Pack Graphs with Subgraphs of Size Three

Zhen-Chun Chen, Hung-Lin Fu and Kuo-Ching Huang*

Abstract. An *H*-packing \mathcal{F} of a graph *G* is a set of edge-disjoint subgraphs of *G* in which each subgraph is isomorphic to *H*. The leave *L* or the remainder graph *L* of a packing \mathcal{F} is the subgraph induced by the set of edges of *G* that does not occur in any subgraph of the packing \mathcal{F} . If a leave *L* contains no edges, or simply $L = \phi$, then *G* is said to be *H*-decomposable, denoted by $H \mid G$. In this paper, we prove a conjecture made by Chartrand, Saba and Mynhardt [13]: If *G* is a graph of size $q(G) \equiv 0 \pmod{3}$ and $\delta(G) \geq 2$, then *G* is *H*-decomposable for some graph *H* of size 3.

1. Introduction

By a graph G = (V, E) we mean a finite, simple and undirected graph. The order, size, maximum and minimum degree of G are denoted by p(G), q(G), $\Delta(G)$ and $\delta(G)$, respectively. The neighborhood of a vertex v, denoted by N(v), is the set of vertices adjacent to v. The graphs P_n and C_k are a path of order n and a cycle of order $k \ge 3$, respectively. The graph $G_1 \cup G_2$ is the edge disjoint union of G_1 and G_2 . The graph tHis the union of t copies of H. For more graph theoretic terminologies we refer to [11].

A graph G is said to be *H*-decomposable, denoted by $H \mid G$, if the edge set E(G) of G can be partitioned into subsets such that the edge-induced subgraph of each subset is isomorphic to *H*. Graph decomposition is one of the most important topics in the study of both graph theory and combinatorial designs, not to mention their applications on many other fields. Quite a few research results are obtained in considering the decomposition of complete graphs or complete multipartite graphs into complete subgraphs or cycles. See [1-6, 8-10, 18-22, 25-31, 33-35] for references. Decomposition problems of a general graphs could be more complicated, as a result of the failure of the tools and methods used on decomposition of well-structured graphs. On the other hand, if we consider the decomposition, packing or covering of a general graph, it is getting more complicate.

In [13], Chartrand, Saba and Mynhardt study prime graphs and proposed the following:

Received July 20, 2016; Accepted April 20, 2017.

Communicated by Sen-Peng Eu.

²⁰¹⁰ Mathematics Subject Classification. 05C51, 05C71.

Key words and phrases. graph decomposition, H-decomposition, packing, H-packing, maximum packing, minimum leave.

Huang is supported in part by the National Science Council under grant MOST 104-2115-M-126-005. *Corresponding author.

Conjecture 1.1. [13] Suppose G is a graph of size $q(G) \equiv 0 \pmod{3}$ and $\delta(G) \geq 2$. Then G is H-decomposable for some graph H of size 3.

Conjecture 1.2. [13] Suppose G is a 2-connected graph of order $p(G) \ge 4$ and of size $q(G) \equiv 0 \pmod{3}$. Then G is P₄-decomposable.

These conjectures motivate our study of decomposing a graph of size 3k into k copies of isomorphic graphs of size 3. If q(H) = 3, then $H = K_3$, P_4 , $K_{1,3}$, $P_3 \cup P_2$ or M_3 (a matching of size 3). There are many research results of decomposing graphs into subgraphs of size three. See [7, 12, 14-17, 23, 24, 32]. For convenience, we use $x_1x_2 \cdots x_t$ and $x_1x_2 \cdots x_tx_1$, respectively, to denote a path and a cycle of order t. Since the graph $D = \{x_1x_2x_3x_4x_5x_6x_1\} \cup \{x_1y_1x_2, x_3y_2x_4, x_5y_3x_6\}$ disproves the Conjecture 1.2, we will focus on the Conjecture 1.1. In order to prove the Conjecture 1.1, for each given graph G such that $q(G) \equiv 0 \pmod{3}$, we have to find a graph H of size 3 and prove that $H \mid G$. It is not difficult to see that $G \mid G$ if q(G) = 3 and the complete graph K_4 is P_4 -decomposable. Moreover, the complete bipartite graph $K_{2,3}$ is P_4 -decomposable and $(P_3 \cup P_2)$ -decomposable and the complete 3-partite graph $K_{1,1,4}$ is P_4 -decomposable. Since the graph $K_{1,1,3c+1} = K_{1,1,4} \cup (c-1)K_{2,3}$, we have $P_4 \mid K_{1,1,3c+1}, c \geq 1$. In this paper, we prove the following to confirm the Conjecture 1.1.

Theorem 1.3. If G is a graph of size $6 \le q(G) \equiv 0 \pmod{3}$ and $\delta(G) \ge 2$, then G is $(P_3 \cup P_2)$ -decomposable if and only if G is different from K_4 and $K_{1,1,3c+1}$, $c \ge 0$.

2. Main results

We start this section with the study of $(P_3 \cup P_2)$ -packings of graphs. An *H*-packing of a graph *G* is a set of edge-disjoint subgraphs of *G* in which each subgraph is isomorphic to *H*. An *H*-packing \mathcal{F} is maximum if $|\mathcal{F}| \geq |\mathcal{F}'|$ for all other *H*-packings \mathcal{F}' of *G*. The *leave L* of an *H*-packing \mathcal{F} is the subgraph induced by the set of edges of *G* that does not occur in any subgraph of the *H*-packing \mathcal{F} . Therefore, a maximum packing has a minimum leave. In what follows, all the leaves we consider are minimum. It is easy to see that $H \mid G$ if and only if *G* has an *H*-packing with empty leave *L*, that is, *L* contains no edge, or simply $L = \phi$.

The following lemmas are essential for proving the main theorem. Since they are easy to be proved, we omit the proofs.

Lemma 2.1. If $G \cong G_i$, $1 \le i \le 18$, given in Figure 2.1, then $P_3 \cup P_2 \mid G$.

Figure 2.1

Lemma 2.2. If $G \cong G_i$, $19 \le i \le 26$, given in Figure 2.2, then G has a $(P_3 \cup P_2)$ -packing with a P_2 as the leave.

Figure 2.2

Lemma 2.3. If $G \cong G_i$, $27 \le i \le 40$, given in Figure 2.3, then G has a $(P_3 \cup P_2)$ -packing with a P_3 as the leave.

Figure 2.3

The followings are our main results.

Lemma 2.4. Suppose G is a connected 3-regular graph of order $p(G) \ge 8$. Then there is an edge $xy \in E(G)$ with $N(x) = \{y, a, b\}$, $N(y) = \{x, c, d\}$, $ac \notin E(G)$ and $bd \notin E(G)$ such that the graph $G' = (G - \{x, y\}) \cup \{ac, bd\}$ is a connected 3-regular graph of order p(G') = p(G) - 2.

Proof. If G has a cut vertex, since G is 3-regular, G has a cut edge xy such that $G - \{xy\} = H_1 \cup H_2$, where H_1 is a block containing x and H_2 is connected containing y. Let $N(x) = \{y, a, b\}$ and $N(y) = \{x, c, d\}$. Since H_1 is a block, $H_1 - x$ is connected. Hence, a and b are connected in $H_1 - x$ and then the graph $G' = (G - \{x, y\}) \cup \{ac, bd\}$ is a connected 3-regular graph of order p(G') = p(G) - 2.

Let G be 2-connected. Suppose there is an edge $xy \in E(G)$ such that $\{x, y\}$ is a cut set. Then $G - \{x, y\}$ contains exact two components H_1 and H_2 . Otherwise, there a component H_3 of $G - \{x, y\}$ such that $N(x) \cap V(H_3) = \phi$. Then y is a cut vertex, a contradiction. Moreover, $|N(x) \cap V(H_i)| = |N(y) \cap V(H_i)| = 1$ for i = 1, 2. Let $N(x) = \{y, a, b\}$ and $N(y) = \{x, c, d\}$ such that a and c are in H_1 and b and d are in H_2 . If a and c are coincide, then a is a cut vertex, a contradiction. Hence, $a \neq c$. Similarly, $b \neq d$. Since H_1 and H_2 are components, the graph $G' = (G - \{x, y\}) \cup \{ad, bc\}$ is a connected 3-regular graph of order p(G') = p(G) - 2.

Suppose $G - \{u, v\}$ is connected for every edge $uv \in E(G)$. Choose an edge $xy \in E(G)$ with $N(x) = \{y, a, b\}$ and $N(y) = \{x, c, d\}$. If $\{a, b\} = \{c, d\}$, then $ab \notin E(G)$. Otherwise, $G = K_4$. Let $N(a) = \{x, y, z\}$ and $N(z) = \{a, u, v\}$. If $b \in N(z)$, then z is a cut vertex, a contradiction. Hence, $b \notin N(z)$ and then $N(x) \cap \{u, v\} = N(y) \cap \{u, v\} = \phi$. Thus, the graph $G' = (G - \{a, z\}) \cup \{xu, yv\}$ is a connected 3-regular graph of order p(G') = p(G) - 2. Suppose $|\{a, b\} \cap \{c, d\}| = 1$, say a = c. If $ab \in E(G)$ (similarly if $ad \in E(G)$), then N(a) = $\{x, y, b\}$. Let $N(b) = \{x, a, z\}$. If z = d, then d is a cut vertex, a contradiction. Hence, $z \neq d$. Let $N(z) = \{b, u, v\}$. Then the graph $G' = (G - \{b, z\}) \cup \{xu, av\}$ is a connected 3regular graph of order p(G') = p(G) - 2. Suppose $N(a) \cap \{b, d\} = \phi$. Let $N(a) = \{x, y, z\}$ and $N(z) = \{a, u, v\}$. If $\{u, v\} = \{b, d\}$, then the graph $G' = (G - \{a, z\}) \cup \{xd, yb\}$ is a connected 3-regular graph of order p(G') = p(G) - 2. If $|\{u, v\} \cap \{b, d\}| = 1$, say b = u, then the graph $G' = (G - \{a, z\}) \cup \{xv, yb\}$ is a connected 3-regular graph of order p(G') = p(G) - 2. If $\{u, v\} \cap \{b, d\} = \phi$, then the graph $G' = (G - \{a, z\}) \cup \{xu, yv\}$ is a connected 3-regular graph of order p(G') = p(G) - 2. Suppose $\{a, b\} \cap \{c, d\} = \phi$. If $|N(a) \cap \{c,d\}| = 2$ (similarly if $N(b) = \{x,c,d\}, N(c) = \{y,a,b\}$ or $N(d) = \{y,a,b\}$), then $|N(b) \cap \{c, d\}| \leq 1$. Otherwise, $G = K_{3,3}$ and p(G) = 6, a contradiction. We may assume that $bd \notin E(G)$. Let $N(d) = \{a, y, z\}$ and $N(z) = \{d, u, v\}$. If z = c, then x is a cut vertex, a contradiction. Hence, $z \neq c$. Since $N(a) = \{x, c, d\}$ and $N(y) = \{x, c, d\}$, $\{a, y\} \cap \{u, v\} = \phi$ and then the graph $G' = (G - \{d, z\}) \cup \{au, yv\}$ is a connected 3regular graph of order p(G') = p(G) - 2. Suppose $|N(a) \cap \{c, d\}| \le 1$, $|N(b) \cap \{c, d\}| \le 1$, $|N(c) \cap \{a, b\}| \le 1$ and $|N(d) \cap \{a, b\}| \le 1$. If $ac \in E(G)$ or $bd \in E(G)$, then $ad \notin E(G)$ and $bc \notin E(G)$. If $ad \in E(G)$ or $bc \in E(G)$, then $ac \notin E(G)$ and $bd \notin E(G)$. We may assume $ac \notin E(G)$ and $bd \notin E(G)$. Then the graph $G' = (G - \{x, y\}) \cup \{ac, bd\}$ is a connected 3-regular graph of order p(G') = p(G) - 2.

Theorem 2.5. Suppose G is a graph different from $K_{1,1,3c+1}$ with $p(G) \ge 5$, $q(G) \ge 6$ and $\delta(G) \ge 2$. Then G has a $(P_3 \cup P_2)$ -packing with leave L, where

$$L = \begin{cases} \phi & \text{if } q(G) \equiv 0 \pmod{3}, \\ P_2 & \text{if } q(G) \equiv 1 \pmod{3}, \\ P_3 & \text{if } q(G) \equiv 2 \pmod{3}. \end{cases}$$

Proof. If q(G) = 6, then $G = G_i$, $1 \le i \le 5$, given in Figure 2.1 By Lemma 2.1, we have $P_3 \cup P_2|G$.

Let G be a counterexample with fewest edges. We shall prove that the assertion holds for G and obtain a contradiction. There are three cases to be considered.

Case 1: $\Delta(G) \ge 4$ and $\delta(G) \ge 3$.

By degree-sum formula, $q(G) = \frac{1}{2} \sum_{x \in V(G)} d(x) \ge \frac{1}{2}(4+3\times 4) = 8$. If q(G) = 8, then $G = G_{27}$. By Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with a P_3 as the leave.

Now, suppose q(G) > 8. Let v be a vertex with $d(v) = \Delta(G)$ and $N(v) = \{v_1, v_2, \ldots, v_{\Delta(G)}\}$. If v_1 is adjacent to some v_i for $i \ge 2$, say $v_1v_2 \in E(G)$, let $F_1 = \{v_3vv_4, v_1v_2\}$ and $G' = G - F_1$; otherwise, let u be a neighbor of v_1 which is different from v and $G' = G - F_2$, where $F_2 = \{v_2vv_3, v_1u\}$. Then the assertion holds for G' by the choice of G. Since $G = G' \cup (P_3 \cup P_2)$, the assertion holds for the graph G.

Case 2: G is 3-regular.

Suppose G is connected. If p(G) = 6, then $G = G_6$ or G_7 . By Lemma 2.1, $P_3 \cup P_2 \mid G$. For $p(G) \ge 8$, by Lemma 2.4, G has an edge xy with $N(x) = \{x_1, x_2, y\}$, $N(y) = \{y_1, y_2, x\}$, $N(x) \cap N(y) = \phi$, $x_1y_1 \notin E(G)$ and $x_2y_2 \notin E(G)$ such that $G' = (G - \{x, y\}) \cup \{x_1y_1, x_2y_2\}$ is a connected 3-regular graph of order p(G) - 2. By the choice of G, G' has a $(P_3 \cup P_2)$ packing \mathcal{F} with empty leave. Without loss of generality, we may consider the following cases.

(1) If there is an $F = \{x_1y_1v_1, x_2y_2\}$ in \mathcal{F} , then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F\}) \cup \{x_1xx_2, yy_1\} \cup \{xyy_2, y_1v_1\}$ with empty leave.

(2) If there are $F_1 = \{v_1v_2v_3, x_1y_1\}$ and $F_2 = \{u_1u_2u_3, x_2y_2\}$ in \mathcal{F} , then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F_1, F_2\}) \cup \{x_1xx_2, yy_1\} \cup \{v_1v_2v_3, xy\} \cup \{u_1u_2u_3, yy_2\}$ with empty leave.

(3) If there are $F_1 = \{v_1v_2v_3, x_1y_1\}$ and $F_2 = \{x_2y_2u_1, u_2u_3\}$ in \mathcal{F} , then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F_1, F_2\}) \cup \{x_1xx_2, yy_1\} \cup \{v_1v_2v_3, xy\} \cup \{yy_2u_1, u_2u_3\}$ with empty

leave.

(4) Suppose there are $F_1 = \{x_1y_1v_1, v_2v_3\}$ and $F_2 = \{x_2y_2u_1, u_2u_3\}$ (or $F_2 = \{y_2x_2u_1, u_2u_3\}$) in \mathcal{F} . If $x_1 \notin \{u_2, u_3\}$, then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F_1, F_2\}) \cup \{x_1xy, u_2u_3\} \cup \{yy_1v_1, v_2v_3\} \cup \{yy_2u_1, xx_2\}$ (or $\{xx_2u_1, yy_2\}$) with empty leave. If $x_1 = u_2$ or u_3 (say $x_1 = u_2$) and $u_3 \neq v_1$, then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F_1, F_2\}) \cup \{xx_1u_3, y_1v_1\} \cup \{xyy_1, v_2v_3\} \cup \{yy_2u_1, xx_2\}$ (or $\{xx_2u_1, yy_2\}$) with empty leave. If $x_1 = u_2$ and $u_3 = v_1$, then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F_1, F_2\}) \cup \{x_1v_1y_1, v_2v_3\} \cup \{y_1yy_2, xx_2\}$ (or $\{xx_2u_1, yy_2\}$) with empty leave. If $x_1 = u_2$ and $u_3 = v_1$, then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F_1, F_2\}) \cup \{x_1vy, y_2u_1 \text{ (or } x_2u_1)\} \cup \{x_1v_1y_1, v_2v_3\} \cup \{y_1yy_2, xx_2\}$ with empty leave. Hence, we have $P_3 \cup P_2 \mid G$ for any connected 3-regular graph G.

If G is disconnected, let $G = (mK_4) \cup H_1 \cup \cdots \cup H_n$ such that each H_i is different from K_4 and a connected 3-regular component, where $m \ge 0$ and $1 \le i \le n$. Since $P_3 \cup P_2 \mid H_i$ by the choice of G, $G - mK_4$ has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. If m = 1, choose an F in \mathcal{F} . Since $K_4 = 3P_3$ and $F = 3P_2$, $K_4 \cup F = 3(P_3 \cup P_2)$. Hence, $P_3 \cup P_2 \mid G$. If $m \ne 1$, then $G = \frac{m}{2}(2K_4) \cup H_1 \cup \cdots \cup H_n$ when m is even and $G = \frac{m-3}{2}(2K_4) \cup (3K_4) \cup H_1 \cup \cdots \cup H_n$ when m is odd. Since $K_4 = 2P_3 \cup 2P_2$, it is not difficult to see that $P_3 \cup P_2 \mid (tK_4)$ for t = 2 or 3. Hence, $P_3 \cup P_2 \mid (mK_4)$ for $m \ge 2$ and then $P_3 \cup P_2 \mid G$.

Case 3: $\delta(G) = 2$.

Suppose G has a cycle-component. Let $C_n = x_1 x_2 \cdots x_n x_1$ be the minimum cyclecomponent. If $3 \leq n \leq 5$, let $G' = G - C_n$. Suppose n = 3 and $C_n = x_1 x_2 x_3 x_1$. If $G = G_8, G_9, G_{19}, G_{28}$ or G_{29} , by Lemmas 2.1, 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. Choose an $F = \{v_1 v_2 v_3, v_4 v_5\}$ in \mathcal{F} . Hence, G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F\}) \cup \{x_1 x_2 x_3, v_4 v_5\} \cup \{v_1 v_2 v_3, x_1 x_3\}$ with leave L.

Suppose n = 4 and $C_n = x_1x_2x_3x_4x_1$. If $G = G_{10}$, G_{11} , G_{20} , G_{21} or G_{30} , by Lemmas 2.1, 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. For $L = \phi$, choose an $F = \{v_1v_2v_3, v_4v_5\}$ in \mathcal{F} . Then G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F\}) \cup \{x_1x_2x_3, v_4v_5\} \cup \{v_1v_2v_3, x_3x_4\}$ with leave x_1x_4 . For $L = v_1v_2$, G has a $(P_3 \cup P_2)$ -packing $\mathcal{F} \cup \{x_1x_2x_3, v_1v_2\}$ with leave $x_3x_4x_1$. For $L = v_1v_2v_3$, G has a $(P_3 \cup P_2)$ -packing $\mathcal{F} \cup \{x_1x_2x_3, v_1v_2\} \cup \{x_3x_4x_1, v_2v_3\}$ with empty leave.

Suppose n = 5 and $C_n = x_1 x_2 x_3 x_4 x_5 x_1$. If $G = G_{22}$, G_{23} , G_{31} or G_{32} , by Lemmas 2.2 and 2.3, the assertion holds for these graphs G. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. Choose an $F = \{v_1 v_2 v_3, v_4 v_5\}$ in \mathcal{F} . For $L = \phi$, G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F\}) \cup \{x_1 x_2 x_3, v_4 v_5\} \cup \{v_1 v_2 v_3, x_3 x_4\}$ with leave $x_4 x_5 x_1$. For L = $u_1 u_2$, G has a $(P_3 \cup P_2)$ -packing $(\mathcal{F} - \{F\}) \cup \{x_1 x_2 x_3, v_4 v_5\} \cup \{x_3 x_4 x_5, u_1 u_2\} \cup \{v_1 v_2 v_3, x_1 x_5\}$ with empty leave. For $L = u_1 u_2 u_3$, G has a $(P_3 \cup P_2)$ -packing $\mathcal{F} \cup \{x_1 x_2 x_3, u_1 u_2\} \cup$ $\{x_3x_4x_5, u_2u_3\}$ with leave x_1x_5 .

For $n \ge 6$, let $C_n = x_1 x_2 \cdots x_n x_1$. If $q(G) \equiv 0 \pmod{3}$, let $G' = (G - \{x_2, x_3, x_4\}) \cup \{x_1 x_5\}$. Then $q(G') = q(G) - 3 \equiv 0 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_1 x_5 \in F$. Since $F = \{x_1 x_5 x_6, v_4 v_5\}$, $\{x_n x_1 x_5, v_4 v_5\}$ or $\{v_1 v_2 v_3, x_1 x_5\}$, $(F - \{x_1 x_5\}) \cup \{x_1 x_2 x_3 x_4 x_5\}$ $(= P_6 \cup \{v_4 v_5\})$ or $P_5 \cup \{v_1 v_2 v_3\} = 2(P_3 \cup P_2)$. Hence, G has a $(P_3 \cup P_2)$ -packing with empty leave.

If $q(G) \equiv 1 \pmod{3}$, let $G' = (G - x_2) \cup \{x_1x_3\}$. Then $q(G') = q(G) - 1 \equiv 0 \pmod{3}$. (mod 3). By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} such that $x_1x_3 \in F$. Since $F = \{x_1x_3x_4, v_4v_5\}$, $\{x_nx_1x_3, v_4v_5\}$ or $\{v_1v_2v_3, x_1x_3\}$, $(F - \{x_1x_3\}) \cup \{x_1x_2x_3\} (= P_4 \cup \{v_4v_5\} \text{ or } P_3 \cup \{v_1v_2v_3\}) = (P_3 \cup P_2) \cup \{L\}$, where $L = x_1x_2$ or x_2x_3 . Hence, G has a $(P_3 \cup P_2)$ -packing with leave L.

If $q(G) \equiv 2 \pmod{3}$, let $G' = (G - \{x_2, x_3\}) \cup \{x_1x_4\}$. Then $q(G') = q(G) - 2 \equiv 0 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} such that $x_1x_4 \in F$. Since $F = \{x_1x_4x_5, v_4v_5\}$, $\{x_nx_1x_4, v_4v_5\}$ or $\{v_1v_2v_3, x_1x_4\}$, $(F - \{x_1x_4\}) \cup \{x_1x_2x_3x_4\} \ (= P_5 \cup \{v_4v_5\} \text{ or } P_4 \cup \{v_1v_2v_3\}) = (P_3 \cup P_2) \cup \{L\}$, where $L = x_1x_2x_3$ or $x_2x_3x_4$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave L.

Suppose G has no cycle-component. Since $\delta(G) = 2$, there is a path $x_0x_1x_2\cdots x_t$ (not necessary open), called 2-path, in G with $d(x_0) \ge 3$, $d(x_t) \ge 3$ and $d(x_i) = 2$ for $1 \le i < t$, where $t \ge 2$. We may choose a 2-path such that t is as small as possible. Note that if $t \ge 3$, then $G_1 = G - \{x_1, x_2, \cdots, x_{t-1}\}$, $G_2 = (G - \{x_1, x_2, \cdots, x_{t-1}\}) \cup \{x_0x_t\}$ and $G_3 = (G - \{x_1, x_2, \cdots, x_{t-2}\}) \cup \{x_0x_{t-1}\}$ are all different from $K_{1,1,3c+1}$, since $K_{1,1,3c+1}$ has a 2-path with t = 2. Consider the following cases.

(1) $x_0 x_t \in E(G)$.

Suppose $q(G) \equiv 2 \pmod{3}$. If t = 2, let $G' = G - x_1$. Then $q(G') \equiv 0 \pmod{3}$. If $G = G_{33}$, G_{34} or G_{35} , by Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with a P_3 as the leave. Otherwise, by the choice of G, $P_3 \cup P_2 \mid G'$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave $x_0x_1x_2$.

If t = 3, let $G' = G - \{x_1, x_2\}$. Then $q(G') \equiv 2 \pmod{3}$. If $G = G_{36}$, by Lemma 2.3, *G* has a $(P_3 \cup P_2)$ -packing with a P_3 as the leave. Otherwise, by the choice of *G*, *G'* has a $(P_3 \cup P_2)$ -packing \mathcal{F} with $L = v_1 v_2 v_3$ as the leave. If $x_0 x_3 = v_1 v_2$ or $v_2 v_3$, then $\{L\} \cup \{x_0 x_1 x_2 x_3\} = (P_3 \cup P_2) \cup \{L'\}$, where $L' = x_0 x_3 x_2$ or $x_1 x_0 x_3$. If $\{x_0, x_3\} \cap \{v_1, v_2, v_3\} = \phi$ or $\{v_2\}$, then $\{L\} \cup \{x_0 x_1 x_2 x_3\} = (P_3 \cup P_2) \cup \{L'\}$, where $L' = x_0 x_1 x_2$ or $x_1 x_2 x_3$. If $\{x_0, x_3\} \cap \{v_1, v_2, v_3\} = \{v_1\}$ or $\{v_3\}$, then $\{L\} \cup \{x_0 x_1 x_2 x_3\} = P_6 = (P_3 \cup P_2) \cup \{L'\}$, where $L' = x_0 x_1 x_2$ or $x_1 x_2 x_3$. Suppose $\{x_0, x_3\} = \{v_1, v_3\}$. Choose an *F* in \mathcal{F} with $x_0 x_3 \in F$. Then $F = \{x_0 x_3 u_3, u_4 u_5\}$, $\{x_3 x_0 u_3, u_4 u_5\}$ or $\{u_1 u_2 u_3, x_0 x_3\}$. If $F = \{x_0 x_3 u_3, u_4 u_5\}$, then $\{L\} \cup \{x_0 x_1 x_2 x_3\} = \{x_0 v_2 x_3, x_1 x_2\} \cup \{x_2 x_3 u_3, u_4 u_5\} \cup \{x_2 x_3 v_0\}$. If $F = \{u_1 u_2 u_3, x_0 x_3\}$, then $\{L\} \cup F \cup \{x_0x_1x_2x_3\} = \{x_0x_3v_2, x_1x_2\} \cup \{x_1x_0v_2, x_2x_3\} \cup \{u_1u_2u_3\}$. Hence, G has a $(P_3 \cup P_2)$ -packing with a P_3 as the leave.

If $t \ge 4$, let $G' = (G - \{x_1, x_2\}) \cup \{x_0x_3\}$. Then $q(G') \equiv 0 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0x_3 \in$ F. Then $F = \{x_0x_3x_4, v_4v_5\}$, $\{x_3x_0v_3, v_4v_5\}$ or $\{v_1v_2v_3, x_0x_3\}$. Hence, $(F - \{x_0x_3\}) \cup$ $\{x_0x_1x_2x_3\} (= P_5 \cup \{v_4v_5\} \text{ or } P_4 \cup \{v_1v_2v_3\}) = (P_3 \cup P_2) \cup \{L\}$, where $L = x_0x_1x_2$ or $x_1x_2x_3$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave L.

Suppose $q(G) \equiv 1 \pmod{3}$. Let $G' = G - \{x_0x_t\}$. Then $q(G') \equiv 0 \pmod{3}$. Since x_1 is of degree two in G' and $x_0x_t \notin E(G')$, G' is neither K_4 nor $K_{1,1,3c+1}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing with empty leave. Hence, G has a $(P_3 \cup P_2)$ -packing with leave x_0x_t .

Suppose $q(G) \equiv 0 \pmod{3}$. If t = 2, let $G' = G - x_1$. Then $q(G') \equiv 1 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with an edge e as the leave. If $\{x_0x_1x_2, e\}$ forms a $P_3 \cup P_2$, then $P_3 \cup P_2 \mid G$. If $e = x_0 z, z \neq x_2$ (similarly if $e = x_2 z, z \neq x_0$), choose an F in \mathcal{F} with $x_0x_2 \in F$. Then $F = \{x_0x_2v_3, v_4v_5\}, \{x_2x_0v_3, v_4v_5\}$ or $\{v_1v_2v_3, x_0x_2\}$. If $F = \{x_2x_0v_3, v_4v_5\}$, then $F \cup \{zx_0x_1x_2\} = \{x_1x_0x_2, v_4v_5\} \cup \{zx_0v_3, x_1x_2\}$. Suppose $F = \{v_1v_2v_3, x_0x_2\}$. If $z = v_2$, then $F \cup \{zx_0x_1x_2\} = \{x_1x_0x_2, v_1v_2\} \cup \{x_0zv_3, x_1x_2\}$. If $z = v_1$ (similarly if $z = v_3$), then $F \cup \{zx_0x_1x_2\} = \{x_1x_0x_2, v_2v_3\} \cup \{x_0zv_2, x_1x_2\}$. If $z \neq v_i$, i = 1, 2, 3, then $F \cup \{zx_0x_1x_2\} = \{x_0x_1x_2, v_1v_2\} \cup \{zx_0x_2, v_2v_3\}$. Suppose $F = \{x_0 x_2 v_3, v_4 v_5\}.$ If $z \neq v_3$, then $F \cup \{z x_0 x_1 x_2\} = \{x_1 x_0 x_2, v_4 v_5\} \cup \{x_1 x_2 v_3, x_0 z\}.$ Let $z = v_3$. Choose an $F_1 = \{u_1 u_2 u_3, u_4 u_5\}$ in $\mathcal{F} - \{F\}$. If $\{x_0, x_2\} \cap V(F_1) = \phi$, then $F \cup F_1 \cup \{zx_0x_1x_2\} = \{x_0x_1x_2, u_4u_5\} \cup \{x_0zx_2, v_4v_5\} \cup \{u_1u_2u_3, x_0x_2\}$. Suppose $\{x_0, x_2\} \cap V(F_1) = \{x_0\}$ (similarly if $\{x_0, x_2\} \cap V(F_1) = \{x_2\}$). If $x_0 = u_4$ (similarly if $x_0 = u_5$, then $F_1 \cup \{zx_0x_1x_2\} = \{zx_0u_5, x_1x_2\} \cup \{u_1u_2u_3, x_0x_1\}$. If $x_0 = u_1$ (similarly if $x_0 = u_3$, then $F \cup F_1 \cup \{zx_0x_1x_2\} = \{x_1x_0x_2, u_4u_5\} \cup \{x_0zx_2, v_4v_5\} \cup \{u_1u_2u_3, x_1x_2\}.$ If $x_0 = u_2$, then $F_1 \cup \{zx_0x_1x_2\} = \{zx_0u_1, x_1x_2\} \cup \{x_1x_0u_3, u_4u_5\}$. Suppose $\{x_0, x_2\} \cap$ $V(F_1) = \{x_0, x_2\}$. If $x_0 = u_1$ and $x_2 = u_3$ (similarly if $x_0 = u_3$ and $x_2 = u_1$), then $F \cup F_1 \cup \{zx_0x_1x_2\} = \{x_2x_0u_2, u_4u_5\} \cup \{x_1x_2z, v_4v_5\} \cup \{x_1x_0z, x_2u_2\}.$ If $x_0 = u_i, i = u_i$ 1,2,3 and $x_2 = u_4$ or u_5 (similarly if $x_2 = u_i$, i = 1,2,3 and $x_0 = u_4$ or u_5), then $F_1 \cup \{zx_0x_1x_2\} = \{zx_0x_1, u_4u_5\} \cup \{u_1u_2u_3, x_1x_2\}.$ Hence, $P_3 \cup P_2 \mid G.$

Suppose $e = x_0x_2$. Since G is different from $K_{1,1,3c+1}$, there is an edge v_1v_2 such that e and v_1v_2 are vertex disjoint edges. Choose an F in \mathcal{F} with $v_1v_2 \in F$. Then $F = \{u_1u_2u_3, v_1v_2\}$ or $\{v_1v_2v_3, v_4v_5\}$. Suppose $F = \{u_1u_2u_3, v_1v_2\}$. If $u_1u_2u_3 = x_0u_2x_2$, choose an F_1 in $\mathcal{F} - \{F\}$. By the same argument as the last paragraph, $F \cup F_1 \cup \{x_0x_1x_2x_0\} = 3(P_3 \cup P_2)$. Otherwise, $|\{x_0, x_2\} \cap V(F)| \leq 1$. We may assume $x_2 \neq u_i$, i = 1, 2, 3. Then $F_1 \cup \{x_0x_1x_2x_0\} = \{x_1x_0x_2, v_1v_2\} \cup \{u_1u_2u_3, x_1x_2\}$. Suppose $F = \{v_1v_2v_3, v_4v_5\}$. If $|\{x_0, x_2\} \cap V(F)| = 2$, then $x_0 = v_3$ and $x_2 = v_4$ or v_5 (similarly if $x_2 = v_3$ and $x_0 = v_4$

9

or v_5). Hence, $F \cup \{x_0x_1x_2x_0\} = \{x_1x_2x_0, v_1v_2\} \cup \{x_1x_0v_2, v_4v_5\}$. If $\{x_0, x_2\} \cap V(F) = \{x_0\}$ (similarly if $\{x_0, x_2\} \cap V(F) = \{x_2\}$), then $x_0 = v_i$, i = 3, 4, 5. If $x_0 = v_3$, then $F \cup \{x_0x_1x_2x_0\} = \{v_1v_2x_0, x_1x_2\} \cup \{x_1x_0x_2, v_4v_5\}$. If $x_0 = v_4$ (similarly if $x_0 = v_5$), $F \cup \{x_0x_1x_2x_0\} = \{x_1x_2x_0, v_1v_2\} \cup \{x_1x_0v_5, v_2v_3\}$. Hence, $P_3 \cup P_2 \mid G$.

If t = 3, let $G' = G - \{x_1, x_2\}$. Then $q(G') \equiv 0 \pmod{3}$. If $G = G_{12}$, by Lemma 2.1, $P_3 \cup P_2 \mid G$. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0x_3 \in F$. Then $F = \{x_0x_3v_3, v_4v_5\}$, $\{x_3x_0v_3, v_4v_5\}$ or $\{v_1v_2v_3, x_0x_3\}$. If $F = \{x_0x_3v_3, v_4v_5\}$, then $F \cup \{x_0x_1x_2x_3\} = \{x_0x_1x_2, x_3v_3\} \cup \{x_0x_3x_2, v_4v_5\}$. If $F = \{x_3x_0v_3, v_4v_5\}$, then $F \cup \{x_0x_1x_2x_3\} = \{x_1x_2x_3, x_0v_3\} \cup \{x_1x_0x_3, v_4v_5\}$. If $F = \{v_1v_2v_3, x_0x_3\}$, then $F \cup \{x_0x_1x_2x_3\} = \{x_0x_1x_2, v_1v_2\} \cup \{x_0x_3x_2, v_2v_3\}$. Thus, $P_3 \cup P_2 \mid G$.

If t = 4, let $G' = G - \{x_1, x_2, x_3\}$. Then $q(G') \equiv 2 \pmod{3}$. If $G = G_{13}$, by Lemma 2.1, $P_3 \cup P_2 \mid G$. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave $v_1 v_2 v_3$. Since $\{v_1 v_2 v_3\} \cup \{x_0 x_1 x_2 x_3 x_4\} = \{x_0 x_1 x_2, x_3 x_4\} \cup \{v_1 v_2 v_3, x_2 x_3\}, P_3 \cup P_2 \mid G$.

If $t \ge 5$, let $G' = (G - \{x_1, x_2, x_3\}) \cup \{x_0x_4\}$. Then $q(G') \equiv 0 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0x_4 \in F$. Then $F = \{x_0x_4x_5, v_4v_5\}, \{x_4x_0v_3, v_4v_5\}$ or $\{v_1v_2v_3, x_0x_4\}$ and $(F - \{x_0x_4\}) \cup \{x_0x_1x_2x_3x_4\}$ $(= P_6 \cup P_2 \text{ or } P_5 \cup P_3) = 2(P_3 \cup P_2)$. Hence, $P_3 \cup P_2 \mid G$.

(2) $x_0 x_t \notin E(G)$ and $x_0 \neq x_t$.

Suppose $q(G) \equiv 2 \pmod{3}$. If t = 2, let $G' = G - x_1$. Then $q(G') \equiv 0 \pmod{3}$. If $G' = K_{1,1,3c+1}$, then the three partite sets are $\{u\}, \{v\}$ and $\{x_0, x_2, w_3, \ldots, w_{3c+1}\}$. Hence, $G = G' \cup \{x_0x_1x_2\} = \{x_0x_1x_2, uv\} \cup (cK_{2,3}) \cup P_3 = \{x_0x_1x_2, uv\} \cup (2c(P_3 \cup P_2)) \cup P_3$. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Hence, G has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave $x_0x_1x_2$.

If $t \ge 3$, let $G' = (G - \{x_1, x_2\}) \cup \{x_0x_3\}$. Then $q(G') \equiv 0 \pmod{3}$. If $G = G_{37}$, by Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with a P_3 as the leave. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0x_3 \in F$. Then $F = \{x_0x_3v_3, v_4v_5\}, \{x_3x_0v_3, v_4v_5\}$ or $\{v_1v_2v_3, x_0x_3\}$. Hence, $(F - \{x_0x_3\}) \cup \{x_0x_1x_2x_3\} (= P_5 \cup P_2 \text{ or } P_4 \cup P_3) = (P_3 \cup P_2) \cup \{L\}$, where $L = x_0x_1x_2$ or $x_1x_2x_3$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave L.

Suppose $q(G) \equiv 1 \pmod{3}$. Let $G' = (G - x_1) \cup \{x_0x_2\}$. Then $q(G') \equiv 0 \pmod{3}$. If $G = G_{24}$ or G_{25} , by Lemma 2.2, G has a $(P_3 \cup P_2)$ -packing with a P_2 as the leave. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0x_2 \in F$. Then $F = \{x_0x_2v_3, v_4v_5\}$, $\{x_2x_0v_3, v_4v_5\}$ or $\{v_1v_2v_3, x_0x_2\}$ and $(F - \{x_0x_2\}) \cup \{x_0x_1x_2\} (= P_4 \cup P_2 \text{ or } P_3 \cup P_3) = (P_3 \cup P_2) \cup \{L\}$, where $L = x_0x_1$ or x_1x_2 . Hence, G has a $(P_3 \cup P_2)$ -packing with leave L.

Suppose $q(G) \equiv 0 \pmod{3}$. If t = 2, let $G' = G - x_1$. Then $q(G') \equiv 1 \pmod{3}$. By

the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with an edge e as the leave. If $\{x_0x_1x_2, e\}$ forms a $P_3 \cup P_2$, then $P_3 \cup P_2 \mid G$. Let $e = x_0 z$ (similarly $e = x_2 z$). Choose an F in \mathcal{F} with $x_2 \in V(F)$. Then $F = \{v_1v_2v_3, x_2v_5\}, \{v_1x_2v_3, v_4v_5\}$ or $\{x_2v_2v_3, v_4v_5\}$. Suppose $F = \{v_1v_2v_3, x_0v_5\}$. If $z \neq v_5$, then $F \cup \{zx_0x_1x_2\} = \{x_1x_0z, x_2v_5\} \cup \{v_1v_2v_3, x_1x_2\}$. Suppose $z = v_5$. If $x_0 = v_1$ (similarly if $x_0 = v_3$), then $F \cup \{zx_0x_1x_2\} = \{x_1x_0z, v_2v_3\} \cup \{zx_0x_1x_2\} = \{zx_0x_1x_2, v_2v_3\} \cup \{zx_0x_2, v_2v_3\} \cup \{zx_0x_1x_2, v_2v_3\} \cup \{zx_0x_2, v_2v_$ $\{x_1x_2z, x_0v_2\}$. If $x_0 = v_2$, then $F \cup \{zx_0x_1x_2\} = \{x_1x_0v_1, x_2z\} \cup \{zx_0v_3, x_1x_2\}$. If $x_0 \neq v_i, i = 1, 2, 3$, then $F \cup \{zx_0x_1x_2\} = \{x_0x_1x_2, v_1v_2\} \cup \{x_0zx_2, v_2v_3\}$. Suppose $F = \{v_1 x_2 v_3, v_4 v_5\}$. Then $z \neq v_1$ (similarly if $z \neq v_3$) and $F \cup \{z x_0 x_1 x_2\} = \{x_1 x_0 z, x_2 v_1\} \cup \{z x_0 x_1 x_2\}$ $\{x_1x_2v_3, v_4v_5\}$. Suppose $F = \{x_2v_2v_3, v_4v_5\}$. If z is neither v_2 nor v_3 , then $F \cup \{zx_0x_1x_2\} =$ $\{x_1x_0z, v_2v_3\} \cup \{x_1x_2v_2, v_4v_5\}$. Suppose $z = v_2$. If $x_0 = v_4$ (similarly if $x_0 = v_5$), then $F \cup \{zx_0x_1x_2\} = \{x_2zv_3, x_0x_1\} \cup \{zx_0v_5, x_1x_2\}$. If $x_0 \neq v_i, i = 4, 5$, then $F \cup \{zx_0x_1x_2\} = \{z_1, z_2, z_3, z_1, z_2\}$ $\{x_0x_1x_2, v_2v_3\} \cup \{x_0zx_2, v_4v_5\}$. Suppose $z = v_3$. If $x_0 = v_4$ (similarly if $x_0 = v_5$), then $F \cup \{zx_0x_1x_2\} = \{x_1x_0v_5, v_2z\} \cup \{x_1x_2v_2, x_0z\}$. Suppose $x_0 \neq v_i, i = 4, 5$, then $F \cup \{zx_0x_1x_2\}$ is the disjoint union of 5-cycle $x_0x_1x_2v_2zx_0$ and an edge v_4v_5 . Since $d(x_2) \geq 3$, there is an F_1 in $\mathcal{F} - \{F\}$ such that $x_2 \in V(F_1)$. By the same argument as above, $F_1 \cup \{zx_0x_1x_2\} = 2(P_3 \cup P_2)$ except $F_1 \cup \{zx_0x_1x_2\}$ is the disjoint union of 5-cycle $x_0x_1x_2u_2zx_0$ and an edge u_4u_5 . In this case, if $v_2 = u_4$ (similarly if $v_2 = u_5$, then $F \cup F_1 \cup \{zx_0x_1x_2\} = \{x_0x_1x_2, v_4v_5\} \cup \{x_0zv_2, x_2u_2\} \cup \{x_2v_2u_5, zu_2\};$ otherwise, $F \cup F_1 \cup \{zx_0x_1x_2\} = \{x_0x_1x_2, v_4v_5\} \cup \{u_2x_2v_2, x_0z\} \cup \{u_2zv_2, u_4u_5\}.$ Hence, G has a $(P_3 \cup P_2)$ -packing with empty leave.

If t = 3, let $G' = G - \{x_1, x_2\}$. Then $q(G') \equiv 0 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0 \in V(F)$. Then $F = \{x_0v_2x_3, v_4v_5\}$, $\{x_0v_2v_3, v_4v_5\}$ $(v_3 \neq x_3)$, $\{v_1x_0v_3, v_4v_5\}$ or $\{v_1v_2v_3, x_0v_5\}$. If $F = \{x_0v_2x_3, v_4v_5\}$, then $F \cup \{x_0x_1x_2x_3\}$ is a union of 5-cycle $x_0x_1x_2x_3v_2x_0$ and an edge v_4v_5 . By the same argument as above, we have $P_3 \cup P_2 \mid G$. If $F = \{x_0v_2v_3, v_4v_5\}$ or $\{v_1x_0v_3, v_4v_5\}$, then $F \cup \{x_0x_1x_2x_3\} = \{x_0x_1x_2, v_4v_5\} \cup \{x_0v_2v_3 \text{ (or } v_1x_0v_3), x_2x_3\}$. If $F = \{v_1v_2v_3, x_0v_5\}$, then $F \cup \{x_0x_1x_2x_3\} = \{x_1x_2x_3, x_0v_5\} \cup \{v_1v_2v_3, x_0x_1\}$. Hence, Ghas a $(P_3 \cup P_2)$ -packing with empty leave.

If $t \ge 4$, let $G' = G - \{x_1, x_2, x_3\} \cup \{x_0x_4\}$. Then $q(G') \equiv 0 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_0x_4 \in F$. Then $F = \{x_0x_4v_3, v_4v_5\}, \{x_4x_0v_3, v_4v_5\}$ or $\{v_1v_2v_3, x_0x_4\}$ and $(F - \{x_0x_4\}) \cup \{x_0x_1x_2x_3x_4\}$ (= $P_6 \cup P_2$ or $P_5 \cup P_3$) = $2(P_3 \cup P_2)$. Hence, G has a $(P_3 \cup P_2)$ -packing with empty leave.

(3) $x_0 = x_t$ and $t \ge 3$.

Suppose $q(G) \equiv 2 \pmod{3}$. For t = 3 or 4, if $d(x_0) \ge 4$, let $G' = G - \{x_1, x_2, \dots, x_{t-1}\}$. If $G = G_{38}$ or G_{39} , by Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with a P_3 as the leave. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. If t = 3, then $L = P_3$ and $\{L\} \cup \{x_0x_1x_2x_0\} = \{L, x_1x_2\} \cup \{x_1x_0x_2\}$. If t = 4, then $L = P_2$ and $\{L\} \cup \{x_0x_1x_2x_3x_0\} = \{L, x_1x_2x_3\} \cup \{x_1x_0x_3\}$. Hence, G has a $(P_3 \cup P_2)$ -packing with a P_3 as the leave. Suppose $d(x_0) = 3$. Let $N(x_0) = \{x_1, x_{t-1}, z\}$. In this case, $d(z) \ge 3$. Let $G' = G - \{x_0, x_1, \dots, x_{t-1}\}$. If $G = G_{40}$, by Lemma 2.3, G has a $(P_3 \cup P_2)$ -packing with a P_3 as the leave. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. If t = 3, then $L = P_2$ and $\{L\} \cup \{x_0x_1x_2x_0\} \cup \{x_0z\} = \{L, x_0x_1x_2\} \cup \{x_2x_0z\}$. If t = 4, then $L = \phi$ and $\{x_0x_1x_2x_3x_0\} \cup \{x_0z\} = \{x_1x_2x_3, x_0z\} \cup \{x_1x_0x_3\}$. Hence, G has a $(P_3 \cup P_2)$ -packing with a P_3 as the leave.

For $t \geq 5$, let $G' = (G - \{x_2, x_3\}) \cup \{x_1x_4\}$. Then $q(G') \equiv 0 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_1x_4 \in F$. Then $F = \{x_0x_1x_4, v_4v_5\}, \{x_1x_4x_5, v_4v_5\}$ or $\{v_1v_2v_3, x_1x_4\}$ and $(F - \{x_1x_4\}) \cup \{x_1x_2x_3x_4\}$ (= $P_5 \cup P_2$ or $P_4 \cup P_3$) = $(P_3 \cup P_2) \cup \{L\}$, where $L = x_1x_2x_3$ or $x_2x_3x_4$. Hence, G has a $(P_3 \cup P_2)$ -packing with leave L.

Suppose $q(G) \equiv 1 \pmod{3}$. For t = 3, if $d(x_0) \ge 4$, let $G' = G - \{x_1, x_2\}$. If $G = G_{26}$, by Lemma 2.2, G has a $(P_3 \cup P_2)$ -packing with a P_2 as the leave. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with a P_2 as the leave. Choose an F in \mathcal{F} with $x_0 \in V(F)$. Then $F = \{x_0v_2v_3, v_4v_5\}$, $\{v_1x_0v_3, v_4v_5\}$ or $\{v_1v_2v_3, x_0v_5\}$. If $F = \{x_0v_2v_3, v_4v_5\}$ or $\{v_1x_0v_3, v_4v_5\}$, then $F \cup \{x_0x_1x_2x_0\} = \{x_1x_0x_2, v_4v_5\} \cup \{x_0v_2v_3 \text{ (or } v_1x_0v_3), x_1x_2\}$. If $F = \{v_1v_2v_3, x_0v_5\}$, then $F \cup \{x_0x_1x_2x_0\} = \{x_0x_1x_2, v_1v_2\} \cup \{x_2x_0v_5, v_2v_3\}$. Hence, G has a $(P_3 \cup P_2)$ -packing with a P_2 as the leave. Suppose $d(x_0) = 3$. Let $N(x_0) = \{x_1, x_2, z\}$. In this case, $d(z) \ge 3$. Let $G' = G - x_0z$. Then $q(G') \equiv 0 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Hence, G has a $(P_3 \cup P_2)$ -packing with leave x_0z .

For $t \ge 4$, let $G' = (G - x_2) \cup \{x_1x_3\}$. Then $q(G') \equiv 0 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_1x_3 \in F$. Then $F = \{x_0x_1x_3, v_4v_5\}, \{x_1x_3x_4, v_4v_5\}$ or $\{v_1v_2v_3, x_1x_3\}$ and $(F - \{x_1x_3\}) \cup \{x_1x_2x_3\} (= P_4 \cup P_2 \text{ or } P_3 \cup P_3) = (P_3 \cup P_2) \cup \{L\}$, where $L = x_1x_2$ or x_2x_3 . Hence, G has a $(P_3 \cup P_2)$ -packing with a P_2 as the leave.

Suppose $q(G) \equiv 0 \pmod{3}$. For $3 \leq t \leq 5$, if $d(x_0) \geq 4$, let $G' = G - \{x_1, x_2, \dots, x_{t-1}\}$. If $G = G_{14}$ or G_{15} , by Lemma 2.1, G has a $(P_3 \cup P_2)$ -packing with empty leave. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. If t = 3, then $L = \phi$. Choose an F in \mathcal{F} with $x_0 \in V(F)$. Then $F = \{x_0v_2v_3, v_4v_5\}$, $\{v_1x_0v_3, v_4v_5\}$ or $\{v_1v_2v_3, x_0v_5\}$. If $F = \{x_0v_2v_3, v_4v_5\}$ or $\{v_1x_0v_3, v_4v_5\}$, then $F \cup \{x_0x_1x_2x_0\} =$ $\{x_1x_0x_2, v_4v_5\} \cup \{x_0v_2v_3 \text{ (or } v_1x_0v_3), x_1x_2\}$. If $F = \{v_1v_2v_3, x_0v_5\}$, then $F \cup \{x_0x_1x_2x_0\} =$ $\{x_0x_1x_2, v_1v_2\} \cup \{x_2x_0v_5, v_2v_3\}$. If t = 4, then $L = P_3 = x_0 (=v_1) v_2v_3, v_1v_2v_3$ or $v_1x_0v_3$. If $L = x_0v_2v_3$ or $v_1v_2v_3$, then $\{L\} \cup \{x_0x_1x_2x_3x_0\} = \{x_1x_2x_3, v_1v_2\} \cup \{x_1x_0x_3, v_2v_3\}$. If $L = v_1x_0v_3$, then $\{L\} \cup \{x_0x_1x_2x_3x_0\} = \{x_1x_0v_1, x_2x_3\} \cup \{x_3x_0v_3, x_1x_2\}$. If t = 5, then L = uv. If x_0 is incident with uv, say $x_0 = u$, then $\{x_0x_1x_2x_3x_4x_0\} \cup \{uv\} = \{x_0x_1x_2, x_3x_4\} \cup \{vx_0x_4, x_2x_3\}$. Otherwise, choose an $F = \{v_1v_2v_3, v_4v_5\}$ in \mathcal{F} with $x_0 \in V(F)$. If $x_0 = v_4$ or v_5 , then $F \cup \{x_0x_1x_2x_3x_4x_0\} \cup \{uv\} = \{x_0x_1x_2, uv\} \cup \{x_2x_3x_4, v_4v_5\} \cup \{v_1v_2v_3, x_4x_0\}$. If $x_0 = v_1, v_2$ or v_3 , then $F \cup \{x_0x_1x_2x_3x_4x_0\} \cup \{uv\} = \{x_0x_1x_2, uv\} \cup \{x_0x_1x_2, uv\} \cup \{x_3x_4x_0, v_4v_5\} \cup \{v_1v_2v_3, x_2x_3\}$. Hence, G has a $(P_3 \cup P_2)$ -packing with empty leave.

Suppose $d(x_0) = 3$. Let $N(x_0) = \{x_1, x_{t-1}, z\}$. In this case, $d(z) \ge 3$. Let $G' = G - \{x_0, x_1, \dots, x_{t-1}\}$. If $G = G_{16}$, G_{17} or G_{18} , by Lemma 2.1, G has a $(P_3 \cup P_2)$ -packing with empty leave. Otherwise, by the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with leave L. If t = 3, then $L = zv_2v_3$, v_1zv_3 or $v_1v_2v_3$. If $L = zv_2v_3$, then $\{L\} \cup \{x_0x_1x_2x_0, x_0z\} = \{x_0x_1x_2, zv_2\} \cup \{x_2x_0z, v_2v_3\}$. If $L = v_1zv_3$, then $\{L\} \cup \{x_0x_1x_2x_0, x_0z\} = \{x_1x_0x_2, zv_1\} \cup \{x_0zv_3, x_1x_2\}$. If $L = v_1v_2v_3$, then $\{L\} \cup \{x_0x_1x_2x_0, x_0z\} = \{x_0x_1x_2, v_1v_2\} \cup \{x_2x_0z, v_2v_3\}$. If t = 4, then $L = v_1v_2$ and $\{L\} \cup \{x_0x_1x_2x_3x_0, x_0z\} = \{x_1x_2x_3, x_0z\} \cup \{x_1x_0x_3, v_1v_2\}$. If t = 5, then $L = \phi$ and $\{x_0x_1x_2x_3x_4x_0, x_0z\} = \{x_0x_1x_2, x_3x_4\} \cup \{x_4x_0z, x_2x_3\}$. Hence, G has a $(P_3 \cup P_2)$ -packing with empty leave.

For $t \ge 6$, let $G' = (G - \{x_2, x_3, x_4\}) \cup \{x_1x_5\}$. Then $q(G') \equiv 0 \pmod{3}$. By the choice of G, G' has a $(P_3 \cup P_2)$ -packing \mathcal{F} with empty leave. Choose an F in \mathcal{F} with $x_1x_5 \in F$. Then $F = \{x_0x_1x_5, v_4v_5\}, \{x_1x_5x_6, v_4v_5\}$ or $\{v_1v_2v_3, x_1x_5\}$ and $(F - \{x_1x_5\}) \cup \{x_0x_1x_2x_3x_4x_5\}$ (= $P_6 \cup P_2$ or $P_5 \cup P_3$) = $2(P_3 \cup P_2)$. Hence, G has a $(P_3 \cup P_2)$ -packing with empty leave.

Therefore, we complete the proof.

Now, we are ready to prove the Conjecture 1.1.

Theorem 2.6. If G is a graph with $q(G) \equiv 0 \pmod{3}$ and $\delta(G) \geq 2$, then $H \mid G$ for some graph H of size 3.

Proof. If q(G) = 3, then it is trivial that $G \mid G$. It have been argued that $P_4 \mid G$ if $G = K_4$ or $K_{1,1,3c+1}$. By Theorem 2.5, we have $P_3 \cup P_2 \mid G$. Therefore, we complete the proof. \Box

Acknowledgments

We do very appreciate for referees for their many constructive suggestions to make this paper fruitfully.

References

 A. A. Abueida and M. Daven, *Multidesigns for graph-pairs of order* 4 and 5, Graphs Combin. 19 (2003), no. 4, 433–447.

- [2] A. A. Abueida and T. O'Neil, Multidecomposition of λK_m into small cycles and claws, Bull. Inst. Combin. Appl. **49** (2007), 32–40.
- [3] B. Alspach and H. Gavlas, Cycle decompositions of K_n and K_n-I , J. Combin. Theory Ser. B **81** (2001), no. 1, 77–99.
- [4] B. Alspach and R. Häggkvist, Some observations on the Oberwolfach problem, J. Graph Theory 9 (1985), no. 1, 117–187.
- [5] B. Alspach P. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A 52 (1989), no. 1, 20–43.
- [6] B. Alspach and B. N. Varma, Decomposing complete graphs into cycles of length 2p^e, Ann. Discrete Math. 9 (1980), 155–162.
- [7] J. Barát and C. Thomassen, Claw-decompositions and Tutte-orientations, J. Graph Theory 52 (2006), no. 2, 135–146.
- [8] J.-C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combin. 10 (1980), 211–254.
- [9] J.-C. Bermond and J. Schönheim, G-decompositions of K_n , where G has four vertices or less, Discrete Math. **19** (1977), no. 2, 113–120.
- [10] E. J. Billington, N. J. Cavenagh and B. R. Smith, Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts, Discrete Math. 310 (2010), no. 2, 241–254.
- [11] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [12] L. Bulteau, G. Fertin, A. Labarre, R. Rizzi and I. Rusu, Decomposing cubic graphs into connected subgraphs of size three, in Computing and Combinatorics, 393–404, Lecture Notes in Comput. Sci. 9797, Springer, 2016.
- [13] G. Chartrand, F. Saba and C. M. Mynhardt, Prime graphs, prime-connected graphs and prime divisors of graphs, Utilitas Math. 46 (1994), 179–191.
- [14] A. A. Diwan, J. E. Dion, D. J. Mendell, M. J. Plantholt and S. K. Tipnis, *The complexity of P₄-decomposition of regular graphs and multigraphs*, Discrete Math. Theor. Comput. Sci. 17 (2015), no. 2, 63–75.
- [15] S. I. EI-Zanati, M. J. Plantholt and S. K. Tipnis, On decomposing even regular multigraphs into small isomorphic trees, Discrete Math. 325 (2014), 47–51.

- [16] R. Häggkvist and R. Johansson, A note on edge-decompositions of planar graphs, Discrete Math. 283 (2004), no. 1-3, 263–266.
- [17] K. Heinrich, J. Liu and M. Yu, P₄-decompositions of regular graphs, J. Graph Theory **31** (1999), no. 2, 135–143.
- [18] D. G. Hoffman C. C. Lindner and C. A. Rodger, On the construction of odd cycle systems, J. Graph Theory 13 (1989), no. 4, 417–426.
- [19] A. Kotzig, On the decomposition of a complete graph into 4k-gons, Mat.-Fyz. Cas 15 (1965), no. 3, 229–233.
- [20] C. Lin and T.-W. Shyu, A necessary and sufficient condition for the star decomposition of complete graphs, J. Graph Theory 23 (1996), no. 4, 361–364.
- [21] C. C. Lindner, K. T. Phelps and C. A. Rodger, The spectrum for 2-perfect 6-cycle systems, J. Combin. Theory Ser. A 57 (1991), no. 1, 76–85.
- [22] R. S. Manikandan and P. Paulraja, C_p-decompositions of some regular graphs, Discrete Math. **306** (2006), no. 4, 429–451.
- [23] M. Merker, Decomposing series-parallel graphs into paths of length 3 and triangles, Electronic Notes in Discrete Mathematics 49 (2015), 367–370.
- [24] N. Oksimets, A characterization of Eulerian graphs with trianglefree Euler tours, Technical Report 1 (2003), Department of Mathematics, Umea University.
- [25] C. A. Parker, Complete Bipartite Graph Path Decompositions, Ph.D. Dissertation, Auburn University, 1998.
- [26] C. A. Rodger, Graph decompositions, Matematiche (Catania) 45 (1990), no. 1, 119– 139.
- [27] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math.
 310 (2010), no. 15-16, 2164–2169
- [28] B. R. Smith, Decomposing complete equipartite graphs into cycles of length 2p, J. Combin. Des. 16 (2008), no. 3, 244–252.
- [29] D. Sotteau, Decomposition of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2k, J. Combin. Theory Ser. B **30** (1981), no. 1, 75–81.
- [30] M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979), no. 3, 273–278.

- [31] M. Tarsi, On the decomposition of a graph into stars, Discrete Math. 36 (1981), no. 3, 299–304.
- [32] C. Thomassen, Decompositions of highly connected graphs into paths of length 3, J. Graph Theory 58 (2008), no. 4, 286–292.
- [33] K. Ushio, S. Tazawa and S. Yamamoto, On claw-decomposition of a complete multipartite graph, Hiroshima Math. J. 8 (1978), no. 1, 207–210.
- [34] R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Congressus Numerantium 15 (1976), 647–659.
- [35] S. Yamomoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, On clawdecomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975), 33–42.

Zhen-Chun Chen and Hung-Lin Fu

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan

E-mail address: amco0624@yahoo.com.tw, hlfu@math.nctu.edu.tw

Kuo-Ching Huang

Department of Financial and Computational Mathematics, Providence University, Shalu 43301, Taichung, Taiwan

E-mail address: kchuang@gm.pu.edu.tw