2}\right\}=\left\{x_{0} x_{1} x_{2}, u v\right\} \cup\left(c K_{2,3}\right) \cup P_{3}=\left\{x_{0} x_{1} x_{2}, u v\right\} \cup\left(2 c\left(P_{3} \cup P_{2}\right)\right) \cup P_{3}$. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with leave $x_{0} x_{1} x_{2}$.

If $t \geq 3$, let $G^{\prime}=\left(G-\left\{x_{1}, x_{2}\right\}\right) \cup\left\{x_{0} x_{3}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. If $G=G_{37}$, by Lemma 2.3, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{3} as the leave. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{0} x_{3} \in F$. Then $F=\left\{x_{0} x_{3} v_{3}, v_{4} v_{5}\right\},\left\{x_{3} x_{0} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{0} x_{3}\right\}$. Hence, $(F-$ $\left.\left\{x_{0} x_{3}\right\}\right) \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}\left(=P_{5} \cup P_{2}\right.$ or $\left.P_{4} \cup P_{3}\right)=\left(P_{3} \cup P_{2}\right) \cup\{L\}$, where $L=x_{0} x_{1} x_{2}$ or $x_{1} x_{2} x_{3}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with leave L.

Suppose $q(G) \equiv 1(\bmod 3)$. Let $G^{\prime}=\left(G-x_{1}\right) \cup\left\{x_{0} x_{2}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. If $G=G_{24}$ or G_{25}, by Lemma $2.2, G$ has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{2} as the leave. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{0} x_{2} \in F$. Then $F=\left\{x_{0} x_{2} v_{3}, v_{4} v_{5}\right\},\left\{x_{2} x_{0} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{0} x_{2}\right\}$ and $\left(F-\left\{x_{0} x_{2}\right\}\right) \cup\left\{x_{0} x_{1} x_{2}\right\}\left(=P_{4} \cup P_{2}\right.$ or $\left.P_{3} \cup P_{3}\right)=\left(P_{3} \cup P_{2}\right) \cup\{L\}$, where $L=x_{0} x_{1}$ or $x_{1} x_{2}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with leave L.

Suppose $q(G) \equiv 0(\bmod 3)$. If $t=2$, let $G^{\prime}=G-x_{1}$. Then $q\left(G^{\prime}\right) \equiv 1(\bmod 3)$. By
the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with an edge e as the leave. If $\left\{x_{0} x_{1} x_{2}, e\right\}$ forms a $P_{3} \cup P_{2}$, then $P_{3} \cup P_{2} \mid G$. Let $e=x_{0} z$ (similarly $e=x_{2} z$). Choose an F in \mathcal{F} with $x_{2} \in V(F)$. Then $F=\left\{v_{1} v_{2} v_{3}, x_{2} v_{5}\right\},\left\{v_{1} x_{2} v_{3}, v_{4} v_{5}\right\}$ or $\left\{x_{2} v_{2} v_{3}, v_{4} v_{5}\right\}$. Suppose $F=\left\{v_{1} v_{2} v_{3}, x_{0} v_{5}\right\}$. If $z \neq v_{5}$, then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{1} x_{0} z, x_{2} v_{5}\right\} \cup\left\{v_{1} v_{2} v_{3}, x_{1} x_{2}\right\}$. Suppose $z=v_{5}$. If $x_{0}=v_{1}$ (similarly if $x_{0}=v_{3}$), then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{1} x_{0} z, v_{2} v_{3}\right\} \cup$ $\left\{x_{1} x_{2} z, x_{0} v_{2}\right\}$. If $x_{0}=v_{2}$, then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{1} x_{0} v_{1}, x_{2} z\right\} \cup\left\{z x_{0} v_{3}, x_{1} x_{2}\right\}$. If $x_{0} \neq v_{i}, i=1,2,3$, then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{0} x_{1} x_{2}, v_{1} v_{2}\right\} \cup\left\{x_{0} z x_{2}, v_{2} v_{3}\right\}$. Suppose $F=\left\{v_{1} x_{2} v_{3}, v_{4} v_{5}\right\}$. Then $z \neq v_{1}$ (similarly if $z \neq v_{3}$) and $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{1} x_{0} z, x_{2} v_{1}\right\} \cup$ $\left\{x_{1} x_{2} v_{3}, v_{4} v_{5}\right\}$. Suppose $F=\left\{x_{2} v_{2} v_{3}, v_{4} v_{5}\right\}$. If z is neither v_{2} nor v_{3}, then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=$ $\left\{x_{1} x_{0} z, v_{2} v_{3}\right\} \cup\left\{x_{1} x_{2} v_{2}, v_{4} v_{5}\right\}$. Suppose $z=v_{2}$. If $x_{0}=v_{4}$ (similarly if $x_{0}=v_{5}$), then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{2} z v_{3}, x_{0} x_{1}\right\} \cup\left\{z x_{0} v_{5}, x_{1} x_{2}\right\}$. If $x_{0} \neq v_{i}, i=4,5$, then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=$ $\left\{x_{0} x_{1} x_{2}, v_{2} v_{3}\right\} \cup\left\{x_{0} z x_{2}, v_{4} v_{5}\right\}$. Suppose $z=v_{3}$. If $x_{0}=v_{4}$ (similarly if $x_{0}=v_{5}$), then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{1} x_{0} v_{5}, v_{2} z\right\} \cup\left\{x_{1} x_{2} v_{2}, x_{0} z\right\}$. Suppose $x_{0} \neq v_{i}, i=4,5$, then $F \cup\left\{z x_{0} x_{1} x_{2}\right\}$ is the disjoint union of 5 -cycle $x_{0} x_{1} x_{2} v_{2} z x_{0}$ and an edge $v_{4} v_{5}$. Since $d\left(x_{2}\right) \geq 3$, there is an F_{1} in $\mathcal{F}-\{F\}$ such that $x_{2} \in V\left(F_{1}\right)$. By the same argument as above, $F_{1} \cup\left\{z x_{0} x_{1} x_{2}\right\}=2\left(P_{3} \cup P_{2}\right)$ except $F_{1} \cup\left\{z x_{0} x_{1} x_{2}\right\}$ is the disjoint union of 5 -cycle $x_{0} x_{1} x_{2} u_{2} z x_{0}$ and an edge $u_{4} u_{5}$. In this case, if $v_{2}=u_{4}$ (similarly if $v_{2}=u_{5}$, then $F \cup F_{1} \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{0} x_{1} x_{2}, v_{4} v_{5}\right\} \cup\left\{x_{0} z v_{2}, x_{2} u_{2}\right\} \cup\left\{x_{2} v_{2} u_{5}, z u_{2}\right\}$; otherwise, $F \cup F_{1} \cup\left\{z x_{0} x_{1} x_{2}\right\}=\left\{x_{0} x_{1} x_{2}, v_{4} v_{5}\right\} \cup\left\{u_{2} x_{2} v_{2}, x_{0} z\right\} \cup\left\{u_{2} z v_{2}, u_{4} u_{5}\right\}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with empty leave.

If $t=3$, let $G^{\prime}=G-\left\{x_{1}, x_{2}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{0} \in V(F)$. Then $F=\left\{x_{0} v_{2} x_{3}, v_{4} v_{5}\right\},\left\{x_{0} v_{2} v_{3}, v_{4} v_{5}\right\}\left(v_{3} \neq x_{3}\right),\left\{v_{1} x_{0} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{0} v_{5}\right\}$. If $F=\left\{x_{0} v_{2} x_{3}, v_{4} v_{5}\right\}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}$ is a union of 5 -cycle $x_{0} x_{1} x_{2} x_{3} v_{2} x_{0}$ and an edge $v_{4} v_{5}$. By the same argument as above, we have $P_{3} \cup P_{2} \mid G$. If $F=\left\{x_{0} v_{2} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} x_{0} v_{3}, v_{4} v_{5}\right\}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}=\left\{x_{0} x_{1} x_{2}, v_{4} v_{5}\right\} \cup\left\{x_{0} v_{2} v_{3}\right.$ (or $v_{1} x_{0} v_{3}$), $\left.x_{2} x_{3}\right\}$. If $F=\left\{v_{1} v_{2} v_{3}, x_{0} v_{5}\right\}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{3}\right\}=\left\{x_{1} x_{2} x_{3}, x_{0} v_{5}\right\} \cup\left\{v_{1} v_{2} v_{3}, x_{0} x_{1}\right\}$. Hence, G has a ($P_{3} \cup P_{2}$)-packing with empty leave.

If $t \geq 4$, let $G^{\prime}=G-\left\{x_{1}, x_{2}, x_{3}\right\} \cup\left\{x_{0} x_{4}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{0} x_{4} \in F$. Then $F=\left\{x_{0} x_{4} v_{3}, v_{4} v_{5}\right\},\left\{x_{4} x_{0} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{0} x_{4}\right\}$ and $\left(F-\left\{x_{0} x_{4}\right\}\right) \cup$ $\left\{x_{0} x_{1} x_{2} x_{3} x_{4}\right\}\left(=P_{6} \cup P_{2}\right.$ or $\left.P_{5} \cup P_{3}\right)=2\left(P_{3} \cup P_{2}\right)$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with empty leave.
(3) $x_{0}=x_{t}$ and $t \geq 3$.

Suppose $q(G) \equiv 2(\bmod 3)$. For $t=3$ or 4 , if $d\left(x_{0}\right) \geq 4$, let $G^{\prime}=G-\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}$. If $G=G_{38}$ or G_{39}, by Lemma 2.3, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{3} as the leave. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with leave L. If $t=3$,
then $L=P_{3}$ and $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\}=\left\{L, x_{1} x_{2}\right\} \cup\left\{x_{1} x_{0} x_{2}\right\}$. If $t=4$, then $L=P_{2}$ and $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{3} x_{0}\right\}=\left\{L, x_{1} x_{2} x_{3}\right\} \cup\left\{x_{1} x_{0} x_{3}\right\}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{3} as the leave. Suppose $d\left(x_{0}\right)=3$. Let $N\left(x_{0}\right)=\left\{x_{1}, x_{t-1}, z\right\}$. In this case, $d(z) \geq 3$. Let $G^{\prime}=G-\left\{x_{0}, x_{1}, \ldots, x_{t-1}\right\}$. If $G=G_{40}$, by Lemma 2.3, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{3} as the leave. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with leave L. If $t=3$, then $L=P_{2}$ and $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\} \cup\left\{x_{0} z\right\}=\left\{L, x_{0} x_{1} x_{2}\right\} \cup\left\{x_{2} x_{0} z\right\}$. If $t=4$, then $L=\phi$ and $\left\{x_{0} x_{1} x_{2} x_{3} x_{0}\right\} \cup\left\{x_{0} z\right\}=\left\{x_{1} x_{2} x_{3}, x_{0} z\right\} \cup\left\{x_{1} x_{0} x_{3}\right\}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{3} as the leave.

For $t \geq 5$, let $G^{\prime}=\left(G-\left\{x_{2}, x_{3}\right\}\right) \cup\left\{x_{1} x_{4}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{1} x_{4} \in F$. Then $F=\left\{x_{0} x_{1} x_{4}, v_{4} v_{5}\right\},\left\{x_{1} x_{4} x_{5}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{1} x_{4}\right\}$ and $\left(F-\left\{x_{1} x_{4}\right\}\right) \cup$ $\left\{x_{1} x_{2} x_{3} x_{4}\right\}\left(=P_{5} \cup P_{2}\right.$ or $\left.P_{4} \cup P_{3}\right)=\left(P_{3} \cup P_{2}\right) \cup\{L\}$, where $L=x_{1} x_{2} x_{3}$ or $x_{2} x_{3} x_{4}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with leave L.

Suppose $q(G) \equiv 1(\bmod 3)$. For $t=3$, if $d\left(x_{0}\right) \geq 4$, let $G^{\prime}=G-\left\{x_{1}, x_{2}\right\}$. If $G=G_{26}$, by Lemma 2.2, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{2} as the leave. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with a P_{2} as the leave. Choose an F in \mathcal{F} with $x_{0} \in V(F)$. Then $F=\left\{x_{0} v_{2} v_{3}, v_{4} v_{5}\right\},\left\{v_{1} x_{0} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{0} v_{5}\right\}$. If $F=\left\{x_{0} v_{2} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} x_{0} v_{3}, v_{4} v_{5}\right\}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\}=\left\{x_{1} x_{0} x_{2}, v_{4} v_{5}\right\} \cup\left\{x_{0} v_{2} v_{3}\right.$ (or $v_{1} x_{0} v_{3}$), $\left.x_{1} x_{2}\right\}$. If $F=\left\{v_{1} v_{2} v_{3}, x_{0} v_{5}\right\}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\}=\left\{x_{0} x_{1} x_{2}, v_{1} v_{2}\right\} \cup\left\{x_{2} x_{0} v_{5}, v_{2} v_{3}\right\}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{2} as the leave. Suppose $d\left(x_{0}\right)=3$. Let $N\left(x_{0}\right)=\left\{x_{1}, x_{2}, z\right\}$. In this case, $d(z) \geq 3$. Let $G^{\prime}=G-x_{0} z$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with leave $x_{0} z$.

For $t \geq 4$, let $G^{\prime}=\left(G-x_{2}\right) \cup\left\{x_{1} x_{3}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{1} x_{3} \in$ F. Then $F=\left\{x_{0} x_{1} x_{3}, v_{4} v_{5}\right\},\left\{x_{1} x_{3} x_{4}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{1} x_{3}\right\}$ and $\left(F-\left\{x_{1} x_{3}\right\}\right) \cup$ $\left\{x_{1} x_{2} x_{3}\right\}\left(=P_{4} \cup P_{2}\right.$ or $\left.P_{3} \cup P_{3}\right)=\left(P_{3} \cup P_{2}\right) \cup\{L\}$, where $L=x_{1} x_{2}$ or $x_{2} x_{3}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with a P_{2} as the leave.

Suppose $q(G) \equiv 0(\bmod 3)$. For $3 \leq t \leq 5$, if $d\left(x_{0}\right) \geq 4$, let $G^{\prime}=G-\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}$. If $G=G_{14}$ or G_{15}, by Lemma 2.1, G has a $\left(P_{3} \cup P_{2}\right)$-packing with empty leave. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with leave L. If $t=3$, then $L=\phi$. Choose an F in \mathcal{F} with $x_{0} \in V(F)$. Then $F=\left\{x_{0} v_{2} v_{3}, v_{4} v_{5}\right\},\left\{v_{1} x_{0} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{0} v_{5}\right\}$. If $F=\left\{x_{0} v_{2} v_{3}, v_{4} v_{5}\right\}$ or $\left\{v_{1} x_{0} v_{3}, v_{4} v_{5}\right\}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\}=$ $\left\{x_{1} x_{0} x_{2}, v_{4} v_{5}\right\} \cup\left\{x_{0} v_{2} v_{3}\left(\right.\right.$ or $\left.\left.v_{1} x_{0} v_{3}\right), x_{1} x_{2}\right\}$. If $F=\left\{v_{1} v_{2} v_{3}, x_{0} v_{5}\right\}$, then $F \cup\left\{x_{0} x_{1} x_{2} x_{0}\right\}=$ $\left\{x_{0} x_{1} x_{2}, v_{1} v_{2}\right\} \cup\left\{x_{2} x_{0} v_{5}, v_{2} v_{3}\right\}$. If $t=4$, then $L=P_{3}=x_{0}\left(=v_{1}\right) v_{2} v_{3}, v_{1} v_{2} v_{3}$ or $v_{1} x_{0} v_{3}$. If $L=x_{0} v_{2} v_{3}$ or $v_{1} v_{2} v_{3}$, then $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{3} x_{0}\right\}=\left\{x_{1} x_{2} x_{3}, v_{1} v_{2}\right\} \cup\left\{x_{1} x_{0} x_{3}, v_{2} v_{3}\right\}$. If $L=v_{1} x_{0} v_{3}$, then $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{3} x_{0}\right\}=\left\{x_{1} x_{0} v_{1}, x_{2} x_{3}\right\} \cup\left\{x_{3} x_{0} v_{3}, x_{1} x_{2}\right\}$. If $t=5$,
then $L=u v$. If x_{0} is incident with $u v$, say $x_{0}=u$, then $\left\{x_{0} x_{1} x_{2} x_{3} x_{4} x_{0}\right\} \cup\{u v\}=$ $\left\{x_{0} x_{1} x_{2}, x_{3} x_{4}\right\} \cup\left\{v x_{0} x_{4}, x_{2} x_{3}\right\}$. Otherwise, choose an $F=\left\{v_{1} v_{2} v_{3}, v_{4} v_{5}\right\}$ in \mathcal{F} with $x_{0} \in V(F)$. If $x_{0}=v_{4}$ or v_{5}, then $F \cup\left\{x_{0} x_{1} x_{2} x_{3} x_{4} x_{0}\right\} \cup\{u v\}=\left\{x_{0} x_{1} x_{2}, u v\right\} \cup$ $\left\{x_{2} x_{3} x_{4}, v_{4} v_{5}\right\} \cup\left\{v_{1} v_{2} v_{3}, x_{4} x_{0}\right\}$. If $x_{0}=v_{1}, v_{2}$ or v_{3}, then $F \cup\left\{x_{0} x_{1} x_{2} x_{3} x_{4} x_{0}\right\} \cup\{u v\}=$ $\left\{x_{0} x_{1} x_{2}, u v\right\} \cup\left\{x_{3} x_{4} x_{0}, v_{4} v_{5}\right\} \cup\left\{v_{1} v_{2} v_{3}, x_{2} x_{3}\right\}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with empty leave.

Suppose $d\left(x_{0}\right)=3$. Let $N\left(x_{0}\right)=\left\{x_{1}, x_{t-1}, z\right\}$. In this case, $d(z) \geq 3$. Let $G^{\prime}=$ $G-\left\{x_{0}, x_{1}, \ldots, x_{t-1}\right\}$. If $G=G_{16}, G_{17}$ or G_{18}, by Lemma 2.1, G has a $\left(P_{3} \cup P_{2}\right)$-packing with empty leave. Otherwise, by the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with leave L. If $t=3$, then $L=z v_{2} v_{3}, v_{1} z v_{3}$ or $v_{1} v_{2} v_{3}$. If $L=z v_{2} v_{3}$, then $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{0}, x_{0} z\right\}=$ $\left\{x_{0} x_{1} x_{2}, z v_{2}\right\} \cup\left\{x_{2} x_{0} z, v_{2} v_{3}\right\}$. If $L=v_{1} z v_{3}$, then $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{0}, x_{0} z\right\}=\left\{x_{1} x_{0} x_{2}, z v_{1}\right\} \cup$ $\left\{x_{0} z v_{3}, x_{1} x_{2}\right\}$. If $L=v_{1} v_{2} v_{3}$, then $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{0}, x_{0} z\right\}=\left\{x_{0} x_{1} x_{2}, v_{1} v_{2}\right\} \cup\left\{x_{2} x_{0} z, v_{2} v_{3}\right\}$. If $t=4$, then $L=v_{1} v_{2}$ and $\{L\} \cup\left\{x_{0} x_{1} x_{2} x_{3} x_{0}, x_{0} z\right\}=\left\{x_{1} x_{2} x_{3}, x_{0} z\right\} \cup\left\{x_{1} x_{0} x_{3}, v_{1} v_{2}\right\}$. If $t=5$, then $L=\phi$ and $\left\{x_{0} x_{1} x_{2} x_{3} x_{4} x_{0}, x_{0} z\right\}=\left\{x_{0} x_{1} x_{2}, x_{3} x_{4}\right\} \cup\left\{x_{4} x_{0} z, x_{2} x_{3}\right\}$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with empty leave.

For $t \geq 6$, let $G^{\prime}=\left(G-\left\{x_{2}, x_{3}, x_{4}\right\}\right) \cup\left\{x_{1} x_{5}\right\}$. Then $q\left(G^{\prime}\right) \equiv 0(\bmod 3)$. By the choice of G, G^{\prime} has a $\left(P_{3} \cup P_{2}\right)$-packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_{1} x_{5} \in F$. Then $F=\left\{x_{0} x_{1} x_{5}, v_{4} v_{5}\right\},\left\{x_{1} x_{5} x_{6}, v_{4} v_{5}\right\}$ or $\left\{v_{1} v_{2} v_{3}, x_{1} x_{5}\right\}$ and $\left(F-\left\{x_{1} x_{5}\right\}\right) \cup$ $\left\{x_{0} x_{1} x_{2} x_{3} x_{4} x_{5}\right\}\left(=P_{6} \cup P_{2}\right.$ or $\left.P_{5} \cup P_{3}\right)=2\left(P_{3} \cup P_{2}\right)$. Hence, G has a $\left(P_{3} \cup P_{2}\right)$-packing with empty leave.

Therefore, we complete the proof.

Now, we are ready to prove the Conjecture 1.1
Theorem 2.6. If G is a graph with $q(G) \equiv 0(\bmod 3)$ and $\delta(G) \geq 2$, then $H \mid G$ for some graph H of size 3 .

Proof. If $q(G)=3$, then it is trivial that $G \mid G$. It have been argued that $P_{4} \mid G$ if $G=K_{4}$ or $K_{1,1,3 c+1}$. By Theorem 2.5, we have $P_{3} \cup P_{2} \mid G$. Therefore, we complete the proof.

Acknowledgments

We do very appreciate for referees for their many constructive suggestions to make this paper fruitfully.

References

[1] A. A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003), no. 4, 433-447.
[2] A. A. Abueida and T. O'Neil, Multidecomposition of λK_{m} into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007), 32-40.
[3] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B 81 (2001), no. 1, 77-99.
[4] B. Alspach and R. Häggkvist, Some observations on the Oberwolfach problem, J. Graph Theory 9 (1985), no. 1, 117-187.
[5] B. Alspach P. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A 52 (1989), no. 1, 20-43.
[6] B. Alspach and B. N. Varma, Decomposing complete graphs into cycles of length $2 p^{e}$, Ann. Discrete Math. 9 (1980), 155-162.
[7] J. Barát and C. Thomassen, Claw-decompositions and Tutte-orientations, J. Graph Theory 52 (2006), no. 2, 135-146.
[8] J.-C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combin. 10 (1980), 211-254.
[9] J.-C. Bermond and J. Schönheim, G-decompositions of K_{n}, where G has four vertices or less, Discrete Math. 19 (1977), no. 2, 113-120.
[10] E. J. Billington, N. J. Cavenagh and B. R. Smith, Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts, Discrete Math. 310 (2010), no. 2, 241-254.
[11] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[12] L. Bulteau, G. Fertin, A. Labarre, R. Rizzi and I. Rusu, Decomposing cubic graphs into connected subgraphs of size three, in Computing and Combinatorics, 393-404, Lecture Notes in Comput. Sci. 9797, Springer, 2016.
[13] G. Chartrand, F. Saba and C. M. Mynhardt, Prime graphs, prime-connected graphs and prime divisors of graphs, Utilitas Math. 46 (1994), 179-191.
[14] A. A. Diwan, J. E. Dion, D. J. Mendell, M. J. Plantholt and S. K. Tipnis, The complexity of P_{4}-decomposition of regular graphs and multigraphs, Discrete Math. Theor. Comput. Sci. 17 (2015), no. 2, 63-75.
[15] S. I. EI-Zanati, M. J. Plantholt and S. K. Tipnis, On decomposing even regular multigraphs into small isomorphic trees, Discrete Math. 325 (2014), 47-51.
[16] R. Häggkvist and R. Johansson, A note on edge-decompositions of planar graphs, Discrete Math. 283 (2004), no. 1-3, 263-266.
[17] K. Heinrich, J. Liu and M. Yu, P_{4}-decompositions of regular graphs, J. Graph Theory 31 (1999), no. 2, 135-143.
[18] D. G. Hoffman C. C. Lindner and C. A. Rodger, On the construction of odd cycle systems, J. Graph Theory 13 (1989), no. 4, 417-426.
[19] A. Kotzig, On the decomposition of a complete graph into $4 k$-gons, Mat.-Fyz. Čas 15 (1965), no. 3, 229-233.
[20] C. Lin and T.-W. Shyu, A necessary and sufficient condition for the star decomposition of complete graphs, J. Graph Theory 23 (1996), no. 4, 361-364.
[21] C. C. Lindner, K. T. Phelps and C. A. Rodger, The spectrum for 2-perfect 6-cycle systems, J. Combin. Theory Ser. A 57 (1991), no. 1, 76-85.
[22] R. S. Manikandan and P. Paulraja, C_{p}-decompositions of some regular graphs, Discrete Math. 306 (2006), no. 4, 429-451.
[23] M. Merker, Decomposing series-parallel graphs into paths of length 3 and triangles, Electronic Notes in Discrete Mathematics 49 (2015), 367-370.
[24] N. Oksimets, A characterization of Eulerian graphs with trianglefree Euler tours, Technical Report 1 (2003), Department of Mathematics, Umea University.
[25] C. A. Parker, Complete Bipartite Graph Path Decompositions, Ph.D. Dissertation, Auburn University, 1998.
[26] C. A. Rodger, Graph decompositions, Matematiche (Catania) 45 (1990), no. 1, 119139.
[27] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010), no. 15-16, 2164-2169
[28] B. R. Smith, Decomposing complete equipartite graphs into cycles of length $2 p$, J. Combin. Des. 16 (2008), no. 3, 244-252.
[29] D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$, J. Combin. Theory Ser. B 30 (1981), no. 1, 75-81.
[30] M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979), no. 3, 273-278.
[31] M. Tarsi, On the decomposition of a graph into stars, Discrete Math. 36 (1981), no. 3, 299-304.
[32] C. Thomassen, Decompositions of highly connected graphs into paths of length 3, J. Graph Theory 58 (2008), no. 4, 286-292.
[33] K. Ushio, S. Tazawa and S. Yamamoto, On claw-decomposition of a complete multipartite graph, Hiroshima Math. J. 8 (1978), no. 1, 207-210.
[34] R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Congressus Numerantium 15 (1976), 647-659.
[35] S. Yamomoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, On clawdecomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975), 33-42.

Zhen-Chun Chen and Hung-Lin Fu
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan
E-mail address: amco0624@yahoo.com.tw, hlfu@math.nctu.edu.tw

Kuo-Ching Huang
Department of Financial and Computational Mathematics, Providence University, Shalu 43301, Taichung, Taiwan
E-mail address: kchuang@gm.pu.edu.tw

[^0]: Received July 20, 2016; Accepted April 20, 2017.
 Communicated by Sen-Peng Eu.
 2010 Mathematics Subject Classification. 05C51, 05C71.
 Key words and phrases. graph decomposition, H-decomposition, packing, H-packing, maximum packing, minimum leave.
 Huang is supported in part by the National Science Council under grant MOST 104-2115-M-126-005.
 *Corresponding author.

