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Maximal Multilinear Commutators on Non-homogeneous Metric Measure

Spaces

Jie Chen and Haibo Lin*

Abstract. Let (X, d, 1) be a metric measure space satisfying the so-called upper dou-
bling condition and the geometrically doubling condition. Let T, be the maximal
Calderén-Zygmund operator and b := (by,...,by) be a finite family of R/]g\M/O(M)
functions. In this paper, the authors establish the boundedness of the maximal mul-
tilinear commutator T*,E generated by T, and b on the Lebesgue space LP(u) with
p € (1,00). For b= (b1,...,by) being a finite family of Orlicz type functions, the
weak type endpoint estimate for the maximal multilinear commutator T*J; generated
by T, and b is also presented. The main tool to deal with these estimates is the

smoothing technique.

1. Introduction

It is well known that the theory of Calderén-Zygmund operators is one of the core research
areas in harmonic analysis. During the development of Calderén-Zygmund theory, the
space of homogeneous type introduced by Coifman and Weiss [7,8] is considered to be
a natural setting for Calderén-Zygmund operators and function spaces. Recall that a
quasi-metric space (X,d) equipped with a non-negative measure p is called a space of
homogeneous type in the sense of Coifman and Weiss [7,8] if (X, d, u) satisfies the measure
doubling condition: there exists a positive constant C(,y such that, for all balls B(z,7) :=
{y e X :d(z,y) < r} with z € X and r € (0, 00),

(1’1) :U’(B(x?2r)) < C(M)N(B(xvr))'

This measure doubling condition is one of the most crucial assumptions in the classical
harmonic analysis.
On the other hand, in the last two decades, many classical results concerning the

Calderén-Zygmund operators and function spaces have been proved still valid for metric
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spaces equipped with non-doubling measures; see, for example, [416}14,27-30,:34-38|. In
particular, let u be a non-negative Radon measure on R which only satisfies the polynomial
growth condition that there exist some positive constants Cy and n € (0,d] such that, for
all z € R? and r € (0, 00),

(1.2) u(B(x,r)) < Cor",

where B(z,r) := {y € R?: |z —y| <r}. Such a measure does not need to satisfy the
doubling condition . The analysis on such non-doubling context plays a striking role
in solving several long-standing problems related to the analytic capacity, like Vitushkin’s
conjecture or Painlevé’s problem; see [36,38]. Tolsa [34] introduced the atomic Hardy
space H;t’ﬁ(u), for ¢ € (1, 0], and its dual space, RBMO(u), the space of functions with
reqularized bounded mean oscillation, with respect to u as in , and established the
boundedness on LP(u) with p € (1,00) of commutators generated by Carderén-Zygmund
operators and RBMO(y) functions. Chen and Miao [5] proved that the maximal commu-
tator generated by the maximal Calderén-Zygmund operator and the RBMO(u) function
is bounded on LP(u) with p € (1,00). The weak type endpoint estimate for the maximal
commutator generated by the maximal Calderén-Zygmund operator and the Orlicz type
function was obtained by Hu et al. [16]. Li and Jiang [22] established the corresponding
results for the maximal multilinear commutators.

However, as was pointed out by Hytonen in [17], the measure u satisfying the polyno-
mial growth condition is different from, not general than, the doubling measure. Hyténen
[17] introduced a new class of metric measure spaces satisfying both the so-called upper
doubling condition and the geometrically doubling condition (see, respectively, Defini-
tions and below), which are also simply called non-homogeneous metric measure
spaces. These new class of metric measure spaces include both metric measure spaces of
homogeneous type and metric measure spaces equipped with non-doubling measures as
special cases. We mention that several equivalent characterizations for the upper doubling
condition were recently established by Tan and Li [32,33].

From now on, we always assume that (X,d,u) is a metric measure space of non-
homogeneous type in the sense of Hytonen [17]. In this new setting, Hytonen [17] intro-
duced the space RBMO(u) and established the corresponding John-Nirenberg inequality,
and Hytonen and Martikainen [19] further established a version of T'b theorem. Later,
Hytonen et al. [21] and Bui and Duong [2], independently, introduced the atomic Hardy
space H alt’ﬁ(,u) and proved that the dual space of H ;t”};(,u) is RBMO(p). Recently, Fu et
al. [11] established the boundedness of multilinear commutators generated by Calderén-
Zygmund operators and RBMO(u) functions. Bui [1] obtained the LP(x)-boundedness of
the maximal commutator generated by the maximal Calderén-Zygmund operator and the

RBMO(y) function under the additional assumption that there exists a positive constant
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m such that A(z,ar) = a™\(z,r) for all x € X and a,r € (0,00), where X is the dominat-
ing function of the measure p (see Deﬁnitionbelow). The boundedness of commutators
of multilinear singular integrals on Lebesgue spaces was obtained by Xie et al. [40]. In ad-

dition, Fu et al. [10] introduced a version of the atomic Hardy space H alt’f,’g(,u) (C Halt”g(,u)

and simply denoted by H'(y)) and its corresponding dual space RTB\M/O(,LL) (D RBMO(u);

see Definition below) via the discrete coefficients f(j(gp)s. Very recently, Lin et al. [23]

proved that the commutator of the Calderén-Zygmund operator with R/B\M/O(,u) function
is bounded from the atomic Hardy space H L(1) into the weak Lebesgue space LY (u).
More research on function spaces and the boundedness of various operators on metric
measure spaces of non-homogeneous type can be found in [18,20,24,26]. We refer the
reader to the survey [41] and the monograph [42] for more developments on harmonic
analysis in this setting.

The main purpose of this paper is to establish the boundedness of the maximal
multilinear commutators in the present setting (X, d, ). Precisely, let Ty be the max-
imal Calderon-Zygmund operator associated with the truncated operator T, and b=
(b1, ..., by) be a finite family of R/BT\/I/O(M) functions. We establish the boundedness of the
maximal multilinear commutator 7', 7 generated by T, and b on the Lebesgue space LP(u)
with p € (1,00). This generalizes the corresponding result in [1]. For b = (b1,...,bm)
being a finite family of Orlicz type functions (see Definition below), the Llog L type
endpoint estimate for the maximal multilinear commutator 7', ; generated by T, and b is
also presented. The main tool to deal with these estimates is7 the smoothing technique.
We mention that this smoothing technique was used by Segovia and Torrea [31] in the
setting of classical Euclidean spaces and by Garcia-Cuerva and Martell [12] in the setting
of metric measure spaces equipped with non-doubling measures.

To state our main results, we first recall some necessary notions and notations. We start
with the following notion of upper doubling metric measure spaces originally introduced
by Hytonen [17] (see also [18}26]).

Definition 1.1. A metric measure space (X,d, ) is said to be upper doubling if p is
a Borel measure on X and there exist a dominating function A: X x (0,00) — (0, 00)
and a positive constant C(y), depending on A, such that, for each x € X, r — Az, ) is

non-decreasing and, for all z € X and r € (0, c0),
(13) /L(B(l’,?“)) < A(]},T) < C(/\)A(.TJ,T/2)

Remark 1.2. (i) Obviously, a space of homogeneous type is a special case of upper
doubling spaces, where we take the dominating function A(z,r) := u(B(z,r)) for
all z € X and r € (0,00). On the other hand, the d-dimensional Euclidean space
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(iii)

(iv)
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R? with any Radon measure x as in (I.2) is also an upper doubling space by taking
Az, 7) := Cor" for all x € R? and r € (0,00).

Let (X,d, i) be upper doubling with A being the dominating function on X x (0, 00)
as in Definition It was proved in [21] that there exists another dominating

function A such that A < A, C(X) < Cpy) and, for all z,y € X with d(z,y) <,

(1.4) Xw,7) < Cy My, 7).

It was shown in [32] that the upper doubling condition is equivalent to the weak
growth condition: there exist a dominating function A: X x (0,00) — (0,00), with
r — A(z,7) non-decreasing, positive constants C(»), depending on A, and o such
that

(iii); for all r € (0,00), t € [0,7], z,y € X and d(z,y) € [0, 1],
Ay, +1) = Az, r)| < Cy [ Y +t] Az, 7);

(iii)o for all z € X and r € (0,00), u(B(z,r)) < Az, 7).

It was proved in [23] that the dominating function A satisfying has the fol-
lowing property: for any fixed ball B C X, if 21,290 € B and y € X\ (kB) with
k € [2,00), then there exists a positive constant C' such that C~*A(z1,d(z1,y)) <
Az2,d(z2,y)) < CA(z1,d(x1,y)); see |23, Lemma 2.3].

The following definition of geometrically doubling is well known in analysis on metric

spaces, which can be found in Coifman and Weiss [7, pp. 66-67], and is also known as

metrically doubling (see, for example, [13, p. 81]). Moreover, spaces of homogeneous type

are geometrically doubling, which was proved by Coifman and Weiss in |7, pp. 66—68].

Definition 1.3. A metric space (X, d) is said to be geometrically doubling if there exists
some Ny € N :={1,2,...} such that, for any ball B(z,r) C X with z € X and r € (0, 00),
there exists a finite ball covering {B(xz;,7/2)}, of B(x,r) such that the cardinality of this
covering is at most Njy.

Remark 1.4. Let (X,d) be a metric space. In [17], Hytonen showed that the following
statements are mutually equivalent:

(i)
(i)

(X,d) is geometrically doubling;

for any € € (0,1) and any ball B(z,r) C X with x € X and r € (0, 00), there exists a
finite ball covering {B(x;,er)}, of B(x,r) such that the cardinality of this covering
is at most €~ "°, here and hereafter, Vg is as in Definition and ng := logy No;
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(iii) for every e € (0,1), any ball B(z,r) C X with € & and r € (0,00) contains at

most €™ centers of disjoint balls { B(z;, er)};;

(iv) there exists M € N such that any ball B(z,r) C X with x € X and r € (0,00)
contains at most M centers {z;}; of disjoint balls {B(x;,7/4)}) .

A metric measure space (X, d, u) is called a non-homogeneous metric measure space if
(X,d) is geometrically doubling and (X, d, ;1) is upper doubling. Based on Remark [1.2[(ii),
from now on, we always assume that (X, d, (1) is a non-homogeneous metric measure space
with the dominating function A satisfying .

Although the measure doubling condition is not assumed uniformly for all balls in the
non-homogeneous metric measure space (X, d, u), it was shown in [17] that there still exist
many balls which have the following («, §)-doubling property. In what follows, for any
ball B C X, we denote its center and radius, respectively, by cg and rp and, moreover,

for any p € (0,00), we denote the ball B(cg, prg) by pB.

Definition 1.5. Let «, 5 € (1,00). A ball B C X is said to be (a, 8)-doubling if pn(aB) <
Bu(B).

To be precise, it was proved in [17, Lemma 3.2] that, if a metric measure space (X, d, )
is upper doubling and «, 5 € (1,00) with g > [C(A)]lo&a =: o, then, for any ball B C X,
there exists some j € Z := {0}UN such that o/ B is (a, 3)-doubling. Moreover, let (X, d)
be geometrically doubling, 5 > o™ with ng := logy Ny and p a Borel measure on X which
is finite on bounded sets. Hytonen [17, Lemma 3.3] also showed that, for u-almost every
x € X, there exist arbitrary small («, §)-doubling balls centered at x. Furthermore, the
radii of these balls may be chosen to be of the form a=/r for j € N and any preassigned
number 7 € (0,00). Throughout this article, for any a € (1,00) and ball B, the smallest
(v, Ba)-doubling ball of the form o/ B with j € Z is denoted by B®, where

By 1= admaxinor}) 4 [max {5a, 30}]™° + [max {3c, 30}]".

Also, for any ball B of X, we denote by B the smallest (6, 3g)-doubling cube of the
form 6/ B with j € Z,, especially, throughout this paper.

The following discrete coefficient f(gg was first introduced by Bui and Duong [2] as
analogous of the quantity introduced by Tolsa [34] (see also [35]) in the setting of non-
doubling measures; see also |9,[10]. Before we recall the definition of 1?1(3’)7)5, we first give an
assumption, when we speak of a ball B in (X,d, ), it is understood that it comes with a
fixed center and radius, although these in general are not uniquely determined by B as a
set; see [13, pp. 1-2]. In other words, for any two balls B, S C X, if B =5, then ¢g = cg
and rp = rg. From this, we deduce that if B C S, then rg < 2rg, which plays an essential

role in the definition of I?gé; see also Remark (1) and [9, pp. 314-315] for some details.
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Definition 1.6. For any p € (1,00) and any two balls B C S C X, let

N(P)

B,S k
_ B)
RO p(p
B.s * Z A, pFrp)’
k=— I_logp ZJ

here and hereafter, for any a € R, |a] represents the biggest integer which is not bigger

than a, and Ng))s is the smallest integer satisfying pNBp»SrB >rg.

Remark 1.7. (i) With the definition of N](Bp)s and the fact that rg < 2rg, we deduce
that Ng?s > (— log,, 2~| =— Llogp 2J, which makes the definition of [?1(5529 sense.

(ii) By a change of variables and (|1.3]), we easily conclude that

N5+ |log, 2| +1 )
. ’ B)
K% 1 _u"B)
S5 Sien )

where the implicit equivalent positive constants are independent of balls B C S C X,

but depend on p.

(i) A continuous version, Kp g, of the coefficient in Definition was introduced in
[17.121] as follows. For any two balls B C S C X, let

1
K,S:=1+/ — du(x).
B 55 Mm@ eq))

It was proved in [21] that Kp g has all properties similar to those for I?](_ff)s as in

Lemma below. Unfortunately, Kp s and IN(](;)S are usually not equivalent, but,
for (R, |- |, u) with p as in (L.2),

(1.5) Kps~ Ky

with implicit equivalent positive constants independent of B and S; see [10] for more

details on this.

Now we recall the R/B\l\_/[/()p,a,(u) space associated with K g)s, which was first introduced
by Fu et al. [10].

Definition 1.8. Let p € (1,00) and v € [1,00). A function f € Ll _(u) is said to be in

the space R/]g\M/OpW(,u) if there exists a positive constant C and, for any ball B C X, a
number fp such that

1

(1.6) n(pB)

[ 15 = Jolauta) < @
B
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and, for any two balls B and B; such that B C Bj,
~ [~ ¥
L7) s fml < C[RE,]

The infimum of the positive constant C' satisfying both (1.6) and (|1.7]) is defined to be the

RBMO,,, (1) norm of f and denoted by ||/ =, o
Py

Remark 1.9. (i) It was pointed out by Fu et al. [10] that the space R/B\M/O,w(u) is
independent of p € (1,00) and v € [1,00). In what follows, we denote RBMO,, ., (1)
simply by RBMO(pu).

(i) When (X,d,p) = (R%[-|,p) with p as in (T.2), by (I.5), we see that R/B\M/O(,u)
becomes the regularized BMO(u) space, RBMO(u), introduced in [34] for v = 1
and in [14] for v € (1,00). For general metric measure spaces of non-homogeneous
type, if we replace I?](;)S by Kp s in Deﬁnition then RBMO () becomes the space
RBMO(p) in [17]. Obviously, for p € (1,00) and € [1,00), RBMO(u) C R/B\M/O(N).
However, it is unclear whether RBMO(p) = R/B\M/O(,u) or not.

Definition 1.10. A function K € L{ .({X x X} \ {(z,z) : # € X}) is called a Calderdn-

Zygmund kernel if there exists a positive constant C, such that,

(i) for all z,y € X with = # y,

(1.8) K (z,y)| < Cm;

(ii) there exist positive constants ¢ € (0, 1] and ¢k, depending on K, such that, for all
r, 7,y € X with d(x,y) > ck)yd(x, T),

[d(z, 7))’
é

(1.9) |K(z,y) = K(Z, )| + [K(y, 2) = K(y,7)| < .y PN A, )

A linear operator T is called the Calderdn-Zygmund operator with kernel K satisfying
(1.8) and (1.9) if, for all f € Ly°(pn) := {f € L*>(u) : supp(f) is bounded},

(1.10) mwszK@wﬂwww,x¢mwu>

A new example of the operator with kernel satisfying ([1.8) and (1.9) is the so-called
Bergman-type operator appearing in [39]; see also [19] for an explanation. Let € € (0, 00).

The truncated operator T, is defined by setting, for suitable f and z € X,

nmm:A K ) dnty).
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The mazximal operator T, associated with the {T¢} ., is defined by setting, for suitable f
and x € X,

T.f(x) := sup|Tef(z)].

e>0

As a corollary of [25, Theorem 1.5], we see that T} is bounded on LP(u) for all p € (1, 00)
and from L'(p) to L(u); see also [1,[2]. Let b := (by,...,bm) be a finite family of

RBMO(p) functions. We simply write HbHR/]?M/O(u) = HblHR/lﬁ\/TO(u) e Hbm||R/B«M/O(#). The

mazimal multilinear commutator T,  generated by T and b is defined by setting, for
reX,

m

1) T s6w) = L) <sup | [ T[00) = b)) S )

e>0

One of the main results of this paper is stated as follows.

Theorem 1.11. Let m € N and b; € R/B\M/O(u) for all i € {1,...,m}. Let T and
T, 5 be as in (T.10) and (1.11)), respectively. Assume that T is bounded on L?(u). Then
i s bounded on LP(u) for all p € (1,00). More
precisely, there exists a positive constant C' such that, for all f € LP(u),

To consider the endpoint estimate for T, 7, we first introduce the following Orlicz type

the maximal multilinear commutator T*

< b

T, 3f

)LP(M) R/]i\fo(u) ||f||Lp(#) .

function space OSCexp - (1), which is a variant with non-doubling measure of the space

OSCexp 1 in [15].

Definition 1.12. For r € [1,00), a locally integrable function f is said to belong to the

space Oscexp (1) if there exists a positive constant C' such that,

(i) for all balls B,

Hf B mé(f)HexpLT,B,,u/,u@B)

:—inf{/\e((),oo):lu(;B)/Bexp (W) duSQ}SC;

(ii) for any doubling balls B C S C X,

mp(f) — ms(f)| < CKY,

here and hereafter, for all balls B and f € Ll (1), mp(f) denotes its mean over B,
namely, mp(f) i= = [, f(2) du(a).
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The minimal constant C satisfying (i) and (ii) is the Oscexp (1) norm of f and defined

by 1l

Remark 1.13. If we replace IN(J(BP)S by K g s in Definition|1.12} then Oge\xjy (1) becomes the

space OscCexp () in [11]. Obviously, for any r € [1,00), Os/c;;y (n) C R/]é\M/O(u) and,
fOI' a‘u f € OSC@XPLT( ) HfHRBMO — Hf”osc o LT “)

inequality in [34], it follows that Oscey,, Ll( ) = RBMO( ).

Moreover, from John-Nirenberg’s

Let m € N, r; € [1,00) and b; € Os/c:/mn(u) fori € {1,...,m}. Let b= (by,...,bp)
and r € [1,00) with 1/r =1/ry + -+ 4+ 1/ry,, we simply write

H HOSC o L (1) = HblHOScfe:/erl (1) e HbmHOscexerm (0

Now we state another main result of this paper as follows.

Theorem 1.14. Let m € N, r; € [1,00) and b; € OSE;(;;W (n) foriv e {1,...,m}. Let
T and T, ; be as in (1.10) and (1.11)), respectively. Assume that T is bounded on L*(i).
Then there exists a positive constant C' such that, for allt € (0,00) and all f € Ly° (1),

i (foexslr | > o) < oo (o, ) [ 20e (T2 et

where 1/r = 1/r1+- -+ 1/ry and, for allt € (0,00) and s € (0,00), P4(t) = tlog®(2+1).

This paper is organized as follows. Section [2] is devoted to proving Theorem [1.11
We first recall some necessary lemmas, and then introduce some new “smooth” kernels.
Moreover, we prove that the smoothing technique is still suitable for the present set-
ting. At the end of this section, by borrowing some ideas from the proofs of [1, Theo-
rem 3.3], [11, Theorem 1.9] and [22, Theorem 1.1], we prove Theorem In Section
we prove Theorem [I.14] via the generalized Holder’s inequality and the Calderén-Zygmund
decomposition.

Finally, we make some conventions on notation. Throughout this paper, we always
denote by C, C , c or ¢ a positive constant which is independent of the main parameters,
but they may vary from line to line. Constants with subscripts, such as Cy and ¢y, do not
change in different occurrences. Furthermore, we use C,) to denote a positive constant
depending on the parameter a. The expression Y < Z means that there exists a positive
constant C' such that Y < CZ. The expression A ~ B means that A < B < A. Given
any g € (0,00), let ¢’ := q/(q— 1) denote its conjugate index. Also, for any subset F C X,

x e denotes its characteristic function.
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2. Proof of Theorem [1.11

p)

We begin with some necessary lemmas. The following useful properties of .f(j(B g were

proved in [9)].
Lemma 2.1. Let (X,d, u) be a non-homogeneous metric measure space.

i) For any p € (1,00), there exists a positive constant C(,), depending on p, such that,
g (» p
for all balls B C R C S, Ky, < C( KYs.

(ii) For any o € [1,00) and p € (1,00), there exists a positive constant C(q, ,, depending

on a and p, such that, for all balls B C S with rg < arp, KJ(BP,)S < Clap)-

iii) For any p € (1,00), there exists a positive constant C,,), depending on p and v,
P (p.v) P

such that, for all balls B, kg)’g,} < Cp)- Moreover, letting o, 8 € (1,00), B C S

be any two concentric balls such that there exists no (a, B)-doubling ball in the form
of o B with k € N, satisfying B C o*B C S, then there exists a positive constant
Cla,p,v); depending on «, B and v, such that [?1(9’0)5 < Cla,)-

(iv) For any p € (1,00), there exists a positive constant C(pw)s depending on p and v,
such that, for all balls B C R C S,

K5

KWy < Kfp+ coun K

(v) For any p € (1,00), there exists a positive constant C(,,), depending on p and v,
such that, for all balls B C R C S, Kk < ) K5

(vi) For any p1,p2 € (1,00), there erist positive constants c(,, ,,.) and C de-

P1,p2,V)7
pending on p1, p2 and v, such that, for all balls B C S,

(p1) o 7=(p2) =(p1)
C(P17P2,l’) BpiS‘ S KBpf‘S' S C(Php%”)KBpiS"

The following four lemmas are related to the space RBMO(u). Lemma can be
proved by an argument similar to that used in the proof of [11, Lemma 3.1]. Lemma

—_—

is an equivalent characterization of the space RBMO(u) established in 23] Lemma 2.15].
Lemmas and were proved in [3].

Lemma 2.2. Let f € R/B\M/O(,u), q € (0,00) and, for all x € X,

_Jf@) i f(@)] <,
fa@ =93y
477 ()] if [f(z)] > q.

Then fq € R/B\l\_/I/O(u) and there exists a positive constant C, independent of f, such that

HfQHR/;?M/()(M) <C Hf”RWO(uY
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Lemma 2.3. Let n,p € (1,00), and B8, be as in (L5). For f € Li (), the following

statements are equivalent:
(i) f € RBMO(p);

(ii) there exists a positive constant C' such that, for all balls B,

u(v;B) /B |f(a) = mg,(f)|du(z) < C

and, for all (p, 8,)-doubling balls B C S,

ms(f) —ms(f)| < CK .

Moreover, the infimum of the above constant C' is equivalent to |’f”R/BM/O(y)'

Lemma 2.4. Let m € N, b; € R/B\M/O(u) forie{l,....,m}, p,n € (1,00) and q € [1,00).

Then there exists a positive constant C' such that, for any ball B,

m 1/q m
1 q
Lemma 2.5. Let f € R/B\M/O(,u) and p € (1,00). Then, for all two balls B C S C X, we
have
[ma(£) = g, (5] £ 1 limrzoq K6 s

We also need to recall some known conclusion from |2, Sections 4.1 and 7.1] and [17,
Corollary 3.6].

Lemma 2.6. Let p € (1,00).

(i) Let r € (1,p) and p € [5,00). The following mazimal operators, defined by setting,
forall f € LP(u) and x € X,
1/r
/ |f(@)[" dp(x ] ,

Ni@= e [ 17@)duta)
B (6,66)—9dxoubling B

Mr,(p)f( ) Sllp |:

and

My f(z) == Sg};upB /\f ) du(x

are bounded on LP(u). Moreover, for p € [5,00), M, is bounded from L' (u) to
Lh>(p).
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(ii) |f(z)] < Nf(z) for almost every x € X.

For any f € Ll .(u), recall that the sharp mazimal function M# f in [2] is defined by
setting, for all x € X,

m —mg(f
M#f( )= %up o GB / ‘ E(f)’ du(y) + sgps ‘ B(f;?(ﬁ) s( )|
> S (Gx,,%’ﬁ)-cdoubling B,S

The following lemma is just [2, Theorem 4.2].

Lemma 2.7. Let f € L. (1) satisfy [ f(x)dp(z) =0 when ||p|| == p(X) < co. Assume
that, for some p € (1,00), inf {1, Nf} € LP(u). Then there exists a positive constant C,
independent of f, such that

INFll oy < CHM#fHLP(,u)

Notice that the truncated kernel K.(z,y) = K(Z,Y)X{d(zy)>e}(T,y) may not be a
Calderén-Zygmund kernel, which is a problem in studying the boundedness of the maximal
multilinear commutators. To overcome this problem, we use the smoothing technique
(see [1,/12,31]) by replacing K(z,y) with some new “smooth” kernels, and then use
the properties of sharp maximal operator M# to estimate the multilinear commutators
associated with the “smooth” kernels and R/BM/O(M) functions.

Definition 2.8. Let K be the Calderén-Zygmund kernel and ¢,v € C°°([0,00)) such
that X[2,00) < @ < X[1,00)0 X[0,1/2) < ¥ < Xo,3) and, for all t € (0,00), [¢'(t)] < C/t,
[/ (t)| < C/t, where C is a positive constant. Let € € (0,00). Define the kernel K¢(z, )
associated with K and ¢, and the kernel Ké/} (x,y) associated with v, respectively, by
setting

d(z,y) 1 d(z,y)
Ked)(xay) = K(I‘,y)¢<€ and Kg)(l‘,y) = )\(x’e)w € .
Lemma 2.9. Let Kéb and Kg) be as in Definition . Then Kéb and Ké/} are Calderon-
Zygmund kernels satisfying conditions (1.8) and (1.9)), where the positive constants are

independent of e.

Proof. We first deal with the kernel Kf . By the properties of ¢, it is easy to see that the
kernel Kf(:n,y) satisfies condition (L.8). To prove (L.9), let z,z',y € X with d(z,y) >
ckyd(x,2') and ¢ € (0, 1] be as in Definition M(u) Here, we may assume that c(gx) > 1.
In fact, if c(xy € (0, 1], then we can choose ¢k > 1 such that, for all d(z,y) > ¢(x)d(, x'),
holds true. By ¢(x) > 1, we see that

C(K) —1

d(xlvy) > d(l’,y) - d(x,a:') >
K)

d(z,y)
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and
C(K) +1

d(',y) < d(z,2') +d(z,y) <
C(K)

d(z,y).

Hence, we have

(2.1) d(z,y) ~ d(z',y).

We consider the following four cases of d(z,y) and d(z/,y).

Case (I): d(z,y) < e and d(2/,y) < e. In this case, d(z,y)/e < 1 and d(2,y)/e < 1.
Notice that ¢ € C°° and X[2.00) < ¢ < X[1,00)- From this, it follows that ¢(t) = 0 for all
t € [0, 1], which leads to

K2(z,y) — K(«/,y)| = 0.

Case (II): d(z,y) > e and d(2/,y) < e. In this case, by Case (I), we have KZ(2/,y) = 0.
By the mean value theorem and |¢/(t)] < C/t, we conclude that, for all 1,y € (0, 00),

1

(2.2) [p(t1) — d(t2)] < [t1 — t2f min {16}

which, together with the fact that ¢(1) =0, d(z,y)/e > 1, (2.1) and (1.8]), implies that

K¥(o) ~ K260 = 1Kl o (C22) o)

< 1 ‘d(ac,y) B 1' 1

~ XMz, d(z,y)) € min {d(z,y)/e, 1}
< 1 ’d(d?, y) - d(.T,, y) '

~ XMz, d(z,y)) €

< 1 d(x,x") < [d(x,2")]°

A, d(z,y)) d(',y) ~ [d(z,y)]° Ma, d(z,y))
Case (III): d(x,y) < € and d(2/,y) > e. In this case, d(z,y) < € < d(2/,y). This,
together with the fact that ¢(1) =0, (2.2), (1.8]) and (1.4), shows that

K¥(e) - K26 = K)o (V2] o)

€

< 1 (d(m’,y) B ) 1
~ Ao d(2!y)) € min {d(z',y)/e, 1}

< 1 (', y) — d(x, y)

~ Ay, d(',y)) €

< 1 d(xlvy) B d(:c,y)

~ Ay, d(z,y)) d(z,y)

< 1 d(xz,z") < [d(x,2")]

~ Na, d(z,y)) d(z,y) ~ [d(z,y)]° Mz, d(z,y))
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Case (IV): d(x,y) > € and d(2',y) > €. In this case, from the fact that 0 < ¢ < 1,

(11.9), (2.1) and (2.2), we deduce that
|Ké(,y) — K y)

< |K(z,y) — K(@',y)| ¢ (d(xé,y)) +[K (@, y)| ‘QS <d($a9)> —¢ <d(x/’y)>’

[d(x, 2")) 1 d(z, 2
~ ld(z, y)I° Mz, d(z,y)) Mz, d(z,y)) min {d(z,y),d(=’, y)}

which implies that K¢ satisfies .

Now we turn to estimate KY. We first prove that KY satisfies . Indeed, if
d(x,y) > 3e, by the properties of 1), we have KY = 0, and if d(x,y) < 3¢, by the fact 1 is
bounded and , we see that

1
S 3w 0 S AEdwg)

(2.3) K¢ (z,y)
Finally, we show that K satisfies with 6 = min{o, 1}, where o is as in Re-
mark [L.4(iii). We consider the following four cases:

Case (I) d(x,y) > 3e and d(2/,y) > 3¢;

Case (II) d(z,y) < 3e and d(2/,y) > 3¢;

Case (IIT) d(z,y) > 3e and d(2/,y) < 3¢;

Case (IV) d(z,y) < 3e and d(2',y) < 3e.

By ([2.3) and an argument similar to the estimate of K f , we can prove that our desired
results hold in Cases (I), (IT) and (III). It remains to deal with the Case (IV). Let x,2/,y €
X with d(z,y) > 2d(z,2").

In this case, from the fact that 0 < ¢ < 1, Remark (iii), (2.2), (2.1) and (2.3)), we
deduce that

K;ﬁ(x,y)—K?(wl,y)‘:’/\(l ¢<d(m,y)>_)\(1 )¢<d(m;,y)>'

x,€) € e

<xeg @l e (22 o (2]
W0 =Ml 1 (e, )

Az, e)A (2!, €) Az, €) min {d(z,y),d(z',y)}
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o1 (d(m,x')>a+)\(1 d(z, ')

~ Az, €) € x,€) d(x,y)

1 d(x,2')\’ 1 d(z,2)
NM%O(&%M) " Mo da.y)
. @)

~ Nz, d(z,y))[d(x,y)]°

and finish the proof of KY.
Combining the estimate for K¢ and KV , we complete the proof of Lemma O

We introduced the operators T; ¢ and TV , respectively, associated with K¢ and K¢ by
setting, for all z € X,

wﬂwme|—m/K%y y) du(y)
e>0
and

Wﬂ%mMW\—m/nyﬂWM)

It is easy to see that, for all z € X,
max {T? f(2), TV f(2) } < Tuf(2) + OM5) ().

Therefore, TY and T are bounded on LP(u) for p € (1,00) and from L!(u) to LY (p).
Define the multilinear commutators ng and Tj)g, respectively, associated with Tf and

Y by setting, for all x € &,

ngf( T) = Sup

ﬁﬂﬁ

= sup| [ | 11 K2 (e, 9)f () dp(y)
and
TV f(w) = sup |V, )
= su 1 i\ L) — 05 4 x .
= e>IO)/X i];[l[bz( ) = bi()]| K& (2, 9) | f(y)] duly)

Lemma 2.10. Let T, ; be the mazimal multilinear commutator as in (1.11). Then there
exist ¢ and Y as in Definition and a positive constant C' such that, for the multilinear

commutators T¢g and T;/Jg, respectively, associated with ¢ and v,

*,

(2.4) T, 5f <T?.f+CT".f.
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Proof. Let ¢ be as in Definition that is ¢ € C°°([0,0)), X[2,00) < ¢ < X[1,00) and
¢'(t) < CJt for t € (0,00). From ([1.11]) and the definition of Tf 7 we deduce that

_ o}
‘Te,i;f

m

/ T1(0() — b)) K (2,9) £ (&) dpu(y)
d(z,y) 1

m

~| [ TL0t) = b2 ) £ 0) )
=1
< | [ T106) - 5.0 [xoo (222 — 0 (“22)] 1) auty
=1
< statgy e (222 o (252 [TTveo) - ] 10 )

Let 1(t) = X[0,00)(t) — #(t). Then it is not hard to show that ¢ € C°°([0,00)), Xjo,1/2) <
¥ < Xo,3) and [¢'(t)| < C/t for t € (0,00), which implies that ¢ satisfies the conditions
of Definition Now we consider the following two cases of d(z,y).

Case (I): d(z,y) < e or d(z,y) > 2¢. In this case, x(1,0) (M) — ¢ (M) = 0.
[ib@) — b))

Thus,
- |5 /X A(;, " (d(zy)> =

Case (II): € < d(z,y) < 2¢. In this case, by (1.3]), we see that \(x,€) ~ A(z,d(z,y)).
It then follows that

71| 5o [ (222) ‘,ﬁ[b( )

which, together with the estimate for Case (I), completes the proof of Lemma O

()l du(y)

T 3f

1.5

)l dputy) = |77

In the sequel, for i € {1,...,m}, we denote by C;" the family of all finite subsets

= {o(1),...,0(i)} of {1,...,m} with ¢ different elements. For any o € C!", the
complementary sequence ¢’ is given by ¢’ := {1,...,m}\o. Let b= (b1,...,bm) be a finite
family of locally integrable functions. For all i € {1,...,m} and ¢ = {c(1),...,0(i)} €
Ci", we define

[b(z) = b(Y)]o = [be(1)(®) = b)) (W)] - - - [bo() (%) = o) (Y)],
[b(z) —mp(b)]ls = [by1)(z) — mB(bs1))] - [bo(iy(2) — mB(bos))]

and
[ms(b) —mp(d)]s := [ms(by(1)) — mB(bs1))] - [Ms (b)) — MmB(bse)];
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where B and S are balls in X and z,y € X. With this notation, we write

1o 53700 = e liB3t000 *** 1Po0 | kR0 -

We are now in position to prove the LP-boundedness of maximal commutator T, »

Proof of Theorem [I.11]. By (2.4), we only need to show that, for all p € (1, c0),

(2.5) 17258111 0 = VP iy 1
and
(2.6) 1725811 0 = 1P iy 1

The proof of and are completely analogous. So, we only deal with . We
show this by induction on m € N.

By an argument similar to that used in the proof of [1, Theorem 3.3], we deduce that
is valid for m = 1. Now assume that m > 2 and, for any ¢ = {1,...,m — 1} and any
subset o = {o(1),...,0(i)} of {1,...,m}, T 5 is bounded on LP(p) for any p € (1,00).
By Lemma and a standard limit argumené aw1thout loss of generality, we may assume
that b; is a bounded function for any i € {1,...,m}. Let p € (1,00). We first claim that,

for all r € (1,p), f € LP(u), and x € X,

a# (12,5) (@) £ HbHRBMo o Moo (T2 @) + M) ()]

Y gty Mo (75 £) @)

i=1 oceC"

(2.7)

To prove (2.7)), for all B C X, we denote

hg :=mp (Tf (H [bi - mg(bi)] fXX\SB)) .

i=1
As in the proof of [34, Theorem 9.1], it suffices to show that, for all x € X and B with

B>z,
5 ),
T
u(6B) Jp | b

’ dp < C‘|g“RTB\1\/I/O( ) [Mr,(5)f(x) + MT,(G) <Tf)(x>]

Y gt Mo (T f) @)

i=1 ceC"

and, for all x € X, ball B and doubling ball S with z € B C S,

oo = sl < € [RE]"™" {Willggizog [V @) + Mo (T1) (o)

m_
£33 Wil Mo (725, 7) @)}

i=1 oeC™

(2.8)

(2.9)
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We first prove . Notice that, for all x,y € X,
(2.10) [T [bi@) —mp®0)] = > b(a) = b)lor [b(y) —mz0)],
i=1 i=0 ceC™

where, if i = 0, we set o’ = {1,...,m}, 0 = ) and [b(y) — mz(b)]p = 1. It then follows
that, for all y € X,

(211)  T%f(y) =T? (Hl [b; —m (b)) f) (y)—z > [b(y)—mg(b)]ngga/f(y),

where, if i = m, T¢’b f =T2f. Therefore, for all balls B > z,

5 !

ﬁ/ ' (y)—hB‘du(y)
//Bigngf —iug <H fo\gB> (2)|| du(z) dp(y)

12 (T -matoa] 1) - 35 5 -mpto], 7% 500

i=1

i)
— su
B) B Be>g

-1 (H [bi — m(bs)] fXX\?B) (2)

=1

1 m
S (6B)/BT"? (H b —mz(bi)] fng) (y) du(y)

22 s |[b(y) = mz®)],| T 5 f) duly)

By a slight modified argument similar to that used in the proof of (3.11) of |11, The-

orem 1.9], we conclude that, for all z € B,

Il + ‘[3 S ||g‘|RﬁO(M)MT,(5)f(x)

and
m

LEY Y lbellgiioq Mo (175 F) @)

=1 oeC"

which completes the proof of (2.8] .
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The proof of (2.9)) is similar to that of (3.10) of |11, Theorem 1.9]. The details are
omitted here. Then we complete the proof of (2.7)).

We now prove that (2.5) holds true for any m > 2 by considering the following two
cases.

Case (I): u(X) = oo. In this case, notice we assume that b; is bounded for i €
{1,...,m}. It follows from the LP-boundedness of T that T ¢ Jel? (u), which, together

with Lemma ( ), implies that inf{1, N(Tj)g )} € LP(p). By Lemma ( i), Lemma

the LP-boundedness of T¢ and the assumption that T ¢b is bounded on LP(u) for all
€ (1,00), we conclude that, for all p € (1,00) and f € Lp( ),

‘T* o LP () = HN <Tf6’f> 5 HM# (Tjﬁf) LP (1)
S {Hﬂf 20,0+ 130 D]
+;U€Z o sirog [ Moo (725 1)
Wz |[727] 0 *+ 1100
o35 Wolgasion, 775,11, s
i=1 geC™

5 H HRBMO HfHLP
Case (II): p(X) < oo. In this case, by Lemma and the Lebesgue dominated

convergence theorem, we see that, for all r € (1, c0),

- 1/r
(212) [J@AHW@%N@@
where by := — f ¥ . Write

N (Tj’j f) < N (1050 —ma (T2,1)) + ’mx (72:1)|-

Notice that fX[ngf(a;) — mX(ngf)] du(xz) =0, and, for all p € (1,00),

m
<11 19| k530 *
i=1

/ [min{l,N (ngf —my (Tfﬁ)) (m)}]pdu(az) < u(X) < oo.

X ; :

Then by Lemma and the fact that M#(T¢ f mX(T¢ f)) = M#(ijgf), we see that
[V (7258 = (7250))] 0y © P# (2055 = (723)) ]

~ ot (@25)] 0 = Pl 172000

L ()



1152 Jie Chen and Haibo Lin

) .
For the term |mX(T* 7gf)|, by (2.11)), we further write

Tf(H[b—mx >+ZZ’5 m.x (b bf

=1 oceC"
By the Hélder inequality, (2.12) and the L?(u)-boundedness of T for all ¢ € (1,p], we

have
e

s [

= [M(X)]l/p_l/ T? (H[bi—m)((bz’)]f> (y) du(y)
¢

s

L (p)

< ()it | 7
=1 La(p)
S (| L1 = ma o)) f
=1 La(u)

m q 1/q
5{ /X [0t - maoal] 170) du<y>}

m pa/(p—q) (p—q)/(pq) 1p
5{ /| 1)~ mato) du(y)} { / !f(y)!pdu(y)}
L

From the Holder inequality, the assumption that T¢g is bounded on LP(u) for all p €
(1,00) and Lemma we deduce that
Iz

*,0,

Yo

LP(p)

l/pl/\ BT F(0) duly)

volats / b(y) — macB)o? duty >}W
< 1)

< ‘Tdh
~ *,b

which implies that ||[my (T af)HLp HbHRBMO [ fll e (yy- Combining the above two
estimates, we also obtain the desired conclusmn in thls case, Wthh completes the proof of

(2.5). Then we finish the proof of Theorem O
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3. Proof of Theorem |1.14

To prove Theorem we need the following generalized Holder’s inequality presented
in [11].

Lemma 3.1. There exists a positive constant C, depending only on m, such that, for all
locally integrable functions f and b; withi € {1,...,m}, all balls B and 1/r = 1/r1+---+
1/rm with r; € [1,00) forie {1,...,m},

5,
—_ z)bi(x) -+ by ()| du(x
g [ 1) b))
<C ”bl”exerljB,p,/p,(QB) e Hbm||exerm,B7u/u(2B) HfHL(logL)l/T,B,,u/p,(QB) )

where, for a € (0,00),

1
Hf”L(logL)a,B,u/u(ZB) = inf {/\ € (0,00) : 2B /B ]f()\a:)] log® <2 + U()\a:)]) du(r) < 1}

and

. 1 F)\®
1 lexp o5, /2y = inf {)\ € (0,00) : Iu<2B)/Bexp (H;)‘> du(z) < 2} :

The following Calderén-Zygmund decomposition is analogous to |2, Theorem 6.3] and
its proof is also analogous to that of [2, Theorem 6.3]. The details are omitted. Let v be
a fixed positive constant satisfying that v > max{C’é\l)o g26, 60}, where C( ») Is as in
and ng is as in Remark [L.4(ii).

Lemma 8.2 Let p € [L,oc), f € LP(un) and t € (0,50) (¢ > ()7 | Fl gy /()]
when p(X) < oo). Then the following hold true.

(i) There exists an almost disjoint family {6B;}; of balls such that {Bj}, is pairwise

disjoint,
1/ |f () du(x) > r for all j
11(6%B;) B; Yo ’
1/ |f(2)P du(x) < L for all j and all n € (2,00)
/’4(627733) nB; Yo ’
and

|f(z)] <t for u-almost every x € X\ U6Bj.
J
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(ii) For each j, let S; be a (3 x 62,C;OgQ(ngizHl)-doublmg ball of the family {(3 x

62)*B;}ren and w; := XGBj/(Zk XGBk)- Then there exists a family {goj}j of func-
tions such that, for each j, supp(v;) C Sj, ¢; has a constant sign on S,

[eiwdn = [ e du)
X 6B;
Z lpj(x)| <At for p-almost every x € X,
J
where 7y is some positive constant, depending only on (X, u), and there ezists a

positive constant C, independent of f, t and j, such that, when p =1, it holds true
that

193l g 1059) < € [ 1@y (@] dita)

and, when p € (1,00), it holds true that

1/p
[ /. w(ﬂ:)\pdu(w)] WS < 25 [ 1y dute).

By ([2.4)), to prove Theorem |1.14} it suffices to prove the operators T,:bg and Tj}g satisfy

the same type estimate. Precisely, we have the following result.

Lemma 3.3. Under the same assumption as Theorem there exists a positive constant
C' such that, for all t € (0,00) and all f € Ly° with bounded support,

a0 u(foex:|r @l o) oo (o, ) [ oue (U2 duto

and

521 n(fo e [rsgto] > ) <o, (o ) [ (220

Proof. Similar to the proof of [15, Theorem 4], without loss of generality, we may assume
that, for all m € Nand i € {1,...,m}, [|bi] , —~— =1.
Scexp L™ (H«)
The proof of (3.1]) is parallel to that of [14, Theorem 4] with slight modifications. The
details are omitted.
We now prove ([3.2)). For each fixed |f| and ¢t € (0,00), by applying Lemma 3.2 and its

notation, we see that |f(x)| = g(x) 4+ h(x), where

hz) =) [If (@) wj(@) — pj(x)] = Zhj(w)-

J
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Write
—M/me%U%M]wa
e>0
SW/WW wmbmwww
e>0
+m/Ww m>wnmmm
e>0
5861;13 / K¢ (x,y) [b( ) = bi(y)]| h(y) duly) +Tﬁgg(:r) =: M(z) + N(z).

By Lemma it is easy to see that |g(x)| < t for p-almost every x € X and ||g||%2(“) <
tfl L1 (> Which, together with the LP-boundedness of T:bg, further implies that

,u({xEX:N(:U)>t}),§t_2‘

£2 g2z, <ﬂ/U|w>

LQ(

From Lemma [3.2](i), we have

1
Jes; | <4 [ 110)ldutw)
- X
J
Therefore, the proof of (3.2]) can be reduced to proving that

(3.3) p({z e X\U;6°B; : |[M(z)| >t}) < /X |f(ty) <2+ 1/ )> du(y).

We prove (3.3]) by induction on m € N.
For m = 1, the proof is similar to that of |16, Lemma 2.1]. The details are omitted

here. Now we assume that m > 2 and, for any i € {1,...,m — 1} and any subset 0 =
{c(1 ) ...,a( )} of {1,. —1}, (3.2) holds true. The fact that Kl(z,y) > 0 and
fX =0, together with -, implies that
wgzjkwy i) — bi(y)]
K?@m%)IlP@)mgwﬂ“h()dM}
< P —m~(b:)] — o~
Ngzém@ﬂghwnwm ngmﬂm
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~KY () [T [bie) = miz 0] | 105 ()] i)
=1
i ) —mz su iz, y) — KY(z, 2 ,
~ H[b( ) = mi ()] JJ/JKG( ) = K (w,2,)| by ()] du(y)
+ 70 | ST b= 0] s | @)
7 =1
+Z oo Z[bi— 50| ) @
i=1 ocC" J
=: My(x) + My(z) + Z > Ms(a
i=1 ocC"

Similar to the estimate for V(x) in the proof of [16 Lemma 2.1], we have

The generalized Holder’s inequality via an argument similar to that used in the estimates
for Tth(x) and TEHh(az) in (14, pp. 252-254] shows that

p({z € X\ U;62B; : My(z) > t}) / W) (2+’f(y)’>du(y)
. ), 7
n((ee @) >0) 5 [ Loy (2+ )dmy),
which implies and hence completes the proof of Lemma ]
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