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The Zero (Total) Forcing Number and Covering Number of Trees

Dongxin Tu, Jianxi Li* and Wai-Chee Shiu

Abstract. Let F (G), Ft(G), β(G), and β′(G) be the zero forcing number, the total

forcing number, the vertex covering number and the edge covering number of a graph

G, respectively. In this paper, we first completely characterize all trees T with F (T ) =

(∆ − 2)β(T ) + 1, solving a problem proposed by Brimkov et al. in 2023. Next, we

study the relationship between the zero (or total) forcing number of a tree and its edge

covering number, and show that F (T ) ≤ β′(T )− 1 and Ft(T ) ≤ β′(T ) for any tree T

of order n ≥ 3. Moreover, we also characterize all trees T with F (T ) = β′(T )− 1 and

F (T ) = β′(T )− 2, respectively.

1. Introduction

The graphs in this paper are undirected and simple. Let G be a graph with vertex set V (G)

and edge set E(G). For a vertex v ∈ V (G), let dG(v) and NG(v) (or d(v) and N(v) for

short) be the degree and the set of neighbors of v, respectively. Clearly, dG(v) = |NG(v)|.
The maximum degree of G is denoted by ∆(G) (or ∆ for short). For v ∈ V (G) (resp.,

e ∈ E(G)), let G− v (resp., G− e) be the graph obtained from G by deleting the vertex v

(resp., the edge e). For a subset S ⊆ V (G), the induced subgraph of G by S, denoted by

G[S], is the graph with vertex set S, in which two vertices are adjacent if and only if they

are adjacent in G. A vertex (resp., edge) covering of a graph G is a set of vertices (resp.,

edges) of G such that every edge (resp., vertex) of G is incident with at least one vertex

(resp., edge) of the set. The minimum cardinality of a vertex (resp., edge) covering of G

is called the vertex (resp., edge) covering number, denoted by β(G) (or β′(G)). As usual,

the star and the path of order n are denoted by K1,n−1, and Pn, respectively.

For a graph G, its vertices are colored with two different colors (white and black). Let

S ⊆ V (G) be the set of black vertices in G. If u ∈ S and v is the only white neighbor of

u, then u forces v to turn into black (color change rule). The set S is said to be a zero

forcing set of G if by iteratively applying the color change rule such that all vertices of

G become black. We also call such S an F-set of G. The zero forcing number of G is
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the minimum cardinality of an F-set of G, denoted by F (G). Moreover, an F-set S of G

is called a total forcing set of G if G[S] contains no isolated vertex, we also call such S

a TF-set of G. The total forcing number of G is the minimum cardinality of a TF-set

of graph G, denoted by Ft(G). The zero (or total) forcing number of G was introduced

in [1, 6] and has been extensively studied in recent years, largely due to its connection to

inverse eigenvalue problems for graphs and its applications to other problems. Up to now,

there have been lots of research work on bounding the zero (or total) forcing number of a

graph in terms of its various parameters [2, 3, 7–14].

Let Tn be the set of trees of order n. In this paper, we study the relationship between

the zero (or total) forcing number of a tree T and its vertex (edge) covering number. First,

we characterize all trees T ∈ Tn with F (T ) = (∆−2)β(T )+1, solving a problem proposed

by Brimkov [5]. Next, we prove that for any T ∈ Tn with n ≥ 3, F (T ) ≤ β′(T ) − 1

and Ft(T ) ≤ β′(T ). Moreover, we also characterize all trees with F (T ) = β′(T ) − 1 and

F (T ) = β′(T )− 2, respectively.

2. Zero forcing number and vertex covering number of a tree

Brimkov et al. [5] explored the following relationship between F (G) and β(G) for a con-

nected graph G with ∆(G) ≥ 3.

Theorem 2.1. [5] For any connected graph G with maximum degree ∆ ≥ 3, we have

F (G) ≤ (∆− 2)β(G) + 1.

In the same paper, they proposed a problem of characterizing all trees T ∈ Tn with

F (T ) = (∆(T )− 2)β(T ) + 1. In this section, we solve this problem. Before then, we need

the following definitions and lemmas.

Lemma 2.2. [9] Let Pn and K1,n−1 be the path and the star of order n, respectively.

Then

(1) F (Pn) = 1 for n ≥ 2 and F (K1,n−1) = n− 2 for n ≥ 3;

(2) Ft(Pn) = 2 for n ≥ 2 and Ft(K1,n−1) = n− 1 for n ≥ 3.

Lemma 2.3. For any T ∈ Tn with n ≥ 3, we have F (T ) ≤ (∆− 2)β(T ) + 1, where ∆ is

the maximum degree of T .

Proof. For T ∈ Tn with n ≥ 3, if ∆ = 2, then T ∼= Pn. Hence Lemma 2.2 implies that

F (T ) = 1, the result follows. If ∆ ≥ 3, then the result follows from Theorem 2.1.

Lemma 2.4. [13] Let G be a graph obtained from a graph H and a star K1,n with

n ≥ 2, by adding an edge to join a vertex of H and the central vertex of K1,n. Then

F (G) = F (H) + n− 1.
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Suppose G = K1,s and H = K1,t. The double star St,s is obtained from G and H by

adding an edge to join the central vertices of two stars. Clearly |St,s| = t+ s+ 2.

Lemma 2.5. Suppose 1 ≤ t ≤ s. Then

F (St,s) =




s if t = 1,

s+ t− 2 if t ≥ 2.

Proof. If s = 1, then S1,1 = P4. Hence Lemma 2.2 implies that F (S1,1) = 1 = s. If s ≥ 2,

then by Lemma 2.4, we have

F (St,s) = F (K1,t) + s− 1 =




s if t = 1,

s+ t− 2 if t ≥ 2,

as desired.

A pendant vertex (or leaf) in a graph G is a vertex with degree 1 and the edge incident

with it is a pendant edge. We call a vertex is a strong (or weak) support vertex of G if it

has at least two leaf neighbors (or only one leaf neighbor).

We now introduce a general operation called k-leaf support vertex addition on G,

abbreviated k-LSVA. For a graph G with maximum degree ∆, we define k-LSVA on G to

be the process of attaching to a vertex v ∈ V (G) with dG(v) ≤ k − 1 by a new vertex w,

and then attaching k leaves to w. Figure 2.1 is an example.

Proof. If s = 1, then S1,1 = P4. Hence Lemma 2.2 implies that F (S1,1) = 1 = s. If s ≥ 2, then

by Lemma 2.4, we have F (St,s) = F (K1,t) + s− 1 =




s, if t = 1;

s+ t− 2, if t ≥ 2
, as desired. ¤2

A pendant vertex (or leaf) in a graph G is a vertex with degree 1 and the edge incident with

it is a pendant edge. We call a vertex is a strong (or weak) support vertex of G if it has at least4

two leaf neighbors (or only one leaf neighbor).

We now introduce a general operation called k-leaf support vertex addition on G, abbreviated6

k-LSVA. For a graph G with maximum degree ∆, we define k-LSVA on G to be the process of

attaching to a vertex v ∈ V (G) with dG(v) ≤ k−1 by a new vertex w, and then attaching k leaves8

to w. Figure 1 is an example.

v
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w
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(b) G′

Figure 1: The star G = K1,4 and the graph G′ obtained by performing a 3-LSVA on K1,4.

We use the standard notation [h] = {1, 2, . . . , h}. For k ≥ 3, let T +
n be the set of trees of10

order n obtained by starting with K1,k and applying as many (k − 1)-LSVA as wanted. In other

words, T +
n is the family of all trees T with maximum degree ∆ ≥ 3 whose vertex set V (T ) can be12

partitioned into sets (V1, . . . , Vh) such that

(1) Ti = G[Vi] for i ∈ [h];14

(2) T1
∼= K1,∆ and Ti

∼= K1,∆−1 for i ∈ [h] \ {1};

(3) for i ∈ [h], the central vertex vi of the star Ti has degree ∆ in the tree T ;16

(4) {v1, . . . , vh} is an independent set in T .

Thus, if T ∈ T +
n , then n = h∆ + 1 for some h ≥ 1. In addition, we call the trees T1, . . . , Th the18

basic trees of T . Obviously, {v1, . . . , vh} is a minimum vertex covering of T .

Lemma 2.6 For any T ∈ T +
n with maximum degree ∆ ≥ 3, we have F (T ) = (∆− 2)β(T ) + 1.20

Proof. Assuming T is the tree obtained by applying h − 1 times (∆ − 1)-LSVA starting from

K1,∆, where ∆ ≥ 3. Let T1, T2, . . . , Th be the basic trees of T and vi be the central vertex of Ti22

for i ∈ [h]. Clearly β(T ) = h since {v1, v2, . . . , vh} is a minimum vertex covering of T . Then

Lemmas 2.4 and 2.2 imply that24

F (T ) = F (K1,∆) + (h− 1)F (K1,∆−1) = ∆− 1 + (h− 1)(∆− 2) = (∆− 2)h+ 1,

as desired. ¤26
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(3) for i ∈ [h], the central vertex vi of the star Ti has degree ∆ in the tree T ;

(4) {v1, . . . , vh} is an independent set in T .

Thus, if T ∈ T +
n , then n = h∆+1 for some h ≥ 1. In addition, we call the trees T1, . . . , Th

the basic trees of T . Obviously, {v1, . . . , vh} is a minimum vertex covering of T .

Lemma 2.6. For any T ∈ T +
n with maximum degree ∆ ≥ 3, we have F (T ) = (∆ −

2)β(T ) + 1.

Proof. Assuming T is the tree obtained by applying h − 1 times (∆ − 1)-LSVA starting

from K1,∆, where ∆ ≥ 3. Let T1, T2, . . . , Th be the basic trees of T and vi be the central

vertex of Ti for i ∈ [h]. Clearly β(T ) = h since {v1, v2, . . . , vh} is a minimum vertex

covering of T . Then Lemmas 2.4 and 2.2 imply that

F (T ) = F (K1,∆) + (h− 1)F (K1,∆−1) = ∆− 1 + (h− 1)(∆− 2) = (∆− 2)h+ 1,

as desired.

Lemma 2.7. For T ∈ T +
n , let T ′ be a tree obtained by adding an edge connecting a leaf

of a basic tree in T and a vertex of P2. Then we have F (T ′) = F (T ).

Proof. The proof is similar to that in Lemma 2.6. Obviously, ∆(T ′) = ∆(T ). Without lost

of generality, we divide T ′ into h basic trees T ′
1, . . . , T

′
h, where T ′

i = K1,∆−1, i ∈ [h − 1],

and T ′
h is a tree obtained by adding an edge connecting a leaf of K1,∆ and a vertex of P2.

Since any ∆−1 leaves in T ′
h form a minimum F-set of T ′

h, F (T ′
h) = ∆−1. By Lemmas 2.4,

2.2 and 2.6, we have

F (T ′) = F (T ′
h) + (h− 1)F (K1,∆−1) = ∆− 1 + (h− 1)(∆− 2) = (∆− 2)h+ 1 = F (T ),

as desired.

Let α(G) be the independence number of a graph G. Recall that β(G) and β′(G)

are the vertex covering number and the edge covering number of G, respectively. Then

β(G) + α(G) = n (see [4, Corollary 7.1]) and α(G) ≤ β′(G) for any connected graph G

of order n. Moreover, α(G) = β′(G) when G is a bipartite graph (see [4, Theorem 7.3]).

Hence we have the following result for trees.

Lemma 2.8. For any T ∈ Tn with n ≥ 2, we have β(T ) = n− β′(T ).

For u, v ∈ V (G), we use P (u, v) to denote the shortest path from u to v. The distance

between u and v is the length of a shortest path P (u, v) in G. And the diameter of G,

denoted by diam(G), is the maximum distance among every pair of distinct vertices of G.
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A rooted tree T distinguishes one vertex r called the root (see Figure 2.2). For each

vertex v ̸= r of T , the parent of v is the neighbor of v on the unique P (v, r), while a child

of v is any other neighbor of v.

Lemma 2.7 For T ∈ T +
n , let T ′ be a tree obtained by adding an edge connecting a leaf of a basic

tree in T and a vertex of P2. Then we have F (T ′) = F (T ).2

Proof. The proof is similar to that in Lemma 2.6. Obviously, ∆(T ′) = ∆(T ). Without lost of

generality, we divide T ′ into h basic trees T ′
1, . . . , T

′
h, where T ′

i = K1,∆−1, i ∈ [h − 1], and T ′
h is4

a tree obtained by adding an edge connecting a leaf of K1,∆ and a vertex of P2. Since any ∆− 1

leaves in T ′
h form a minimum F-set of T ′

h, F (T ′
h) = ∆− 1. By Lemmas 2.4, 2.2 and 2.6, we have6

F (T ′) = F (T ′
h) + (h− 1)F (K1,∆−1) = ∆− 1 + (h− 1)(∆− 2) = (∆− 2)h+ 1 = F (T ),

as desired. ¤8

Let α(G) be the independence number of a graph G. Recall that β(G) and β′(G) are the

vertex covering number and the edge covering number of G, respectively. Then β(G) + α(G) = n10

(please see [4, Corollary 7.1]) and α(G) ≤ β′(G) for any connected graph G of order n. Moreover,

α(G) = β′(G) when G is a bipartite graph (please see [4, Theorem 7.3]). Hence we have the12

following result for trees.

Lemma 2.8 For any T ∈ Tn with n ≥ 2, we have β(T ) = n− β′(T ).14

For u, v ∈ V (G), we use P (u, v) to denote the shortest path from u to v. The distance between

u and v is the length of a shortest path P (u, v) in G. And the diameter of G, denoted by diam(G),16

is the maximum distance among every pair of distinct vertices of G.

A rooted tree T distinguishes one vertex r called the root (see Figure 2). For each vertex v 6= r18

of T , the parent of v is the neighbor of v on the unique P (v, r), while a child of v is any other

neighbor of v.20

rxw
u

yv

Figure 2: Example of root tree T with the root r.

Theorem 2.9 For any T ∈ Tn with n ≥ 3, we have F (T ) = (∆ − 2)β(T ) + 1 if and only if

T ∈ T +
n ∪ {Pn}.22

Proof. The sufficient part follows from Lemmas 2.2 and 2.6. We shall show the necessary part

by mathematical induction on n.24

If n = 3, then T = P3. Hence we are done.

We assume that, for any tree T ′ of order n′, 3 ≤ n′ < n, F (T ′) = (∆′ − 2)β(T ′) + 1 implies26

T ′ ∈ T +
n′ ∪ {Pn′}, where ∆′ = ∆(T ′).

Now, suppose T ∈ Tn and F (T ) = (∆− 2)β(T ) + 1, where n ≥ 4. If ∆ = 2, then T = Pn. We28

are done. If ∆ ≥ 3 and diam(T ) = 2, then T = K1,∆−1 ∈ T +
n . We are done too. Thus, we only

need to deal with ∆ ≥ 3 and diam(T ) ≥ 3.30

If diam(T ) = 3, then T ∼= St,s, here St,s is a double star, where 1 ≤ t ≤ s and s ≥ 2. Let x

and y be the (only) vertices in Sr,s of degree greater than 1. Clearly β(St,s) = 2 since {x, y} is a32

minimum vertex covering of St,s. Then

(∆− 2)β(St,s) + 1 = 2(s+ 1− 2) + 1 = 2s− 1.34

4

Figure 2.2: Example of root tree T with the root r.

Theorem 2.9. For any T ∈ Tn with n ≥ 3, we have F (T ) = (∆− 2)β(T ) + 1 if and only

if T ∈ T +
n ∪ {Pn}.

Proof. The sufficient part follows from Lemmas 2.2 and 2.6. We shall show the necessary

part by mathematical induction on n.

If n = 3, then T = P3. Hence we are done.

We assume that, for any tree T ′ of order n′, 3 ≤ n′ < n, F (T ′) = (∆′ − 2)β(T ′) + 1

implies T ′ ∈ T +
n′ ∪ {Pn′}, where ∆′ = ∆(T ′).

Now, suppose T ∈ Tn and F (T ) = (∆ − 2)β(T ) + 1, where n ≥ 4. If ∆ = 2, then

T = Pn. We are done. If ∆ ≥ 3 and diam(T ) = 2, then T = K1,∆−1 ∈ T +
n . We are done

too. Thus, we only need to deal with ∆ ≥ 3 and diam(T ) ≥ 3.

If diam(T ) = 3, then T ∼= St,s, here St,s is a double star, where 1 ≤ t ≤ s and s ≥ 2.

Let x and y be the (only) vertices in Sr,s of degree greater than 1. Clearly β(St,s) = 2

since {x, y} is a minimum vertex covering of St,s. Then

(∆− 2)β(St,s) + 1 = 2(s+ 1− 2) + 1 = 2s− 1.

From Lemma 2.4, we can see that F (St,s) < 2s−1. Thus diam(T ) = 3 is not a case. Thus

diam(T ) ≥ 4.

Let u, r ∈ V (T ) such that diam(T ) = d(u, r). Clearly, u and r are two leaves in T .

Let r be the root of T and P (u, r) = uvwxy · · · r. Note that y = r when diam(T ) = 4 and

y ̸= r when diam(T ) > 4.

Let dT (v) = t. Clearly, 2 ≤ t ≤ ∆. Let Tv be the subtree of T which is induced by the

vertex v and its children. Let T ′ = T − V (Tv), n
′ = |T ′| and S′ be a minimum F-set of

T ′. Clearly T ′ is a tree. Since w, x, y are distinct vertices of T ′, n′ ≥ 3.

Now, let us compute β(T ′). Let A be a minimum edge covering of T . Since every edge

covering contains all pendant edges of T , then E(Tv) ⊆ A. If vw /∈ A, then A \ E(Tv) is

an edge covering of T ′. Since the minimum property of A and E(Tv) ⊆ A, then A \E(Tv)

is a minimum edge covering of T ′. If vw ∈ A, then A has no other edges incident with w.
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Otherwise, assuming there is an edge incident with w, if necessary, the edge is wx. Then,

A \ {vw} is a smaller edge covering of T , a contradiction. Let A′ = (A \ {vw}) ∪ {wx}.
Then |A′| = |A| and A′ is also a minimum edge covering. Since the minimum property

of A′ and E(Tv) ⊆ A′, then A′ \ E(Tv) is a minimum edge covering of T ′. In conclusion,

β′(T ′) = β′(T ) − (t − 1) = β′(T ) − t + 1 and n′ = n − dT (v) = n − t. Then Lemma 2.8

implies that

β(T ′) = n′ − β′(T ′) = n− β′(T )− 1 = β(T )− 1.

Recall that 2 ≤ t ≤ ∆ and ∆ ≥ 3. Let ∆′ be the maximum degree of T ′.

(A) Suppose t = 2. Let S′ be an F-set of T ′ such that F (T ′) = |S′|. Then S′ ∪ {v} is

an F-set of T . Hence F (T ′) + 1 ≥ F (T ). By the assumption and Lemma 2.3 we have

(∆′ − 2)β(T ′) + 1 ≥ F (T ′) ≥ F (T )− 1 = (∆− 2)β(T ) ≥ (∆′ − 2)(β(T ′) + 1)

= (∆′ − 2)β(T ′) + ∆′ − 2 ≥ (∆′ − 2)β(T ′) + 1.

Thus F (T ′) = (∆′ − 2)β(T ′) + 1, ∆′ = ∆ and F (T ′) + 1 = F (T ).

By induction hypothesis, T ′ = Pn′ or T ′ ∈ T +
n′ . Since ∆′ = ∆ ≥ 3, T ′ ∈ T +

n′ .

Since ∆ = ∆′, w is a leaf of a basis tree. And T is the tree obtained by adding an edge

connecting a leaf of a basic tree in T ′ and a vertex of P2. Then by Lemma 2.7, we have

F (T ) = F (T ′) which contradicts F (T ′) + 1 = F (T ).

(B) Suppose t ≥ 3. From Lemma 2.4 we have

F (T ′) = F (T )− (t− 2) = (∆− 2)β(T ) + 1− t+ 2

= (∆− 2)(β(T ′) + 1) + 1− t+ 2 (since ∆ ≥ ∆′ and ∆ ≥ t)

= (∆− 2)β(T ′) + ∆ + 1− t ≥ (∆′ − 2)β(T ′) + 1.

Together with Lemma 2.3 we have F (T ′) = (∆′ − 2)β(T ′) + 1 and ∆ = ∆′ = t ≥ 3. By

induction hypothesis, T ′ = Pn′ or T ′ ∈ T +
n′ . Since ∆′ = ∆ ≥ 3, T ′ ∈ T +

n′ .

Let T1, T2, . . . , Th be the basic trees of T ′, where T1 = K1,∆′ and if h ≥ 2, then

Ti = K1,∆′−1 for i ∈ [h] \ {1}. Let vi be the central vertex of Ti. Then dT ′(vi) = ∆′ for

i ∈ [h]. Hence {v1, . . . , vh} is an independent set and a minimum vertex covering of T ′.

Furthermore, β(T ) = h+ 1 ≥ 2.

Since ∆ = ∆′, w is a leaf of a basic tree of T ′. Let v = vh+1 and Th+1 = K1,∆−1. Then

T is obtained from T ′ by applying once (∆− 1)-LSVA process. That is T ∈ T +
n .

The proof is complete.

3. Zero (Total) forcing number and edge covering number of a tree

In this section, we study the relationship between the zero (total) forcing number of a tree

and its edge covering number. Before then, we introduce some definitions and lemmas as

follows.
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The contraction of an edge e = uv ∈ E(G) is the graph obtained from G by replacing

the vertices u and v by a new vertex and joining this new vertex to all vertices that are

adjacent to u or v in G. For any T ∈ Tn with n ≥ 2, the trimmed tree of T , denoted

by trim(T ), is the tree obtained from T by iteratively contracting edges with one of its

incident vertices of degree exactly 2 and with the other incident vertex of degree at most

2 until no such edge remains. For instance, trim(Pn) = P2 for n ≥ 2. While if T ̸= Pn,

then every edge in trim(T ) is incident with a vertex of degree at least 3.

Lemma 3.1. [8] For any T ∈ Tn with n ≥ 2, we have

(1) F (T ) = F (trim(T ));

(2) Ft(T ) = Ft(trim(T ));

(3) both trees T and trim(T ) have the same number of leaves.

Lemma 3.2. Let G be a graph obtained from a graph H and a star K1,n with n ≥ 2,

by adding an edge to join a vertex of H and the central vertex of K1,n. Then Ft(G) ≤
Ft(H) + n.

Proof. Let S1 be a minimum TF-set of H and S2 be a set containing the central vertex

and n− 1 leaves of K1,n. Then Lemma 2.2 implies that S2 is a minimum TF-set of K1,n.

Hence, S1 ∪ S2 is a TF-set of G. So Ft(G) ≤ |S1|+ |S2| = Ft(H) + n, as desired.

In particular, whenH is a tree, in view of Lemma 2.8 and the discussion in Theorem 2.9,

we then have the following result.

Lemma 3.3. Let T be a tree obtained from a tree T ′ and a star K1,n with n ≥ 2, by adding

an edge to join a vertex of T ′ and the central vertex of K1,n. Then β′(T ) = β′(T ′) + n.

Lemma 3.4. Let G be a connected graph of order at least 3 and e = uv ∈ E(G). If H is

the graph obtained from G by contracting e, then β′(H) ≤ β′(G).

Proof. Let x be the resulting new vertex in H after contracting e. Since the order of G is

at least 3, without loss of generality, we assume d(u) ≥ 2 and let w be another neighbor

of u rather than v. Thus xw ∈ E(H).

Let A be a minimum edge covering of G. If uv ∈ A, then let A′ = (A \ {uv}) ∪ {xw}.
If uv /∈ A, then let A′ = A.

Clearly A′ is an edge covering of H and |A′| ≤ |A| (since vw ∈ E(G) may be in A and

it is the same edge xw ∈ E(H)). Thus β′(H) ≤ β′(G).

Corollary 3.5. For any T ∈ Tn with n ≥ 2, we have β′(trim(T )) ≤ β′(T ).
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Lemma 3.6. [9] If G is an isolate-free graph, then every vertex v of G with at least two

leaf neighbors is contained in every TF-set, and all except possibly one leaf neighbor of v

is contained in every TF-set.

Theorem 3.7. For any T ∈ Tn with n ≥ 3, we have Ft(T ) ≤ β′(T ).

Proof. We shall prove this theorem by mathematical induction on n.

If n = 3, then T = P3. Thus the result follows from Lemma 2.2 since β′(P3) = 2.

Assume that F (T ′) ≤ β′(T ′) holds for any T ′ of order n′, where 3 ≤ n′ < n.

Now let T be a tree of order n ≥ 4. If T = Pn, then Lemma 2.2 implies that Ft(Pn) = 2.

Thus we have Ft(Pn) ≤ β′(Pn) as β′(Pn) ≥ 2. In what follows, we assume that T ̸= Pn.

We now consider the following two cases.

(a) T = trim(T ). The tree T is obtained from a tree T ′ and a star K1,k with k ≥ 2,

by adding an edge to join a vertex of T ′ and the central vertex of K1,k. By induction

hypothesis and Lemmas 3.2 and 3.3, we then have

Ft(T ) ≤ Ft(T
′) + k ≤ β′(T ′) + k = β′(T ),

as desired.

(b) T ̸= trim(T ). Lemma 3.1 and Corollary 3.5 imply that

Ft(T ) = Ft(trim(T )) ≤ β′(trim(T )) ≤ β′(T ),

as desired. This completes the proof.

A tree T is called a spider with k legs, where k ≥ 2, if ∆(T ) = k and T contains only

one vertex of degree k. This vertex is called the core of the spider. Let T (n1, . . . , nk) be

the spider of k legs shown in Figure 3.1, where v is its core and n1 ≥ n2 ≥ · · · ≥ nk ≥ 1.

We shall adopt a spider has only 2 legs. In this case, the spider T (n1, n2) is a path of

length n1 + n2.

Theorem 3.7 For any T ∈ Tn with n ≥ 3, we have Ft(T ) ≤ β′(T ).

Proof. We shall prove this theorem by mathematical induction on n.2

If n = 3, then T = P3. Thus the result follows from Lemma 2.2 since β′(P3) = 2.

Assume that F (T ′) ≤ β′(T ′) holds for any T ′ of order n′, where 3 ≤ n′ < n.4

Now let T be a tree of order n ≥ 4. If T = Pn, then Lemma 2.2 implies that Ft(Pn) = 2.

Thus we have Ft(Pn) ≤ β′(Pn) as β
′(Pn) ≥ 2. In what follows, we assume that T 6= Pn. We now6

consider the following two cases.

(a) T = trim(T ).8

The tree T is obtained from a tree T ′ and a star K1,k with k ≥ 2, by adding an edge to join a

vertex of T ′ and the central vertex of K1,k. By induction hypothesis and Lemmas 3.2 and 3.3,

we then have

Ft(T ) ≤ Ft(T
′) + k ≤ β′(T ′) + k = β′(T ),

as desired.

(b) T 6= trim(T ). Lemma 3.1 and Corollary 3.5 imply that

Ft(T ) = Ft(trim(T )) ≤ β′(trim(T )) ≤ β′(T ),

as desired.10

This completes the proof. ¤
A tree T is called a spider with k legs, where k ≥ 2, if ∆(T ) = k and T contains only one12

vertex of degree k. This vertex is called the core of the spider. Let T (n1, . . . , nk) be the spider of

k legs shown in Figure 3, where v is its core and n1 ≥ n2 ≥ · · · ≥ nk ≥ 1. We shall adopt a spider14

has only 2 legs. In this case, the spider T (n1, n2) is a path of length n1 + n2.

v

1 1 11

2 2 2 2

n1

n2

nk-1

nk

3 3 3 3

Figure 3: The tree T (n1, . . . , nk)

Note that trim(T (n1, . . . , nk)) = K1,k. By Lemmas 2.2 and 3.1 we have16

Lemma 3.8 If T is a spider with k ≥ 2 legs, then F (T ) = k − 1.

Combing this with Lemma 2.4, we then have the following result.18

Lemma 3.9 Let G be a graph obtained from a graph H and a spider T (n1, . . . , nk), by adding an

edge to join a vertex of H and the core of T (n1, . . . , nk), k ≥ 2. Then F (G) = F (H) + k − 1.20

7

Figure 3.1: The tree T (n1, . . . , nk).



The Zero (Total) Forcing Number and Covering Number of Trees 9

Note that trim(T (n1, . . . , nk)) = K1,k. By Lemmas 2.2 and 3.1 we have

Lemma 3.8. If T is a spider with k ≥ 2 legs, then F (T ) = k − 1.

Combining this with Lemma 2.4, we then have the following result.

Lemma 3.9. Let G be a graph obtained from a graph H and a spider T (n1, . . . , nk),

by adding an edge to join a vertex of H and the core of T (n1, . . . , nk), k ≥ 2. Then

F (G) = F (H) + k − 1.

Lemma 3.10. [8] For any T ∈ Tn with n ≥ 2, we have Ft(T ) ≥ F (T ) + 1.

Lemma 3.11. For any T ∈ Tn with n ≥ 3, we have F (T ) ≤ β′(T )− 1.

Proof. The result follows form Theorem 3.7 and Lemma 3.10.

Lemma 3.12. For an isolate-free graph G with k ≥ 1 strong support vertices, we have

Ft(G) ≥ F (G) + k.

Proof. Let v1, . . . , vk be strong support vertices of G. Assume that S is a minimum TF-

set of G with |S| = Ft(G). By Lemma 3.6, we have {v1, . . . , vk} ⊆ S and there is a

leaf neighbor, say xi, of vi such that xi ∈ S for each i ∈ [k]. Let S′ = S \ {v1, . . . , vk}.
We claim that S′ is an F-set of G. Indeed, for the forcing process of S′, firstly, x1

forces v1 to color. Next, xi gradually forces vi to color for [k] \ {1}. Finally, the set

of colored vertices is S. Hence, S′ is an F-set of G since S is a TF-set of G. That is

F (G) ≤ |S′| = |S| − k = Ft(G)− k. It follows that Ft(G) ≥ F (G) + k.

A subpath P = vu1u2 · · ·ul of a graph G is referred to a pendent path if dG(v) ≥ 3,

dG(u1) = · · · = dG(ul−1) = 2, dG(ul) = 1, and l is the length of the pendant path. We use

p(v) to denote the number of pendant paths which attached to v ∈ V (G). If p(v) ≥ 2, we

call v a strong major vertex ; if p(v) = 1, we call v a weak major vertex.

Lemma 3.13. For T ∈ Tn with n ≥ 4, if T has k ≥ 1 strong major vertices, then

F (T ) ≤ β′(T )− k.

Proof. Let T be a tree with k ≥ 1 strong major vertices. Note that every strong major

vertex in T is a strong support vertex in trim(T ). Then trim(T ) has k strong support

vertices.

F (T ) = F (trim(T )) (by Lemma 3.1)

≤ Ft(trim(T ))− k (by Lemma 3.12)

≤ β′(trim(T ))− k (by Theorem 3.7)

≤ β′(T )− k. (by Corollary 3.5)

This completes the proof.
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Before proving Theorems 3.16 and 3.17, we introduce the following types of spiders.

Let

(1) G1 be the set of spiders T (n1, . . . , nk) for some k ≥ 2 with n1 ≤ 2 and nk = 1;

(2) G2 be the set of spiders T (n1, . . . , nk) for some k ≥ 2 with n1 = n2 = · · · = nk = 2;

(3) G3 be the set of trees T (n1, . . . , nk) spiders for some k ≥ 2 with n1 = 3 and n2 ≤ 2;

(4) G4 be the set of trees T (n1, . . . , nk) spiders for some k ≥ 3, n1 = 4, n2 ≤ 2 and

nk = 1.

Remark 3.14. Clearly, for a spider with 2 legs, {P3, P4} ⊂ G1, P5 ∈ G2 and {P5, P6} ⊂ G3.

Lemma 3.15. For k ≥ 2,

β′(T (n1, . . . , nk)) =





∑k
i=1⌈ni/2⌉+ 1 if all ni’s are even,

∑k
i=1⌈ni/2⌉ otherwise.

Proof. Let v be the core of the spider T = T (n1, . . . , nk) and let Ri = vxi1 · · ·xini
be the

pendant path of length ni. Let A be a minimum edge covering of T and Ai = A ∩E(Ri),

1 ≤ i ≤ k.

Suppose ni is even. The pendant edge xini−1x
i
ni

∈ Ai. Since all vertices of Ri − v are

covered by Ai, x
i
ni−3x

i
ni−2, . . . , x

i
2x

i
1 ∈ Ai gradually. Thus |Ai| = ni/2 or ni/2 + 1 when

vxi1 /∈ Ai or vx
i
1 ∈ Ai, respectively.

Suppose ni is odd. Similarly, xini−1x
i
ni
, . . . , xi3x

i
2 ∈ Ai. Since xi1 is also covered by Ai,

vxi1 ∈ Ai. Thus |Ai| = (ni + 1)/2 = ⌈ni/2⌉.
Suppose there is an odd nj . By the proof above, vxj1 ∈ A. By the minimality, those

Ai’s do not contain vxi1 for all even ni’s. Hence β′(T (n1, . . . , nk)) =
∑k

i=1⌈ni/2⌉.
Suppose all ni’s are even. Since v must be covered, by the minimality only one of Ai

contains vxi1. Hence β′(T (n1, . . . , nk)) =
∑k

i=1⌈ni/2⌉+ 1.

Let G and H be two disjoint connected graphs with v ∈ V (G) and u ∈ V (H). Define

the graph G(v) ◦H(u) is obtained from G∪H by identifying v with u. For example, let v

be a leaf of P2 and u be a leaf of P3, then G(v) ◦H(u) = P4. Let G1, G2 and G3 be three

mutually disjoint connected graphs, and let x1 ∈ V (G1), x2 ∈ V (G2), y1, y2 ∈ V (G3),

where y1 ̸= y2. A connected graph G obtained from G1 ∪G2 ∪G3 by identifying x1 with

y1 and identifying x2 with y2 is denoted by G1(x1 ◦ y1)
⋃

G3
G2(x2 ◦ y2).

We define

Q1 =



T1(v1 ◦ x1)

⋃

K1,3

T2(v2 ◦ x2)
∣∣∣∣

Ti ∈ G1 with core vi, i = 1, 2,

x1, x2 are two different leaves of K1,3



 ,
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Q2 =



T1(v1 ◦ x1)

⋃

P2

T2(v2 ◦ x2)
∣∣∣∣ Ti ∈ G1 with core vi, i = 1, 2, P2 = x1x2



 ,

Q3 =



T1(v1 ◦ x1)

⋃

P3

T2(v2 ◦ x2)
∣∣∣∣ Ti ∈ G1 with core vi, i = 1, 2, P3 = x1yx2



 ,

Q4 =



T1(v1 ◦ x1)

⋃

P4

T2(v2 ◦ x2)
∣∣∣∣ Ti ∈ G1 with core vi, i = 1, 2, P4 = x1yzx2



 ,

Q5 =



T1(v1 ◦ x1)

⋃

P3

T2(v2 ◦ x2)
∣∣∣∣ T1 ∈ G1, T2 ∈ G2 with core vi, i = 1, 2, P3 = x1yx2



 .

Theorem 3.16. For any T ∈ Tn with n ≥ 2, we have F (T ) = β′(T ) − 1 if and only if

T ∈ G1.

Proof. Suppose T ∈ Tn with F (T ) = β′(T )− 1. If T = Pn, then by Lemma 2.2, we check

that only T = P3 or T = P4 satisfies that F (T ) = β′(T )− 1, as desired.

If T ̸= Pn, let l ≥ 1 be the number of the strong major vertices in T . Since F (T ) =

β′(T )−1, Lemma 3.13 implies that l = 1. Then T is a spider. Let T = T (n1, . . . , nk) with

k ≥ 3 and v be the unique major vertex of T . Then Lemma 3.8 implies F (T ) = k − 1.

Thus k = β′(T ). By Lemma 3.15, there exists an odd nj and all ⌈ni/2⌉ = 1. This implies

that ni ≤ 2 and nj = 1. By definition, n1 ≤ 2 and nk = 1. Hence T ∈ G1.

The converse follows from Lemmas 3.8 and 3.15. This completes the proof.

Note that if T has exactly two strong major vertices v1 and v2 and some weak major

vertices, then each weak major vertex should be in the path P (v1, v2). Let T (vi) be the

induced subgraph of vertices of all pendant paths attached to vi, i.e., T (vi) is a spider for

i = 1, 2.

Theorem 3.17. For any T ∈ Tn with n ≥ 2, we have F (T ) = β′(T )− 2 if and only if T

is an element in one of the following classes:

G2, G3, G4, Q1, Q2, Q3, Q4, Q5.

Proof. For T ∈ Tn with F (T ) = β′(T )− 2, if T = Pn, then by Lemma 2.2, one may check

that only P5 and P6 satisfy that F (P5) = β′(P5)− 2 and F (P6) = β′(P6)− 2, as desired.

Now we consider T ̸= Pn. Let l ≥ 1 be the number of strong major vertices in T . By

Lemma 3.13, we have l ≤ 2, i.e., l = 1 or l = 2. We now consider the following two cases.

(A) Suppose l = 1. Then T = T (n1, . . . , nk) with k ≥ 3. Let v be the major vertex

(core) and let u be one of its neighbor. Let Pi be the pendant paths with length of ni,

where 1 ≤ i ≤ k. Then F (T ) = k − 1 by Lemma 3.8.
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Suppose all ni are even. By Lemma 3.15, k − 1 =
∑k

i=1(ni/2) − 1. This implies that

ni = 2. So T ∈ G2.

Suppose there is an odd nj . By Lemma 3.15, k − 1 =
∑k

i=1⌈ni/2⌉ − 2. This implies

that ⌈n1/2⌉ = 2 and ⌈ni/2⌉ = 1 for 2 ≤ i ≤ k. Thus ni ≤ 2 for 2 ≤ i ≤ k.

Suppose n1 = 3. T ∈ G3. Suppose n1 = 4. Since there is an odd nj , nk = 1. Hence

T ∈ G4.

(B) Suppose l = 2. Let v1 and v2 be two strong major vertices of T , ui be the neighbor

of vi in P = P (v1, v2), i = 1, 2 and w1, w2, . . . , wh be h weak major vertices on P , h ≥ 0.

(B1) Suppose h ≥ 1. Let P (v1, v2) = v1uw · · · v2 and T − v1u = T1 ∪ T2, where

v1 ∈ V (T1). Here w may be v2.

We let T ′ = trim(T ). Then T ′ − v1u = T ′
1 ∪ T ′

2. Moreover trim(Ti) = T ′
i , i = 1, 2.

Let Si be an F-set of T ′
i with minimum cardinality, i = 1, 2. Clearly S1∪S2 is an F-set

of T ′. Thus F (T ′) ≤ F (T ′
1) + F (T ′

2).

Since T ′
1 is a star graph, β

′(T ′
1) = |E(T ′

1)|. Hence Lemma 2.2 implies F (T ′
1) = β′(T ′

1)−1.

Let A be a minimum edge covering of T ′ and let

A′ =




A \ E(T ′

1) if v1u /∈ A,

(A ∪ {uw}) \ (E(T ′
1) ∪ {v1u}) if v1u ∈ A.

Then A′ is a minimum edge covering of T ′
2 since A is a minimum edge covering of T ′ and

E(T ′
1) ⊆ A. That is, β′(T ′

2) ≤ β′(T ′)− β′(T ′
1) (since uw may be already in A). Hence, by

assumption and Lemma 2.4 we have

β′(T )− 2 = F (T ) = F (T ′) ≤ F (T ′
1) + F (T ′

2)

≤ β′(T ′
1)− 1 + β′(T ′

2)− 1 ≤ β′(T ′)− 2 ≤ β′(T )− 2.

Thus all inequalities become equalities. Hence T ′
1, T

′
2 ∈ G1. Since T ′

2 ∈ G1, h = 1.

Furthermore, β′(T ′
1) = k1 and β′(T ′

2) = k2 + 1.

Now T1 is a spider of k1 legs and T2 is a spider of k2+1 legs. By Lemma 3.15, it forces

that T1, T2 ∈ G1.

Let us look at the weak major vertex w1. Let R be the pendant path attached to w1.

Since w1 is a vertex in one of a leg of T2 and T2 ∈ G1, the distance between v2 and w1 is

1 and the length of R is 1. Also since w1 is a vertex of the path P (v1, v2), w1 = u. Thus

P (v1, v2) = v1w1v2. Thus, T2 = T (2,m1, . . . ,mk2) with mi ≤ 2 for i ≥ 1 and mk2 = 1.

Hence T ∈ Q1.

(B2) Suppose h = 0. Suppose P (v1, v2) = v1v2. Let T − v1v2 = T1 ∪ T2. By the same

proof of Case (B1), we get T1, T2 ∈ G1. Thus T ∈ Q2.

Suppose P (v1, v2) = v1u · · · v2. Let T −v1u = T1∪T2. By the same proof of Case (B1),

we get T1, T2 ∈ G1. T2 is a spider with a leg P (v1, v2) − v1. So the length of P (v1, v2) is

less than 3.
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Suppose the length of P (v1, v2) is 3. Since T2 ∈ G1, T2 = T (2,m1, . . . ,mk2) with

mi ≤ 2 for i ≥ 1 and mk2 = 1. So T (v2) ∈ G1. Hence T ∈ Q4.

Suppose the length of P (v1, v2) is 2. Since T2 ∈ G1, T2 = T (m1, . . . ,mk2 , 1) with

mi ≤ 2 for i ≥ 1. So T (v2) ∈ G1 ∪ G2. Hence T ∈ Q3 ∪Q5.

The converse follows from Lemmas 3.8 and 3.15. This completes the proof.
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