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Marginally Trapped Ruled Surfaces and Their Gauss Map in Minkowski

Space

Sun Mi Jung* and Young Ho Kim

Abstract. In 1991, Chen proposed a conjecture which is the relationship between

biharmonic submanifolds and harmonic submanifolds in Euclidean space and quite a

few related studies have supported it. Around the same time, it was proved that Chen’s

conjecture does not extend to submanifolds in Minkowski space. In this paper, as part

of these researches, we investigate biharmonic marginally trapped ruled surfaces in

Minkowski m-space and then construct some examples about them in which Chen’s

conjecture does not hold.

1. Introduction

In the middle of 1980s, Chen introduced the biharmonic submanifold in Euclidean space,

which is the notion generated from the studies of the finite-type immersion of submanifolds

in Euclidean space (see [5]): An isometric immersion x of a Riemannian submanifold M

into a Euclidean space Em is said to be biharmonic if it satisfies

∆2x = 0,

where ∆ and 0 denote the Laplace operator defined on M and zero vector, respectively.
And he proved that there are no biharmonic surfaces in E3 except the minimal ones

(see [5]) and there exist no biharmonic submanifolds of Em which lie in a hypersphere of

Em (see [7]). In [14, 15], Dimitric showed that biharmonic curves in Euclidean space Em

are part of straight lines (that is, minimal), biharmonic submanifolds of finite-type in Em

are minimal, and pseudo umbilical submanifolds M of Em with dimM ̸= 4 are minimal.

Based on these results, in 1991 Chen proposed the following:

Chen’s Conjecture. Biharmonic submanifolds of Euclidean spaces are minimal.
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Since then, Chen’s Conjceture has been investigated by some mathematicians for some

submanifolds of Euclidean space. Hasanis and Vlachos showed that a biharmonic hyper-

surface in E4 is harmonic (see [20]) and Fu showed that biharmonic hypersurfaces with 3

distinct principle curvatures in Em with arbitrary m are harmonic (see [18, 19]). In [37],

it was proved that this conjecture is true for G-invariant hypersurfaces in Em. Although

it has been proven for some cases, Chen’s conjecture has not been verified yet, in general.

Interestingly, in [9, 10] Chen et al. showed that biharmonic surfaces in pseudo-Euclidean

3-spaces are minimal and that there exist proper biharmonic surfaces in 4-dimensional

pseudo-Euclidean spaces E4
s (with index s = 1, 2, 3). This means that his conjecture does

not extend to submanifolds in pseudo-Euclidean space, which indicates that biharmonic

submanifolds in pseudo-Euclidean space are worth studying (see [16,17,35,36,38]).

Meanwhile, since the concept of trapped surfaces was introduced by Penrose in [39], it

has played an important role in general relativity, for example, the singularity theorems,

the analysis of gravitational collapse, the cosmic censorship hypothesis, etc. In the theory

of cosmic black holes, a marginally trapped surface was considered to separate the trapped

surfaces from the untrapped ones and it is well known that the surface of a black hole is

located by the marginally trapped surface. From the perspective of a differential geometry,

a marginally trapped surface in pseudo-Euclidean space is a Riemannian surface whose

mean curvature vector field is null at every point of the surface. In the last decade or so,

many mathematicians have investigated marginally trapped surfaces in a specific pseudo-

Euclidean space with some geometric conditions (see [1, 2, 6, 11,12,21,22]).

In 1966, Takahashi proved an eigenvalue problem of immersion x : M → Em of a

Riemannian manifold M into a Euclidean space Em, namely, if ∆x = λx, λ ∈ R\{0} holds

on M , then M is a minimal submanifold in Euclidean space or a minimal submanifold in a

hypersphere of Euclidean space, where ∆ is the Laplace operator defined on M (see [40]).

It was the cornerstone for studying minimal submanifolds with an algebraic condition.

In particular, ruled surfaces and ruled submanifolds in Euclidean space or pseudo-

Euclidean space, which are the typical and interesting objects in differential geometry, have

been intensively studied and characterized in many researches (see [8, 13, 25, 30, 31, 34]).

The Gauss map on submanifolds of Euclidean space or pseudo-Euclidean space gives some

useful geometrical and topological properties on that submanifold. For that reasons,

the Gauss map of ruled surfaces and ruled submanifolds in Euclidean space or pseudo-

Euclidean space, which satisfies some geometric properties, has been treated as the main

subject of study (see [3, 23,24,27–29,32,33]).

In this paper, we precisely give a parametrization of marginally trapped ruled surfaces

in Minkowski m-space having harmonic Gauss map, which can be obtained naturally

from previous our researches, and then we study biharmonic marginally trapped ruled
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surfaces in Minkowski m-space associated with Chen’s Conjecture. Most of all, we will

characterize proper biharmonic marginally trapped ruled surfaces in Minkowski space,

including constructing some examples.

All of geometric objects under consideration are smooth and submanifolds are assumed

to be connected unless otherwise stated.

2. Preliminaries

Let Em
s be an m-dimensional pseudo-Euclidean space of signature (m − s, s) with the

standard scalar product ⟨ · , · ⟩. For m ≥ 2, in particular, Em
1 is called a Lorentz–Minkowski

m-space or simply Minkowski m-space, which is denoted by Lm. A vector X of Lm is said

to be space-like if ⟨X,X⟩ > 0 or X = 0, time-like if ⟨X,X⟩ < 0 and null (or light-like) if

⟨X,X⟩ = 0 and X ̸= 0, where 0 denotes zero vector. A time-like or null vector in Lm is

said to be causal. A curve in Lm is said to be space-like, time-like or null if its tangent

vector field is space-like, time-like or null, respectively.

Lemma 2.1. [32] There are no causal vectors in Lm orthogonal to a time-like vector.

Lemma 2.2. [32] Two null vectors are orthogonal if and only if they are linearly depen-

dent.

Let x : M → Em
s be an isometric immersion of an n-dimensional pseudo-Riemannian

manifoldM into Em
s . From now on, a submanifold in Em

s always means pseudo-Riemannian,

that is, each tangent space of the submanifold is non-degenerate. Let ∇̃ be the Levi-Civita

connection of Em
s and ∇ the induced connection on M . Then, the Gauss formula is ob-

tained by

∇̃XY = ∇XY + h(X,Y )

for the vector fields X, Y tangent to M , where h is the second fundamental form of M

in Em
s . The mean curvature vector field is defined by H = 1

n traceh. In other words, for

every point p ∈ M , H is given by

H(p) =
1

n

n∑
i=1

εih(ei, ei),

where {e1, e2, . . . , en} is an orthonormal basis of TpM and εi = ⟨ei, ei⟩ = ±1. We say that

a submanifold M in a pseudo-Riemannian manifold N is marginally trapped (or pseudo-

minimal) if its mean curvature vector is null for every point of M .

Let (x1, x2, . . . , xn) be a local standard coordinate system of M in Em
s . For the com-

ponents gij of the pseudo-Riemannian metric on M induced from that of Em
s , we denote
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by (gij) (respectively, G) the inverse matrix (respectively, the determinant) of the matrix

(gij). The Laplacian (or Laplace operator) ∆ on M is then defined by

∆ = − 1√
|G|

∑
i,j

∂

∂xi

(√
|G|gij ∂

∂xj

)
.

A pseudo-Riemannian submanifold M of an m-dimensional pseudo-Euclidean space Em
s is

said to be of harmonic if its position vector x satisfies

∆x = 0.

For an adapted local orthonormal frame {e1, e2, . . . , em} in Em
s such that e1, e2, . . . , en

are tangent to M and en+1, en+2, . . . , em normal to M , the map G : M → G(n,m) ⊂ EN

(N = mCn) defined by G(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p) is called the Gauss map of M that is

a smooth map which carries a point p in M into an oriented n-plane passing through the

origin in Em
s obtained from the parallel translation of the tangent space of M at p in Em

s ,

where G(n,m) is the Grassmann manifold consisting of all oriented n-planes through the

origin of Em
s . An indefinite scalar product ⟨⟨ · , · ⟩⟩ on G(n,m) ⊂ EN is defined by

⟨⟨ei1 ∧ · · · ∧ ein , ej1 ∧ · · · ∧ ejn⟩⟩ = det(⟨eil , ejk⟩),

where l, k run over the range 1, 2, . . . , n.

A non-degenerate (r+1)-dimensional submanifold M in Lm is called a ruled subman-

ifold if M is foliated by r-dimensional totally geodesic submanifolds E(s, r) of Lm along

a regular curve α = α(s) on M defined on an open interval I. Then, a ruled submanifold

M in Lm can be parameterized by

x = x(s, t1, t2, . . . , tr) = α(s) +

r∑
i=1

tiei(s), s ∈ I, ti ∈ Ii,

where Ii’s are some open intervals for i = 1, . . . , r. For every s, E(s, r) is open in

Span{e1(s), e2(s), . . . , er(s)} that is the linear span of linearly independent vector fields

e1(s), e2(s), . . . , er(s) along the curve α. Here, we assume E(s, r) are either non-degenerate

or degenerate for all s along α. We call E(s, r) the rulings and α the base curve of the

ruled submanifold M . The ruled submanifold M is said to be cylindrical if E(s, r) is

parallel along α, or non-cylindrical otherwise.

Remark 2.3. [26] (1) If the rulings of M are non-degenerate, then the base curve α can

be chosen to be orthogonal to the rulings as follows: Let V be a unit vector field on M

which is orthogonal to the rulings. Then α can be taken as an integral curve of V .

(2) If the rulings are degenerate, we can choose a null base curve which is transversal

to the rulings: Let V be a null vector field on M which is not tangent to the rulings. An

integral curve of V can be the base curve.
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In [4], Barbosa et al. chose a frame along a base curve on a ruled submanifold in Em

satisfying a special property of a system of ordinary differential equations regarding a

frame. Similarly, we have

Lemma 2.4. [25] Let V (s) be a smooth l-dimensional non-degenerate distribution in the

Minkowski m-space Lm along a curve α = α(s), where l ≥ 2 and m ≥ 3. Then, we can

choose orthonormal vector fields e1(s), . . . , em−l(s) along α which generate the orthogonal

complement V ⊥(s) satisfying e′i(s) ∈ V (s) for 1 ≤ i ≤ m− l.

3. The Gauss map of marginally trapped ruled surfaces in Lm

Let M be an (r + 1)-dimensional ruled submanifold in Lm with non-degenerate rulings.

By Remark 2.3, the base curve α = α(s) can be chosen to be orthogonal to the rulings.

Without loss of generality, we may assume that α is a unit speed curve, that is, ⟨α′, α′⟩ = 1.

From now on, the prime ′ denotes d/ds unless otherwise stated. By Lemma 2.4, we may

choose vector fields e1(s), e2(s), . . . , er(s) along α satisfying

(3.1) ⟨α′(s), ei(s)⟩ = 0, ⟨ei(s), ej(s)⟩ = δij and ⟨e′i(s), ej(s)⟩ = 0

for i, j = 1, 2, . . . , r. Then, a parametrization of M is given by

(3.2) x = x(s, t1, t2, . . . , tr) = α(s) +
r∑

i=1

tiei(s).

We always assume that the parametrization (3.2) satisfies condition (3.1). Because of

(3.1), the Gauss map G of M is naturally expressed as

G =
1

∥xs∥
xs ∧ xt1 ∧ xt2 ∧ · · · ∧ xtr ,

or, equivalently

G =
1
√
q

(
α′ ∧ e1 ∧ · · · ∧ er +

r∑
i=1

tie
′
i ∧ e1 ∧ · · · ∧ er

)
,

where q is the function of s, t1, t2, . . . , tr defined by q = ⟨xs, xs⟩.
In [27], the authors studied and characterized ruled submanifolds in Lm with harmonic

Gauss map. In particular, for ruled submanifolds with non-degenerate rulings in Lm, it is

shown:

Theorem 3.1. [27] Let M be an (r+1)-dimensional ruled submanifold with non-degenerate

rulings in the Minkowski m-space Lm. Then, M has harmonic Gauss map if and only if
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M is part of either an (r+ 1)-plane or a ruled submanifold up to cylinders over a certain

submanifold with the parametrization given by

x(s, t1, t2, . . . , tr) = f(s)N+ sE+
r∑

j=1

tj(pj(s)N+ Fj)

for some polynomials f and pj in s with deg f ≤ 2, deg pj ≤ 1 and some constant vector

fields N, E, Fj with ⟨E,E⟩ = 1, ⟨N,N⟩ = ⟨N,E⟩ = ⟨N,Fj⟩ = ⟨E,Fj⟩ = 0 and ⟨Fj ,Fi⟩ =
δji for i, j = 1, 2, . . . , r. In particular, if deg pj = 0 for all j, then M is cylindrical and

otherwise M is non-cylindrical.

Remark 3.2. We should point out that some detailed properties for the polynomials f and

pj in s were mistakenly dropped for j = 1, . . . , r in Theorem 3.6 of [27].

Thus, Theorem 3.1 implies that if M is non-planar, then the mean curvature vector

fieldH ofM vanishes if deg f < 2 and is a null constant vector field if deg f = 2. Therefore,

we have

Theorem 3.3. Let M be an (r+1)-dimensional non-planar ruled submanifold with non-

degenerate rulings in the Minkowski m-space Lm. If M has harmonic Gauss map, then

M is minimal or marginally trapped.

4. Biharmonic marginally trapped ruled surfaces in Lm

In this section, we consider biharmonic marginally trapped ruled surfaces in Lm. Let M

be a biharmonic marginally trapped ruled surface in Lm parameterized by

(4.1) x = x(s, t) = α(s) + tβ(s)

satisfying

⟨α′, α′⟩ = ⟨β, β⟩ = 1 and ⟨α′, β⟩ = 0.

Then, ∆2x = 0. By definition, the Laplacian ∆ of M is expressed as

∆ =
1

2q2
∂q

∂s

∂

∂s
− 1

q

∂2

∂s2
− 1

2q

∂q

∂t

∂

∂t
− ∂2

∂t2
.

Since ∆x = −2H, the mean curvature vector field H on M is given by

H =
1

2q2

{
(α′′ + uβ) + (2uα′′ + β′′ − u′α′ + 2u2β + wβ)t

+

(
wα′′ + 2uβ′′ − w′

2
α′ − u′β′ + 3uwβ

)
t2 +

(
wβ′′ − w′

2
β′ + w2β

)
t3
}(4.2)

which is null at each point of M , where u(s) = ⟨α′, β′⟩ and w(s) = ⟨β′, β′⟩.
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Lemma 4.1. If M is a biharmonic marginally trapped ruled surface in Lm parameterized

by (4.1), then the functions u = u(s) and w = w(s) are constant on M , i.e.,

∂q

∂s
= 0 on M.

Proof. From (4.2), equation ⟨H,H⟩ = 0 gives a polynomial in t of degree 6 with functions of

s as coefficients, which is vanishing everywhere on M . Then, by considering the coefficient

functions of this polynomial, we can get

⟨α′′, α′′⟩ = u2, ⟨α′′, β′′⟩ = uw, ⟨β′′, β′′⟩ = (u′)2 + w2,

u′w′ = 2u(u′)2 and (w′)2 = 4(u′)2w.
(4.3)

Equation ‘u′w′ = 2u(u′)2’ of (4.3) yields

u′(w′ − 2uu′) = 0.

We consider the open set U = {s ∈ domα | u′ ̸= 0} and suppose that U is non-empty. Here

domα means the domain of α. Then, w′ = 2uu′ on U . With the help of ‘(w′)2 = 4(u′)2w’

of (4.3), it follows that

w = u2 on U

and hence ∆x is given by

∆x = − 1

(1 + ut)4
{
(α′′ + uβ) + (2uα′′ + β′′ − u′α′ + 3u2β)t

+ (u2α′′ + 2uβ′′ − uu′α′ − u′β′ + 3u3β)t2 + (u2β′′ − uu′β′ + u4β)t3
}
.

By a straightforward computation, we get

∆2x =
1

(1 + ut)7
Q(s, t),

where Q(s, t) is a polynomial in t of degree 4 with functions of s as coefficients, given by

Q(s, t)

= (u3β + 5uu′α′ + 4u2α′′ − 2uβ′′ + u′′β + α(4))

+
{
(u4 − 3(u′)2)β − (u3 + 9u2u′)α′ + 7uu′β′ − 4u′′α′′ + 2u2β′′ − 6u′α′′′ + β(4)

}
t

+
{
3u(u′)2β + (9u3u′ + 10u′u′′ − 2uu′′′ + 3u4)α′ − (9u2u′ + u′′′)β′

+ (15(u′)2 + 4uu′′)α′′ − 4u′′β′′ + 6uu′α′′′ − 6u′β′′′}t2
+
{
6u2(u′)2β + (18u4u′ − 15(u′)3 + 10uu′u′′ − u2u′′′ + 3u5)α′

− (18u3u′ − 10u′u′′ + 2uu′′′)β′ + (15u(u′)2 + 8u2u′′)α′′

+ (15(u′)2 − 8uu′′)β′′ + 12u2u′α′′′ − 12uu′β′′′}t3
+
{
u7β − (2u4u′ + 15(u′)3 − 10uu′u′′ + u5)β′ + (2u5 + 15u(u′)2 − 4u2u′′)β′′

− 6u2u′β′′′ + u3β(4)
}
t4.

(4.4)



8 Sun Mi Jung and Young Ho Kim

Since M is biharmonic, Q(s, t) = 0. Thus, the constant terms of (4.4) with respect to t

tell us

α(4) = −(u3 + u′′)β − 5uu′α′ − 4u2α′′ + 2uβ′′

which implies that

⟨α(4), α′⟩ = −5uu′ + 2u⟨β′′, α′⟩,

or, equivalently

(4.5) ⟨β′′, α′⟩ = u′

because of ⟨α(4), α′⟩ = −3uu′ with the help of ⟨α′, α′⟩ = 1 and ⟨α′′, α′′⟩ = u2. In (4.4), we

multiply the coefficients of the terms containing t2 with −2u and then add the equation

obtained in such a way to the coefficients of the terms containing t3. Then, we have

(4.6) (−15(u′)3 − 10uu′u′′ + 3u2u′′′ − 3u5)α′ + 10u′u′′β′ − 15u(u′)2α′′ + 15(u′)2β′′ = 0

which allows us to have

−15(u′)3 + 3u2u′′′ − 3u5 + 15(u′)2⟨β′′, α′⟩ = 0

by taking the scalar product with α′. Putting (4.5) into the above equation gives

(4.7) u′′′ = u3.

The coefficients of the terms containing t of (4.4) indicates

(4.8) β(4) = (3(u′)2 − u4)β + (u3 + 9u2u′)α′ − 7uu′β′ + 4u′′α′′ − 2u2β′′ + 6u′α′′′.

Substituting (4.8) into the coefficients of the terms containing t4 of (4.4), we get

3u3(u′)2β + (u6 + 9u5u′)α′ + (10uu′u′′ − 9u4u′ − 15(u′)3 − u5)β′

+ 4u3u′′α′′ + (15u(u′)2 − 4u2u′′)β′′ + 6u3u′α′′′ − 6u2u′β′′′ = 0.
(4.9)

Multiplying the coefficients of the terms containing t2 of (4.4) with −u2 and then com-

paring the equation obtained in such a way and (4.9), we get

(4.10) 10u2u′u′′α′ + (15(u′)3 − 10uu′u′′)β′ + 15u2(u′)2α′′ − 15u(u′)2β′′ = 0.

Combining (4.6) and (4.10), we can obtain

(4.11) β′ = uα′ on U

because of u′ ̸= 0, and then

(4.12) β′′ = u′α′ + uα′′ and β′′′ = u′′α′ + 2u′α′′ + uα′′′.
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With the help of (4.7), (4.11) and (4.12), the coefficients of the terms containing t2 of

(4.4) implies that

(4.13) α′′ = −uβ on U

because of u′ ̸= 0. Using (4.11) and (4.13), we have H = 0 of (4.2) on U , which contradicts

to the character of H. Therefore, we see that U = ∅, which means that u′ is identically

zero on M . From (w′)2 = 4(u′)2w of (4.3), it is obvious that w′ = 0. Clearly, ∂q
∂s = 0 on

M .

By Lemma 4.1, ∆x and ∆2x are reduced to

∆x = − 1

q2
{
(α′′ + uβ) + (2uα′′ + β′′ + (2u2 + w)β)t

+ (wα′′ + 2uβ′′ + 3uwβ)t2 + (wβ′′ + w2β)t3
}(4.14)

and

∆2x =
1

q3
{
(6u3 − 5uw)β + (6u2 − 2w)α′′ − 2uβ′′ + α(4)

+ ((8u2w − 5w2)β + 8uwα′′ + (2u2 − 4w)β′′ + 2uα(4) + β(4))t

+ (3uw2β + 4w2α′′ + 2uwβ′′ + wα(4) + 2uβ(4))t2

+ (w3β + 2w2β′′ + wβ(4))t3
}
,

respectively. Here, we denote the numerator of ∆2x by R(s, t), which is a polynomial in t

of degree 3 with functions of s as coefficients. Since ∆2x = 0, the constant terms and the

coefficients of the terms containing t of R(s, t) induce

(4.15) α(4) = (5uw − 6u3)β + (2w − 6u2)α′′ + 2uβ′′

and

(4.16) β(4) = (12u4 + 5w2 − 18u2w)β + (12u3 − 12uw)α′′ + (4w − 6u2)β′′,

respectively. Using (4.15) and (4.16), the coefficients of the terms containing t2 and t3 of

R(s, t) are rewritten as

(4.17) 2u(u2 − w)β′′ = (4u5 − 7u3w + 3uw2)β + (4u4 − 5u2w + w2)α′′

and

(4.18) w(u2 − w)β′′ = (2u4w − 3u2w2 + w3)β + (2u3w − 2uw2)α′′,
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respectively. We multiply (4.17) with u and (4.18) with 2u, respectively, and compare the

two equations obtained in such a way. Then, it follows that

w2(u2 − w)(α′′ + uβ) = 0.

If the constant w2(u2 − w) ̸= 0, we have α′′ = −uβ and then (4.18) gives β′′ = −wβ.

Thus, we have ∆x = 0 of (4.14), which means that H = 0, a contradiction. Therefore,

we see that w2(u2 − w) = 0.

Lemma 4.2. If M is a biharmonic marginally trapped ruled surface in Lm parameterized

by (4.1), then w = u2 on M .

Proof. Since u and w are constant satisfying w2(u2 − w) = 0, we have either w = u2 or

w ̸= u2 on M . We suppose that w ̸= u2. Then, w = 0 on M and thus u ̸= 0. In this case,

(4.15) and (4.16) are reduced to

α(4) = −6u3β − 6u2α′′ + 2uβ′′ and β(4) = 12u4β + 12u3α′′ − 6u2β′′,

respectively, which imply that

(4.19) β(4) = −2uα(4) − 2u2β′′.

Equation (4.17) is simplified as

(4.20) β′′ = 2u2β + 2uα′′ and therefore β(4) = 2u2β′′ + 2uα(4)

because of qs = 0. Comparing (4.19) and (4.20) gives

(4.21) β(4) = 0 and α(4) = −uβ′′.

Thus, the derivatives of the vector field β can be put as

(4.22) β′′′(s) = D, β′′(s) = Ds+C and β′(s) =
1

2
Ds2 +Cs+ F

for some constant vector fields D, C and F. Since ⟨β′′, β′′⟩ = (u′)2 +w2 of (4.3), we have

⟨β′′, β′′⟩ = 0 for all s, which implies

(4.23) ⟨C,C⟩ = ⟨C,D⟩ = ⟨D,D⟩ = 0.

From w = ⟨β′, β′⟩ = 0, we get ⟨β′′, β′⟩ = 0 for all s and therefore we see that

(4.24) ⟨D,F⟩ = ⟨C,F⟩ = 0.

With the help of (4.23) and (4.24), w = 0 guarantees

(4.25) ⟨F,F⟩ = 0.
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On the other hand, we note that ⟨β′′, β′′⟩ = 0. If the interior Wo of the set W = {s ∈
domα | β′′ = 0} is non-empty, then (4.20) indicates α′′ = −uβ on Wo, which implies that

∆x = 0 of (4.14), a contradiction. Therefore, the vector field β′′ is non-vanishing for all

s, i.e., β′′ is null for all s. Thus, at least one of D and C is a null constant vector field.

With the aid of (4.23), (4.24) and (4.25), we see that D ∧C = D ∧F = C ∧F = 0. As a

result, we can put as

(4.26) β′ = g1(s)N and β′′ = g2(s)N

for some polynomials g1 and g2 in s satisfying g′1(s) = g2(s) and constant null vector field

N with N ∧D = N ∧C = N ∧ F = 0.

From equations β′′ = 2u2β + 2uα′′ of (4.20) and β′′(s) = Ds+C of (4.22), the vector

field α′′ is given by

(4.27) α′′(s) = −uβ(s) +
1

2u
Ds+

1

2u
C.

Since α(4) = −uβ′′ of (4.21) and β′′(s) = Ds+C of (4.22), we have

(4.28) α′′′(s) = −1

2
uDs2 − uCs+ n1

for some constant vector n1. Consequently, we get

β′ =
1

2u2
D+

1

2
Ds2 +Cs− 1

u
n1

which implies

n1 =
1

2u
D− uF

in comparison to (4.22). Since N ∧ D = N ∧ F = 0, it is obvious that n1 ∧ N = 0.

Therefore, (4.28) gives

α′′′(s) = h(s)N

and hence

(4.29) α′′(s) =

(∫
h(s) ds

)
N+ n2

for some function h and constant vector n2. Considering (4.26) and (4.27), we can get

⟨β′, α′′⟩ = 0 and hence ⟨N,n2⟩ = 0. Since ⟨α′′, α′′⟩ = u2 of (4.3), (4.29) tells us ⟨n2,n2⟩ =
u2.

We note that ⟨β′, β⟩ = 0 and ⟨β, β⟩ = 1. From (4.26), we can put as

β(s) =

(∫
g1(s) ds

)
N+ n3
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which implies that ⟨N,n3⟩ = 0 and ⟨n3,n3⟩ = 1. Together with (4.26) and (4.29), equation

β′′ = 2u2β + 2uα′′ of (4.20) can be rewritten as

g2(s)N = 2u2
(∫

g1(s) dsN+ n3

)
+ 2u

(∫
h(s) dsN+ n2

)
,

or,

(4.30)

(
g2(s)− 2u2

∫
g1(s) ds− 2u

∫
h(s) ds

)
N = 2u2n3 + 2un2.

Taking the scalar product to (4.30) with itself gives

0 = 4u4⟨n3,n3⟩+ 8u3⟨n3,n2⟩+ 4u2⟨n2,n2⟩,

that is,

(4.31) ⟨n3,n2⟩ = −u.

If we put Γ(s) =
∫
h(s) ds of (4.29), then

α′(s) =

(∫
Γ(s) ds

)
N+ n2s+ n4

for some constant vector n4. Here, ⟨N,n4⟩ = 0 because of ⟨β′′, α′⟩ = 0. Thus,

0 = ⟨α′, β⟩ =
〈∫

Γ(s) dsN+ n2s+ n4,

∫
g(s) dsN+ n3

〉
= ⟨n2,n3⟩s+ ⟨n4,n3⟩

which implies that ⟨n2,n3⟩ = 0, i.e., u = 0 of (4.31), a contradiction. Therefore, we have

w = u2 on M .

By Lemma 4.2, we divide the problem into two cases which are u = 0 or u ̸= 0.

Case 1. Suppose that u = w = 0. By (4.3), (4.15) and (4.16), it gives

⟨α′′, α′′⟩ = ⟨α′′, β′′⟩ = ⟨β′′, β′′⟩ = 0 and α(4) = β(4) = 0.

Therefore, we can put as

α′′′ = A, α′′ = As+A1, β′′′ = B, β′′ = Bs+B1

for some constant vector fields A, A1, B and B1 satisfying

⟨A,A⟩ = ⟨A,A1⟩ = ⟨A,B⟩ = ⟨A,B1⟩ = ⟨A1,A1⟩

= ⟨A1,B⟩ = ⟨A1,B1⟩ = ⟨B,B⟩ = ⟨B,B1⟩ = ⟨B1,B1⟩ = 0.

Without loss of generality, we may assume that

α′′ = (a1s+ a2)N and β′′ = (b1s+ b2)N
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for some null constant vector field N with N ∧A = 0 and constants ai, bi ∈ R, i = 1, 2.

In this case, the mean curvature vector field H is given by H(s, t) = −1
2(α

′′(s) + tβ′′(s)),

which is null for all s and t, so at least one of a1 and a2 is non-zero. And, we have

α′ =

(
1

2
a1s

2 + a2s+ a3

)
N+ F1 and β′ =

(
1

2
b1s

2 + b2s+ b3

)
N+ F2

for some constants a3, b3 and constant vector fields F1, F2. Since α is a space-like curve,

we see that

⟨F1,F1⟩ = 1 and ⟨F1,N⟩ = 0.

From w = ⟨β′, β′⟩ = 0, β′ is vanishing or null for s. Therefore, we can put as

β′ =

(
1

2
b1s

2 + b2s+ b3

)
N and β =

(
1

6
b1s

3 +
1

2
b2s

2 + b3s

)
N+ F

for some constant vector field F. Since ⟨β, β⟩ = 1 for all s, we have

⟨F,F⟩ = 1 and ⟨F,N⟩ = 0.

Furthermore, we get ⟨F,F1⟩ = 0 because of ⟨α′, β⟩ = 0.

Therefore, we can parameterize M by

(4.32) x(s, t) = α(s) + tβ(s) = (p1(s) + tp2(s))N+ F1s+D+ tF,

where p1 and p2 are polynomials in s with 2 ≤ deg p1 ≤ 3 and deg p2 ≤ 3, respectively,

and N, F1, D, F are constant vector fields such that

⟨N,N⟩ = 0, ⟨F1,F1⟩ = ⟨F,F⟩ = 0 and ⟨N,F1⟩ = ⟨N,F⟩ = ⟨F1,F⟩ = 0.

From this, M is cylindrical if deg p2 = 0 and otherwise, M is non-cylindrical.

Case 2. If uw ̸= 0, ∆x and ∆2x are given by

∆x = − 1

(1 + ut)2
{
(α′′ + uβ) + t(β′′ + u2β)

}
and

∆2x =
1

(1 + ut)4
{
(α(4) − 2uβ′′ + 4u2α′′ + u3β) + t(β(4) + 2u2β′′ + u4β)

}
,

respectively. Since ∆2x = 0, we have

(4.33) α(4) = −u3β − 4u2α′′ + 2uβ′′ and β(4) = −u4β − 2u2β′′.

Equation β(4) = −u4β − 2u2β′′ of (4.33) can be rewritten as

(β′′ + u2β)′′ = −u2(β′′ + u2β)
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which indicates that

β′′ + u2β = cos(us)b1 + sin(us)b2

for some constant vectors b1 and b2, from which,

β(s) = cos(us)a1 + sin(us)a2 + s cos(us)a3 + s sin(us)a4

for some constant vectors ai, i = 1, . . . , 4. Since ⟨β, β⟩ = 1 for all s, we can obtain

(⟨a1,a1⟩ − 1) cos2(us) + 2⟨a1,a2⟩ cos(us) sin(us) + (⟨a2,a2⟩ − 1) sin2(us)

+ 2⟨a1,a3⟩s cos2(us) + 2(⟨a1,a4⟩+ ⟨a2,a3⟩)s cos(us) sin(us) + 2⟨a2,a4⟩s sin2(us)

+ ⟨a3,a3⟩s2 cos2(us) + 2⟨a3,a4⟩s2 cos(us) sin(us) + ⟨a4,a4⟩s2 sin2(us) = 0.

With the help of the Wronskian, we see that all the constant coefficients of the above

vanish. Thus, β can be put

(4.34) β(s) = cos(us)a1 + sin(us)a2 + s(cos(us) + c sin(us))N

for some constant c and a constant null vector N with ⟨a1,N⟩ = ⟨a2,N⟩ = 0. Here, unit

space-like vectors a1 and a2 are orthogonal.

On the other hand, combining two equations of (4.33) yields β(4)−uα(4) = −4u2(β′′−
uα′′), i.e.,

(β′′ − uα′′)′′ = −4u2(β′′ − uα′′)

which gives

β′′ − uα′′ = cos(2us)m1 + sin(2us)m2

for some constant vectors m1 and m2. We note that ⟨β′′ − uα′′, β′′ − uα′′⟩ = 0 by virtue

of (4.3). Without loss of generality, we may assume that

β′′ − uα′′ =
(
c̃1 cos(2us) + c̃2 sin(2us)

)
Ñ

for some constants c̃1, c̃2 and a constant vector Ñ, which is null or zero. Since ⟨β′ −
uα′, β′ − uα′⟩ = 0 and ⟨β′ − uα′, β′′ − uα′′⟩ = 0, it follows that

(4.35) β′ − uα′ =

(
c̃1
2u

sin(2us)− c̃2
2u

cos(2us) + c̃3

)
Ñ

for some constant c̃3. Taking the scalar product to both sides of (4.35) with β, we can get

⟨Ñ, β⟩ = 0. Together with (4.34) and equation ⟨Ñ, β⟩ = 0, we have

(4.36) ⟨Ñ,N⟩ = 0, i.e., Ñ ∧N = 0
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by the linear independence of the functions ‘cos(us)’, ‘sin(us)’, ‘s cos(us)’ and ‘s sin(us)’

for all s. With the help of (4.34), (4.35) and (4.36), a parametrization of M is then given

by

x(s, t) = α(s) + tβ(s)

=

(
1

u
+ t

)
β + (c1 sin(2us) + c2 sin(2us) + c3s)N+D

=

(
1

u
+ t

){
cos(us)a1 + sin(us)a2 + s(cos(us) + c sin(us))N

}
+ (c1 sin(2us) + c2 sin(2us) + c3s)N+D

(4.37)

for some constants c, c1, c2, c3 and constant vectors a1, a2, N, D satisfying

⟨a1,a1⟩ = ⟨a2,a2⟩ = 1, ⟨a1,a2⟩ = ⟨a1,N⟩ = ⟨a2,N⟩ = ⟨N,N⟩ = 0.

Conversely, by a direct computation, we can see easily that ruled surfaces parameter-

ized by (4.32) or (4.37) are marginally trapped and ∆2x = 0. Consequently, we have

Theorem 4.3. A marginally trapped ruled surface M in Lm is biharmonic if and only if

M is parameterized by either (4.32) or (4.37).

Example 4.4. We consider the following vectors in L4:

N =
(
2, 1, 1,

√
2
)
, F1 =

(
1, 0, 0

√
2
)

and F =

(
0,

1√
2
,− 1√

2
, 0

)
.

Using these, we can construct a ruled surface M in L4 given by

x(s, t) = (s3 + ts2)
(
2, 1, 1,

√
2
)
+ s
(
1, 0, 0

√
2
)
+ t

(
0,

1√
2
,− 1√

2
, 0

)
=
(
2s3 + s, s3, s3,

√
2s3 +

√
2s
)
+ t

(
2s2, s2 +

1√
2
, s2 − 1√

2
,
√
2s2
)
.

By computation, we have

∆x = (6s+ 2t)
(
2, 1, 1,

√
2
)

and hence ∆2x = 0

which means that M is biharmonic marginally trapped.

Example 4.5. Let u be a non-zero real number. Define a vector field β(s) by

β(s) = cos(us)a1 + sin(us)a2 + s(cos(us) + 2 sin(us))N

=
(
s(cos(us) + 2 sin(us)), s(cos(us) + 2 sin(us)), cos(us), sin(us), 0

)
,

where a1 = (0, 0, 1, 0, 0), a2 = (0, 0, 0, 1, 0) and N = (1, 1, 0, 0, 0). Define a curve α by

α(s) =
1

u
β + (cos(2us)− sin(2us) + 2s)N+ (1, 2, 3, 4, 5).
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Then, we can obtain a biharmonic marginally trapped ruled surface in L5 given by

x(s, t) = α(s) + tβ(s)

=

(
1

u
+ t

)
β(s) + (cos(2us)− sin(2us) + 2s)N+ (1, 2, 3, 4, 5).

In fact, it satisfies

∆x = − 1

(1 + ut)2
{
2(1 + ut)(− sin(us) + 2 cos(us))− 4u2(cos(2us)− sin(2us))

}
N

and

∆2x = 0.
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