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Limit Theorems for Multiplicative Cascades in a Random Environment

Shunli Hao

Abstract. Let ζ = (ζ0, ζ1, . . .) be a sequence of independent and identically distributed

random variables. For r ≥ 2, let µr be Mandelbrot’s (limit) measure of multiplicative

cascades defined with positive weights indexed by nodes of a regular r-ary tree, and

let Z(r) be the mass of µr. We study asymptotic properties of Z(r) and the sequence

of random measures (µr)r as r → ∞. We obtain some laws of large numbers and a

central limit theorem. The results extend ones established by Liu and Rouault (2000)

and by Liu, Rio and Rouault (2003).

1. Introduction and main results

As usual, we write N∗ = {1, 2, . . .}, R+ = [0,∞), R = (−∞,∞) and

U =

∞⋃
n=0

(N∗)n

for the union of all finite sequences, where (N∗)0 = {∅} contains the null sequence ∅.
We describe the model of Mandelbrot’s multiplicative cascades in a random environment

as follows. Let ζ = (ζ0, ζ1, . . .) = (ζn)n≥0 be a sequence of independent and identically

distributed (i.i.d.) random variables taking values in some space Θ, so that each realization

of ζn corresponds to a probability distribution Fn(ζ) = F (ζn) on R+. Suppose that when

the environment ζ is given, {Wu, u ∈ U} is a family of totally independent random variables

with values in R+; all the random variables are defined on some probability space (Γ,Pζ);
for u ∈ U, each Wui (1 ≤ i ≤ r) has distribution Fn(ζ) = F (ζn) if |u| = n, where |u|
denotes the length of u. For simplicity, we write Wi for W∅i, 1 ≤ i ≤ r. The total

probability space can be formulated as the product space (Γ×Θ,P), where P = Pζ ⊗ τ in

the sense that for all measurable and positive functions g, we have∫
g dP =

∫∫
g(ζ, y) dPζ(y) dτ(ζ),

where τ is the law of the environment ζ. The expectation with respect to Pζ (resp. P) will

be denoted by Eζ (resp. E).
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Suppose that EζW1 = 1 almost surely (a.s.) and P(W1 = 1) < 1.

Let F0 be the trivial σ-algebra, and for n > 1, let Fn−1 be the σ-algebra generated

by
{
Wu1 , . . . ,Wu1···un−1 : 1 ≤ u1, . . . , un−1 ≤ r

}
. For r = 2, 3, . . ., let Z(r) be the Mandel-

brot’s variable in the random environment ζ associated with Wu (u ∈ U/∅) and parameter

r:

Z(r) := lim
n→∞

Y (r)
n ,

where

Y (r)
n =

∑
1≤u1,...,un≤r

Wu1 · · ·Wu1···un
rn

.

Let Pθζ be the probability for the shifted environment θζ. It is easily seen that Z = Z(r)

satisfies the following distributional equation:

(E) Z(r) =
1

r

r∑
i=1

WiZ
(r)
i ,

where Z
(r)
i are non-negative random variables, which can be chosen independent of each

other and independent of {Wi, 1 ≤ i ≤ r} under Pζ . Z is a non-negative random vari-

able independent of Z
(r)
i and independent of {Wi, 1 ≤ i ≤ r} under Pζ , Pζ{Z

(r)
i ∈ · } =

Pθζ{Z(r) ∈ · }. In terms of Laplace transforms φ
(r)
ζ (t) = Eζ exp

{
tZ(r)

}
, the equation reads

φ
(r)
ζ (t) =

[
Eζφ

(r)
θζ (tW1/r)

]r
a.s. t ≤ 0.

In the deterministic environment case, the model was first introduced by Mandelbrot

(1974, [19]) and is referred to as “microcanonique”. For one choice of W1, Y
(r)
n represents

a stochastic model for turbulence of Yaglom (1974, [20]), and if 0 < P(W1 = 1) = 1 −
P(W1 = 0), rnY

(r)
n is the n-th generation size of a simple birth-death process. For fixed

r, the properties of Z(r) and related subjects have been studied by many authors; see,

for example, Kahane and Peyrière (1976, [10]), Durrett and Liggett (1983, [7]), Guivarc’h

(1990, [8]), Holley and Waymire (1992, [9]). See also Collet and Koukiou (1992, [6]), Liu

(1997, [13]; 1998, [14]; 2000, [15]), Menshikov et al. (2005, [21]), Barral et al. (2010, [2,3])

for more general results and for related topics.

Let λ be the Lebesgue measure on [0, 1]. Fix r ≥ 2. For every n ≥ 1, let µnr be

the random measure on [0, 1], having on each r-adic interval Aru1···un = [
∑n

k=1(uk −
1)r−k,

∑n
k=1(uk − 1)r−k + r−n] the density Wu1 · · ·Wu1···un with respect to the Lebesgue

measure. In other words,

(1.1) µnr (f) =

∫
f dµnr =

∑
1≤u1,...,un≤r

Wu1 · · ·Wu1···un

∫
Ar

u1···un

f dλ

for each f ∈ L 1([0, 1], λ). The mass of µnr is Y
(r)
n = µnr (1).
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For fixed r ≥ 2, almost surely the sequence of random measures {µnr , n ≥ 1} is weakly

convergent, as n → ∞. Let µ∞r be the Borel extension of this weak limit. The random

Borel measure µ∞r on [0, 1] is called the Mandelbrot measure for multiplicative cascades in

a random environment. The mass of µ∞r is Z(r) = µ∞r (1).

In the deterministic environment case, this measure and its extensions have been stud-

ied by many authors, see, for example, Kahane and Peyrière (1976, [10]), Waymire and

Williams (1996, [22]), Barral (1999, [1]), Liu (2000, [15]), Liu, Rio and Rouault (2003, [17]).

Fix 1 ≤ k ≤ r. If the weights Wu1 · · ·Wu1···un in (1.1) are replaced by Wku1 · · ·Wku1···un ,

the corresponding measures will be denoted by µnr ◦ Tk (1 ≤ n <∞), i.e.,

(µnr ◦ Tk)(f) =

∫
f d(µnr ◦ Tk) =

∑
1≤u1,...,un≤r

Wku1 · · ·Wku1···un

∫
Ar

u1···un

f dλ,

and its weak limit (as n→∞) by µ∞r ◦ Tk. Notice that the measures µnr and µ∞r depend

on the marked r-ary tree with marks Wu1···un associated with each node u1 · · ·un, while

µnr ◦Tk and µ∞r ◦Tk depend on its shift at k. Tk may be considered the shift operator to the

node k in the space of marked trees. For fixed r and f , the random variables (µ∞r ◦Tk)(f),

1 ≤ k ≤ r, are independent of each other and independent of {Wi, 1 ≤ i ≤ r} under Pζ ,
and Pζ {(µ∞r ◦ Tk)(f) ∈ · } = Pθζ {µ∞r (f) ∈ · }. For k = 1, 2, . . . , r, let τ rk be the operator

acting on functions from [0, 1] to R, defined by

τ rkf(x) = f

(
k − 1 + x

r

)
, x ∈ [0, 1].

Since t ∈ Aru1···un if and only if r(t− u1−1
r ) ∈ Aru2···un , we have, for f in L 1([0, 1], λ),

µnr (f) =

r∑
k=1

Wk

∑
1≤u2,...,un≤r

Wku2 · · ·Wku2···un

∫
Ar

u2···un

1

r
f

(
s+ k − 1

r

)
ds,

so that for each 1 ≤ n <∞,

(1.2) µnr (f) =
1

r

r∑
k=1

Wk(µ
n−1
r ◦ Tk)(τ rkf),

with the convention µ0r ◦ Tk = λ. Taking the limit as n→∞ in (1.2), we see that a.s. for

every f ∈ C ([0, 1]),

(1.3) µ∞r (f) =
1

r

r∑
k=1

Wk(µ
∞
r ◦ Tk)(τ rkf).

In the deterministic environment case, this equation and its version for masses Z(r),

(1.4) Z(r) =
1

r

r∑
k=1

Wk(Z
(r) ◦ Tk),
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have been studied by many authors (cf. 1976, [10]; 1983, [7]; 1990, [8]; 1998, [14]; 2001,

[16]). Asymptotic properties of the masses Z(r) as r → ∞, have been studied by some

authors, see, for example, Liu and Rouault (2000, [18]), Liu, Rio and Rouault (2003, [17]).

The purpose of this paper is to give limit theorems for the process
{
Z(r) : r ≥ 2

}
and

the sequence of random measures (µnr )r as r →∞.

Theorem 1.1 (A central limit theorem). If EW 2
1 <∞, then as r →∞,

√
r√

EζW 2
1 − 1

(Z(r) − 1) converges in law to the normal law N (0, 1) under Pζ .

In the deterministic environment case, Theorem 1.1 reduces to Theorem 1.2 of Liu and

Rouault (2000, [18]).

2. Convergence in L2

The following result will be used in the next section.

Theorem 2.1. If EW 2
1 < r <∞, then

E(Z(r) − 1)2 = E(Z(r))2 − 1 =
EW 2

1 − 1

r − EW 2
1

.

In particular,

lim
r→∞

Z(r) = 1 in L2.

In the deterministic environment case, Theorem 2.1 reduces to Theorem 3.1 of Liu and

Rouault (2000, [18]).

The proof of Theorem 2.1 will be based on the following lemmas.

Lemma 2.2. Let r ≥ 2 be fixed. Assume that EW1 logW1 ∈ [−∞,∞). Then the following

assertions are equivalent:

(a) EW1 logW1 < log r;

(b) EζZ(r) = 1 a.s.;

(b′) EZ(r) = 1;

(c) Pζ(Z(r) = 0) < 1 a.s.;

(c′) P(Z(r) = 0) < 1.

This is a special case of Theorem 7.1 of Biggins and Kyprianou (2004, [4]) or Theo-

rem 2.5 of Kuhlbusch (2004, [11]).
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Lemma 2.3. Let r ≥ 2 be fixed. For α > 1, the following assertions are equivalent:

(a) E (
∑r

i=1Wi)
α <∞ and EWα

1 < rα−1;

(b) E
(

supn≥1 Y
(r)
n

)α
<∞;

(c) 0 < E(Z(r))α <∞.

This is given by Theorem 2.2.2 of Liang (2010, [12]).

Proof of Theorem 2.1. Since the function f(s) = logEW s
1 is convex, we have f(2)−f(1) ≥

f ′(1), which gives EW1 logW1 ≤ logEW 2
1 . Therefore, the condition EW 2

1 < r <∞ implies

EW1 logW1 < log r, so that by Lemmas 2.2 and 2.3, EZ(r) = 1 and E(Z(r))2 < ∞. By

equation (E), we have,

(Z(r))2 =
1

r2

(
r∑
i=1

WiZ
(r)
i

)2

=
1

r2

 r∑
i=1

W 2
i (Z

(r)
i )2 +

∑
1≤i,j≤r
i 6=j

WiWjZ
(r)
i Z

(r)
j

 ,
E(Z(r))2 =

1

r2

[
rEEζW 2

1Eθζ(Z(r))2 + r(r − 1)E(EζW1)
2(EθζZ(r))2

]
=

1

r
EEζW 2

1Eθζ(Z(r))2 +
r − 1

r

=
1

r
EW 2

1E(Z(r))2 +
r − 1

r
.

So E(Z(r))2 = (r−1)/(r−EW 2
1 ). Since E(Z(r)−1)2 = E(Z(r))2−1, the desired conclusion

holds.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. Let r0 = EW 2
1 . By the proof of Theorem 2.1, for r ∈ (r0,∞), we

have EW1 logW1 < log r, so that by Lemmas 2.2 and 2.3, for r ∈ [r0,∞), we see that

EζZ(r) = 1 a.s.,

E(Z(r))2 <∞

and

Eζ(Z(r))2 =
1

r
EζW 2

1Eθζ(Z(r))2 +
r − 1

r
a.s.

By equation (E),

rZ(r) − r =

r∑
i=1

(WiZ
(r)
i − 1).
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Let Sr =
∑r

i=1(WiZ
(r)
i − 1) (r ≥ r0) and let sr ≥ 0 be defined by

s2r =

r∑
i=1

Eζ(WiZ
(r)
i − 1)2.

We notice that WiZ
(r)
i − 1 are totally independent and identically distributed random

variables under Pζ with

Eζ
[
WiZ

(r)
i − 1

]
= Eζ(WiZ

(r)
i )− 1 = EζW1EθζZ(r) − 1 = 0 a.s. for r ∈ [r0,∞),

and that

s2r = rEζ(W1Z
(r)
1 − 1)2 = r

[
EζW 2

1Eζ(Z
(r)
1 )2 − 1

]
= r

[
EζW 2

1Eθζ(Z(r))2 − 1
]

a.s.

for r ∈ [r0,∞). We shall verify Lindeberg’s condition for the sequence {Sr : r ≥ r0}. For

all ε > 0 and r ∈ [r0,∞), we have

r∑
k=1

1

s2r

∫
{∣∣∣WkZ

(r)
k −1

∣∣∣≥εsr}
[
WkZ

(r)
k − 1

]2
dPζ

=
r

s2r

∫
{∣∣∣W1Z

(r)
1 −1

∣∣∣≥εsr}
[
W1Z

(r)
1 − 1

]2
dPζ

=
1

EζW 2
1Eθζ(Z(r))2 − 1

∫
Ar

[
W1Z

(r)
1 − 1

]2
dPζ

=
Eζ
[
W1Z

(r)
1 − 1

]2
1{Ar}

EζW 2
1Eθζ(Z(r))2 − 1

,

(3.1)

where Ar =
{∣∣∣W1Z

(r)
1 − 1

∣∣∣ ≥ ε√r [EζW 2
1Eθζ(Z(r))2 − 1

]}
. Notice that for r ∈ [r0,∞),[

W1Z
(r)
1 − 1

]2
= W 2

1

[
(Z

(r)
1 )2 − 1

]
− 2W1

[
Z

(r)
1 − 1

]
+ (W1 − 1)2,(3.2)

E
(
W 2

1

∣∣∣(Z(r)
1 )2 − 1

∣∣∣) = E
(
EζW 2

1Eθζ
∣∣∣(Z(r))2 − 1

∣∣∣) = EW 2
1E
∣∣∣(Z(r))2 − 1

∣∣∣→ 0,(3.3)

E
∣∣∣−2W1

[
Z

(r)
1 − 1

]∣∣∣ = 2E
(
EζW1Eθζ

∣∣∣Z(r) − 1
∣∣∣) = 2EW1E

∣∣∣Z(r) − 1
∣∣∣

= 2E
∣∣∣Z(r) − 1

∣∣∣→ 0.

Let {r′} be any subsequence of {r}. Notice that from (3.3), we can choose a subse-

quence {r′′} of {r′} with r′′ →∞ for which

(3.4) Eζ
(
W 2

1

∣∣∣(Z(r′′)
1 )2 − 1

∣∣∣)→ 0 a.s.

Similarly, we also have that

(3.5) Eζ
∣∣∣−2W1

[
Z

(r′′)
1 − 1

]∣∣∣→ 0 a.s.
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By Markov’s inequality, we have

Eζ1{Ar} = Pζ {Ar} ≤
Eζ
[
W1Z

(r)
1 − 1

]2
ε2r
(
EζW 2

1Eθζ(Z(r))2 − 1
) =

1

ε2r
→ 0 a.s.

Thus

1{Ar} → 0 in probability under Pζ .

Therefore by the dominated convergence theorem, we see that

(3.6) Eζ(W1 − 1)21{Ar} → 0 a.s.

By (3.1), (3.2), (3.4), (3.5) and (3.6), we have

lim
r′′→∞

r′′∑
k=1

1

s2r′′

∫
{∣∣∣WkZ

(r′′)
k −1

∣∣∣≥εsr′′}
[
WkZ

(r′′)
k − 1

]2
dPζ

= lim
r′′→∞

Eζ
[
W1Z

(r′′)
1 − 1

]2
1{Ar′′}

EζW 2
1Eθζ(Z(r′′))2 − 1

= 0.

So by Lindeberg’s theorem, Sr′′/sr′′ converges in law to the normal law N (0, 1) under Pζ .
Since

s2r′′

r′′(EζW 2
1 − 1)

=
EζW 2

1Eθζ(Z(r′′))2 − 1

EζW 2
1 − 1

→ 1 a.s. as r′′ →∞

by Theorem 2.1, this implies that, as r′′ →∞,
√
r′′√

EζW 2
1 − 1

(Z(r′′) − 1) =
Sr′′

sr′′
· sr′′√

r′′(EζW 2
1 − 1)

converges in law to N (0, 1) under Pζ . Since the limit is independent of the subsequence

taken, as r →∞,
√
r√

EζW 2
1 − 1

(Z(r) − 1) =
Sr
sr
· sr√

r(EζW 2
1 − 1)

converges in law to N (0, 1) under Pζ .

4. The Mandelbrot measures for multiplicative cascades in a random environment

In this section r ≥ 2 is fixed unless the contrary is mentioned.

Let f ∈ L 1([0, 1], λ) be fixed. The sequence {(µnr (f),Fn), n ≥ 1} is a martingale. By

the martingale convergence theorem, considering the positive and negative parts of f , we

see that the limit

(4.1) µr(f) = lim
n→∞

µnr (f)
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exists Pζ-a.s. Let D be a countable dense subset of C ([0, 1]) equipped with the supremum

norm ‖ · ‖∞. Then Pζ-a.s. (4.1) holds for all f ∈ C ([0, 1]) since |µnr (f)| ≤ ‖f‖∞ µnr (1) and

|µr(f)| ≤ ‖f‖∞ µr(1). Hence Pζ-a.s.

µ∞r (f) = µr(f) for all f ∈ C ([0, 1])

(for any Borel measure µ and any integrable function f , we always write µ(f) =
∫
f dµ).

In the deterministic environment case, Kahane and Peyrière [10] proved that the posi-

tive martingale {µnr (1)}n is uniformly integrable if and only if EW1 logW1 < log r. In that

case µnr (1)→ µ∞r (1) a.s. and in L1.

Theorem 4.1. If EW1 logW1 < log r, then for each fixed f ∈ L 1([0, 1], λ), we have

lim
n→∞

µnr (f) = µ∞r (f) in L1, and µ∞r (f) = µr(f) Pζ-a.s.

To prove the L1 convergence, we need the following lemma.

Lemma 4.2. If EW1 logW1 < log r, then for each fixed f in L 1([0, 1], λ), we have

Eζµr(f) = Eζµ∞r (f) = λ(f) a.s.

Proof of Lemma 4.2. (a) We first prove that Eζµr(f) = λ(f) a.s. Clearly, for each 1 ≤
n <∞,

(4.2) Eζµnr (f) = λ(f) a.s.

We assume for the moment that f ∈ L∞([0, 1], λ). Since EW1 logW1 < log r, µnr (1) →
µr(1) in L1 by Sheffé’s theorem, Lemma 2.2 and (4.1) with f = 1. Therefore {µnr (1)}n
is uniformly integrable. As |µnr (f)| ≤ ‖f‖∞ µnr (1), this implies that {µnr (f)}n is also

uniformly integrable, so that

(4.3) µnr (f)→ µr(f) in L1

by (4.1). Letting n→∞ in (4.2), we see that Eζµr(f) = λ(f) a.s.

Assume only now f ∈ L 1([0, 1], λ). Fatou’s lemma and (4.2) yield Eζµr(f) ≤ λ(f)

a.s. for f ≥ 0. Therefore the functional f 7→ Eζµr(f) is 1-Lipschitz on L 1([0, 1], λ). On

L∞([0, 1], λ), it coincides with the continuous functional f 7→ λ(f). By the density of

L∞([0, 1], λ) in L 1([0, 1], λ), this implies that Eζµr(f) = λ(f) a.s. for all f ∈ L 1([0, 1], λ).

(b) We then prove that Eζµ∞r (f) = λ(f) a.s. Set µ∞r (A) = Eζµ∞r (A) for A ∈ B (recall

that B is the Borel σ-field on [0, 1]). The set function µ∞r is well defined by using the

proof of Lemma 2.2 of Liu, Rio and Rouault (2003, [17]). The σ-additivity of µ∞r implies

that of µ∞r . Therefore µ∞r is a Borel measure on [0, 1]. For f ∈ C ([0, 1]), we have

µ∞r (f) = Eζµ∞r (f) = Eζµr(f) = λ(f) a.s.
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Therefore the measure µ∞r and λ coincide, so that Eζµ∞r (f) = λ(f) a.s. for all f ∈
L 1([0, 1], λ).

Proof of Theorem 4.1. Fix f ∈ L 1([0, 1], λ). Let ε > 0 be arbitrarily fixed, and take

g ∈ C ([0, 1]) such that λ(|f − g|) < ε. By the triangle inequality and Lemma 4.2,

Eζ |µnr (f)− µ∞r (f)| ≤ Eζ |µnr (f − g)|+ Eζ |µnr (g)− µ∞r (g)|+ Eζ |µ∞r (g − f)|

≤ 2λ(|f − g|) + Eζ |µnr (g)− µ∞r (g)| .
(4.4)

Because g ∈ C ([0, 1]), we have limn→∞ µ
n
r (g) = µ∞r (g) = µr(g) in L1 (cf. (4.3)). Therefore

letting n→∞ in (4.4), we see that

lim sup
n→∞

Eζ |µnr (f)− µ∞r (f)| ≤ 2ε,

so that limn→∞ µ
n
r (f) = µ∞r (f) in L1. Since limn→∞ µ

n
r (f) = µr(f) Pζ-a.s., it follows that

µ∞r (f) = µr(f) Pζ-a.s.

Lemma 4.3. (Proposition 3.1 in Liu, Rio and Rouault (2003, [17])) Fix n ≥ 1 and let

U1, U2, . . . , Un be independent and integrable random variables. Let (Uni1···in) be a family

of independent random variables indexed by (n, i1, . . . , in), such that for every n, Uni1···in
has the same distribution as Un.

(a) For r ≥ 1, set

Snr = r−n
∑

1≤i1,...,in≤r
U1
i1 · · ·U

n
i1···in ,

and let Hn
r be the σ-field generated by {Snk , k ≥ r}. Then {(Snr , Hn

r )}r≥1 is a reverse

martingale, and limr→∞ S
n
r = EU1EU2 · · ·EUn a.s. and in L1.

(b) Assume additionally EUn = 0. If a =
{
ari1···in , 1 ≤ i1, . . . , in ≤ r, r ≥ 1

}
is a family

of real numbers such that ‖a‖∞ = supr≥1 max1≤i1,...,in≤r
∣∣ari1···in∣∣ <∞, then as r →

∞,

Γr(a) := r−n
∑

1≤i1,...,in≤r
U1
i1 · · ·U

n
i1···ina

r
i1···in → 0 a.s. and in L1.

Lemma 4.4. (Lemma 3.2 in Liu, Rio and Rouault (2003, [17])) Assume that the conditions

of Lemma 4.3(b) are satisfied. For M > 0, let U
k
i1···ik := (−M ∨ Uki1···ik) ∧ M . Set

Ũki1···ik := U
k
i1···ik − EUki1···ik and

ΓMr (a) := r−n
∑

1≤i1,...,in≤r
U

1
i1 · · ·U

n−1
i1···in−1

Ũni1···ina
r
i1···in .

Then

lim
M→∞

lim sup
r≥1

sup
a:‖a‖∞≤1

∣∣Γr(a)− ΓMr (a)
∣∣ = 0 a.s.
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Lemma 4.5. (Proposition 3.4 in Liu, Rio and Rouault (2003, [17])) Let {Unk, n ≥ 1, 1 ≤
k ≤ rn} be a triangular array of row-wise independent, integrable and centered real random

variables such that limn→∞ rn = ∞. If the family {Unk, n ≥ 1, 1 ≤ k ≤ rn} is uniformly

integrable, then as n→∞,

Un =
1

rn

rn∑
k=1

Unk → 0 in L1.

For n ≤ ∞ and some subset G of L 1([0, 1], λ), we shall study a.s. and L1 convergence

of

‖µnr − λ‖G := sup
f∈G
|µnr (f)− λ(f)|

as r →∞. In order to obtain uniform convergence results for finite n, we need finiteness

of metric entropy in L 1([0, 1], λ).

Definition 4.6. (Definition 3.6 in Liu, Rio and Rouault (2003, [17])) Let (V, d) be an

arbitrary semi-metric space and T be a subset of V . The covering number N(ε, T, d)

is the minimal number of balls of radius ε needed to cover T . The entropy number

is H(ε, T, d) = logN(ε, T, d). The subset T is said to be totally bounded in (V, d) if

N(ε, T, d) is finite for all ε > 0.

Definition 4.7. (Definition 3.7 in Liu, Rio and Rouault (2003, [17])) For f, g ∈ L 1([0, 1],

λ) such that f ≤ g, the bracket [f, g] is the set of all h ∈ L 1([0, 1], λ) such that f ≤ h ≤ g.

It is called an ε-bracket if λ(g − f) ≤ ε. The class G is said to be totally bounded with

brackets in L 1([0, 1], λ) if it can be covered by a finite number of ε-brackets, for all ε > 0.

Theorem 4.8. Let 1 ≤ n <∞ be fixed.

(a) limr→∞ Y
(r)
n = 1 Pζ-a.s. and in L1.

(b) For f ∈ L 1([0, 1], λ),

lim
r→∞

µnr (f) = λ(f) in L1.

(c) If G is a class of uniformly bounded functions, totally bounded in L 1([0, 1], λ), then

lim
r→∞

‖µnr − λ‖G = 0 Pζ-a.s. and in L1.

In the deterministic environment case, Theorem 4.8 reduces to Theorem 3.8 of Liu,

Rio and Rouault (2003, [17]).

Proof of Theorem 4.8. Part (a) is a direct consequence of Lemma 4.3(a).
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To prove parts (b) and (c), we first remark that for each f ∈ L∞([0, 1], λ) and 1 ≤
n <∞,

(4.5) lim
r→∞

(
µnr (f)− µn−1r (f)

)
= 0 Pζ-a.s. and in L1,

by applying Lemma 4.3(b) to the decomposition

µnr (f)− µn−1r (f) =
∑

1≤u1,...,un≤r
Wu1 · · ·Wu1···un−1(Wu1···un − 1)

∫
Ar

u1···un

f dλ.

Since µ0r = λ, (4.5) implies that, for each f ∈ L∞([0, 1], λ) and 1 ≤ n <∞,

(4.6) lim
r→∞

(µnr (f)− λ(f)) = 0 Pζ-a.s. and in L1.

By the density of L∞([0, 1], λ) in L 1([0, 1], λ), Eζµnr (f) = λ(f) a.s. for each 1 ≤ n < ∞
and the inequality

|µnr (f)− λ(f)| ≤ µnr (|f − g|) + |µnr (g)− λ(g)|+ λ(|g − f |),

we see that the L1 convergence in (4.6) still holds for every f in L 1([0, 1], λ), which ends

the proof of (b).

For part (c), we assume that G is uniformly bounded by 1 for the sake of simplicity.

To prove the a.s. convergence, it is enough to show that for every n <∞,

(4.7) lim
r→∞

∥∥µnr − µn−1r

∥∥
G

= 0 Pζ-a.s.

From Lemma 4.4, it is sufficient to prove (4.7) when the Wu are bounded by a constant

M ≥ 1. Since G is totally bounded, for every ε > 0 one can find f1, . . . , fN ∈ L 1([0, 1], λ)

such that for every f ∈ G there is some fi such that λ(|f − fi|) ≤ ε. Actually we can

choose the functions fi in L∞([0, 1], λ) since it is dense in L 1([0, 1], λ).

By definition of µnr , we then have |µnr (g)| ≤Mnλ(|g|) for g in L 1([0, 1], λ) and n ≥ 0.

Hence, for f ∈ G and λ(|f − fi|) ≤ ε,

(4.8)
∣∣(µnr (f)− µn−1r (f)

)
−
(
µnr (fi)− µn−1r (fi)

)∣∣ ≤ 2Mnε.

Now, from (4.6) Pζ-a.s. for every 1 ≤ i ≤ N ,

lim
r→∞

(
µnr (fi)− µn−1r (fi)

)
= 0.

Jointly with (4.8) it yields Pζ-a.s.

lim sup
r→∞

∥∥µnr − µn−1r

∥∥
G
≤ 2Mnε

for every ε. This gives the Pζ-a.s. convergence of part (c).
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To get the L1 convergence, it is enough to prove, for every fixed n < ∞, the uniform

integrability of (
∥∥µnr − µn−1r

∥∥
G

)r. But this is indeed the case because
∥∥µnr − µn−1r

∥∥
G

is

bounded by

Snr := r−n
∑

1≤u1,...,un≤r
Wu1 · · ·Wu1···un−1 |Wu1···un − 1|

which by Lemma 4.3 converges in L1 and is therefore uniformly integrable.

Theorem 4.9. Assume EW1 log+W1 <∞.

(a) limr→∞ Z
(r) = 1 Pζ-a.s. and in L1.

(b) For f ∈ L 1([0, 1], λ),

lim
r→∞

µ∞r (f) = λ(f) in L1.

(c) If G is a subset of L 1([0, 1], λ) such that, for each ε > 0, it can be covered by

a finite number of ε-brackets [fi, gi], with fi and gi measurable, bounded and λ-

a.e. continuous, then

lim
r→∞

E∗ζ ‖µ∞r − λ‖G = 0 and lim
r→∞

‖µ∞r − λ‖G = 0 P∗ζ-a.s.,

where P∗ζ and E∗ζ denote the corresponding outer conditional probability and outer

conditional expectation.

In the deterministic environment case, Theorem 4.9 reduces to Theorem 3.9(a)–(c) of

Liu, Rio and Rouault (2003, [17]).

Proof of Theorem 4.9. (a) For n ≤ +∞, let H
(r)
n be the σ-field generated by Y

(s)
n , s ≥ r.

By Lemma 4.3(a), for each n < ∞, {(Y (r)
n , H

(r)
n )}r≥1 is a reverse martingale. Thus for

every integer p ≥ 1 and every bounded and continuous function g : Rp → R, we have

(4.9) Eζ
(
Y (r)
n g(Y (r+1)

n , Y (r+2)
n , . . . , Y (r+p)

n )
)

= Eζ
(
Y (r+1)
n g(Y (r+1)

n , Y (r+2)
n , . . . , Y (r+p)

n )
)
.

Let r0 ≥ 2 be such that EW1 logW1 < log r0. For each fixed r ≥ r0, as n→∞, Y
(r)
n →

Z(r) Pζ-a.s. and in L1. Thus using uniform integrability, we may let n → ∞ in (4.9),

showing that {(Z(r), H
(r)
∞ )}r≥1 is also a reverse martingale. Therefore Z(r) convergence

Pζ-a.s. and is uniformly integrable. To identify the limit, we will see in (b) below that

Z(r) → 1 in L1, so that the proof of (a) is finished.

(b) We first prove that for each f ∈ L∞([0, 1], λ),

(4.10) lim
r→∞

µ∞r (f) = λ(f) in L1.

By extension of (1.2) to the associated Borel measures we get the decomposition

µ∞r (f)− λ(f) =
1

r

r∑
k=1

[Wk(µ
∞
r ◦ Tk)(τ rkf)− λ(τ rkf)] .
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Since |Wk(µ
∞
r ◦ Tk)(τ rkf)− λ(τ rkf)| ≤ c1Z

(r) ◦ Tk + c2 (c1, c2 are constants), the family

{Wk(µ
∞
r ◦ Tk)(τ rkf)− λ(τ rkf)}k,r is uniformly integrable, so that Lemma 4.5 gives (4.10).

By density of L∞([0, 1], λ) in L 1([0, 1], λ), using Lemma 4.2 and

|µ∞r (f)− λ(f)| ≤ µ∞r (|f − g|) + |µ∞r (g)− λ(g)|+ λ(|g − f |)

for g ∈ L∞([0, 1], λ), we see that (4.10) holds for f ∈ L 1([0, 1], λ).

(c) Let us first reduce the problem to a simpler one involving only one function. Let

ε > 0, and let {[fi, gi] : 1 ≤ i ≤ N} be a cover ofG by ε-brackets, with fi and gi measurable,

bounded and λ-a.e. continuous. If f ∈ [fi, gi], then

µ∞r (f)− λ(f) ≤ µ∞r (gi)− λ(fi) = [µ∞r (gi)− λ(gi)] + [λ(gi)− λ(fi)]

and

µ∞r (f)− λ(f) ≥ µ∞r (fi)− λ(gi) = [µ∞r (fi)− λ(fi)] + [λ(fi)− λ(gi)].

Therefore

(4.11) ‖µ∞r − λ‖G ≤ max {|µ∞r (gi)− λ(gi)| , |µ∞r (fi)− λ(fi)| : 1 ≤ i ≤ N}+ ε.

(c1) To prove the P∗ζ-a.s. convergence, it is convenient to introduce the random mea-

sures µ̃nr defined by

µ̃nr =
1

r

r∑
k=1

Wk(Y
(r)
n−1 ◦ Tk)δk/r, 1 ≤ n ≤ ∞,

(recall that by convention Y
(r)
n−1 ◦ Tk = 1 if n = 1, and = Z(r) ◦ Tk if n = ∞), and to

compare it with µnr with the help of (1.2).

Let us first prove that Pζ-a.s. for all t ∈ [0, 1],

(4.12) lim
r→∞

µ̃∞r ([0, t]) = t.

For fixed t ∈ (0, 1] and 1 ≤ n <∞, set

(4.13) tY (r)
n :=

r

[rt]
µ̃nr ([0, t]) =

1

[rt]

[rt]∑
u1=1

Wu1

∑
1≤u2,...,un≤r

Wu1u2 · · ·Wu1···un
rn−1

,

where [x] is the integer part of x. By Theorem 4.1 and (4.13), if EW1 logW1 < log r, then

as n→∞, tY
(r)
n converges Pζ-a.s. and in L1 to

tY (r)
∞ :=

1

[rt]

[rt]∑
k=1

WkZ
(r) ◦ Tk.
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For 1 ≤ n ≤ ∞, let tH
(r)
n be the σ-field generated by {tY (k)

n , k ≥ r}. Let r ≥ t−1 be

such that EW1 logW1 < log r. Just like Y
(r)
n , for each fixed 1 ≤ n ≤ ∞, the sequence

{tY (r)
n }r≥rt is a reverse martingale with respect to {tH(r)

n }r≥t−1 (the proof is similar with

that of (a)), so that it converges Pζ-a.s. and in L1. To identify the limit of tY
(r)
∞ , we use

tY (r)
∞ − 1 =

1

[rt]

[rt]∑
k=1

(WkZ
(r) ◦ Tk − 1)

and Lemma 4.5 to conclude that tY
(r)
∞ → 1 in L1. Since

µ̃∞r ([0, t]) =
[rt]

r
tY (r)
∞ ,

it follows that

lim
r→∞

µ̃∞r ([0, t]) = t Pζ-a.s. and in L1.

By a classical monotonicity argument, this implies (4.12), hence the Pζ-a.s. weak conver-

gence of µ̃∞r to λ. To get a similar result for µ∞r , observe first that, from (1.3),

µ∞r (f)− µ̃∞r (f) =
1

r

r∑
k=1

Wk(µ
∞
r ◦ Tk)(τ rkf − f(k/r)).

Since, for f ∈ C ([0, 1]),

sup
x∈[0,1]

|τkf(x)− fk,r| ≤ ωf (r−1),

where ωf (h) is the maximal oscillation of f on intervals of size h, h > 0, we have

|µ∞r (f)− µ̃∞r (f)| ≤
ωf (r−1)

r

r∑
k=1

Wk(Z
(r) ◦ Tk) = ωf (r−1)Z(r),

where the last equality holds by (1.4). This yields the Pζ-a.s. weak convergence of µ∞r to

λ. Therefore (cf. [5, p. 163, Proposition 8.12]) P∗ζ-a.s. for all f measurable, bounded and

λ-a.s. continuous,

lim
r→∞

µ∞r (f) = λ(f).

Replacing f by fi, gi in the above equation and using (4.11), we see that

P∗ζ-a.s. lim sup
r→∞

‖µ∞r − λ‖G ≤ ε,

for every ε > 0, which ends the proof of the P∗ζ-a.s. convergence.

(c2) Taking E∗ζ in (4.11) and using (b) gives the L1-convergence.
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