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Positive Toeplitz Operators Between Different Doubling Fock Spaces

Zhangjian Hu and Xiaofen Lv*

Abstract. Let F p(φ) be the weighted Fock space on the complex plane C, where φ

is subharmonic with ∆φdA a doubling measure. In this paper, we characterize the

positive Borel measure µ on C for which the induced Toeplitz operator Tµ is bounded

(or compact) from one weighted Fock space F p(φ) to another F q(φ) for 0 < p, q <∞.

1. Introduction

Let C be the complex plane. Set D(z, r) = {w ∈ C : |w − z| < r} for z ∈ C and r > 0. A

positive Borel measure ν on C, written as ν ≥ 0, is called doubling if there exists some

constant C > 0 such that

ν(D(z, 2r)) ≤ Cν(D(z, r))

for z ∈ C and r > 0. Let dA be the Lebesgue area measure on C. As in [9,17], suppose φ

is subharmonic, real-valued and not identically zero on C with ν = ∆φdA doubling. For

z ∈ C, we denote by ρ(z) the positive radius such that ν(D(z, ρ(z))) = 1. The function

ρ−2 can be viewed as a regularized version of ∆φ, see [9] or [17] for details.

Suppose 0 < p < ∞, the space Lp(φ) consists of all Lebesgue measurable functions f

on C for which

‖f‖p,φ =

(∫
C

∣∣∣f(z)e−φ(z)
∣∣∣p dA(z)

)1/p

<∞.

Let H(C) be the family of all entire functions on C. The weighted Fock space F p(φ) is

defined as

F p(φ) = Lp(φ) ∩H(C).

It is clear that F p(φ) is a Banach space under ‖ · ‖p,φ if p ≥ 1, and F p(φ) is an F -space

under d(f, g) = ‖f − g‖pp,φ if 0 < p < 1. Fock spaces in the present paper cover lots in the

literature. When φ(z) = 1
2 |z|

2, F 2(φ) is the classical Fock space, which has been studied
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by many authors, see [1–3,10,13,15,24] and more references therein. As mentioned in [14]

and [6], when φ(z) = −m ln(A+ |z|2) + |z|2 with some suitable A > 0 and positive integer

m F 2(φ) is just the Fock-Sobolev space introduced in [7]. The Fock-Sobolev space has

also been investigated in [4–6,8,23]. For φ(z) = |z|m, F 2(φ) is the generalized Fock space

in [20] and [21]. If n = 1 and the weight ϕ is as in [14, 16, 22], then 0 < c ≤ ∆ϕ(z) ≤ C

for all z ∈ C which implies ∆ϕdA is doubling.

Let K(· , ·) be the Bergman kernel for F 2(φ), that is, for f ∈ F 2(φ)

f(·) = Pf(·) =

∫
C
K(· , w)f(w)e−2φ(w) dA(w).

Suppose µ is a Borel measure on C, Toeplitz operator Tµ with symbol µ is defined as

Tµf(·) =

∫
C
K(· , w)f(w)e−2φ(w) dµ(w)

if it is well (densely) defined.

When dµ = g dA for some restricted function g, for example g is bounded or g ∈
BMO, the induced Toeplitz operator Tµ has been well studied, see [1–3, 10] and other

references. Also, positive Toeplitz operators have been studied on Fock spaces by many

people. For µ ≥ 0, in 2008 Isralowitz and Zhu characterized the boundedness, compactness

and Schatten-p classes of Toeplitz operators Tµ on F 2(1
2 |z|

2), see [15]; Wang, Cao and

Xia extended [15] to Fock-Sobolev spaces in [23]. In [13], we obtained some sufficient

and necessary conditions on µ for which Tµ is bounded (or compact) from F p(1
2 |z|

2) to

F q(1
2 |z|

2) for 1 < p, q <∞. Denote d = ∂ + ∂ and dc =
√
−1
4 (∂ − ∂). With the restriction

that ddcϕ ' ddc |z|2 on the weight ϕ in Cn, in 2012, Schuster and Varolin [22] studied the

boundedness and compactness of Toeplitz operators in terms of averaging functions and

Berezin transforms. In 2014, the corresponding problems were discussed from F p(ϕ) to

F q(ϕ) for 0 < p, q < ∞ in [14], between F p(ϕ) and F∞(ϕ) for 0 < p ≤ ∞ in [16]. In

2015, Oliver and Pascuas [19] characterized the boundedness and compactness of positive

Toeplitz operators on the weighted Fock space F p(φ) for 1 ≤ p <∞.

The purpose of this work is to extend those of [13–16,19,22,23]. In Section 2, we will

give some basic estimates about the Bergman kernel. Section 3 is devoted to characterize

those µ ≥ 0 for which the induced operators Tµ are bounded (or compact) from F p(φ) to

F q(φ) for 0 < p, q <∞.

We would like to mention that the approach in [13–16, 19, 22, 23] does not work well

in the present case. The research in [13, 15, 19, 22, 23] depends strongly on the restricted

range of the exponent p, say p = 2 or 1 < p <∞, where the Banach space technique can

be applied to. Also, the proof in [14,16] relies on two points: one is the inclusion

F p(ϕ) ⊂ F q(ϕ) for 0 < p ≤ q;
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and the other is that Pf = f for any f ∈ F p(ϕ) while 0 < p ≤ ∞. However, these

two points are not available in the present case. For example, take φ(z) = |z|4, ∆φdA is

doubling, but

F p(φ) \ F q(φ) 6= ∅ and F q(φ) \ F p(φ) 6= ∅

for p 6= q, see [11] for details.

In what follows, we use C to denote positive constants whose value may change from

line to line but does not depend on the functions being considered. Two quantities A

and B are called equivalent, denoted by “A ' B”, if there exists some C such that

C−1A ≤ B ≤ CA.

2. Some basic estimates

In this section, we are going to give some basic estimates which will be used in the following

sections.

For r > 0 and z ∈ C, write Dr(z) = D(z, rρ(z)), and D(z) = D1(z) for short. By [17],

there exist some absolute constants γ and C > 0 such that, for z ∈ C and w ∈ Dr(z),

(2.1) ρ(w) ' ρ(z) if r ≤ 1, and
1

Crγ
≤ ρ(w)

ρ(z)
≤ Crγ if r > 1.

Then, for fixed r > 0 there exists some constant α > 0 such that

(2.2)
1

α
ρ(z) ≤ ρ(w) ≤ αρ(z)

for z ∈ C and w ∈ Dr(z). From (2.2) and the triangle inequality, for r > 0 we have

m1 = m1(r), m2 = m2(r) that

(2.3) Dr(z) ⊆ Dm1r(w) and Dr(w) ⊆ Dm2r(z) whenever w ∈ Dr(z).

Clearly, mj > 1 for j = 1, 2. And furthermore,

(2.4) τ = sup
0<r≤1

[m1(r) +m2(r)] <∞.

In 2009, Marzo and Ortega-Cerdà [18] obtained pointwise estimates on the Bergman

kernel K(· , ·) as follows.

(A) There exist C, ε > 0 such that

(2.5) |K(w, z)| ≤ C e
φ(w)+φ(z)

ρ(w)ρ(z)
e
−
(
|z−w|
ρ(z)

)ε
, w, z ∈ C.

(B) There exists some r0 > 0 such that for z ∈ C and w ∈ Dr0(z), we have

(2.6) |K(w, z)| ' eφ(w)+φ(z)

ρ(z)2
.
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With these two basic estimates we are going to give some lemmas. When k ≥ 0 and

p = 1, Lemma 2.1 is similar to Lemma 2.7 in [18].

Lemma 2.1. Given p, t > 0 and real number k, there is C > 0 such that∫
C
ρ(w)ke

−p
(
|z−w|
ρ(z)

)t
dA(w) ≤ Cρ(z)k+2, z ∈ C.

Proof. By a straightforward calculation, we have∫
C
ρ(w)ke

−p
(
|z−w|
ρ(z)

)t
dA(w) =

(∫
D(z)

+

∫
C\D(z)

)
ρ(w)ke

−p
(
|z−w|
ρ(z)

)t
dA(w)

≤
∫
D(z)

ρ(w)k dA(w) +

∫
C\D(z)

ρ(w)k dA(w)

∫ ∞
p
(
|z−w|
ρ(z)

)t e−s ds
≤ Cρ(z)k+2 +

∫ ∞
p

e−s ds

∫
D(s/p)

1
t (z)

ρ(w)k dA(w)

≤ Cρ(z)k+2 +

∫ ∞
p

sup

w∈D(s/p)
1
t (z)

ρ(w)kA

(
D(s/p)

1
t (z)

)
e−s ds.

From (2.1) we know∫ ∞
p

sup

w∈D(s/p)
1
t (z)

ρ(w)kA
(
D(s/p)1/t(z)

)
e−s ds ≤ Cρ(z)k+2

∫ ∞
p

(
s

p

)kγ/t+2/t

e−s ds

= Cρ(z)k+2.

Therefore, ∫
C
ρ(w)ke

−p
(
|z−w|
ρ(z)

)t
dA(w) ≤ Cρ(z)k+2.

The proof is ended.

The next lemma is about the Lp(φ)-norm of the Bergman kernel K(· , ·). While p ≥ 1,

Lemma 2.2 is just Proposition 2.9 in [19].

Lemma 2.2. For 0 < p <∞, we have

‖K(· , z)‖p,φ ' e
φ(z)ρ(z)2/p−2, z ∈ C.

Proof. Notice that, |K(· , ·)| is symmetric in the two variables, by (2.5) and Lemma 2.1,

we obtain ∫
C
|K(w, z)|p e−pφ(w) dA(w) ≤ C e

pφ(z)

ρ(z)p

∫
C
ρ(w)−pe

−p
(
|z−w|
ρ(z)

)ε
dA(w)

≤ Cepφ(z)ρ(z)2−2p.

The other direction follows easily from (2.6). The proof is completed.
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For p > 0 and z ∈ C, set kp,z(·) = K(· , z)/‖K(· , z)‖p,φ to be the normalized Bergman

kernel for F p(φ).

Lemma 2.3. The set {kp,z : z ∈ C} is bounded in F p(φ), and kp,z → 0 uniformly on

compact subsets of C as z →∞.

Proof. By definition, we know ‖kp,z‖p,φ = 1. As that on page 869 in [17] we have η, C > 0

and β ∈ (0, 1) such that

(2.7)
1

C
|z|−η ≤ ρ(z) ≤ C |z|β for |z| > 1.

Write

c =

−η(1− 2
p) if p < 2,

β(1− 2
p) if p ≥ 2.

Thus, Lemma 2.2 and (2.5) yield

|kp,z(w)| ≤ Ceφ(w)ρ(w)−1 |z|c e−
(
|z|−|w|
ρ(w)

)ε
.

Hence, kp,z → 0 uniformly on any compact subset of C as z →∞. The proof is completed.

For our later use, we need the concepts of averaging functions and Berezin transforms.

If E ⊂ C measurable, write A(E) =
∫
E dA. For µ ≥ 0 and r > 0, the average of µ is

defined as

µ̂r(z) = µ(Dr(z))/A(Dr(z)), z ∈ C.

Lemma 2.4. Suppose 0 < p <∞, µ ≥ 0, r > 0. There exists some constant C such that∫
C

∣∣∣f(z)e−φ(z)
∣∣∣p dµ(z) ≤ C

∫
C

∣∣∣f(z)e−φ(z)
∣∣∣p µ̂r(z) dA(z)

for f ∈ H(C).

Proof. Given r > 0, from (2.2), there is some δ > 0 such that

χDδ(z)(w) ≤ χDr(w)(z)

for z, w ∈ C. Checking the proof of Lemma 19 in [17] carefully, we have some C > 0 such

that

(2.8)
∣∣∣f(z)e−φ(z)

∣∣∣p ≤ C

A (Dδ(z))

∫
Dδ(z)

∣∣∣f(w)e−φ(w)
∣∣∣p dA(w)
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for f ∈ H(C) and z ∈ C. Hence, Fubini’s theorem and (2.2) give∫
C

∣∣∣f(z)e−φ(z)
∣∣∣p dµ(z) ≤ C

∫
C

1

A(Dδ(z))

∫
C
χDδ(z)(w)

∣∣∣f(w)e−φ(w)
∣∣∣p dA(w)dµ(z)

≤ C
∫
C

∣∣∣f(w)e−φ(w)
∣∣∣p dA(w)

∫
C

χDr(w)(z)

ρ(w)2
dµ(z)

= C

∫
C

∣∣∣f(w)e−φ(w)
∣∣∣p µ̂r(w) dA(w).

The proof is completed.

Given t > 0, we set the t-Berezin transform of µ to be

(2.9) µ̃t(z) =

∫
C
|kt,z(w)|t e−tφ(w) dµ(w), z ∈ C.

Given a measurable function f and dµ = f dA, we write f̂r(z) = µ̂r and f̃t = µ̃t for short.

When φ(z) = 1
2 |z|

2, the t-Berezin transform is closely connected with the heat flow on C
which is very important for PDE and relative topics, see [1]. And µ̃2 is just the classical

Berezin transform on Fock spaces.

Given r > 0, we call a sequence {ak}∞k=1 in C is an r-lattice if {Dr(ak)}k covers C
and the disks

{
Dr/5(ak)

}
k

are pairwise disjoint. For r > 0, the existence of some r-lattice

comes from a standard covering lemma, see [17] for details. Given an r-lattice {ak}k and

m > 0, there exists some integer N such that each z ∈ C can be in at most N disks of

{Dmr(ak)}k. Equivalently,

(2.10)
∞∑
k=1

χDmr(ak)(z) ≤ N for z ∈ C,

see [12].

As usual we set the Lebesgue space Lp = Lp(C, dA). Similar to Lemma 2.1 of [13], we

know that both operators f 7→ f̂r and f 7→ f̃t are bounded on Lp for 1 ≤ p ≤ ∞. That is,

if 1 ≤ p ≤ ∞,

(2.11)
∥∥∥f̂r∥∥∥

Lp
≤ C ‖f‖Lp and

∥∥∥f̃t∥∥∥
Lp
≤ C ‖f‖Lp .

The following lemma, Lemma 2.5, shows the equivalence between the Lp-norm of averaging

functions and t-Berezin transforms. When the weight φ satisfies ρ(·) ' 1, this can be seen

in Lemma 2.3 of [14].

Lemma 2.5. Suppose 0 < p <∞, µ ≥ 0. Then the following statements are equivalent:

(A) µ̃t ∈ Lp for some (or any) t > 0;

(B) µ̂δ ∈ Lp for some (or any) δ > 0;



Positive Toeplitz Operators Between Different Doubling Fock Spaces 473

(C) The sequence
{
µ̂r(ak)ρ(ak)

2/p
}
k
∈ lp for some (or any) r-lattice {ak}k.

Furthermore,

(2.12) ‖µ̃t‖Lp ' ‖µ̂δ‖Lp '
∥∥∥{µ̂r(ak)ρ(ak)

2/p
}
k

∥∥∥
lp
.

Proof. First, given p ∈ (0,∞), s ∈ R, and r-lattice {ak}k, δ-lattice {bk}k we claim

(2.13)

∥∥∥∥{µ̂r(aj)ρ(aj)
s+2/p

}
j

∥∥∥∥
lp
'
∥∥∥∥{µ̂δ(bj)ρ(bj)

s+2/p
}
j

∥∥∥∥
lp
.

To see this, for z ∈ C set

Jz =
{
j : Dδ(z) ∩Dr(aj) 6= ∅

}
,

and set |Jz| to be the cardinality of Jz. Notice that
{
Dr/5(aj)

}
k

are pairwise disjoint, and

there is some α > 0 such that

(2.14)
1

α
ρ(z) ≤ ρ(aj) ≤ αρ(z) and Dr/5(aj) ⊂ D2αr+δ(z)

for j ∈ Jz. By A
(⋃

j∈Jz D
r/5(aj)

)
≤ A(D2αr+δ(z)) to know |Jz| ≤ M with some integer

M > 0 independent of z. Define

Sj,k =

1 if Dδ(bk) ∩Dr(aj) 6= ∅,

0 if Dδ(bk) ∩Dr(aj) = ∅.

Then,
∑∞

j=1 Sj,k = |Jbk | ≤M . Symmetrically, set

Lz =
{
k : Dδ(bk) ∩Dr(z) 6= ∅

}
.

We have Dr(aj) ⊂
⋃
k∈Laj

Dδ(bk). Similarly

ρ(bk) ' ρ(aj) for k ∈ Laj .

Then,

(2.15) µ̂r(aj)ρ(aj)
s+2/p ≤ C

∑
k∈Laj

µ̂δ(bk)ρ(bk)
s+2/p.

Therefore,

∞∑
j=1

µ̂r(aj)
pρ(aj)

sp+2 ≤ C
∞∑
j=1

 ∑
k∈Laj

µ̂δ(bk)ρ(bk)
s+2/p

p

≤ C
∞∑
k=1

∞∑
j=1

Sj,kµ̂δ(bk)
pρ(bk)

sp+2

≤ CM
∞∑
k=1

µ̂δ(bk)
pρ(bk)

sp+2.
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By symmetry, we obtain (2.13).

Similar to that in Theorem 4.4 of [15], with (2.2) and (2.13), we can check the equiv-

alence between (B) and (C). Moreover, for fixed δ, r > 0, we obtain

(2.16) ‖µ̂δ‖Lp ' ‖µ̂r‖Lp .

To prove (A) ⇒ (B), we take r0 as in (2.6). Then

(2.17) µ̂r0(z) ≤ Cµ̃t(z).

From (2.16), the conclusion (B) follows. Now we prove the implication (B) ⇒ (A). If

1 ≤ p <∞, taking f(w) = kt,z(w) and t = p in Lemma 2.4, we know

µ̃t(z) ≤ C [̃µ̂δ]t(z), z ∈ C.

By (2.11), f 7→ f̃t is bounded on Lp,

‖µ̃t‖Lp ≤ C
∥∥∥[̃µ̂δ]t

∥∥∥
Lp
≤ C ‖µ̂δ‖Lp .

Next, suppose 0 < p < 1 and µ̂δ ∈ Lp for some δ > 0. For any r-lattice {ak}k, from the

proof above we have

(2.18)
∥∥∥{µ̂r(ak)ρ(ak)

2/p
}
k

∥∥∥
lp
≤ C ‖µ̂δ‖Lp .

Also, we have some constant m > 1 such that⋃
z∈Dr(ak)

Dr(z) ⊆ Dmr(ak) for z ∈ C.

We can divide {ak}k into J subsequence {aj,k}k, j = 1, 2, . . . , J , each {aj,k}k is an

mr−lattice. From (2.18), we have

∞∑
k=1

µ̂mr(ak)
pρ(ak)

2 =

J∑
j=1

∞∑
k=1

µ̂mr(aj,k)
pρ(aj,k)

2 ≤ C ‖µ̂δ‖pLp .

Hence, Lemma 2.2, (2.8), (2.5) imply

|µ̃t(z)|p ≤ Ce−tpφ(z)ρ(z)2tp−2p

(∫
C
|K(w, z)|t e−tφ(w)µ̂r(w) dA(w)

)p
≤ Ce−tpφ(z)ρ(z)2tp−2p

 ∞∑
j=1

∫
Dr(aj)

|K(w, z)|t e−tφ(w)µ̂r(w) dA(w)

p

≤ Ce−tpφ(z)ρ(z)2tp−2p

 ∞∑
j=1

µ̂mr(aj)

∫
Dr(aj)

|K(w, z)|t e−tφ(w) dA(w)

p
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≤ Ce−tpφ(z)ρ(z)2tp−2p
∞∑
j=1

µ̂mr(aj)
p

(∫
Dr(aj)

|K(w, z)|t e−tφ(w) dA(w)

)p

≤ Cρ(z)tp−2p
∞∑
j=1

µ̂mr(aj)
pρ(aj)

2p sup
w∈Dr(aj)

ρ(w)−tpe
−tp

(
|z−w|
ρ(w)

)ε
.

For z ∈ D2r(aj), (2.2) implies

ρ(z)tp−2pρ(aj)
2p sup
w∈Dr(aj)

ρ(w)−tpe
−tp

(
|z−w|
ρ(w)

)ε
≤ C.

If z ∈ C \D2r(aj) and w ∈ Dr(aj), (2.2) shows

e
−tp

(
|z−w|
ρ(w)

)ε
≤ e
−tp

(
|z−aj|−|w−aj|

ρ(w)

)ε
≤ e
−αεtp

(
|z−aj|
ρ(aj)

−r
)ε
≤ e
−(α/2)εtp

(
|z−aj|
ρ(aj)

)ε
.

These, (2.2) and Lemma 2.1 yield∫
C
ρ(z)tp−2p

∞∑
j=1

µ̂mr(aj)
pρ(aj)

2p sup
w∈Dr(aj)

ρ(w)−tpe
−tp

(
|z−w|
ρ(w)

)ε
dA(z)

=
∞∑
j=1

µ̂mr(aj)
pρ(aj)

2p

(∫
D2r(aj)

+

∫
C\D2r(aj)

)
ρ(z)tp−2p

× sup
w∈Dr(aj)

ρ(w)−tpe
−tp

(
|z−w|
ρ(w)

)ε
dA(z)

≤ C
∞∑
j=1

µ̂mr(aj)
p

ρ(aj)
2 + ρ(aj)

2p−tp
∫
C\D2r(aj)

ρ(z)tp−2pe
−(α/2)εtp

(
|z−aj|
ρ(aj)

)ε
dA(z)


≤ C

∞∑
j=1

µ̂mr(aj)
pρ(aj)

2.

Therefore,

‖µ̃t‖pLp ≤ C
∞∑
j=1

µ̂mr(aj)
pρ(aj)

2 ≤ C ‖µ̂δ‖pLp .

The quantity equivalence (2.12) comes from a carefully checking of the implication above.

The proof is completed.

The next lemma, Lemma 2.6, is some partial result about atomic decomposition on

F p(φ).

Lemma 2.6. Let {ak}k be an r-lattice. For 0 < p ≤ ∞ and {λk}k ∈ lp, set

(2.19) f(z) =
∞∑
k=1

λkk2,ak(z)ρ(ak)
1−2/p.

Then f ∈ F p(φ) and ‖f‖p,φ ≤ C ‖{λk}k‖lp.
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Proof. The proof is similar to that of Lemma 2.4 from [14]. If 0 < p ≤ 1, Lemma 2.2 gives

‖f‖pp,φ ≤
∞∑
k=1

|λk|p ‖k2,ak‖
p
p,φ ρ(ak)

p−2 ≤ C ‖{λk}k‖
p
lp .

For 1 < p ≤ ∞, define F (z) =
∑∞

k=1 |λk| ρ(ak)
−2/pχDr(ak)(z). With the 1-Berezin trans-

form, from (2.9) and (2.8) we get

|f(z)| e−φ(z) ≤ Ce−φ(z)
∞∑
k=1

|λk| ρ(ak)
2−2/p |K(z, ak)| e−φ(ak) ≤ CF̃1(z).

By (2.10) and the boundedness of F → F̃1 on Lp, we see

‖f‖p,φ ≤ C
∥∥∥F̃1

∥∥∥
Lp
≤ C ‖F‖Lp ≤ C ‖{λk}k‖lp .

This completes the proof.

3. Toeplitz operators

In this section, we are going to characterize those µ ≥ 0 for which the induced Toeplitz

operator Tµ is bounded (or compact) from one weighted Fock space to another. To this

purpose, we need the relatively compact subsets in F p(φ). With the same proof as that

of Lemma 3.2 in [14], we know a bounded subset E ⊂ F p(φ) is relatively compact if and

only if for each ε > 0 there is some S > 0 such that

(3.1) sup
f∈E

∫
|z|≥S

∣∣∣f(z)e−φ(z)
∣∣∣p dA(z) < ε.

This observation on the compact subsets in Fock spaces is crucial to our study on the

compactness of Tµ from F p(φ) to F q(φ). While 1 < p = q <∞, our result coincides with

that in [19]. But the proof in [19] strongly depends on some basic facts about compactness

of operators in the setting of Banach spaces, see [22, Proposition 4.3] as well.

When p = q > 1 the following lemma, Lemma 3.1, can be found in [19].

Lemma 3.1. Suppose µ ≥ 0 satisfying µ̂δρ
σ ∈ L∞ for some δ > 0 and σ ∈ R. Then Tµ is

well-defined on F p(φ) for 0 < p < ∞. And, for R > 0, Toeplitz operator TµR is compact

from F p(φ) to F q(φ) for 0 < p, q <∞, where µR is defined by

(3.2) µR(V ) = µ
(
V ∩D(0, R)

)
for V ⊆ C measurable.

Proof. Suppose µ̂δρ
σ ∈ L∞. For f ∈ F p(φ) and z ∈ C, from (2.8) to know

(3.3) |f(z)| e−φ(z) ≤ Cρ(z)−2/p ‖f‖p,φ .
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Applying (2.8) to the weight 2φ and the holomorphic function K(· , z)f(·) to get

(3.4) |Tµf(z)| ≤ C
∫
C
|K(w, z)| |f(w)| e−2φ(w)µ̂δ(w) dA(w).

Then by Lemma 2.1,

|Tµf(z)| ≤ C ‖f‖p,φ ‖µ̂δρ
σ‖L∞

∫
C
ρ(w)−σ−2/p |K(w, z)| e−φ(w) dA(w)

≤ Ceφ(z)ρ(z)−1 ‖µ̂δρσ‖L∞ ‖f‖p,φ
∫
C
ρ(w)−1−σ−2/pe

−
(
|z−w|
ρ(z)

)ε
dA(w)

≤ Ceφ(z)ρ(z)−σ−2/p ‖µ̂δρσ‖L∞ ‖f‖p,φ <∞.

This means that Tµ is well-defined on F p(φ).

Next, we show the compactness of TµR . To see this, we claim there are some η, θ, ε > 0,

such that for f ∈ F p(φ)∫
|z|≥S

∣∣∣TµRf(z)e−φ(z)
∣∣∣q dA(z) ≤ C ‖f‖qp,φ

∫
|z|≥S

|z|ηq e−θ|z|
ε

dA(z)

when S is large enough. In fact, there is some positive constant M , whenever |w| ≤ R we

have

M−1 ≤ ρ(w) ≤M

and

|z − w| ≥ |z| − |w| ≥ |z| −R ≥ |z|
2

if |z| ≥ R

2
.

The estimates (2.7) and (3.3) imply, when S is large enough,∫
|z|≥S

∣∣∣TµRf(z)e−φ(z)
∣∣∣q dA(z)

≤
∫
|z|≥S

(∫
C
χ|w|≤R(w)

∣∣∣f(w)K(z, w)e−2φ(w)e−φ(z)
∣∣∣ dµ(w)

)q
dA(z)

≤ C
∫
|z|≥S

(∫
|w|≤R+δM

|f(w)| |K(z, w)| e−2φ(w)e−φ(z)µ̂δ(w) dA(w)

)q
dA(z)

≤ C ‖f‖qp,φ ‖µ̂δρ
σ‖qL∞

×
∫
|z|≥S

(∫
|w|≤R+δM

ρ(z)−1ρ(w)−2/p−σ−1e
−
(
|z−w|
ρ(w)

)ε
dA(w)

)q
dA(z)

≤ C1 ‖f‖qp,φ
∫
|z|≥S

|z|ηq e−θ|z|
ε

dA(z)

where the constant C1 is independent of f and S. Hence,

‖TµRf‖
q
q,φ =

(∫
|z|≤S

+

∫
|z|>S

)∣∣∣TµRf(z)e−φ(z)
∣∣∣q dA(z) ≤ C ‖f‖qp,φ .
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Thus, TµR is bounded from F p(φ) to F q(φ). Suppose E is the unit ball of F p(φ), then

{TµRf : f ∈ E} is a bounded subset in F q(φ). To prove the compactness, for ε > 0, since∫∞
0 rηq+2n−1e−θr

ε
dr <∞, there exists some S large enough such that∫ ∞

S
rηq+2n−1e−θr

ε
dr <

ε

C1 + 1
.

This implies

sup
f∈E

∫
|z|≥S

∣∣∣TµRf(z)e−φ(z)
∣∣∣q dA(z) ≤ C1

∫ ∞
S

rηq+2n−1e−θr
ε
dr < ε.

The proof is completed.

We are now in the position to characterize the boundedness (and the compactness)

of positive Toeplitz operators Tµ from one weighted Fock space F p(φ) to another F q(φ).

Because the inclusion between any two spaces F p(φ) and F q(φ) is no longer valid while p 6=
q, and also F p(φ) is not a Banach space with 0 < p < 1, the approach in [13–16,19,22,23]

does not work here.

Theorem 3.2. Let 0 < p ≤ q < ∞, and let µ ≥ 0. Then the following statements are

equivalent:

(A) Tµ : F p(φ)→ F q(φ) is bounded;

(B) µ̃tρ
2(p−q)/(pq) ∈ L∞ for some (or any) t > 0;

(C) µ̂δρ
2(p−q)/(pq) ∈ L∞ for some (or any) δ > 0;

(D) The sequence
{
µ̂r(ak)ρ(ak)

2(p−q)/(pq)}
k
∈ l∞ for some (or any) r-lattice {ak}k.

Furthermore,

‖Tµ‖F p(φ)→F q(φ) '
∥∥∥µ̃tρ2(p−q)/(pq)

∥∥∥
L∞
'
∥∥∥µ̂δρ2(p−q)/(pq)

∥∥∥
L∞

'
∥∥∥{µ̂r(ak)ρ(ak)

2(p−q)/(pq)
}
k

∥∥∥
l∞
.

(3.5)

Proof. It is trivial that (D) follows from (C) because of (2.13), moreover

(3.6)
∥∥∥{µ̂r(ak)ρ(ak)

2(p−q)/(pq)
}
k

∥∥∥
l∞
≤
∥∥∥µ̂δρ2(p−q)/(pq)

∥∥∥
L∞

.

Estimate (2.17) tells us that (B) implies (C) for r0 with r0 in (2.6). Notice that, (2.16) is

still true for p =∞. These imply

(3.7)
∥∥∥µ̂δρ2(p−q)/(pq)

∥∥∥
L∞
'
∥∥∥µ̂r0ρ2(p−q)/(pq)

∥∥∥
L∞
≤ C

∥∥∥µ̃tρ2(p−q)/(pq)
∥∥∥
L∞

for all δ > 0.
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Now we prove that (D) implies (B). By (2.2), we have some m > 0 such that Dr(z) ⊂
Dmr(a) for z ∈ Dr(a) and a ∈ C. For any t > 0, set s = tpq/(pq − p + q). The

inequality (2.8) tells us, for f ∈ F s(φ),

(3.8) sup
z∈Dr(a)

∣∣∣f(z)e−φ(z)
∣∣∣s ≤ C

ρ(a)2

∫
Dmr(a)

∣∣∣f(w)e−φ(w)
∣∣∣s dA(w).

By Lemma 2.2,

|kt,z(w)|t ρ(z)2(p−q)/(pq) ' |ks,z(w)|t .

Then from (3.8) and (2.10) we obtain

µ̃t(z)ρ(z)2(p−q)/(pq)

'
∫
C
|ks,z(w)|t e−tφ(w) dµ(w)

≤
∞∑
k=1

∫
Dr(ak)

|ks,z(w)|t e−tφ(w) dµ(w)

≤
∞∑
k=1

µ(Dr(ak))

(
sup

w∈Dr(ak)

∣∣∣ks,z(w)e−φ(w)
∣∣∣s)(pq−p+q)/(pq)

≤ C
∞∑
k=1

µ̂r(ak)ρ(ak)
2(p−q)/(pq)

(∫
Dmr(ak)

∣∣∣ks,z(w)e−φ(w)
∣∣∣s dA(w)

)(pq−p+q)/(pq)

≤ C sup
k
µ̂r(ak)ρ(ak)

2(p−q)/(pq)

( ∞∑
k=1

∫
Dmr(ak)

∣∣∣ks,z(w)e−φ(w)
∣∣∣s dA(w)

)(pq−p+q)/(pq)

≤ CN (pq−p+q)/(pq) sup
k
µ̂r(ak)ρ(ak)

2(p−q)/(pq) ‖ks,z‖ts,φ .

This gives

(3.9)
∥∥∥µ̃tρ2(p−q)/(pq)

∥∥∥
L∞
≤ C

∥∥∥{µ̂r(ak)ρ(ak)
2(p−q)/(pq)

}
k

∥∥∥
l∞
.

That is, (D) implies (B).

To prove the implication from (A) to (B) we suppose the statement (A) is valid. By

Lemma 2.2, (2.8) and the fact that

|K2,z(w)|2 ρ(z)2(p−q)/(pq) ' e−φ(z)kp,z(w)K(z, w)

we have

µ̃2(z)ρ(z)2(p−q)/(pq) ≤ Cρ(z)2/q |Tµkp,z(z)| e−φ(z)

≤ C

(∫
D(z)

∣∣∣Tµkp,z(w)e−φ(w)
∣∣∣q dA(w)

)1/q

.
(3.10)
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Then

(3.11) µ̃2(z)ρ(z)2(p−q)/(pq) ≤ C ‖Tµkp,z‖q,φ ≤ C ‖Tµ‖F p(φ)→F q(φ) .

This and the equivalence between (B) and (C) shows the estimate (3.11) remains true

when µ̃2 is replaced by µ̃t for any t > 0.

Now we are going to prove the implication (C) ⇒ (A). Lemma 3.1 tells us that Tµ is

well-defined on F p(φ). Given δ > 0, we first claim there is some positive constant C such

that

(3.12) ‖Tµf‖qq,φ ≤ C
∫
C
|f(w)|q e−qφ(w)µ̂δ(w)q dA(w)

for f ∈ F p(φ). In fact, if q > 1, (3.4) and Hölder’s inequality tell us

|Tµf(z)|q e−qφ(z) ≤ C
(∫

C
µ̂δ(w) |f(w)| |K(w, z)| e−2φ(w)e−φ(z) dA(w)

)q
≤ C

∫
C
|f(w)|q e−qφ(w)µ̂δ(w)q

∣∣∣K(w, z)e−φ(w)e−φ(z)
∣∣∣ dA(w)

×
(∫

C

∣∣∣K(w, z)e−φ(w)e−φ(z)
∣∣∣ dA(w)

)q/q′
≤ C

∫
C
|f(w)|q e−qφ(w)µ̂δ(w)q

∣∣∣K(w, z)e−φ(w)e−φ(z)
∣∣∣ dA(w).

Integrating both sides above, applying Fubini’s Theorem and Lemma 2.2 to get (3.12).

To deal with the case q ≤ 1, for given δ > 0 we pick some r > 0 so that τ2r ≤ min {δ, 1}
with τ as in (2.4), and let {ak}k be some r-lattice. By (2.8) we know, for f ∈ F p(φ),

|Tµf(z)|q ≤

( ∞∑
k=1

∫
Dr(ak)

|f(w)K(w, z)| e−2φ(w) dµ(w)

)q

≤
∞∑
k=1

(∫
Dr(ak)

|f(w)K(w, z)| e−2φ(w) dµ(w)

)q

≤
∞∑
k=1

µ̂r(ak)
qρ(ak)

2q

(
sup

w∈Dr(ak)
|f(w)K(w, z)| e−2φ(w)

)q
.

From (2.8), there are some constant C > 0 such that |Tµf(z)|q is no more than C times

∞∑
k=1

µ̂r(ak)
qρ(ak)

2q−2

∫
Dτr(ak)

|f(w)|q |K(w, z)|q e−2qφ(w) dA(w).

From (2.3) and (2.4), we have Dr(ak) ⊆ Dτ2r(w) if w ∈ Dτr(ak). This, together with
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(2.2) and (2.10), implies

|Tµf(z)|q ≤ C
∞∑
k=1

∫
Dτr(ak)

µ̂τ2r(w)qρ(w)2q−2 |f(w)|q |K(w, z)|q e−2qφ(w) dA(w)

≤ CN
∫
C
µ̂τ2r(w)qρ(w)2q−2 |f(w)|q |K(w, z)|q e−2qφ(w) dA(w)

≤ C
∫
C
µ̂δ(w)qρ(w)2q−2 |f(w)|q |K(w, z)|q e−2qφ(w) dA(w).

Similarly, integrating both sides of the above with respect to e−qφ(z) dA(z) and applying

Fubini’s Theorem to get (3.12).

Now we prove (C) ⇔ (A). Suppose (C) is true, by p ≤ q, (3.12) and (3.3) we obtain

‖Tµf‖qq,φ ≤ C
∫
C
|f(w)|p e−pφ(w)µ̂δ(w)q

(
ρ(w)−2/p ‖f‖p,φ

)q−p
dA(w)

≤ C
∥∥∥µ̂δρ2(p−q)/(pq)

∥∥∥q
L∞
‖f‖qp,φ

for f ∈ F p(φ). Therefore, Tµ is bounded from F p(φ) to F q(φ) and

(3.13) ‖Tµ‖F p(φ)→F q(φ) ≤ C
∥∥∥µ̂δρ2(p−q)/(pq)

∥∥∥
L∞

.

The estimates of (3.5) come from (3.6), (3.7), (3.9), (3.11) and (3.13). The proof is

ended.

For the compactness of Tµ while p ≤ q we have the following Theorem 3.3.

Theorem 3.3. Let 0 < p ≤ q < ∞, and let µ ≥ 0. Then the following statements are

equivalent:

(A) Tµ : F p(φ)→ F q(φ) is compact;

(B) µ̃t(z)ρ(z)2(p−q)/(pq) → 0 as z →∞ for some (or any) t > 0;

(C) µ̂δ(z)ρ(z)2(p−q)/(pq) → 0 as z →∞ for some (or any) δ > 0;

(D) µ̂r(ak)ρ(ak)
2(p−q)/(pq) → 0 as k →∞ for some (or any) r-lattice {ak}k.

Proof. The proof of the implication that “(B) ⇒ (C)” and “(C) ⇒ (D)” can be carried

out as the same part of Theorem 3.2.

Now we assume µ satisfies condition (D) for some r-lattice {ak}k. Then, for ε > 0

there exists some integer K > 0 such that µ̂r(ak)ρ(ak)
2(p−q)/(pq) < ε whenever k > K.

Notice that,
⋃K
k=1B

mr(ak) is a compact subset of C, and {ks,z}z∈C ⊆ F s(φ) uniformly
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converges to 0 on
⋃K
k=1B

mr(ak) as z →∞, where s = tpq/(pq− p+ q). From Lemma 2.2,

(3.8) and (2.10), when |z| is sufficiently large we have

µ̃t(z)ρ(z)2(p−q)/(pq)

'
∫
C
|ks,z(w)|t e−tφ(w) dµ(w)

≤
∫
⋃K
k=1B

mr(ak)
|ks,z(w)|t e−tφ(w) dµ(w)

+

∞∑
k=K+1

µ(Br(ak))

(
sup

w∈Br(ak)

∣∣∣ks,z(w)e−φ(w)
∣∣∣s)(pq−p+q)/pq)

< ε+ C

∞∑
k=K+1

µ̂r(ak)ρ(ak)
2(p−q)/(pq)

(∫
Bmr(ak)

∣∣∣ks,z(w)e−φ(w)
∣∣∣s dA(w)

)(pq−p+q)/pq)

< ε+ C sup
k≥K+1

µ̂r(ak)ρ(ak)
2(p−q)/(pq)

×

( ∞∑
k=K+1

∫
Bmr(ak)

∣∣∣ks,z(w)e−φ(w)
∣∣∣s dA(w)

)(pq−p+q)/(pq)

< ε+ CN (pq−p+q)/(pq) ‖ks,z‖ts,φ ε = Cε

where C is independent of ε. This yields that µ̃t(z)ρ(z)2(p−q)/(pq) → 0 as z → ∞. So, µ

satisfies (B) for any t > 0.

To prove “(A) ⇒ (B)”, we suppose Tµ is compact from F p(φ) to F q(φ). Since

{kp,z : z ∈ C} is bounded in F p(φ), {Tµkp,z : z ∈ C} is relatively compact in F q(φ). By

(3.1), for any ε > 0 there exists some S > 0 such that

sup
z∈C

∫
|w|>S

∣∣∣Tµkp,z(w)e−φ(w)
∣∣∣q dA(w) < εq.

When |z| is sufficiently large and w ∈ D(z),

|w| ≥ |z| − |w − z| ≥ |z| − ρ(z) ≥ |z| − C |z|β ≥ |z|β > S,

where β ∈ (0, 1) as in (2.7). Hence, D(z) ⊆ {w : |w| > S}. By (3.10), we obtain

µ̃2(z)ρ(z)2(p−q)/(pq) ≤ C

(∫
D(z)

∣∣∣Tµkp,z(w)e−φ(w)
∣∣∣q dA(w)

)1/q

< Cε

when |z| is sufficiently large. Hence,

lim
z→∞

µ̃2(z)ρ(z)2(p−q)/(pq) = 0.

The equivalence between (B) and (C) shows the above limit is still valid if µ2 is replaced

by µt for any t > 0.
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Finally, we suppose the statement (C) is true. Set µR as (3.2). Lemma 3.1 shows that

TµR is compact from F p(φ) to F q(φ). And also, µ− µR ≥ 0. By (C) and (3.5), for δ > 0

fixed we have

‖Tµ − TµR‖F p(φ)→F q(φ) '
∥∥∥ ̂(µ− µR)δρ

2(p−q)/(pq)
∥∥∥
L∞
→ 0

as R→∞. Therefore, Tµ is compact from F p(φ) to F q(φ). The proof is completed.

Now we are in the position to characterize the boundedness (and equivalently the

compactness) of Tµ for q < p.

Theorem 3.4. Let 0 < q < p < ∞, and let µ ≥ 0. Then the following statements are

equivalent:

(A) Tµ : F p(φ)→ F q(φ) is bounded;

(B) Tµ : F p(φ)→ F q(φ) is compact;

(C) µ̃t ∈ Lpq/(p−q) for some (or any) t > 0;

(D) µ̂δ ∈ Lpq/(p−q) for some (or any) δ > 0;

(E)
{
µ̂r(ak)ρ(ak)

2(p−q)/(pq)}
k
∈ lpq/(p−q) for some (or any) r-lattice {ak}k.

Furthermore,

‖Tµ‖F p(φ)→F q(φ) ' ‖µ̂t‖Lpq/(p−q) ' ‖µ̂δ‖Lpq/(p−q)

'
∥∥∥{µ̂r(ak)ρ(ak)

2(p−q)/(pq)
}
k

∥∥∥
lpq/(p−q)

.
(3.14)

Proof. The equivalence among the statements (C), (D) and (E) follows from Lemma 2.5.

It is trivial that (B) ⇒ (A). To finish our proof, we are going to prove the implications

(A) ⇒ (E), (D) ⇒ (A) and (D) ⇒ (B).

To get (A) ⇒ (E), we borrow some idea from [14]. First, we claim that (E) is true for

r = r0 with r0 in (2.6). For any r0-lattice {ak}k and sequence {λk}k ∈ lp, set f as (2.19).

Lemma 2.6 shows f ∈ F p(φ) with ‖f‖p,φ ≤ C ‖{λk}k‖lp . By Khinchine’s inequality and

the boundedness of Tµ, we have

∫
C

( ∞∑
k=1

∣∣∣λkρ(ak)
1−2/pTµ(k2,ak)(z)

∣∣∣2)q/2 e−qφ(z) dA(z)

≤ C ‖Tµ‖qF p(φ)→F q(φ) ‖{λk}k‖
q
lp .
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Meanwhile, there is

∫
C

( ∞∑
k=1

∣∣∣λkρ(ak)
1−2/pTµ(k2,ak)(z)

∣∣∣2)q/2 e−qφ(z) dA(z)

≥ C
∞∑
j=1

|λj |q ρ(aj)
2+2q−2q/p

∣∣∣∣∣
∫
Dr0 (aj)

|K(w, aj)|2 e−2φ(w) dµ(w)

∣∣∣∣∣
q

e−2qφ(aj)

≥ C
∞∑
j=1

|λj |q µ̂r0(aj)
qρ(aj)

2−2q/p,

the last inequality follows from (2.2) and (2.6). Setting βj = |λj |q, then {βj}∞j=1 ∈ l
p/q.

Therefore,

∞∑
j=1

βjµ̂r0(aj)
qρ(aj)

2−2q/p ≤ C ‖Tµ‖qF p(φ)→F q(φ)

∥∥∥{λj}j∥∥∥qlp
= C ‖Tµ‖qF p(φ)→F q(φ)

∥∥∥{βj}j∥∥∥lp/q .
The duality argument shows{

µ̂r0(aj)
qρ(aj)

2−2q/p
}∞
j=1
∈ lp/(p−q)

and ∥∥∥∥{µ̂r0(aj)
qρ(aj)

2−2q/p
}
j

∥∥∥∥
lp/(p−q)

≤ C ‖Tµ‖qF p(φ)→F q(φ) .

This and Lemma 2.5 imply

(3.15)

∥∥∥∥{µ̂r(bj)ρ(bj)
2(p−q)/(pq)

}
j

∥∥∥∥
lpq/(p−q)

≤ C ‖Tµ‖F p(φ)→F q(φ)

for any r-lattice {bj}. From this, the conclusion (E) follows.

Now we prove (D) ⇒ (A). Suppose µ̂δ ∈ Lpq/(p−q) for some δ > 0. By Lemma 2.5,

we know
{
µ̂δ(ak)ρ(ak)

2(p−q)/(pq)}
k
∈ l∞ for some δ-lattice {ak}k. Theorem 3.2 gives

µ̂δρ
2(p−q)/(pq) ∈ L∞, which shows that Tµ is well-defined on F p(φ), see Lemma 3.1. Notice

that p/q > 1. By (3.12), Hölder’s inequality and Lemma 2.2, we obtain

‖Tµf‖qq,φ ≤ C
{∫

C

(
|f(w)|q e−qφ(w)

)p/q
dA(w)

}q/p{∫
C
µ̂δ(w)pq/(p−q) dA(w)

}(p−q)/p

≤ C ‖µ̂δ‖qLpq/(p−q) ‖f‖
q
p,φ

for f ∈ F p(φ). Hence, Tµ is bounded from F p(φ) to F q(φ) and

(3.16) ‖Tµ‖F p(φ)→F q(φ) ≤ C ‖µ̂δ‖Lpq/(p−q) .
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To prove (D) ⇒ (B), we take µR as (3.2). Then µ − µR ≥ 0, and for δ > 0 we have∥∥∥ ̂(µ− µR)δ

∥∥∥
Lpq/(p−q)

→ 0 as R→∞. By (3.16),

‖Tµ − TµR‖F p(φ)→F q(φ) =
∥∥T(µ−µR)

∥∥
F p(φ)→F q(φ)

'
∥∥∥ ̂(µ− µR)δ

∥∥∥
Lpq/(p−q)

→ 0

whenever R→∞. Since TµR is compact from F p(φ) to F q(φ), the operator Tµ : F p(φ)→
F q(φ) is compact as well.

The norm equivalence (3.14) comes from Lemma 2.5, (3.15) and (3.16). The proof is

completed.
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