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Existence and Multiplicity of Nontrivial Solutions for a (p, ¢)-Laplacian

System on Locally Finite Graphs
Ping Yang and Xingyong Zhang*

Abstract. We generalize two embedding theorems and investigate the existence and
multiplicity of nontrivial solutions for a (p, ¢)-Laplacian coupled system with pertur-
bations and two parameters A\; and Ag on locally finite graph. By using the Ekeland’s
variational principle, we obtain that system has at least one nontrivial solution when
the nonlinear term satisfies the sub-(p, ¢) conditions. We also obtain a necessary con-
dition for the existence of semi-trivial solutions to the system. Moreover, by using the
mountain pass theorem and Ekeland’s variational principle, we obtain that system
has at least one solution of positive energy and one solution of negative energy when
the nonlinear term satisfies the super-(p, ¢) conditions which is weaker than the well-
known Ambrosetti-Rabinowitz condition. Especially, in all of the results, we present

the concrete ranges of the parameters A; and As.

1. Introduction

Some research results on the existence of solutions of partial differential equations on dis-
crete graphs have been applied in machine learning, image processing and other fields.
For example, in [7H9], Elmoataz et al. studied the existence and uniqueness of solutions
of p-Laplacian equation subject to the Dirichlet boundary condition on a weighted con-
nected graph, and showed that this operator can be applied to some inverse problems in
image processing and machine learning, including filtering, segmentation, clustering, and
inpainting. In [1], Bougleux et al. proposed a structure-preserving filtering framework
based on p-Laplacian operator on directed graphs. They showed that this method can
obtain better smoothing quality during imaging. In [10], Ennaji et al. discussed the rela-
tionship between some stochastic games named Tug-of-War games and a class of nonlocal
partial differential equations on graphs and showed that it covers several nonlocal partial
differential equations on graphs, such as p-Laplacian equation, oo-Laplacian equation and
Fikonal equation. Moreover, they also showed that it can be used to solve several inverse

problems in imaging and data science.
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Next, we recall some basic knowledge of discrete graphs. Let G = (V, E) be a locally
finite and connected graph, where V' denotes the vertex set and E denotes the edge set.
We say that (V, E) is a locally finite graph if for any = € V there are only finite edges
xy € E. Moreover, we say that (V, F) is a connected graph if any two vertices x and y
can be connected via finite edges. For any edge xy € F, assume that its weight w;, > 0
and wgy = wy,. For any x € V, its degree is defined as deg(z) = Zme Wzy, Where we
denote y ~ x if there exists y € V such that edge zy € E. The distance of two vertices
x, y, denoted by dist(x,y), is defined as the minimal number of edges which connect z,
y. Let u: V. — RT be a finite measure, u(z) > g > 0, and C(V) be the set of all real
functions on V. Define A: C(V) — C(V) as

The associated gradient form is
1
2p()

Write I'(u) = I'(u, u). We denote the length of the gradient is

I'(u, v)(z) = > way(uly) — u(@))(v(y) - v(@)).

y~zx

2p()

We can obtain that the gradient has the following properties:

[(ur + ug, v)(2) = T'(u1, v) () + T'(ug, v) (),
I'(u, 01+ v2)(2) = T'(u, v1)(2) + T (u, v2)(2),
['(Ou,v)(z) = T'(u,0v)(x) = 0T (u,v)(x) for all § € R,
(1.1) I'(u,v) < |Vu|- |V,
(1.2) |[[Vug| — [Vul| < [V (up — ).

1/2
[Vu|(z) = F(U)(fﬂ)Z( 1 szy(U(y)—U(:r))2> :

Y~z

For any p > 1, we define A,: C(V) — C(V) as follows:

(13) ) = 5 S (TuP ) + [Tul 20y () — ).
Let C.(V) :={u: V = R | suppu C V}. Then for any function ¢ € C.(V),

_ wlP 2 (u
(1.4) | Ao = [ [9up=2ru,0)d

For any function u: V — R, we denote

] wle)dn = 3 utwta).

zeV
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Define L"(V) = {u: V= R | [}, [u["dpu < +00} (1 <7 < +00) with the norm defined by

1/r
follrry = [ ol an)
\%4

Then (L"(V),| - llLr()) is a reflexive Banach space. Define L®(V) = {u: V — R |
sup,ey |u(z)| < +o00} with the norm defined by

[ulloo = sup [u()].
eV
For more details, one can see [11/12].

Consider the following p-Laplacian equation on a locally finite graph G = (V| E),
(1.5) —Apu+ h(2)|uP?u = f(z,u), z€V,

where p > 1, h: V > Rand f: V xR — R.

In recent years, the existence and multiplicity of nontrivial solutions to have
attracted some attentions (for example, see [5,/11,/12,15,|16}|19,22,123]). In [22|, Zhang
investigated with p = 2 and f(x,u) = |u|*"2u for all x € V, where s > 2. He
obtained that equation has a positive solution by using the mountain pass theorem.
In [23], Zhang and Lin studied with f(z,u) = g(x)|u|""2u for all z € V, where
g:V — Rand r > p > 2. They obtained that equation has a positive solution.
In [5], by using the variational principles and Fatou’s lemma, Chang and Zhang obtained
the equation has a solution when f(z,u) is Lipschitz continuous in w. In [19], Shao
investigated with f(z,u) = g(x,u) +e(z). When ||e||Lp%(V) is small enough, g(z, u)
satisfies sub-(p — 1)-linear growth condition at origin and |g(x,u)| < C(1 + |u|971) for all
x € V, where ¢ > p > 2, Shao obtained the equation has one nontrivial solution of
positive energy and another nontrivial solution of negative energy by using the mountain
pass theorem and Ekeland’s variational principle. In [16], Man investigated with
p = 2 and h replaced by a constant a. When « is small enough and nonlinear term f(x,u)
satisfies super-(r — 1)-linear growth condition at origin, where r > 2 and some additional
assumptions, he obtained that equation has a positive solution by using the mountain
pass theorem. In [15], Liu investigated with p = 2 and Dirichlet boundary condition,
where f(z,u) = |u|""2u + ee(x), where r > 2, ¢ > 0 and e(xr) > 0. When ¢ is small
enough, he obtained that the equation has two positive solutions by using the mountain
pass theorem and Ekeland’s variational principle. Especially, in [12], Grigor’yan, Lin,
Yang considered with p = 2. They assumed that the measure p(z) > pmin > 0 for
all x € V|, where pimin = mingey u(z), and h and f satisfy the following conditions:

(K1) there exists a constant hy > 0 such that h(x) > hg for all z € V;
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(Ka) 7 € L(V);
(S1) f(x,s) is continuous in s, f(z,0) = 0, and for any fixed M > 0, there exists a

constant Ay such that max,cp ar f(z,5) < Ay for all z € V;

(S2) limsup, o+ 2552 < Xy =inf | 2 g0 [ (1Vuf? + hu?) dp;

(S3) there exists a constant # > 2 such that for all x € V and s > 0,
0<0F(x,s) = 9/ f(z,t)dt < sf(x,s).
0

(The (S3) condition is usually called as Ambrisetti-Rabinowitz condition ((AR)-

condition for short).)

Then equation ([1.5) with p = 2 has a strictly positive solution. Moreover, they also

investigated the following equation with perturbation:
(1.6) —Au+ hu = f(x,u) +ee(x), x€V,

where e > 0 for all z € V' (e # 0). They obtained that there exists a constant ey > 0 such
that for any 0 < € < €, ([1.6]) has at least two distinct strictly positive solutions under the

above assumptions. When (Ks) is replaced by the following condition:
(K%) h(z) — 400 as dist(z, z9) — +oo for some fixed zg € V,
and (S1) is replaced by the following condition:

(S}) f(x,0)=0, f(z,s) >0 forall z € V and all s > 0, and there exists a constant L > 0
such that

\f(z,s) — f(z,t)] < L|s —t| for all z € V and all (s,t) € R%.

They obtained that (1.6 has a strictly positive solution.

In this paper, inspired by [11},/12] we consider the following (p,q)-Laplacian coupled
system with perturbation terms and two parameters on a locally finite graph G = (V, E):
() —Apu + hy(2)|uP~2u = Fy(x,u,v) + Mei(z), x €V,

. —Agv + ho(2)|v|7 %0 = F,(z,u,v) + Aeea(z), x €V,
where A, and A, are defined by (1.3) withp > 2and ¢ > 2, F: VXR? - R, ¢; € Lp%l(V),
ey € Lﬁ(V), e1(z),e2(x) # 0 and A, A2 > 0.

If (u,v) is a solution of system (|1.7) and (u,v) # (0,0), then we call that (u,v) is
a nontrivial solution of system (1.7). Furthermore, if (u,v) is a nontrivial solution of
system (1.7), (u,v) = (u,0) or (u,v) = (0,v), then we call that (u,v) is a semi-trivial
solution of system ([1.7)). We obtain the following results.

(I) The sub-(p, g)-linear case:
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Theorem 1.1. Assume that the following conditions hold:
(Hy) there exists a constant hg > 0 such that hi(x) > ho >0 forallz € V,i=1,2;
(Ha) hi(z) — oo as dist(z, xg) — oo for some fized xq, i = 1,2;

(Fo) F(z,s,t) is continuously differentiable in (s,t) € R? for all z € V, and there exists
a function a € C(RT,RY) and a function b: V — RT with b € L'(V) such that

|Fs (@, 5,0)], [Fi(, s, 0)], |F (2, 5, 8)] < al|(s, 1) ])b(x)
for all x € V and all (s,t) € R%;

(F1) F(z,0,0) = 0, and there exists fi,gi: V — Rt i =1,2, g € L%(V) and gy €

La1 (V) with || f1]|se < min {2, Pt and || falloo < ho — “EV|fi]| oo such that

pa—gq
|Fs(,8,0)] < fi(@) ([sP7 7 ) ai(@),  |Fula,s,t)] < fala) (P47 +g2()
or allz €V and all (s,t) € R%, where p > 2 and q > 2;
f (s,1) : p= q=>2;
(F2) one of the following conditions holds:

(i) there exists f1 > 1 and K1: V — R such that Ki(x1) > 0 for some x; € V
with e1(z1) > 0 and

F(x,5,0) > —K(x)|s| forallseR and allz € V;

(ii) there exists P2 > 1 and Ka3: V — R such that Ko(xz2) > 0 for some o € V
with ez(x2) > 0 and

F(x,0,t) > —Ky(x)|t|”> for allt € R and all z € V.

Then for each pair (A1, A2) € (0,+00) x (0,400), system (L.7) has at least one nontrivial
solution (uye, V). Furthermore, the necessary conditions for the existence of the semi-
trivial solutions to the system (L1.7) are obtained. If (urs,Vax) = (Uxs,0), then

1

—1

=

s (Mlel ey + o

p

- Lp-1(V)
Unslloo < po ”

H *” Ho hO Hfl”oo

If (U, Vax) = (0,va4), then

Q
-

_1

Aalle X
HU)\*HOO < g : 2” 2”[/%(‘/) HQQHL%I(V)

ho = [[f2l
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Theorem 1.2. Assume that (Hy), (Ha), (Fo), (F2) and the following condition hold:

(F}) F(2,0,0) = 0, and there exists fi,g;: V — Rt, i = 1,2, g1 € Lﬁ(V) and g €

L=t (V) with || filloe < min {4, 28095} and | foloe < ho — “E2| fol| oo such that

|Fu(z,5,8)] < (@) (t7+sP ) +gr(x),  [Filw,s,0)] < fu(@) (7 +s] "0 ) +g2(2)
for all x € V and all (s,t) € R%, where p > 2 and q > 2.

Then for each pair (A1, A2) € (0,+00) x (0,400), system (1.7)) has at least one nontrivial
solution (uye, Uny). Furthermore, the necessary conditions for the erxistence of the semi-

trivial solutions to the system (1.7) are obtained. If (Ure,Vxx) = (Uxs,0), then

1

1 (alleall e )+ llonll e ) ) P
[urelloo < 1o 7
ho — HfQHoo
If (Uxe, Vax) = (0,0)4), then
1
q—1
1 fRelleal pap ) A llg2ll e )

U < g !
H *HOO 0 hO_Hfluoo

(II) The super-(p, g)-linear case:
Theorem 1.3. Let Ay = Ay = \. Assume (Hy), (Fo) and the following conditions hold:

(Hy) for any given constant B >0, Y- 4 p(z) < 0o, where A; = {z € V| hij(z) < B},
1=1,2;

(C1) F(z,0,0) =0 for all x € V, and there exists a constant lo > 0 such that

|Fs(z,s,t)] <

(s ), i, s )] < (sl + 1t~

+1 +1

for all x € V and all (s,t) € R? with |(s,t)| < lo, where p > 2 and q > 2;

(Cq) there exists Iy > 0 such that F(zs,s,s) > M(sP + s%) for some x3 € {z € V |
e1(z) + ez(x) > 0} and all s € R with s > 1y, where

D1+ p(w3)hi(z3) Do+ p(w3)ha(zs) }
pu(zs) ’ qu(3) ’

- (25’

p= () (2 (i) )

M>max{
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(C3) there exists a constant v > max{p,q} and 0 < A < min {% -1,4- 1}hg such that

vE(z,s,t) — Fs(z,s,t)s — Fy(z, s, )t < A(|s]P +[t|?) for allxz € V.

Then for each \ satisfying

)

min{l,q —1 'A/\Hlax{p’cl}f1
(1.8) 0< A< A= {Lq 1} 9

_1 _1
gmaxtpal=1(pg + p) max {hy *lexl| e, ho *lleall o

V) V) J

where

l
Ay = min {20 min {h(l)/pu(l)/p, h[l)/q,u(l)/q}, 1} )

system (L.7)) has one nontrivial solution (u.1,vs«1) of positive energy. Furthermore, if the

following condition holds:

(Cy) there exists lo > 0, B3 > 1 and Kz(x): V. — R such that K3(z4) > 0, and
F(24,8,8) > K3(x4)|t|? for some x4 € {x € V | e1(z) + e2(x) > 0} with pu(xg) >0
and all s € R with 0 < s < g,

then system (1.7)) has another nontrivial solution (u.z2,v.2) of negative energy for each
A€ (0, )\0)

By using similar proofs, we can also obtain some results similar to Theorems [1.1] and
to the following equation on locally finite graph (V| E):

(1.9) —Apu + h(z)|uP?u = Fy(z,u) + ee(x), z€V.
Theorem 1.4. Assume that the following conditions hold:

(hy) there exists a constant hg > 0 such that h(x) > hg for all x € V;
(he) h(x) — oo as dist(x,z9) — 0o for some fized xo;

(fo) F(z,s) is continuously differentiable in s € R for all x € V, and there exists a
function a € C(RY,RT) and a function b: V — R* with b € L'(V) such that

|Fs(x,5)] < a(|s])b(x), [F(z,s)| < alls|)b(x)
for all x € V and all s € R;

(f1) F(z,0) = 0, and there exists f1,g1: V — RY with fi € L>®(V) and g1 € Lﬁ(V)
satisfying || f1]loco < ho1 such that

|Fy(z,8)| < fi(2)|s[Pr + gi(x) forallz € V and all s € R;
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(f2) there exists 51 > 1 and K;: V — R such that Ki(z1) > 0 for some 1 € V with
e(x1) >0 and

F(z,s) > —K(z)|s|" forallz €V and all s € R.

Then for each € € (0,+00), system (1.9) has at least one nontrivial solution.
Theorem 1.5. Assume (hy), (fy) and the following conditions hold:
(hy) for any given constant B >0, > 4 u(x) < 0o, where A= {x € V | h(z) < B};

(c1) F(x,0) =0 for all x € V, and there exists a constant lo > 0 such that

ho _
< 2 |g|P 1
)l < s

for allz € V and all s € R with |s| < lo;
(c2) there exists l; > 0 such that F(x2,s) > MsP for some xo € V with e(x2) > 0 and all

s € R with s > 11, where
= () ()
p(x) 1(z2)

Dy + pu(w2)h (2) [deg(w)\ ®
- P = (M) (N

(c3) there exists a constant v >p and 0 < A < ho(% — 1) such that

vF(x,s) — Fs(x,s)s < Als|P forallz € V.

Then for each € satisfying
(min {lo(houo)l/p, 1})17—1
1

(p+ Do " llel, 2,

O<e<e=

V)
equation (1.9) has one nontrivial solution of positive energy. Furthermore, if the following

condition holds:

(ca) there exists Iz > 0 and B3 > 1 such that F(x3,s) > K3(z3)|s|% for some x3 € {x €
V]e(z) >0} and all s € R with 0 < s < g,

then system (1.9)) has another nontrivial solution of negative energy for each € € (0, ¢€p).

Remark 1.6. In Theorem the condition (Cs) is interesting, which implies that the
inequality F'(z,s,t) > M(sP +t9) holds only for a point x3 rather than all x € V' and only
for a ray s = ¢ starting at the point (I1,l1) in the plane R? rather than for all (s,t) € R?
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with |(s,t)| > 11 (see Figure[1.1]), which is usually assumed in investigating the existence

of solutions for the elliptic partial differential system with the nonlinear term satisfying

the super-quadratic conditions (for example, see |14]).

B t

Figure 1.1: F(z,s,t) > M(sP + t%) holds only for a ray s = ¢ starting at the point (I1,11)
in the plane R2.

Remark 1.7. Theorem is different from Theorem 1.4 in [12], where they consider (|1.9))
with p = 2 and they assume that f(z,s) := Fs(z,s) satisfies the (AR)-condition (S3)
and (S}). It is easy to see that (f;) in Theorem is weaker than (S]) even if p = 2
and we do not need the (AR)-condition in Theorem Theorem is also different
from Theorem 1.3 in [12] even if p = 2. It is easy to see that (ha) is weaker than (Ka).
Moreover, (h}) is weaker than (hg). In fact, by (hz) we have for any positive constant
B when h(xz) < B, there exists positive constant Bj such that dist(z,z¢) < Bj. So,
A ={z €V |h(x) < B} is a finite set. Moreover, (c2) together with (c3) is weaker than
(S3). There exists examples satisfying Theorem but not satisfying Theorem 1.3 in [12],

for example, let
F(z,5) = M1n(1 4 s%)|s]?,

where M is defined as Theorem [L.5l

2. Sobolev embedding

Let W1#(V) be the completion of C.(V) under the norm
1/s
[ullwsvy = (/VHVU(CC)ls + [u(@)’] du) :

where s > 1 and W1#(V) is a reflexive Banach space (see [20, Theorem 1.1]). Let h(x) >
ho > 0. Define the space

W) = fuewie )| [ el dn < |
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endowed with the norm

1/s
ol = ([ 1901+ rm@I )

Lemma 2.1. If p(x) > po > 0 and h satisfies (Hy), then W;’S(V) is continuously embed-
ded into L™ (V') for all1 < s <r < o0, and the following inequalities hold:

1

(2.1) [ulloo < 7575 [[ullyprs
o h(l]/slu,(l]/s Wy, (V)
and
(2.2) ull rovy < NOST hg ° ||uHW1 “(1) for all s <r < oo.

Furthermore, if (Ha) also holds, then Wi’S(V) is compactly embedded into L™ (V') for all
l<s<r<oo.

Proof. For any u € Wi’s(V), we claim that

(2.3) D lu@) = Julli.

zeV

1/s
(Z !U($)15> < [l oo-

zeV

In fact, assume that

Then there exists a € > 0 such that
(2.4) > lu@)* < (Julleo —€)°
zeV

Note that ||ul|c = sup,cy |u(z)|. Then by the definition of supremum, there exists an
x4 € V such that |u(z)| > [|ulleo — €. Then |u(zy)]® > (||u|lcc — €)*, which together with

(2.4) implies that
u(@)* > (fulloe — ) > Y Ju(@)[* > |u(z.)]",

zeV

a contradiction.
For any u € W;’S(V), we have

(2.5) HUH;V;,S(V) > /‘/h(z)\u(x)\sd,u > ho/v lu(z)|*dp for all s > 1,

and by (12.3)), we have

(2:6) [l > /Vh( = plx) 2)|* > hopollul|, for all s > 1,
zeV
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which implies that
1

ulloe < ﬁ”u”wl’s(‘/) for all s > 1.
ho/sﬂo/s "

When s < r < oo, it follows from ([2.5) and (2.6)) that

s—

u(z)|" dp < ugos/ua:sd,ug,usrh;ur PN
J @ i< i [ Gl die < g7 gl

So, 1
vy < g™ o lallgeqyy for all s < r < oc.

Suppose that {uy} is a bounded sequence in W,i *(V). Note that Wi *(V) is reflexive.
Then there exists a subsequence, still denoted by {uy}, such that up — wu weakly in
Wi’S(V) for some u € W,}’S(V). In particular,

tim [ wpdn= [ updn, Ve v
k—o0 1% 1%
which implies that

(2.7) lim wug(z) = u(x) for any fixed z € V,

k—00

if we choose ¢ € C.(V) defined by
1 ify=ux,
0 ify#ux.

We now prove ug, — uwin L"(V') for all s < r < oo, if (Hg) holds. Since {uy} is bounded in

W;’S(V) and u € Wé’s(V), by the definition of norm || - ||W1,S(V), there exists a constant
h

co > 0 such that

/ hlug —u|® dp < ¢p.
\%

For any given € > 0, in view of (Hs), there exists a constant R(e) > 0 such that

1
h(o) < e asdist(x,z9) > R(e)

Hence,
1
(2.8) / lup — ul® dp = / —hlug —ul® dp < cge.
dist(x,z0)>R(€) dist(z,z0)>R(€) h
Note that {z | dist(z,x9) < R(€)} is a finite set. Then (2.7) implies that

29) fim o~ o dp = 0.
k=00 J dist(z,x0) < R(e)
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So, by the arbitrary of €, (2.8) and (2.9) imply that

(2.10) lim / lup — u|®dp = 0.

k—o0 174

Then by (2.3)) and ( -, we have
S S 1 S
g = ullSe < D u(e) —u(@)]® =Y ——p(@)|ux(z) — u(z)]

zeV zeV ,LL(:L’)

1
<—Zu )| ug(x (x)\‘s:/|uk—usd,u—>0 as k — oo,
0 v Ho Jv

(2.11)

and when s < r < oo, we have

(2.12) / lug — u|" dp < |ug — uH’;OS/ lup — ul®dp — 0 as k — oo.
1% 1%

Hence, (2.10)), (2.11) and (2.12]) imply that up — w in L"(V) for all s <r < oco. O

Lemma 2.2. If u(z) > po > 0 and h satisfies (Hy) and (H)), then Wi’S(V) is compactly
embedded into L™(V') for all 1 < s <r < oco.

Proof. Suppose that {u} is a bounded sequence in W,i’s(V) and there exists a positive
constant Cy such that

(2.13) lukllyrsrry < Co.

Since ||Uk||Ls vy < fV 2)|ug|$dp < hoHuka/V,}S(V)’ we also have that {HUkHLs(v)} is

bounded in R. Noting that W,%’S(V) is reflexive, we have, up to a subsequence, up — u
weakly in Wé’S(V) for some u € W}}’S(V) and 0 = |lug|lps(vy — 6 for some § € R as
k — oo. Similar to the argument of (2.7), we have limj_,oo ux(z) = u(z) for all z € V.
Then for any bounded domain Q C V, we have

/ lug|® dp — / |u|®dp and / |ug|® dp < / lug|® dp — 0% as k — oc.
Q Q Q 1%

Then

(2.14) 6° = [lullzs(q)

For any given constant B > 0, define Q@ = {z € V | dist(z,z9) < B,h(z) < B} for
some fixed zyp € V. Let A(Q) = {x € V/Q,h(x) < B}. Then A = QU A(fQ), where
A={z eV |h(z) <B}. By (Hj), we have ) __, pu(z) < oo and then by the definition of
convergent series, for any sufficient small € > 0, there exists a sufficient large B > % such
that

(2.15) > ula) <e
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Moreover, since h satisfies (Hj), by Lemma we know that W;“S(V) is continuously
embedded into L"(V), s < r < co. So, by (2.2)), (2.13) and (2.15), we have

[ tmldu= [ 1w
A(Q) A(Q)
1/2
S/ !wc%’du> p(x)
(A(Q) ZQ

—1/2; -1 s
SNO hO ||uk||Wi’s(V) Z /’L(x)
z€A(Q)
—1/27 —1 s
to ' “hy Cge for all k€ N.
Define B(Q2) = {z € V/Q,h(x) > B}. Then
h(z) 1 C§
“dp < — g dp < = s <— < Cge forall ke N.
/B(Q) ol = /B(Q) g (el < gl < oc fora
Then

/ ]uklsd,u—/ |uk|3d,u+/ lug|® dp < (p 1/2h0 +1)C§e for all k € N.
V/Q B(Q) A(Q)

Similarly, we also have

1) [ ultdu= [ fulder [l de < eug g 1)l
V/Q B(Q) A(Q)

Let C = max {Cy, ||u||W;,s(V)}. So, by (2.14) and (2.16]), we have

s S S s —1/2
lall3e vy = lullf gy + lullfe vy < 6%+ (g /2hgt + 1) Cie.
On the other hand,

lullzs vy = lullzs @) + lullze o) 2 Hm [luglzs )

— 1 ss o 1 sS >5s 1/2h S .
o el Zs vy el luellZs vy = (ko +1)Cie

Hence, by the arbitrary of €, we obtain that 6° = Hu||sLS(V). Thus we have proved that
lukllps(vy = llullps(vy as & — oo. By the uniform convexity of L*(V) (see [13, Lemma 2.2])
and that u; — u weakly in W,: *(V), it follows from the Kadec-Klee property that |juy —
ullpscvy — 0 as k — oo. Then similar to the argument of and (2.12)), we have
|ur — ulloo — 0 and [Jug, — ul[ ) — 0 for all s <7 < 0. O
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Remark 2.3. Lemma [2.1] generalizes [12, Lemma 2.2] and [13, Lemma 2.6], and Lemma [2.2]
generalizes [4, Lemma 3]. To be precise, when s = 2, Lemmas and reduce to [12,
Lemma 2.2] and [4, Lemma 3], respectively. In [4, Lemma 3], the potential h(x) is allowed
to be sigh-changing, which satisfies (Hj): infyey h(xz) > hg for some hy € (—1,0). One
can prove that Lemma [2.2] still holds under (H{) and (Hj). Moreover, if h(z) = Aa(z) +1,
where a: V — R with a(z) > 0 for all € V, then Lemma [2.1| reduces to [13| Lemma 2.6].
The proofs of Lemmas and are based on those in [4,|12,/13] and we make some

appropriate modifications.

Assume that ¢ € C'(X,R). An sequence {u,} is called as the Palais-Smale sequence
of ¢ if ¢(uy) is bounded for all n € N and ¢'(u,) — 0 as n — oo. If any Palais—Smale
sequence {u,} of ¢ has a convergent subsequence, we call that ¢ satisfies the Palais—Smale
condition ((PS)-condition for short).

Lemma 2.4. (Ekeland’s variational principle |17]) Let M be a complete metric space with
metric d, and ¢: M — R be a lower semicontinuous function, bounded from below and
not identical to +00. Let € > 0 be given and U € M such that

p(U) < i]r\14f p+e.
Then there exists V € M such that
p(V) <o), dU,V) <1,
and for each W € M, one has
(V) < (W) +ed(V, W).
By the Ekeland’s variational principle, it is easy to obtain the following corollary.

Lemma 2.5. [17] Suppose that X is a Banach space, M C X is closed, ¢ € C'(X,R)
is bounded from below on M and satisfies the (PS)-condition. Then ¢ attains its infimum
on M.

Lemma 2.6. (Mountain pass theorem [18]) Let X be a real Banach space and ¢ €
CHX,R), p(0) = 0 satisfy (PS)-condition. Suppose that ¢ satisfies the following con-
ditions:

(i) there exists a constant p > 0 and a > 0 such that ¢|sp,0) = o, where B, = {w €
X lwllx < p};
(ii) there exists w € X \ B,(0) such that o(w) < 0.

Then @ has a critical value ¢, > a with

« = inf t)),
c ;2“2‘[33(]9”(7( )

where T := {y € C([0,1], X) : v(0) = 0,7(1) = w}.



Nontrivial Solutions for a (p, ¢)-Laplacian System on Graphs 565

3. Proofs for the sub-(p, ¢)-linear case
Define the space W := Wf}’p(V) X W,i’q(V) with the norm

|(w,v)||lw = H“HW;P(V) + HUHW;”‘(V)'

Then W is a Banach space. Consider the functional ¢: W — R defined as
1 1
ox(u,v) = — / (IVul? + hy|ulP) dp + — / (IVul? + ha|v|?) du
pJv qJv
/ F(:c,u,v)d,u)\l/ elud,u)\g/ eav dji.
\%4 \% \%4
Then ) (u,v) € CH(W,R), and

((p//\(u’ U): ((bh ¢2)>
(3.2) = /V [IValP 2T (u, ¢1) + I [ulP~2ugy — Fu(,u,v)¢1 — Mergn] dp

(3.1)

+ / [’Vv|q_2f‘(v, o2) + hz‘v’q_2v¢2 — Fy(x,u,v)pe — )\262(1)2] du
1%

for all (¢1,¢p2) € W (see Lemma |A.2)).

Definition 3.1. (u,v) € W is called as a weak solution of system (|1.7) if

(3-3) / [[VulP T (u, ¢1) + haluP~*ug1] du = / [Fu(z,u,v)¢1 + Arer¢n] du,
14 1%

(34) [ (V07200 02) + hafolt200a] dp = [ [, 0)0n + hacacn] do
\%4 %4

for all (¢1,¢p2) € W.

Obviously, (u,v) € W is a weak solution of system ((1.7]) if and only if (u, v) is a critical

point of ¢ and similar to the arguments in [13], we have the following proposition.

Proposition 3.2. If (u,v) € W is a weak solution of system (1.7)), then (u,v) € W is
also a point-wise solution of (1.7)).

Proof. For any fixed y € V', we take a test function ¢1: V — R in (3.3 with
1 ifx=y,
0 ifx#uy,

and a test function ¢o: V' — R in (3.4) with

¢1(x) =

1 ifz=y,
0 ifzx#y.

po(z) =
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Thus, by (1.4]), we have

—Apu(y) + ha(y) lu(y) P~ >u(y)
—Ago(y) + ha(y)|v(y)|7 2v(y)

Fu(y,u(y),v(y)) + Aei(y),
Fy(y,u(y),v(y)) + A2ea(y).

By the arbitrary of y, we complete the proof. O

Lemma 3.3. Assume that (Hy) and (F1) hold. Then ¢ is coercive, that is, ¢(u,v) — 400
as || (u, v)[lw — oo.

Proof. By (F1) and Lemma we have

/wmwww
1%

=/ﬁnaww—F@mmnw
Vv

S/ |F(z,u,v) — F(z,0,v)| + |F(z,0,v) — F(z,0,0)| du
v

|ul [v]
<// @u@mww+// |Fy(e,0,1)| ddy
vV JO

Jul Pa—q |v]
/ (@) ([sP= + o 7)) + g1(x)] dsdp + /0 [fo(@)[t]77" + g2(x)] dtdu

(3.5) |u] lv ‘q
<15 (@) + @) 0] T ul + 2 fo() + g1 (2)u] + gal@)|o] | du
2 OO OO
+Wﬁ“ ol dge gl Bl + 2l Iolzacy
. ) LTy V) L7 ) v)
2| f1lloo  p (p— )Hfl\loo Il f2l oo p
< e -
> phO HUHW;,P(V) + phO qh HUHW}?L](V)
gl 2 l . lgall 22 ol
B WP () Bl Wy (V)

Then, by (3.1) and (3.5]), we have

U2l RS TN R T
> (2 I _
ertw) 2 (3= 20h=y e (22 =M DB e

1

—rlleal ey, + ol g )l
0

1

So ¢ is coercive in W. O
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Lemma 3.4. Assume that (H1) and (F1) hold. Then @) satisfies the (PS)-condition.

Proof. The proof is motivated by [13,[24]. Assume that {(ug,vr)} is a Palais-Smale se-
quence, then ¢\ (ug,vr) — 0 as k — oo and @y (ug,vx) is bounded. By Lemma we
obtain that {(ug,vx)} is bounded in W. Then {ux} is bounded in W,i’p(V) and {vg} is
bounded in Wi (V). Hence we can find a subsequence, still denoted by {uy}, such that
up — Uy, for some uy, € W,i’p(V) as k — oo, and a subsequence of {vy}, which has the

same subscript as the subsequence of {uy}, still denoted by {wvy}, such that vy — vy, for
some vy, € W;’q(V) as k — oco. By Lemma we know that

(3.6)

up = uye in LP(V), v — vy in LY(V) as k — oo.

Then by (3.2)), we have

(3.7)

(O (g, Vi) — O5\ (Ure, Uak)s (U — Upg, 0))

= / [|Vuk|p72f‘(uk,uk —upy) + (hi () |ug [P 2up — Fy(z, wg, vg)) (up — uA*)} du
\4

- / UVUA*‘I)72F(U’)\*7 U, — U)\*) + (hl ($)|UA*’p72UA* - Fu(x7 Uk UA*))(uk - UA*)] d,UJ
1%

= ol + el = [ 9020 s 00) + @) 2] i

)
— / []Vu|p_2F(u>\*,uk) + hl(x)|u>\*|p_2u>\*uk] dpu
\%

+ / [Fu(z, wre, ax) — Fulx, ug, vg)] (up — une) dp.
%

By (F1) and (3.6)), we have

/ [Fu(2, ure, vax) — Fulx, wg, vg) | (up — une) dp

v
< Fu(@, wne, vak) — Ful, ug, vi) [Jur — uas| dp
v

< / [ Fu(@, we, 0)] + | Fou(@s wnes one) [l — el dis
1%

Pg—gq

_ pa=g _
< filloe / (P~ 4 Torl ™5 4 Funal?™ + Jonel 5tk — el dp
Vv

+/gl(x)|uk—u>\*|d,u
1%

. pa—q o pa—q
< Hleoo(|’UkH]2p(V) + HkaLqp(v) + HUA*Hip(V) =+ HUA*HLqp(V))H“k - UA*HLP(V)

+ gl g = o)

— 0.
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Moreover, by (1.1f), we have
/ [[Vug P21 (g, une) + halug P 2 ukun du
\%4

p—1
S/ |Vuk|P—2\VukHVu,\*]du+/ (hlp ‘uk‘P—Quk)(h}/pu)\*) du
(3.9) v v

p

= 1/p
< IVl by 1 Vursliowy + ([l di) * ([ blus.an)
\%4 14

< el Loy [l -

Similarly, we also have
/ [IVurlP 72D (wne, up) + ha (@) fuse [P *usur] dp < HUA*Hi‘;Il,p(V)HukHWml*P(V)-
\% h

So, by (3-7), (B8) and (B:9), we have

(5 (ks vk) — O\ (Wnes V), (g — u,\*,O)>

> ||“k||W1 PV + ||U/\*||p WP (V) ||uk| Wml P V)Hu/\*HW;’p(V)
= trel ko) + 021
-1
= (lunll sy, = Tl ) (el oy = ol o) + or(0).

Hence, ||uk||Wi,p(v) — ||u,\*||W;,p(V) as k — o0o. Then it follows from the uniformly
convexity of W; P(V) (see Lemma D and the Kadec—Klee property that

up — Uy, strongly in W,i’p(V) as k — oo.
Similarly, we can also prove
vk, — Ua, strongly in W,hU(V) as k — oo.

Therefore,

(ug, Vk) = (Ure, Uni) strongly in W as k — oo. d

Proof of Theorem [L.1] By Lemma and the continuity of ), we know that ¢, is
bounded from below. Then by Lemmas [3.4 and [2.5] we obtain that ¢, attains its infimum
on W. Hence, there exists a (uxx, va«) € W such that ¢(us, vae) = inf(, yew w(u,v).

Next, we prove (uy.,vax) # (0,0). Assume that (uy., va) = (0,0). Then ¢(0,0) =
0 = inf(y y)ew ¢(u,v). Let

1 ifx:xl,

ug(x) =
0 if z # x,
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where z1 € V with ej(x1) > 0. If (i) of (F2) holds, then

inf )< inf O, 0
iy oA ) < ) fnf0a(0us,0)

= f 0P || 1 — [ F(z,0u.0)du — A6 «d

it ottty [ P ou0 -0 [ e dn)

< inf < 9p||u*Hp /K1 )0 P dp — )\10/ elu*du>
\%4

6€(0,400)

_ 2 p D B
— (oo uu*uwg,p(v)w(xl)e i) = Afan)er (o))

Note that 81 > 1, p > 1, u(x1) > 0, eg(z1) > 0, K1(x1) > 0 and A\; > 0. Then for each

A1 > 0, there exists sufficiently small § > 0 such that inf(, ,)ew ©(u,v) < 0, which is a

contradiction. Similarly, if (ii) of (F2) holds, we also can obtain the same contradiction.
Moreover, if (uy,, Uax) = (urs, 0), then by , we have

/ (|Vure|? + hilua|?) dp = / Fy(z, upg, 0)unse dp + )\1/ €1z dit.
\%4 \%4 \%4
Hence, combining with (Fy), we have

_1
Mleal e, + ol er )\ 7

ho — Hfl”oo ’

1
W

then by (2.1)), we have

-

lurddioo < 1 ? Mlerllper ) +I9tl5er ) )
A >
T = ho — Hf1||oo
Similarly, when (w4, vx) = (0, V), we have
_1
—1
v (elleallzay ) llgall car )

O

Unslloo < g *
H *HOO 0 hO_HfQHOO

Proof of Theorem [1.2] The proof is similar to that of Theorem in which we only need
to slightly modify the proof of Lemma with replacing (F1) by (F}). We omit the
details. O

4. Proofs for the super-(p, ¢)-linear case

Lemma 4.1. Assume that (Hy) and (Cy) hold. Then for each A € (0, o), there exists a
positive constant py such that p(u,v) > 0 whenever ||(u,v)|lw = pa.
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Proof. Note that F(z,0,0) = 0. By (Cy), for all (s,t) € R? with |(s,t)| < lo, we have

|F(z,s,t)| = |F(x,s,t) — F(x,0,0)]
< |F($737t) —F(IE,O,t” + |F(l’,0,t) —F(LL’,0,0)|

Is| It
S/ \Fs(x,s,t)|ds+/ |Fy(z,0,t)| dt
0 0

Isl p - tp
< [Tt (|s|p—1+|t|”qpq)ds+ / Ot ar
o ¢+1 o ¢+

h
< hi| P + 0 K
plg+1) q(q+1)
2h —q+ph
< 0 |S|p+( q+p) omq.
p(g+1) pq(q+1)

It is easy to obtain that for each A satisfying (1.8)), there exists a €5, > 0 such that
min{l,q — 1} - (Ag — gy )x{pat-1
! “eal

O< A< A=

_1
2max{p.a}=1(pg + p) max {hy * lexll, 25\, O LT V)}

For any (u,v) € W with ||(u,v)||lw = Ao—ex, by (2.1)), we have ||ul|oc < %’ and ||v|eo <

and so |(u(z),v(z))| < ||ulleo + ||v]|eo < lo for all z € V. Then

1 1 2hg
oa00) = bl + 2l = s [l di

q—l—l
(pg—q+p ho/ g /
- d A + dp
(q+1 |U| lu’ V(elu 62/0)
1 2 1 —q+p)
> [ p N [l q
_<p p(q+1)>| e <q pa(q+1) Pl
—)\/(61u+6211) du
(4.1) {‘{ 1)
min{1,q — p .
Pl Gl S |
1
— Amax {h " |€1” p “leall 2, }|| u, v)|lw

<V)’
min{lvq_ } ||( )Hmax{pq}
— amaxiral=l(pg + p)

_1
—)\max{ho ”||61HL%(V) H 2|| 4 }H u,v)|lw

lo

2

for any (u,v) € W with ||(u,v)|jw = Ag—ex. Let py = Ag—e,\. Hence, for each A € (0, o),

there exists a py such that ¢(u,v) > ay > 0 whenever ||(u,v)||w = pa, where

min{l,¢q— 1} pmax{p,q}

_1
— p
Qmax{p,q}—l(pq +p) A A max {ho llea]]

(4.2) ) =

LT vy o eall g7 ) 1PN

O



Nontrivial Solutions for a (p, ¢)-Laplacian System on Graphs 571

Lemma 4.2. Assume that (Cy) holds. Then for each A € (0, o), there exists a (Ui, Vsxr)
€ W with ||(wesx, Visn) [ > pa such that (U, Vasy) < 0.

1 if x = z3,
u(z) = v'(z) =
0 if x # a3,

where x5 € V with p(z3) > 0 and e;(z3) + ea(z3) > 0. Then

| v au= 3 v pant)

Proof. Let

eV
p/2

- Z <2M1(55) way(U*(y) - U*(ﬁ))2> ()

eV Yy~

1 p/2 1 p/2
(4.3) - (2,&(1’3) yg?) wx3y> plzs) +m§z: (QM(IL‘) m;m wzxg) ()
_ ((deg(ws)\"? deg(x3)\"/?
- <2M($3) ) #lzs) +x~2x3 ( 2pu(x) ) n(x)
deg(z3) p/2 1 \»/2-1 1

() (2 G) )
= Dl.

Similarly, we have

Thus, by (Cs), for all s € R with s > 1}, we have

—+

sp|

erlo507) = T By + S0 Wy = [ Plassu @) s (@) d

— )\/ (seru™ + seqv™) dp
\%4

- ‘j:(D1 + p(z3)ha(w3)) + Sqq(DQ + n(xs)ha(3))

— w(x3) F(x3,s,8) — Asp(xs)(e1(zs) + e2(x3))
< S;)(D1 + p(z3)ha(x3)) + Sqq(D2 + p(3)ha(3))

— Mpu(xs)(s” + s7) — Asp(as)(er(xs) + ea(s))

_ (Dl + p(xg)h(zs) Mu(m3)> g <D2 + p(w3)ho(x3)
p q

— Asp(zs)(er(x3) + ea(x3)),

- MM(373)>
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which implies p(su*, sv*) = —oo0 as s — +00. Hence, for each A € (0, \g), there exists sy
large enough such that ||(sxu®, sxv*)|lw > pa and p(sau*, sxv*) < 0. Let uwy = shu* and
Vs = S20*. Then the proof is completed. O

Lemma 4.3. Assume that (Fy), (C3), (Hy) and (H}) hold. Then for each A € (0, o), @
satisfies the (PS)-condition.

Proof. Let {(ug,vr)} C W be a Palais—Smale sequence of ¢). Then there exists a positive

constant ¢ such that
loa(ug,vp)| < c forall k € N and ¢\ (ug,vr) = 0 as k — oo.
Then, by (Cs3), we have
¢+ Huk”wévp(v) + ”UkHW;vq(v)
= ¢+ [[(ur, v)[lw

1
> o (ug, vg) — ;<‘Pl)\(ukﬂ’k), (uk, vg))

(11 ) 11
- ]; - ; ”uk”Wé’p(V) + 6 - - || /€||W1 Q(V)
1
- / [VF($,Uk,Uk) - Fu(x7ukavk‘)uk‘ - Fy(.’L',Uk,Uk-)Uk-] d,LL
14

-1
(44) — v )\/ (eluk —+ €oVE

1

)di
> (5= 3) lualtan, ( )1kt

—/ (Juf” + [v]?) dp — /(61Uk+6zvk)du

S(1_1_ A [P + 1.1_4 vg|?
“\p v vhy Flwke ) qg Vv l/ho Fllwlavy

~w=DA

(a7 lleall g Bl + B " leall 2 o Bkl
We claim that ||(ug, vg)|lw is bounded. In fact, if
(4.5) ||uk||W;,p(v) — 00 and ”U’fHW}}‘I(V) — 00 as k — oo,

then (4.4]) implies that

(v —=DA -3
¢+ [|(ug, o) lw + — %(V),ho [[e2]]

> mi 1 1 i 1 l i (” ||P _|_|| Hq )
=T\ vho) ' \q vho ) | R we e IRy

v v
. 1 1 A 1 1 A 1 in(pa}
> S a 11 AN, 1 7
- mm{<p v Vh0> ’ <q v Vh0>} gmin{p,q}—1 1 Cute, )y

patt oy 1 o) llw
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for all large k, which contradicts with (4.5)). If
(4.6) HukHW}i,p(V) — 00 as k— o0

and |lvg]| ;1.0 (v) 18 bounded for all £ € N, then by (4.4)), there exists two positive constants
h
co and c¢; such that

1 1 A »
co + ClHukHW}}»P(V) = p v vhy ”uk”W}}’P(V)

which contradicts with (4.6]). Similarly, if ||v;g||Wi,q(V) — o0 as k — oo and ||uk||W;,p(V)
is bounded for all £k € N, we can also obtain the same contradiction. Hence, the above
arg%u'nents imply that both HukHW;,p(V) and HkaW;,q(V) are bounded. So there exists a
positive constant ¢y such that HukHW’i,p(V) < ¢ and HkaW;,q(V) < ¢g. Then we can find a

subsequence, still denoted by {uy}, such that u, — u} for some u} € W,i P(V) as k — oo,
and a subsequence of {vy}, which has the same subscript as the subsequence of {uy}, still
denoted by {vy}, such that vy — v} for some v} € W}i’q(V) as k — co. By Lemma [2.2

we know that
(4.7) up — uy and vy — vy in L°(V) as k — oo.
Then by , we have

(DA (u, vr) — @A (13, 1), (ug, — 3, 0))

il P e /V [IVun P2 (g, 13) + o () g [P~ ugus] dpe
- /V (V3|72 (5, we) + b (@) 3|~k ] dp

+Aﬂ%@w%ﬂ)—ﬂmu%www%—Ume

Let A1 = ¢ hl/”l,f/p + ¢ hl/ql,f/q and A = [|u}||ec + ||V} |loo- By (Fo) and (4.7), we have
0 0 0 0

/WWWM@—R@WMWWﬂWW

Vv
< ‘Fu(‘rvu;vvi)_Fu(x7uk7vk)”uk_u§\‘d:u
1%
s/WMa%wwﬂam@wmmwwmm
5

s&mmammmﬂﬂ@m+ mxamwmAM@WMw—@m

sb)|<A; |(s,)| <Az

— 0.

The rest of arguments are the same as Lemma O
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Lemma 4.4. Assume that (C1) and (C4) holds. Then for each A € (0,)), —o0 <
inf {o(u,v) : (u,v) € By, } <0, where py is given in Lemma and B,, = {(u,v) € W |
1w, v)lw < pa}-

Proof. Let
1 if x = x4,

0 if x # a4,

where x4 € V with pu(x4) > 0 and e;(x4) + e2(x4) > 0. Hence, by (4.3), we obtain that

o e (520 (5 () )

xT~Ty
q/2
Dy ;:/ Vo™ |4 dy = (deg(“)) (
v 2

1\ 1
> (o) )
p() pu(wa)
Then for each A € (0, A\g), by (Ca), for all £ € R with 0 < ¢ < I3, we have

T~T4

At 00™) = g 0 ) - /V Fla, tu™(2), 00" (2)) dp

1 /v (teru™ + teav™) dpa
(4.8) = t;(Ds + p(@a)h(z4)) + t;(D4 + p(@a)ha(z4))
— p(za) F(z4,t,t) — Mp(2a)(e1(za) + e2(z4))
< (Da+ planha(en)) + (Da+ plea)ha(en)
+ Ks(za)p(a) [t — Mp(xa) (e1(24) + e2(24)).

Note that p > 1, ¢ > 1, 3 > 1 and K3(z4) > 0. By (4.8), there exists a sufficiently small
t1,) satisfying

. P P
O<t1,>\<m1n{2”u**|| . ,2”'[)**” 1 }
W, (V) W, (V)

such that (1 yu™, 1 \0*™*) < 0. Clearly, |[(t; \u™*, t130™)|lw < pr. Hence, inf {p(u,v) :
(u,v) € By, } < p(t1au™,t1 \v**) < 0. Moreover, it is easy to see that (4.1)) still holds for
all (u,v) € B,,. Then
_1 _1
() 2 —Ama {hy el oy e

( Lty PN

which shows that ¢ is bounded from below in B, for each A € (0, A\g). So inf {¢(u,v) :
(u,v) € By, } > —o0. O
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Proof of Theorem [I.3] By Lemmas [2.6] [£.1], [£.2] and [£-3] we obtain that for each \ €
(0, X0), pa has a critical value ¢, > a) > 0 with

« = inf t)),
¢e = Inf max ox(v(1))

where
[':={y € C([0,1], X) : 7(0) = (0,0),7(1) = (usx, vx2)}

and a) is defined by . Hence, by Proposition system has one solution
(u™, v™) of positive energy. Obviously, (u™,v™) # (0,0). Otherwise, by the fact that
F(z,0,0) = 0 for all z € V, we have @(u™,v*) = 0, which contradicts with ¢, > 0.

Next, we prove that system has one solution of negative energy if (C4) also holds.
The proof is motivated by [6, Theorem 3.3]. In fact, by Lemmas and we know
that

—oo < inf gy < 0 < inf @y
B aB,
PX A

for each A € (0, Ag). Set

1
— 0, inf — inf 77T,
€ ( 76%1 Px — 1n <PA>, n e

n o By,

Then there exists a (uy,vy,) € B,, such that

1
(4.9) O (tUn, vyp) < inf @y + e

B,

As o (u,v) € CHW,R), we know ) (u, v) is lower semicontinuous. Thus, by Lemma
we have )

@A(umvn) < QO)\(U,U) + E”(uﬂ}) - (unvvn)HW’ V(u, U) € EP/\'
Note that

1
(P)\(UTM’UH) < Lnf poxt+— < Bllr?lf ©x-

By, n P
Thus, (up,v,) € B,,. Defining M, : W — R by
1
Mn(u7v) = (p)\(u,’l)) + ﬁ”(uvv) - (Um'Un)HWa

we have (up,v,) € B,, minimizes M, on B,,. Therefore, for all (u,v) € W with
| (u, v)||w = 1, taking ¢ > 0 small enough such that (u, + tu,v, + tv) € B,,, then

M, (up, + tu, vy, + tv) — My (up, vy)

>0,

which implies that



576 Ping Yang and Xingyong Zhang

Similarly, when ¢ < 0 and |¢| small enough, we have

Hence,

(4.10) 13 (tn, vn) || <
Passing to the limit in (4.9)) and (4.10), we conclude that

oA(tn,vy) — inf ) and  ||@) (up,vn)|| = 0 asn — oc.
Px
Hence, {(un,vn)} C B,, is a Palais-Smale sequence of ). By Lemma {(un,vn)} has
a strongly convergent subsequence {(unk, Vnk)} C By, and (unk, Unk) — (W, 0**) € B,

as ni — oo. Consequently,

*k *k )

ox(u™, v*) = inf o <0 and ¢\ (u*™*,v*) =0,

PX

which implies that system ([1.7]) has a solution (u**,v**) # (0,0) of negative energy. [

5. Examples
Example 5.1. Let p = 2 and ¢ = 3. Consider the following system

(5.1) —Au+ hi(x)u = Fy(z,u,v) + \er(z), z€V,

| ~Agv + ha(2)o = Fy(,u,0) + Maea(x), z €V,
where G = (V, E) is locally finite graph, the measure p(x) > pg = 1 for all x € V,
hi: V=RV i=1,2 hi(z) = 3+dist(z, 1), ho(z) = 3+ dist(x, z3), where 1 and z2 are
two fixed points in V and p(z1) = p(za) =1,
(35/3+t5/3) if x = a1, x9, 1 if z = 21,20,

el(z) =ez(x) =

3
F(z,s,t) = b
0 if x # 1, x9, 0 if x # z1,x9,

and A1, Ao > 0. Next, we verify that hi, ho and F satisfy the conditions in Theorem [1.1

e Obviously, when dist(x, z;) — 400, hij(x) = +oo and h; > hg = 3, i = 1,2. Hence,
h; satisfies (H;), (Ho), i =1, 2.
o Let
1 ifzx= T1,x2,

file) =1, gi(z) = _
0 ifx#xq,x9.
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Then

. [ho  pho 3
Hfﬂoo:1<mm{2 e 1)}:2, gl = V2.

Moreover,

|Fo(,5,8) = [s]*? < |s| + 1 < fa(@)(Is] + [¢[*?) + g1 ().
Similarly, let
fo(@) = fi(z),  g2(z) = g1 ().
We also have
|Fi(w,s,6)] = |72 < t? + 1 < fa(@) (s + [t°) + g2(2).
Then F(x,s,t) satisfies (F1). Hence, F(x, s,t) also satisfies (Fy).

e Let

Then 5
F(.Z‘,$70) 2 _S|S|5/3'

Hence, F(z,s,t) satisfies (i) of (F3).

Hence, by Theorem for each pair (A, A2) € (0,400) x (0,400), system ) has

one nontrivial solution (uj4,vy.). Furthermore, if (ujs,vae) = (uxs,0), then Hu,\*HOO <
1/2

g()\l +1). If (ung, Vax) = (0,024), then |[vaclloo < 21/3(%) /2,

Example 5.2. Let p =2 and ¢ = 3. Consider the following system

—Au+ hy(x)u = Fy(z,u,v) + Xei(z), z€V,
—Asv + ha(x)v = Fy(z,u,v) + Aea(z), w €V,

(5.2)

where G = (V, E) is locally finite graph, the measure p(z) > po > 0 for all x eV, e,e €
L2(V), e1(x),ea(x) Z 0 and A > 0. hy(z) = ho(z) = c1 dist(z, 1) — W + 2, where
¢1 is positive constant and 7 and x9 are two fixed points in V' with ej(x1) + e2(x) > 0,

F(z,s,t) = MIn(1+s* +t1)(s* + 1), M = max{Dﬁ‘;Lz;)Sl(:m, D2+‘§£f(§mh2 21) } +1>1,
Dy = 98 (54 4 1), and

[ deg(x1) 3/2 1 1 )
v (757) (Z Vi) Vi)

where $4 is the number of elements in the set A={x € V |z ~ x}.
We verify that hq, ho and F satisfy the conditions in Theorem
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e Obviously, h1, hgy satisfy (H;) and hy = 1.

e For any given constant B, when h; = hg = ¢; dist(x, z1) +2 < B, we

1
dist(x,z2)+1
have

cpdist(z,z1) < B—2 <B-1.

* dist(z, x2) + 1
Moreover, since V' is a locally finite graph, the set A; = {z € V | h; < B} C {x €
V| dist(z,z1) < B — 1} is finite. So, 37 4, p(z) is finite, (Hj) holds.

e By F(z,s,t), when |s| and |¢| < 1, we have
453(s* + 1)
1+ st +t4

|s]2(s* 4 t%) 3 4, .4
<4pM (=2 1 t
< <1+84+t4+|s|(+s+ )

< AM(4]s® +t4).

|Fy(z,5,t)| = M + 453 In(1 + s* + %)

1
16v M

Moreover, when |s| <

and [t| < W, we have

1 1
16M|s|® < 11l AMt* < 1|t|3/2.

So, when |[(s,t)] < ﬁ, Fy(z,s,t)| < L(|s| + [¢*/?). Similarly, when |s| < ﬁ

and |t| < 557, we can prove that

1
|Fy(x,5,t)] < AM(4)t]> + s%) < 1(52 +t2).
Hence, when |(s, t)| < &7,
1 1
|Es(@,s,8)] < 2 (Is[+ t*?) and  |Fy(z,s,t)| < 167+ 1),

It is that (Cy) holds.
e When s > 1, F(z,s,5) = 4s* In(1 + 25%) > 4(s% + s). So, F satisfies (Ca).

. Letu:4andA:%. For all x € V', we have
AF (z,s,t) — Fs(z,s,t)s — Fy(z,s,t)t = —4M

So, (C3) holds.

e Let B3 =2 and K3(v) = 1. For all s € R, F(x,s,s) = 2Ms*In(1 + 2s?) > —s2. So,
(C4) holds.
. 1 . 1/2 1/3 2
Hence, by Theorem (1.3 when 0 < A < mm{mmm{uo o }’1} , System has one
s2max { lerll 2 vysllezll /2 §
nontrivial solution of positive energy and another nontrivial solution of negative energy.
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6. Conclusion

The existence of nontrivial solutions for system is investigated when the nonlinear
term F' satisfies the sub-(p, g)-linear condition or super-(p, g)-linear condition, which gen-
eralize some results in [12] in some sense. We present the concrete ranges of the parameter
A1 and Ag. For the sub-(p, ¢)-linear case, we furthermore obtain a necessary condition for
the existence of the semi-trivial solutions, and for the super-(p, ¢)-linear case, we present
a weaker assumption of F' than the well-known (AR)-condition. However, we do not in-
vestigate the existence of the non-semi-trivial solutions. A possible method to solve the

problem can be referred to [2,3] and we shall try to do it in future works.

A. Appendix
In this section, we present some conclusions about W; *(V) and ).
Lemma A.1. W;’S(V) 18 uniformly convex for all s > 1.

Proof. Since L*(V') is uniformly convex for all s > 1, by using Theorem 8 in |21}, we have F

is uniformly convex, where E = L*(V) x L*(V') with ||(u,v)||g = (HuHsLS(V) + HUHSLS(V))I/S.

Define T: W,*(V) — E by
T(u(x)) = (|Vul(z), h(x)*u()),

where h(xz) > hg > 0. Then

ITW)le = (IVellfs ) + ||h1/su|\is(v))1/s = (/V [Vul® + h\ulsdu> - = llullyy sy
So, T is an isometry. Hence, Wé *(V) is uniformly convex. ]
Lemma A.2. If F(x,s,t) satisfies (Fo), then py € C*(W,R), and

(' (u,0), (D1, 02)) = /V [IVulP~2T (u, ¢1) + ha|[ulfP"2ugy — Fy(z, u,v)¢1 — Aerr] dp

+ /V [[V]772T (v, ¢2) + ho|v]|7 2vds — Fy(x, u,v)d2 — Aead] du.
Proof. Let
G(z,u,v) = ~(|Vul” + by |ul’)u(z) + ;(!Vvlq + hafo|")u(x)

1
p
— F(z,u,v)u(x) — Aiequp(z) — Agequu(x).
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Then ) .y G(z,u,v) = pr(u,v). For any given (¢1,¢2) € W and 6 € [-1,1], we have
G.(0) 2 G(z,u+ 0¢1,v + 0¢2)
1
= Z;(lv(u +001)[P + hau+ 061]7) ()
1
+ a(W(U +092)|* + halv + 0¢a| ") u(x)

— F(w,u+ 061, 0+ 062)u(x) — Arex(u-+ 061 )u(x) — Aaea(v + 062)u(x).

Hence, by (Fo) and (1.2]), we have

(A1)
2r—1

G(0) < ’ (IVul” + haful” + [V [” + ha|¢1]") ()

241
+ T(’V’U’q + halv|? 4+ |V a|? + ha|p2|?)pu(x)

+a(|(u+ 01,0+ 0¢2))b(z) () + Mler(u + 0¢1)|u(x) + Aglea(v + 062)| ()

op
< T(IVUI”+h1\UI”+ [Vo1]” + ha|gn|P) ()

241
+ T(’V”’q + halv|? 4+ |V a|? + ha|g2|?) u(x)

max a(|(s,t))b(x)u(z
[(s,0)|<I|ttll oo +Iv]loo+ P11l 00+l D200 (I DDb()p()

+ Afer(u+ 60)|ae) + Aalea(v + éo) ().

Since u,¢1 € WHP(V), v,¢5 € WHU(V), a € L¥(V), b € L}NV), ey € Li1(V), e €
L#(V), then i, G(0) is convergence for all 6 € [—1,1]. Moreover,

10
E%W(U +0¢1)P

— I+ o2

;rv<u+9¢n>|p 00t 661,04 69)
:;rvwwwp-?a( (@7 2o wnl(u) + 00100) = (o <x>+e¢1<m>>12)

= [V 0002 s 3w [(0(0) +061(3)) = (@) + 061 (@)](1 () = 1 (0)
= 9+ 800 s 3 ey () = )61 () = 1)+ 661 () = 0n ()]

= |V(u+01)[" (I (u, ¢1) + T(001, ¢1))
= |V(u+061)[" T (u+ 061, 61).
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Then
0G.,(0)
00
= |V (u+061)[P~2T(u+ 061, 61) () + |V (v + 0¢2) |7 2T (v + 02, ¢2) ()
(A-2) w01 P2 (w + 061)d1 () + holv + 0|72 (v + Og) dopu()

— Fuyog, (T, u+ 001,04+ 002)p11(x) — Fyrop, (T, u + 0d1,v + 0p2)pop(r)
— Ae1g1u(x) — Aaeagap().

Since F(x, s,t) is continuously differentiable in (s,t) € R? for all x € V, it is easy to obtain
aGI(e)
that

(A.3)
G, (6)
00

< |V (u+ 060) PV enl(@) + (hy/Plu+ 01 ])"~ hy/? |61 ()
+ |V (0 + 02) |17 Vol pa(x) + (hy/*[v + 0pa]) "™ hy/ | ol ()
+ (|Ful¢1 + |Fy |¢2+9)\161¢1+0)\262¢2) (x)
< (IV(u+ 060 + halu+ 06117) 7 (|v¢1\p+h1|¢>1|p) e
T (V0 + 069) 1% + halu + 06a]%) T (6ol + haln]?) /()
al(s,t)|b(z)(d1 + d2)pu(x) + Aile1or|p(x) + Ao|eapa|p(x)

is continuous in [—1,1]. By (Fp), we have

max
I(s, )\<IIU||oo+|| floo

(p p P p P p p\1/p
<2 (WU| + [Vé1|P + hi|u? + hq| 1] ) (|V¢1| + ha|o1]P) " ()

2 (IVvlq + V627 + hafv]? + hol|?) T (\ngqu + halea|?) ()
al(s,t)[b(x) (1 + P2)pu(x) + Mlergr|p(x) + Azleade|p(z)

max
|(s:t)[<[lulloc+[[loo

<27 ((|Vulp+h1|U|p)p (VO + hlor) T ) (9611 + halor ) ()

L2 ((IVv|q+hzlv|> + ([Val? + halga]?) T ) (V2] + haldal?) /()
al(s,t)[b(@) (1 + g2)p(z) + Ailerdr|p(z) + Azleado|u(x).

max
(s,8) <]l ulloo+ V]l
Moreover, we have

0G<(9)
o0

zeV
p—1

(p=1)2 =l N
<27 (DD ((Vul + ful) 7 + (Vi + halgnP) 7 )7

zeV

1/p
X <Z |V¢>1|p+h1|¢>1|p> ()

zeV
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g-1
(a=1)? g=1 g=1, _a_\ *?
+2 0 [ D (V0" + halv|?) @ + (Vo] + halga]) @ )7
zeV
1/q
X (Z |V¢2\q+h2\¢2|q> w(z)
zeV
max al(s,)|||b(z)| 11 ?1 + 2|00
e al( D@ 6+ ]
+>\1||€1HLﬁ )H¢1||Lp(v +>\2H€2||Lq—1 )||¢2|!Lq(V)
p-1
(=1)2%+1 P
<2 [ (IVul + halul? + [Vrl? + halen ) ()
zeV
1/p
X (Z(|V¢1\p+h1\¢1lp)ﬂ(fﬁ))
zeV
q—1
(g=1)2+1 a
(A4)  +270 [ 3 (190l + hafol? + [Veal? + holal?) ()
zeV
1/q
X (Z(|V¢2\q+h2!¢2|q)u(fv)>
zeV
max al(s,t)|||b(z D1 + 2|00
s oy, A& DM@ W llor + 2]
+ Alea]] Ly H¢1||LP(V)+>\2|\€2||qu—1(v)||¢2|!m(m
(p=1)2+1 p—1
=2 7 (lulfyiopy) T 1o1linny) * Iélwieey) + Alell, e H¢>1||Lp(v
(@=1)2+1 a . a-1
2 (HUHWLq(V)JFH¢2||W1,q(v)) ! ||¢2HW1Q Jr>‘2||‘32” L H¢2||Lq
max al(s,t)|||b(x)]| 1 01 + 92|00
el ) 61+
(p71)2+
<2 (Hu”WlP (V) + H(blHWlp V))Hd)luwlp (V) +)‘1”€1H s H¢1”LP
(a— 1) +1
+2 (Hvllwlq(v +||¢2|!W1q llézllwra) + Aallezl L 2l za(v)

al (s, )[[[b() [l L2 (v |61 + d2lloo-

max
(s:t)[<llulloot([vloo

So, we obtain that ) 8%’0(9) is uniform convergence. Let H(0) = > 78(;5”9(0)

A(u+ 81,0+ 062). Then by (KT)-(A), we have

/ 9G.(0)
- (55
eV 09

0=0
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(A.5) = Z [IVulP=2T (u, ¢1) + halulP~?udr — Fu(z, u,0)¢1 — Meidr] p(x)
zeV
+ > [IV0972T (v, ¢2) + halv|" 2o — Fy(x, u,v) 2 — Aaeada] ()
zeV

= <(,0,)\(’U,, U)’ (¢1a ¢2)>
So, for any given (¢1, ¢2) € W, by (A.5) and (L.1)), we have

<g0//\(u7 U): (¢17 ¢2)>
/ (VP [Ver| + hululP~2ugr — Fu(z,u, v)p1 — Arerdn] d

/ (V0] (Vo] + hafo]206s — Fy (e, u, v)bs — Aeads] dp

p

- 1/p e 1/p
< </V|Vulpdu> (/Vlwllpdu) +</Vhlrulpdu> (/Vhllqmpdu)

g—1

% l/q e l/q
+( / IVvlqdu> < / |v¢2|wu> +< / hzlv!qdu) ( / h2|¢2|qdu>

+ / (IFuld1 + [Fylda + Aie101 + Aaeabfa) dp
< Jullfy W1 (V) ||¢1HW1#’(V) + [|v] ({1/[;11,11(\/)”¢2”le‘1(‘/)
+ [ alltwo)Dba)(@r + da)du-+ [ Ouerdn + daeads)du
v v

< Nl o 11wy + [0lfya o 182 llwiaw)

al(s, D[l vy (1 d1lloo + [[d2ll0)

max
(s:t)[<llulloot([v]loo

_1
+ Ak "lleall ey lénllwe ) + A2hg q||62HLﬁ(V I p2llwraqv)

< max{llullwlp Hvllwlq(v Hi(o1, d2)llw

1 1 } N

, max
(hopo) /P (hopo)t/ |<st>|<||u||oo+uvuoo

_1
+ max {Aih lell 72y 1y A2fto % le 2||Lq—1(v)}\|(¢17 $2)llw-

+max{ al (5, B) 18]l o 1 (@1, 6) 1w

Thus, ¢\ (u,v): W — R is bounded and linear operator, that is, ¢ (u,v) € W* which is
the dual space of W. Define the mapping ¢\ : W — W* by

(p’/\: (u,v) — gp&(u,v).

Next, we prove that ¢) is continuous in W. For any sequence {(ux,v;)} C W with



584 Ping Yang and Xingyong Zhang

(ug, vg) — (u,v) in W as k — oo, we have

/|V(uk—u)]pdu—>0, /|(uk—u)|pdu—>0,
v 1%

[ Iv— a0, [ - vltdu— o
\% \%4

and by (2.1]), we have

(A.6)

(A.7) ug(z) = u(z), vg(z) = v(z) forallz eV ask — oc.

Note that

<‘pl/\(ua U) - ‘pl)\(uk‘a Uk)a (¢17 ¢2)>

VulP 2T (u, ¢1) — [Vug P 72T (wg, ¢1) + ha ([ulP~*u — [urP~>ur) é1] dpe

—

v

+ [\Vﬁu!qﬂf(v, $2) — | VR |7 2T (vg, ¢2) + ha(|v]? %0 — \vk\q*%k)@] dpu

—

(Fu($7u7 U) - Fuk(l‘,Uk, Uk))¢1 d:u - A(Fv(xauvv) - ka (.%', ukavk))d)Q d,u
— [ FuP P w b duet [ (VA - VP ) o) de
\% \%

_l’_

—

ha(JufP~?u — Jug [P~ 2ug) 1 dps — / (Fu(z,u,v) — Fy, (2, ug, vg)) 1 dp
%
+/ Vol D (v — vk,¢2)du+/(\vv!q_2 — |Vor| )T (vg, p2) dps
v 1%
+ / h2(|U‘q_2U - |Uk|q_21)k)¢2 d:u - / (FU(Q’J,U,’U) - ka ('Ia ukvvk))ng dlu’
1% 1%
=1+ 11.
Firstly, we prove that
I= [ 9uP D= u o) dut | (ValP™? = (Va0 (1) d
1% v
+/ ha ([ufP~u — JuglP~?ug)p1 dp — / (Fu(x,u,v) — Fy, (2, ug, vg) )1 dp
v 1%
—0 ask — oo.

By using Lemma 5.12 in [13], we have

/ hl(]u\p 2u — \uk\p QUk)(ﬁl du,
14
p—1

., =t 1/p
(A.8) < (/V hl(]u\p_Qu _ ‘uk‘p—Quk)ﬁ du) </V hilé|? d#)

—0 ask — oco.



Nontrivial Solutions for a (p, ¢)-Laplacian System on Graphs 585

Similarly, by (Fp), Lebesgue dominated convergence theorem, (A.7)) and the continuity of
F,,, we also have

/V (Fu(, 1,0) — Fy (&, g, 0)) b1 dp

A ([ (o) = P )T dn)pz’l ([ 1enran) l/p

—0 ask — oco.

Moreover, by Holder inequality and (A.6)), we get

/ \Vu|p*21“(u — ug, ¢1) dp
v

g/ IVul? 2|V (1 — )| - |Ven| dp
1%

p

Al 1/p (p—2)p p %
(A.10) < </ !V(u—uk)|pd,u> (/ a5 VP du)
\4 1%

p—2
p

<(/ N<u—uk>|pdu>1/p ([rvaran) ™ (] |V¢1|pdu)1/p

—0 ask — oo,

and
[Vl = 19 ) ) e
< [ 119uP=2 = Va2 Fu] - 1961 d
= [ P29 = (V91 d
= [ 19219l + (V] = [Val)] = (Dl [V d

:/ HVu\p_l—\Vuk|p_1\|V¢1\du+/ Vul? 2| Vug| — |Vul|[Vén| du
1% 174

v e 1/p
-1 —1|52 P
< ([ 1wt = v an) " ([ o)
\%4 %4
;

(p—2)p _p_ Tl 1/p
([ vl - val P an) ([ 9l an)
1% 14
p—1

<(p-1) (/V|V¢1\pdu>1/p

X (/ |[Vu| — |Vuk]|’f%1(wuk\p72 + \Vu|p72)1% d,u) ’
\%
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p—2
p

([ \vadu)l/p ([wara) ™ ([ Hwk\—rwupdu)l/p
<w-0( [ [werra) " ([ 190w an) ”

p—2

X (/ (VuglP~2 + |VulP~2)7-2 d,u> ’
v

p—2
P

+< / \V¢1|pdu>1/p ( / |Vu\pd/i> ( / \V<uk—u>|pdu>l/p
o= ([ 1worpan) " ([ 190w an) v

p—2

iSEIN)

<2

. ( [ (vl + wup) du) ’
Y p—2
P

([ \wupdu)l/p ([wara) ™ ([ |v<uk—u>|pdu>l/p

—0 ask — oco.

So, by (A.8)—(A.11)), we obtain that

I—0 ask— oo.

Similarly, we can prove that
II -0 ask — oc.

Hence,
<<pl/\(ua U) - cpl)\(ukavk)v (¢17¢2)> —0 ask — oo.

Then ¢, is continuous. O
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