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Existence and Multiplicity of Nontrivial Solutions for a (p, q)-Laplacian

System on Locally Finite Graphs

Ping Yang and Xingyong Zhang*

Abstract. We generalize two embedding theorems and investigate the existence and

multiplicity of nontrivial solutions for a (p, q)-Laplacian coupled system with pertur-

bations and two parameters λ1 and λ2 on locally finite graph. By using the Ekeland’s

variational principle, we obtain that system has at least one nontrivial solution when

the nonlinear term satisfies the sub-(p, q) conditions. We also obtain a necessary con-

dition for the existence of semi-trivial solutions to the system. Moreover, by using the

mountain pass theorem and Ekeland’s variational principle, we obtain that system

has at least one solution of positive energy and one solution of negative energy when

the nonlinear term satisfies the super-(p, q) conditions which is weaker than the well-

known Ambrosetti–Rabinowitz condition. Especially, in all of the results, we present

the concrete ranges of the parameters λ1 and λ2.

1. Introduction

Some research results on the existence of solutions of partial differential equations on dis-

crete graphs have been applied in machine learning, image processing and other fields.

For example, in [7–9], Elmoataz et al. studied the existence and uniqueness of solutions

of p-Laplacian equation subject to the Dirichlet boundary condition on a weighted con-

nected graph, and showed that this operator can be applied to some inverse problems in

image processing and machine learning, including filtering, segmentation, clustering, and

inpainting. In [1], Bougleux et al. proposed a structure-preserving filtering framework

based on p-Laplacian operator on directed graphs. They showed that this method can

obtain better smoothing quality during imaging. In [10], Ennaji et al. discussed the rela-

tionship between some stochastic games named Tug-of-War games and a class of nonlocal

partial differential equations on graphs and showed that it covers several nonlocal partial

differential equations on graphs, such as p-Laplacian equation, ∞-Laplacian equation and

Eikonal equation. Moreover, they also showed that it can be used to solve several inverse

problems in imaging and data science.
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Next, we recall some basic knowledge of discrete graphs. Let G = (V,E) be a locally

finite and connected graph, where V denotes the vertex set and E denotes the edge set.

We say that (V,E) is a locally finite graph if for any x ∈ V there are only finite edges

xy ∈ E. Moreover, we say that (V,E) is a connected graph if any two vertices x and y

can be connected via finite edges. For any edge xy ∈ E, assume that its weight ωxy > 0

and ωxy = ωyx. For any x ∈ V , its degree is defined as deg(x) =
∑

y∼x ωxy, where we

denote y ∼ x if there exists y ∈ V such that edge xy ∈ E. The distance of two vertices

x, y, denoted by dist(x, y), is defined as the minimal number of edges which connect x,

y. Let µ : V → R+ be a finite measure, µ(x) ≥ µ0 > 0, and C(V ) be the set of all real

functions on V . Define ∆: C(V ) → C(V ) as

∆u(x) =
1

µ(x)

∑

y∼x

ωxy(u(y)− u(x)).

The associated gradient form is

Γ(u, v)(x) =
1

2µ(x)

∑

y∼x

wxy(u(y)− u(x))(v(y)− v(x)).

Write Γ(u) = Γ(u, u). We denote the length of the gradient is

|∇u|(x) =
√

Γ(u)(x) =

(
1

2µ(x)

∑

y∼x

wxy(u(y)− u(x))2

)1/2

.

We can obtain that the gradient has the following properties:

Γ(u1 + u2, v)(x) = Γ(u1, v)(x) + Γ(u2, v)(x),

Γ(u, v1 + v2)(x) = Γ(u, v1)(x) + Γ(u, v2)(x),

Γ(θu, v)(x) = Γ(u, θv)(x) = θΓ(u, v)(x) for all θ ∈ R,

Γ(u, v) ≤ |∇u| · |∇v|,(1.1)
∣∣|∇uk| − |∇u|

∣∣ ≤ |∇(uk − u)|.(1.2)

For any p > 1, we define ∆p : C(V ) → C(V ) as follows:

(1.3) ∆p(u)(x) =
1

2µ(x)

∑

y∼x

(
|∇u|p−2(y) + |∇u|p−2(x)

)
ωxy(u(y)− u(x)).

Let Cc(V ) := {u : V → R | suppu ⊂ V }. Then for any function ϕ ∈ Cc(V ),

(1.4)

∫

V
∆puϕ dµ = −

∫

V
|∇u|p−2Γ(u, ϕ) dµ.

For any function u : V → R, we denote
∫

V
u(x) dµ =

∑

x∈V
u(x)µ(x).
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Define Lr(V ) =
{
u : V → R

∣∣ ∫
V |u|r dµ < +∞

}
(1 ≤ r < +∞) with the norm defined by

∥u∥Lr(V ) =

(∫

V
|u(x)|r dµ

)1/r

.

Then (Lr(V ), ∥ · ∥Lr(V )) is a reflexive Banach space. Define L∞(V ) =
{
u : V → R

∣∣
supx∈V |u(x)| < +∞

}
with the norm defined by

∥u∥∞ = sup
x∈V

|u(x)|.

For more details, one can see [11,12].

Consider the following p-Laplacian equation on a locally finite graph G = (V,E),

(1.5) −∆pu+ h(x)|u|p−2u = f(x, u), x ∈ V,

where p > 1, h : V → R and f : V × R → R.
In recent years, the existence and multiplicity of nontrivial solutions to (1.5) have

attracted some attentions (for example, see [5, 11, 12, 15, 16, 19, 22, 23]). In [22], Zhang

investigated (1.5) with p = 2 and f(x, u) = |u|s−2u for all x ∈ V , where s > 2. He

obtained that equation (1.5) has a positive solution by using the mountain pass theorem.

In [23], Zhang and Lin studied (1.5) with f(x, u) = g(x)|u|r−2u for all x ∈ V , where

g : V → R and r > p > 2. They obtained that equation (1.5) has a positive solution.

In [5], by using the variational principles and Fatou’s lemma, Chang and Zhang obtained

the equation (1.5) has a solution when f(x, u) is Lipschitz continuous in u. In [19], Shao

investigated (1.5) with f(x, u) = g(x, u)+ e(x). When ∥e∥
L

p
p−1 (V )

is small enough, g(x, u)

satisfies sub-(p− 1)-linear growth condition at origin and |g(x, u)| < C(1 + |u|q−1) for all

x ∈ V , where q > p ≥ 2, Shao obtained the equation (1.5) has one nontrivial solution of

positive energy and another nontrivial solution of negative energy by using the mountain

pass theorem and Ekeland’s variational principle. In [16], Man investigated (1.5) with

p = 2 and h replaced by a constant α. When α is small enough and nonlinear term f(x, u)

satisfies super-(r − 1)-linear growth condition at origin, where r > 2 and some additional

assumptions, he obtained that equation (1.5) has a positive solution by using the mountain

pass theorem. In [15], Liu investigated (1.5) with p = 2 and Dirichlet boundary condition,

where f(x, u) = |u|r−2u + ϵe(x), where r > 2, ϵ > 0 and e(x) > 0. When ϵ is small

enough, he obtained that the equation has two positive solutions by using the mountain

pass theorem and Ekeland’s variational principle. Especially, in [12], Grigor’yan, Lin,

Yang considered (1.5) with p = 2. They assumed that the measure µ(x) ≥ µmin > 0 for

all x ∈ V , where µmin = minx∈V µ(x), and h and f satisfy the following conditions:

(K1) there exists a constant h0 > 0 such that h(x) ≥ h0 for all x ∈ V ;
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(K2)
1
h ∈ L1(V );

(S1) f(x, s) is continuous in s, f(x, 0) = 0, and for any fixed M > 0, there exists a

constant AM such that maxs∈[0,M ] f(x, s) ≤ AM for all x ∈ V ;

(S2) lim sups→0+
2F (x,s)

s2
< λ1 = inf∫

V u2 dµ=1

∫
V (|∇u|2 + hu2) dµ;

(S3) there exists a constant θ > 2 such that for all x ∈ V and s > 0,

0 < θF (x, s) = θ

∫ s

0
f(x, t) dt ≤ sf(x, s).

(The (S3) condition is usually called as Ambrisetti–Rabinowitz condition ((AR)-

condition for short).)

Then equation (1.5) with p = 2 has a strictly positive solution. Moreover, they also

investigated the following equation with perturbation:

(1.6) −∆u+ hu = f(x, u) + ϵe(x), x ∈ V,

where e ≥ 0 for all x ∈ V (e ̸≡ 0). They obtained that there exists a constant ϵ0 > 0 such

that for any 0 < ϵ < ϵ0, (1.6) has at least two distinct strictly positive solutions under the

above assumptions. When (K2) is replaced by the following condition:

(K′
2) h(x) → +∞ as dist(x, x0) → +∞ for some fixed x0 ∈ V ,

and (S1) is replaced by the following condition:

(S′1) f(x, 0) = 0, f(x, s) > 0 for all x ∈ V and all s > 0, and there exists a constant L > 0

such that

|f(x, s)− f(x, t)| ≤ L|s− t| for all x ∈ V and all (s, t) ∈ R2.

They obtained that (1.6) has a strictly positive solution.

In this paper, inspired by [11, 12] we consider the following (p, q)-Laplacian coupled

system with perturbation terms and two parameters on a locally finite graph G = (V,E):

(1.7)




−∆pu+ h1(x)|u|p−2u = Fu(x, u, v) + λ1e1(x), x ∈ V,

−∆qv + h2(x)|v|q−2v = Fv(x, u, v) + λ2e2(x), x ∈ V,

where ∆p and ∆q are defined by (1.3) with p ≥ 2 and q ≥ 2, F : V ×R2 → R, e1 ∈ L
p

p−1 (V ),

e2 ∈ L
q

q−1 (V ), e1(x), e2(x) ̸≡ 0 and λ1, λ2 > 0.

If (u, v) is a solution of system (1.7) and (u, v) ̸= (0, 0), then we call that (u, v) is

a nontrivial solution of system (1.7). Furthermore, if (u, v) is a nontrivial solution of

system (1.7), (u, v) = (u, 0) or (u, v) = (0, v), then we call that (u, v) is a semi-trivial

solution of system (1.7). We obtain the following results.

(I) The sub-(p, q)-linear case:
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Theorem 1.1. Assume that the following conditions hold:

(H1) there exists a constant h0 > 0 such that hi(x) ≥ h0 > 0 for all x ∈ V , i = 1, 2;

(H2) hi(x) → ∞ as dist(x, x0) → ∞ for some fixed x0, i = 1, 2;

(F0) F (x, s, t) is continuously differentiable in (s, t) ∈ R2 for all x ∈ V , and there exists

a function a ∈ C(R+,R+) and a function b : V → R+ with b ∈ L1(V ) such that

|Fs(x, s, t)|, |Ft(x, s, t)|, |F (x, s, t)| ≤ a(|(s, t)|)b(x)

for all x ∈ V and all (s, t) ∈ R2;

(F1) F (x, 0, 0) = 0, and there exists fi, gi : V → R+, i = 1, 2, g1 ∈ L
p

p−1 (V ) and g2 ∈
L

q
q−1 (V ) with ∥f1∥∞ < min

{
h0
2 , ph0

q(p−1)

}
and ∥f2∥∞ < h0 − q(p−1)

p ∥f1∥∞ such that

|Fs(x, s, t)| ≤ f1(x)
(
|s|p−1+|t|

pq−q
p
)
+g1(x), |Ft(x, s, t)| ≤ f2(x)

(
|s|p+|t|q−1

)
+g2(x)

for all x ∈ V and all (s, t) ∈ R2, where p ≥ 2 and q ≥ 2;

(F2) one of the following conditions holds:

(i) there exists β1 > 1 and K1 : V → R such that K1(x1) > 0 for some x1 ∈ V

with e1(x1) > 0 and

F (x, s, 0) ≥ −K1(x)|s|β1 for all s ∈ R and all x ∈ V ;

(ii) there exists β2 > 1 and K2 : V → R such that K2(x2) > 0 for some x2 ∈ V

with e2(x2) > 0 and

F (x, 0, t) ≥ −K2(x)|t|β2 for all t ∈ R and all x ∈ V .

Then for each pair (λ1, λ2) ∈ (0,+∞)× (0,+∞), system (1.7) has at least one nontrivial

solution (uλ⋆, vλ⋆). Furthermore, the necessary conditions for the existence of the semi-

trivial solutions to the system (1.7) are obtained. If (uλ⋆, vλ⋆) = (uλ⋆, 0), then

∥uλ⋆∥∞ ≤ µ
− 1

p

0



λ1∥e1∥

L
p

p−1 (V )
+ ∥g1∥

L
p

p−1 (V )

h0 − ∥f1∥∞




1
p−1

.

If (uλ⋆, vλ⋆) = (0, vλ⋆), then

∥vλ⋆∥∞ ≤ µ
− 1

q

0



λ2∥e2∥

L
q

q−1 (V )
+ ∥g2∥

L
q

q−1 (V )

h0 − ∥f2∥∞




1
q−1

.
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Theorem 1.2. Assume that (H1), (H2), (F0), (F2) and the following condition hold:

(F′
1) F (x, 0, 0) = 0, and there exists fi, gi : V → R+, i = 1, 2, g1 ∈ L

p
p−1 (V ) and g2 ∈

L
q

q−1 (V ) with ∥f1∥∞ < min
{
h0
2 , qh0

p(q−1)

}
and ∥f2∥∞ < h0 − p(q−1)

q ∥f2∥∞ such that

|Fs(x, s, t)| ≤ f2(x)(|t|q+|s|p−1)+g1(x), |Ft(x, s, t)| ≤ f1(x)(|t|q−1+|s|
qp−p

q )+g2(x)

for all x ∈ V and all (s, t) ∈ R2, where p ≥ 2 and q ≥ 2.

Then for each pair (λ1, λ2) ∈ (0,+∞)× (0,+∞), system (1.7) has at least one nontrivial

solution (uλ⋆, vλ⋆). Furthermore, the necessary conditions for the existence of the semi-

trivial solutions to the system (1.7) are obtained. If (uλ⋆, vλ⋆) = (uλ⋆, 0), then

∥uλ⋆∥∞ ≤ µ
− 1

p

0



λ1∥e1∥

L
p

p−1 (V )
+ ∥g1∥

L
p

p−1 (V )

h0 − ∥f2∥∞




1
p−1

.

If (uλ⋆, vλ⋆) = (0, vλ⋆), then

∥vλ⋆∥∞ ≤ µ
− 1

q

0



λ2∥e2∥

L
q

q−1 (V )
+ ∥g2∥

L
q

q−1 (V )

h0 − ∥f1∥∞




1
q−1

.

(II) The super-(p, q)-linear case:

Theorem 1.3. Let λ1 = λ2 = λ. Assume (H1), (F0) and the following conditions hold:

(H′
2) for any given constant B > 0,

∑
x∈Ai

µ(x) < ∞, where Ai = {x ∈ V | hi(x) ≤ B},
i = 1, 2;

(C1) F (x, 0, 0) = 0 for all x ∈ V , and there exists a constant l0 > 0 such that

|Fs(x, s, t)| ≤
h0

q + 1
(|s|p−1 + |t|

pq−q
p ), |Ft(x, s, t)| ≤

h0
q + 1

(|s|p + |t|q−1)

for all x ∈ V and all (s, t) ∈ R2 with |(s, t)| < l0, where p ≥ 2 and q ≥ 2;

(C2) there exists l1 > 0 such that F (x3, s, s) ≥ M(sp + sq) for some x3 ∈ {x ∈ V |
e1(x) + e2(x) > 0} and all s ∈ R with s > l1, where

M > max

{
D1 + µ(x3)h1(x3)

pµ(x3)
,
D2 + µ(x3)h2(x3)

qµ(x3)

}
,

D1 =

(
deg(x3)

2

) p
2

(∑

x∼x3

(
1

µ(x)

) p
2
−1

+
1

µ(x3)
p
2
−1

)
,

D2 =

(
deg(x3)

2

) q
2

(∑

x∼x3

(
1

µ(x)

) q
2
−1

+
1

µ(x3)
q
2
−1

)
;
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(C3) there exists a constant ν > max{p, q} and 0 ≤ A < min
{
ν
p − 1, νq − 1

}
h0 such that

νF (x, s, t)− Fs(x, s, t)s− Ft(x, s, t)t ≤ A(|s|p + |t|q) for all x ∈ V .

Then for each λ satisfying

(1.8) 0 < λ < λ0 =
min{1, q − 1} · Λmax{p,q}−1

0

2max{p,q}−1(pq + p)max
{
h
− 1

p

0 ∥e1∥
L

p
p−1 (V )

, h
− 1

q

0 ∥e2∥
L

q
q−1 (V )

} ,

where

Λ0 = min

{
l0
2
min

{
h
1/p
0 µ

1/p
0 , h

1/q
0 µ

1/q
0

}
, 1

}
,

system (1.7) has one nontrivial solution (u⋆,1, v⋆,1) of positive energy. Furthermore, if the

following condition holds:

(C4) there exists l2 > 0, β3 > 1 and K3(x) : V → R such that K3(x4) > 0, and

F (x4, s, s) ≥ K3(x4)|t|β3 for some x4 ∈ {x ∈ V | e1(x) + e2(x) > 0} with µ(x4) > 0

and all s ∈ R with 0 < s < l2,

then system (1.7) has another nontrivial solution (u⋆,2, v⋆,2) of negative energy for each

λ ∈ (0, λ0).

By using similar proofs, we can also obtain some results similar to Theorems 1.1 and

1.3 to the following equation on locally finite graph (V,E):

(1.9) −∆pu+ h(x)|u|p−2u = Fu(x, u) + ϵe(x), x ∈ V.

Theorem 1.4. Assume that the following conditions hold:

(h1) there exists a constant h0 > 0 such that h(x) ≥ h0 for all x ∈ V ;

(h2) h(x) → ∞ as dist(x, x0) → ∞ for some fixed x0;

(f0) F (x, s) is continuously differentiable in s ∈ R for all x ∈ V , and there exists a

function a ∈ C(R+,R+) and a function b : V → R+ with b ∈ L1(V ) such that

|Fs(x, s)| ≤ a(|s|)b(x), |F (x, s)| ≤ a(|s|)b(x)

for all x ∈ V and all s ∈ R;

(f1) F (x, 0) = 0, and there exists f1, g1 : V → R+ with f1 ∈ L∞(V ) and g1 ∈ L
p

p−1 (V )

satisfying ∥f1∥∞ < h01 such that

|Fs(x, s)| ≤ f1(x)|s|p−1 + g1(x) for all x ∈ V and all s ∈ R;
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(f2) there exists β1 > 1 and K1 : V → R such that K1(x1) > 0 for some x1 ∈ V with

e(x1) > 0 and

F (x, s) ≥ −K1(x)|s|β1 for all x ∈ V and all s ∈ R.

Then for each ϵ ∈ (0,+∞), system (1.9) has at least one nontrivial solution.

Theorem 1.5. Assume (h1), (f0) and the following conditions hold:

(h′2) for any given constant B > 0,
∑

x∈A µ(x) < ∞, where A = {x ∈ V | h(x) ≤ B};

(c1) F (x, 0) = 0 for all x ∈ V , and there exists a constant l0 > 0 such that

|f(x, s)| ≤ h0
p+ 1

|s|p−1

for all x ∈ V and all s ∈ R with |s| < l0;

(c2) there exists l1 > 0 such that F (x2, s) ≥ Msp for some x2 ∈ V with e(x2) > 0 and all

s ∈ R with s > l1, where

M >
D1 + µ(x2)h1(x2)

pµ(x2)
, D1 =

(
deg(x2)

2

) p
2

(∑

x∼x2

(
1

µ(x)

) p
2
−1

+

(
1

µ(x2)

) p
2
−1
)
;

(c3) there exists a constant ν > p and 0 ≤ A < h0
(
ν
p − 1

)
such that

νF (x, s)− Fs(x, s)s ≤ A|s|p for all x ∈ V .

Then for each ϵ satisfying

0 < ϵ < ϵ0 =

(
min

{
l0(h0µ0)

1/p, 1
})p−1

(p+ 1)h
− 1

p

0 ∥e∥
L

p
p−1 (V )

,

equation (1.9) has one nontrivial solution of positive energy. Furthermore, if the following

condition holds:

(c4) there exists l2 > 0 and β3 > 1 such that F (x3, s) ≥ K3(x3)|s|β3 for some x3 ∈ {x ∈
V | e(x) > 0} and all s ∈ R with 0 < s < l2,

then system (1.9) has another nontrivial solution of negative energy for each ϵ ∈ (0, ϵ0).

Remark 1.6. In Theorem 1.3, the condition (C2) is interesting, which implies that the

inequality F (x, s, t) ≥ M(sp+ tq) holds only for a point x3 rather than all x ∈ V and only

for a ray s = t starting at the point (l1, l1) in the plane R2 rather than for all (s, t) ∈ R2
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with |(s, t)| > l1 (see Figure 1.1), which is usually assumed in investigating the existence

of solutions for the elliptic partial differential system with the nonlinear term satisfying

the super-quadratic conditions (for example, see [14]).

Remark 1.1. In Theorem 1.3, the condition (C2) is interesting, which implies that the inequality

F (x, s, t) ≥ M(sp + tq) holds only for a point x3 rather than all x ∈ V and only for a ray s = t starting

at the point (l1, l1) in the plane R2 rather than for all (s, t) ∈ R2 with |(s, t)| > l1 (see Fig.1), which is

usually assumed in investigating the existence of solutions for the elliptic partial differential system with

the nonlinear term satisfying the super-quadratic conditions (for example, see [15]).

(a) Fig.1: F (x, s, t) ≥ M(sp + tq) holds

only for a ray s = t starting at the point

(l1, l1) in the plane R2.

Remark 1.2. Theorem 1.4 is different from Theorem 1.4 in [13], where they consider (1.13) with p = 2

and they assume that f(x, s) := Fs(x, s) satisfies the (AR)-condition (S3) and (S′
1). It is easy to see

that (f1) in Theorem 1.4 is weaker than (S′
1) even if p = 2 and we do not need the (AR)-condition in

Theorem 1.4. Theorem 1.5 is also different from Theorem 1.3 in [13] even if p = 2. It is easy to see

that (h2) is weaker than (K2). Moreover, (h′
2) is weaker than (h2). In fact, by (h2) we have for any

positive constant B when h(x) < B, there exists positive constant B1 such that dist(x, x0) < B1. So,

A = {x ∈ V
∣∣h(x) < B} is a finite set. Moreover, (c2) together with (c3) is weaker than (S3). There exists

examples satisfying Theorem 1.5 but not satisfying Theorem 1.3 in [13], for example, let

F (x, s) = M ln(1 + s2)|s|3,

where M is defined as Theorem 1.5.

2. Sobolev embedding

Let W 1,s(V ) be the completion of Cc(V ) under the norm

∥u∥W 1,s(V ) =

(∫

V

[|∇u(x)|s + |u(x)|s]dµ

) 1
s

,

where s > 1 and W 1,s(V ) is a reflexive Banach space (see [10], Theorem 1.1). Let h(x) ≥ h0 > 0. Define

the space

W 1,s
h (V ) =

{
u ∈ W 1,s(V )

∣∣∣
∫

V

h(x)|u(x)|sdµ < ∞
}

8

Figure 1.1: F (x, s, t) ≥ M(sp + tq) holds only for a ray s = t starting at the point (l1, l1)

in the plane R2.

Remark 1.7. Theorem 1.4 is different from Theorem 1.4 in [12], where they consider (1.9)

with p = 2 and they assume that f(x, s) := Fs(x, s) satisfies the (AR)-condition (S3)

and (S′1). It is easy to see that (f1) in Theorem 1.4 is weaker than (S′1) even if p = 2

and we do not need the (AR)-condition in Theorem 1.4. Theorem 1.5 is also different

from Theorem 1.3 in [12] even if p = 2. It is easy to see that (h2) is weaker than (K2).

Moreover, (h′2) is weaker than (h2). In fact, by (h2) we have for any positive constant

B when h(x) < B, there exists positive constant B1 such that dist(x, x0) < B1. So,

A = {x ∈ V | h(x) < B} is a finite set. Moreover, (c2) together with (c3) is weaker than

(S3). There exists examples satisfying Theorem 1.5 but not satisfying Theorem 1.3 in [12],

for example, let

F (x, s) = M ln(1 + s2)|s|3,

where M is defined as Theorem 1.5.

2. Sobolev embedding

Let W 1,s(V ) be the completion of Cc(V ) under the norm

∥u∥W 1,s(V ) =

(∫

V
[|∇u(x)|s + |u(x)|s] dµ

)1/s

,

where s > 1 and W 1,s(V ) is a reflexive Banach space (see [20, Theorem 1.1]). Let h(x) ≥
h0 > 0. Define the space

W 1,s
h (V ) =

{
u ∈ W 1,s(V )

∣∣∣
∫

V
h(x)|u(x)|s dµ < ∞

}
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endowed with the norm

∥u∥
W 1,s

h (V )
=

(∫

V
[|∇u(x)|s + h(x)|u(x)|s] dµ

)1/s

.

Lemma 2.1. If µ(x) ≥ µ0 > 0 and h satisfies (H1), then W 1,s
h (V ) is continuously embed-

ded into Lr(V ) for all 1 < s ≤ r ≤ ∞, and the following inequalities hold:

(2.1) ∥u∥∞ ≤ 1

h
1/s
0 µ

1/s
0

∥u∥
W 1,s

h (V )

and

(2.2) ∥u∥Lr(V ) ≤ µ
s−r
sr

0 h
− 1

s
0 ∥u∥

W 1,s
h (V )

for all s ≤ r < ∞.

Furthermore, if (H2) also holds, then W 1,s
h (V ) is compactly embedded into Lr(V ) for all

1 < s ≤ r ≤ ∞.

Proof. For any u ∈ W 1,s
h (V ), we claim that

(2.3)
∑

x∈V
|u(x)|s ≥ ∥u∥s∞.

In fact, assume that (∑

x∈V
|u(x)|s

)1/s

< ∥u∥∞.

Then there exists a ε > 0 such that

(2.4)
∑

x∈V
|u(x)|s < (∥u∥∞ − ε)s.

Note that ∥u∥∞ = supx∈V |u(x)|. Then by the definition of supremum, there exists an

x∗ ∈ V such that |u(x∗)| > ∥u∥∞ − ε. Then |u(x∗)|s > (∥u∥∞ − ε)s, which together with

(2.4) implies that

|u(x∗)|s > (∥u∥∞ − ε)s >
∑

x∈V
|u(x)|s ≥ |u(x∗)|s,

a contradiction.

For any u ∈ W 1,s
h (V ), we have

(2.5) ∥u∥s
W 1,s

h (V )
≥
∫

V
h(x)|u(x)|s dµ ≥ h0

∫

V
|u(x)|s dµ for all s > 1,

and by (2.3), we have

(2.6) ∥u∥s
W 1,s

h (V )
≥
∫

V
h(x)|u(x)|s dµ =

∑

x∈V
µ(x)h(x)|u(x)|s ≥ h0µ0∥u∥s∞ for all s > 1,
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which implies that

∥u∥∞ ≤ 1

h
1/s
0 µ

1/s
0

∥u∥
W 1,s

h (V )
for all s > 1.

When s < r < ∞, it follows from (2.5) and (2.6) that

∫

V
|u(x)|r dµ ≤ ∥u∥r−s

∞

∫

V
|u(x)|s dµ ≤ µ

s−r
s

0 h
− r

s
0 ∥u∥r

W 1,s
h (V )

.

So,

∥u∥Lr(V ) ≤ µ
s−r
sr

0 h
− 1

s
0 ∥u∥

W 1,s
h (V )

for all s ≤ r < ∞.

Suppose that {uk} is a bounded sequence in W 1,s
h (V ). Note that W 1,s

h (V ) is reflexive.

Then there exists a subsequence, still denoted by {uk}, such that uk ⇀ u weakly in

W 1,s
h (V ) for some u ∈ W 1,s

h (V ). In particular,

lim
k→∞

∫

V
ukφdµ =

∫

V
uφdµ, ∀φ ∈ Cc(V ),

which implies that

(2.7) lim
k→∞

uk(x) = u(x) for any fixed x ∈ V ,

if we choose φ ∈ Cc(V ) defined by

φ(y) =




1 if y = x,

0 if y ̸= x.

We now prove uk → u in Lr(V ) for all s ≤ r ≤ ∞, if (H2) holds. Since {uk} is bounded in

W 1,s
h (V ) and u ∈ W 1,s

h (V ), by the definition of norm ∥ · ∥
W 1,s

h (V )
, there exists a constant

c0 > 0 such that ∫

V
h|uk − u|s dµ ≤ c0.

For any given ϵ > 0, in view of (H2), there exists a constant R(ϵ) > 0 such that

1

h(x)
< ϵ as dist(x, x0) ≥ R(ϵ).

Hence,

(2.8)

∫

dist(x,x0)≥R(ϵ)
|uk − u|s dµ =

∫

dist(x,x0)≥R(ϵ)

1

h
h|uk − u|s dµ ≤ c0ϵ.

Note that {x | dist(x, x0) ≤ R(ϵ)} is a finite set. Then (2.7) implies that

(2.9) lim
k→∞

∫

dist(x,x0)≤R(ϵ)
|uk − u|s dµ = 0.
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So, by the arbitrary of ϵ, (2.8) and (2.9) imply that

(2.10) lim
k→∞

∫

V
|uk − u|s dµ = 0.

Then by (2.3) and (2.10), we have

∥uk − u∥s∞ ≤
∑

x∈V
|uk(x)− u(x)|s =

∑

x∈V

1

µ(x)
µ(x)|uk(x)− u(x)|s

≤ 1

µ0

∑

x∈V
µ(x)|uk(x)− u(x)|s = 1

µ0

∫

V
|uk − u|s dµ → 0 as k → ∞,

(2.11)

and when s < r < ∞, we have

(2.12)

∫

V
|uk − u|r dµ ≤ ∥uk − u∥r−s

∞

∫

V
|uk − u|s dµ → 0 as k → ∞.

Hence, (2.10), (2.11) and (2.12) imply that uk → u in Lr(V ) for all s ≤ r ≤ ∞.

Lemma 2.2. If µ(x) ≥ µ0 > 0 and h satisfies (H1) and (H′
2), then W 1,s

h (V ) is compactly

embedded into Lr(V ) for all 1 < s ≤ r ≤ ∞.

Proof. Suppose that {uk} is a bounded sequence in W 1,s
h (V ) and there exists a positive

constant C0 such that

(2.13) ∥uk∥W 1,s
h (V )

≤ C0.

Since ∥uk∥sLs(V ) ≤ 1
h0

∫
V h(x)|uk|s dµ ≤ 1

h0
∥uk∥sW 1,s

h (V )
, we also have that

{
∥uk∥Ls(V )

}
is

bounded in R. Noting that W 1,s
h (V ) is reflexive, we have, up to a subsequence, uk ⇀ u

weakly in W 1,s
h (V ) for some u ∈ W 1,s

h (V ) and δk = ∥uk∥Ls(V ) → δ for some δ ∈ R as

k → ∞. Similar to the argument of (2.7), we have limk→∞ uk(x) = u(x) for all x ∈ V .

Then for any bounded domain Ω ⊂ V , we have
∫

Ω
|uk|s dµ →

∫

Ω
|u|s dµ and

∫

Ω
|uk|s dµ ≤

∫

V
|uk|s dµ → δs as k → ∞.

Then

(2.14) δs ≥ ∥u∥sLs(Ω).

For any given constant B > 0, define Ω = {x ∈ V | dist(x, x0) ≤ B, h(x) ≤ B} for

some fixed x0 ∈ V . Let A(Ω) = {x ∈ V/Ω, h(x) ≤ B}. Then A = Ω ∪ A(Ω), where

A = {x ∈ V | h(x) ≤ B}. By (H′
2), we have

∑
x∈A µ(x) < ∞ and then by the definition of

convergent series, for any sufficient small ϵ > 0, there exists a sufficient large B > 1
ϵ such

that

(2.15)
∑

x∈A(Ω)

µ(x) < ϵ.
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Moreover, since h satisfies (H1), by Lemma 2.1 we know that W 1,s
h (V ) is continuously

embedded into Lr(V ), s ≤ r ≤ ∞. So, by (2.2), (2.13) and (2.15), we have

∫

A(Ω)
|uk|s dµ =

∫

A(Ω)
1 · |uk|s dµ

≤
(∫

A(Ω)
|uk|2s dµ

)1/2

 ∑

x∈A(Ω)

µ(x)




1/2

≤ µ
−1/2
0 h−1

0 ∥uk∥sW 1,s
h (V )


 ∑

x∈A(Ω)

µ(x)




1/2

≤ µ
−1/2
0 h−1

0 Cs
0ϵ for all k ∈ N.

Define B(Ω) = {x ∈ V/Ω, h(x) > B}. Then
∫

B(Ω)
|uk|s dµ ≤

∫

B(Ω)

h(x)

B
|uk|s dµ ≤ 1

B
∥uk∥sW 1,s

h (V )
≤ Cs

0

B
≤ Cs

0ϵ for all k ∈ N.

Then

∫

V/Ω
|uk|s dµ =

∫

B(Ω)
|uk|s dµ+

∫

A(Ω)
|uk|s dµ <

(
µ
−1/2
0 h−1

0 + 1
)
Cs
0ϵ for all k ∈ N.

Similarly, we also have

(2.16)

∫

V/Ω
|u|s dµ =

∫

B(Ω)
|u|s dµ+

∫

A(Ω)
|u|s dµ < ϵ

(
µ
−1/2
0 h−1

0 + 1
)
∥u∥s

W 1,s
h (V )

.

Let C1 = max
{
C0, ∥u∥W 1,s

h (V )

}
. So, by (2.14) and (2.16), we have

∥u∥sLs(V ) = ∥u∥sLs(Ω) + ∥u∥sLs(V/Ω) ≤ δs +
(
µ
−1/2
0 h−1

0 + 1
)
Cs
1ϵ.

On the other hand,

∥u∥sLs(V ) = ∥u∥sLs(Ω) + ∥u∥sLs(V/Ω) ≥ lim
k→∞

∥uk∥sLs(Ω)

= lim
k→∞

∥uk∥sLs(V ) − lim
k→∞

∥uk∥sLs(V/Ω) ≥ δs −
(
µ
−1/2
0 h−1

0 + 1
)
Cs
1ϵ.

Hence, by the arbitrary of ϵ, we obtain that δs = ∥u∥sLs(V ). Thus we have proved that

∥uk∥Ls(V ) → ∥u∥Ls(V ) as k → ∞. By the uniform convexity of Ls(V ) (see [13, Lemma 2.2])

and that uk ⇀ u weakly in W 1,s
h (V ), it follows from the Kadec–Klee property that ∥uk −

u∥Ls(V ) → 0 as k → ∞. Then similar to the argument of (2.11) and (2.12), we have

∥uk − u∥∞ → 0 and ∥uk − u∥Lr(V ) → 0 for all s < r < ∞.
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Remark 2.3. Lemma 2.1 generalizes [12, Lemma 2.2] and [13, Lemma 2.6], and Lemma 2.2

generalizes [4, Lemma 3]. To be precise, when s = 2, Lemmas 2.1 and 2.2 reduce to [12,

Lemma 2.2] and [4, Lemma 3], respectively. In [4, Lemma 3], the potential h(x) is allowed

to be sigh-changing, which satisfies (H ′
1): infx∈V h(x) ≥ h0 for some h0 ∈ (−1, 0). One

can prove that Lemma 2.2 still holds under (H ′
1) and (H′

2). Moreover, if h(x) = λa(x)+1,

where a : V → R with a(x) ≥ 0 for all x ∈ V , then Lemma 2.1 reduces to [13, Lemma 2.6].

The proofs of Lemmas 2.1 and 2.2 are based on those in [4, 12, 13] and we make some

appropriate modifications.

Assume that φ ∈ C1(X,R). An sequence {un} is called as the Palais–Smale sequence

of φ if φ(un) is bounded for all n ∈ N and φ′(un) → 0 as n → ∞. If any Palais–Smale

sequence {un} of φ has a convergent subsequence, we call that φ satisfies the Palais–Smale

condition ((PS)-condition for short).

Lemma 2.4. (Ekeland’s variational principle [17]) Let M be a complete metric space with

metric d, and φ : M → R be a lower semicontinuous function, bounded from below and

not identical to +∞. Let ε > 0 be given and U ∈ M such that

φ(U) ≤ inf
M

φ+ ε.

Then there exists V ∈ M such that

φ(V ) ≤ φ(U), d(U, V ) ≤ 1,

and for each W ∈ M , one has

φ(V ) ≤ φ(W ) + εd(V,W ).

By the Ekeland’s variational principle, it is easy to obtain the following corollary.

Lemma 2.5. [17] Suppose that X is a Banach space, M ⊂ X is closed, φ ∈ C1(X,R)
is bounded from below on M and satisfies the (PS)-condition. Then φ attains its infimum

on M .

Lemma 2.6. (Mountain pass theorem [18]) Let X be a real Banach space and φ ∈
C1(X,R), φ(0) = 0 satisfy (PS)-condition. Suppose that φ satisfies the following con-

ditions:

(i) there exists a constant ρ > 0 and α > 0 such that φ|∂Bρ(0) ≥ α, where Bρ = {w ∈
X : ∥w∥X < ρ};

(ii) there exists w ∈ X \Bρ(0) such that φ(w) ≤ 0.

Then φ has a critical value c∗ ≥ α with

c∗ := inf
γ∈Γ

max
t∈[0,1]

φ(γ(t)),

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = w}.
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3. Proofs for the sub-(p, q)-linear case

Define the space W := W 1,p
h (V )×W 1,q

h (V ) with the norm

∥(u, v)∥W = ∥u∥
W 1,p

h (V )
+ ∥v∥

W 1,q
h (V )

.

Then W is a Banach space. Consider the functional φ : W → R defined as

φλ(u, v) =
1

p

∫

V
(|∇u|p + h1|u|p) dµ+

1

q

∫

V
(|∇v|q + h2|v|q) dµ

−
∫

V
F (x, u, v) dµ− λ1

∫

V
e1u dµ− λ2

∫

V
e2v dµ.

(3.1)

Then φλ(u, v) ∈ C1(W,R), and

⟨φ′
λ(u, v), (ϕ1, ϕ2)⟩

=

∫

V

[
|∇u|p−2Γ(u, ϕ1) + h1|u|p−2uϕ1 − Fu(x, u, v)ϕ1 − λ1e1ϕ1

]
dµ

+

∫

V

[
|∇v|q−2Γ(v, ϕ2) + h2|v|q−2vϕ2 − Fv(x, u, v)ϕ2 − λ2e2ϕ2

]
dµ

(3.2)

for all (ϕ1, ϕ2) ∈ W (see Lemma A.2).

Definition 3.1. (u, v) ∈ W is called as a weak solution of system (1.7) if
∫

V

[
|∇u|p−2Γ(u, ϕ1) + h1|u|p−2uϕ1

]
dµ =

∫

V
[Fu(x, u, v)ϕ1 + λ1e1ϕ1] dµ,(3.3)

∫

V

[
|∇v|q−2Γ(v, ϕ2) + h2|v|q−2vϕ2

]
dµ =

∫

V
[Fv(x, u, v)ϕ1 + λ2e2ϕ2] dµ(3.4)

for all (ϕ1, ϕ2) ∈ W .

Obviously, (u, v) ∈ W is a weak solution of system (1.7) if and only if (u, v) is a critical

point of φ and similar to the arguments in [13], we have the following proposition.

Proposition 3.2. If (u, v) ∈ W is a weak solution of system (1.7), then (u, v) ∈ W is

also a point-wise solution of (1.7).

Proof. For any fixed y ∈ V , we take a test function ϕ1 : V → R in (3.3) with

ϕ1(x) =




1 if x = y,

0 if x ̸= y,

and a test function ϕ2 : V → R in (3.4) with

ϕ2(x) =




1 if x = y,

0 if x ̸= y.
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Thus, by (1.4), we have

−∆pu(y) + h1(y)|u(y)|p−2u(y) = Fu(y, u(y), v(y)) + λ1e1(y),

−∆qv(y) + h2(y)|v(y)|q−2v(y) = Fv(y, u(y), v(y)) + λ2e2(y).

By the arbitrary of y, we complete the proof.

Lemma 3.3. Assume that (H1) and (F1) hold. Then φ is coercive, that is, φ(u, v) → +∞
as ∥(u, v)∥W → ∞.

Proof. By (F1) and Lemma 2.1, we have

∫

V
|F (x, u, v)| dµ

=

∫

V
|F (x, u, v)− F (x, 0, 0)| dµ

≤
∫

V
|F (x, u, v)− F (x, 0, v)|+ |F (x, 0, v)− F (x, 0, 0)| dµ

≤
∫

V

∫ |u|

0
|Fs(x, s, v)| dsdµ+

∫

V

∫ |v|

0
|Ft(x, 0, t)| dtdµ

≤
∫

V

∫ |u|

0
[f1(x)(|s|p−1 + |v|

pq−q
p ) + g1(x)] dsdµ+

∫ |v|

0
[f2(x)|t|q−1 + g2(x)] dtdµ

≤
∫

V

[ |u|p
p

f1(x) + f1(x)|v|
pq−q

p |u|+ |v|q
q

f2(x) + g1(x)|u|+ g2(x)|v|
]
dµ

≤ 2∥f1∥∞
p

∫

V
|u|p dµ+

(p− 1)∥f1∥∞
p

∫

V
|v|q dµ

+
∥f2∥∞

q

∫

V
|v|q dµ+ ∥g1∥

L
p

p−1 (V )
∥u∥Lp(V ) + ∥g2∥

L
q

q−1 (V )
∥v∥Lq(V )

≤ 2∥f1∥∞
ph0

∥u∥p
W 1,p

h (V )
+

(
(p− 1)∥f1∥∞

ph0
+

∥f2∥∞
qh0

)
∥v∥q

W 1,q
h (V )

+
∥g1∥

L
p

p−1 (V )

h
1/p
0

∥u∥
W 1,p

h (V )
+

∥g2∥
L

q
q−1 (V )

h
1/q
0

∥v∥
W 1,q

h (V )
.

(3.5)

Then, by (3.1) and (3.5), we have

φλ(u, v) ≥
(
1

p
− 2∥f1∥∞

ph0

)
∥u∥p

W 1,p
h (V )

+

(
1

q
− (p− 1)∥f1∥∞

ph0
− ∥f2∥∞

qh0

)
∥v∥q

W 1,q
h (V )

− 1

h
1/p
0

(
λ1∥e1∥

L
p

p−1 (V )
+ ∥g1∥

L
p

p−1 (V )

)
∥u∥

W 1,p
h (V )

− 1

h
1/q
0

(
λ2∥e2∥

L
q

q−1 (V )
+ ∥g2∥

L
q

q−1 (V )

)
∥v∥

W 1,q
h (V )

.

So φ is coercive in W .
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Lemma 3.4. Assume that (H1) and (F1) hold. Then φλ satisfies the (PS)-condition.

Proof. The proof is motivated by [13, 24]. Assume that {(uk, vk)} is a Palais–Smale se-

quence, then φ′
λ(uk, vk) → 0 as k → ∞ and φλ(uk, vk) is bounded. By Lemma 3.3, we

obtain that {(uk, vk)} is bounded in W . Then {uk} is bounded in W 1,p
h (V ) and {vk} is

bounded in W 1,q
h (V ). Hence we can find a subsequence, still denoted by {uk}, such that

uk ⇀ uλ⋆ for some uλ⋆ ∈ W 1,p
h (V ) as k → ∞, and a subsequence of {vk}, which has the

same subscript as the subsequence of {uk}, still denoted by {vk}, such that vk ⇀ vλ⋆ for

some vλ⋆ ∈ W 1,q
h (V ) as k → ∞. By Lemma 2.1, we know that

(3.6) uk → uλ⋆ in Lp(V ), vk → vλ⋆ in Lq(V ) as k → ∞.

Then by (3.2), we have

⟨φ′
λ(uk, vk)− φ′

λ(uλ⋆, vλ⋆), (uk − uλ⋆, 0)⟩

=

∫

V

[
|∇uk|p−2Γ(uk, uk − uλ⋆) + (h1(x)|uk|p−2uk − Fu(x, uk, vk))(uk − uλ⋆)

]
dµ

−
∫

V

[
|∇uλ⋆|p−2Γ(uλ⋆, uk − uλ⋆) + (h1(x)|uλ⋆|p−2uλ⋆ − Fu(x, uλ⋆, vλ⋆))(uk − uλ⋆)

]
dµ

= ∥uk∥pW 1,p
h (V )

+ ∥uλ⋆∥pW 1,p
h (V )

−
∫

V

[
|∇u|p−2Γ(uk, uλ⋆) + h1(x)|uk|p−2ukuλ⋆

]
dµ

−
∫

V

[
|∇u|p−2Γ(uλ⋆, uk) + h1(x)|uλ⋆|p−2uλ⋆uk

]
dµ

+

∫

V
[Fu(x, uλ⋆, vλ⋆)− Fu(x, uk, vk)](uk − uλ⋆) dµ.

(3.7)

By (F1) and (3.6), we have
∫

V
[Fu(x, uλ⋆, vλ⋆)− Fu(x, uk, vk)](uk − uλ⋆) dµ

≤
∫

V
|Fu(x, uλ⋆, vλ⋆)− Fu(x, uk, vk)||uk − uλ⋆| dµ

≤
∫

V
[|Fu(x, uk, vk)|+ |Fu(x, uλ⋆, vλ⋆)|]|uk − uλ⋆| dµ

≤ ∥f1∥∞
∫

V

(
|uk|p−1 + |vk|

pq−q
p + |uλ⋆|p−1 + |vλ⋆|

pq−q
p
)
|uk − uλ⋆| dµ

+

∫

V
g1(x)|uk − uλ⋆| dµ

≤ ∥f1∥∞
(
∥uk∥p−1

Lp(V ) + ∥vk∥
pq−q

p

Lq(V ) + ∥uλ⋆∥p−1
Lp(V ) + ∥vλ⋆∥

pq−q
p

Lq(V )

)
∥uk − uλ⋆∥Lp(V )

+ ∥g1∥
L

p
p−1 (V )

∥uk − uλ⋆∥Lp(V )

→ 0.

(3.8)
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Moreover, by (1.1), we have

∫

V

[
|∇uk|p−2Γ(uk, uλ⋆) + h1|uk|p−2ukuλ⋆

]
dµ

≤
∫

V
|∇uk|p−2|∇uk||∇uλ⋆| dµ+

∫

V

(
h

p−1
p

1 |uk|p−2uk
)
(h

1/p
1 uλ⋆) dµ

≤ ∥∇uk∥p−1
Lp(V )∥∇uλ⋆∥Lp(V ) +

(∫

V
h|uk|p dµ

) p−1
p
(∫

V
h|uλ⋆|p dµ

)1/p

≤ ∥uk∥p−1

W 1,p
h (V )

∥uλ⋆∥W 1,p
h (V )

.

(3.9)

Similarly, we also have

∫

V

[
|∇uλ⋆|p−2Γ(uλ⋆, uk) + h1(x)|uλ⋆|p−2uλ⋆uk

]
dµ ≤ ∥uλ⋆∥p−1

W 1,p
h (V )

∥uk∥Wm1,p(V ).

So, by (3.7), (3.8) and (3.9), we have

⟨φ′
λ(uk, vk)− φ′

λ(uλ⋆, vλ⋆), (uk − uλ⋆, 0)⟩
≥ ∥uk∥pW 1,p

h (V )
+ ∥uλ⋆∥pW 1,p

h (V )
− ∥uk∥p−1

Wm1,p(V )∥uλ⋆∥W 1,p
h (V )

− ∥uλ⋆∥p−1

W 1,p
h (V )

∥uk∥W 1,p
h (V )

+ ok(1)

=
(
∥uk∥p−1

W 1,p
h (V )

− ∥uλ⋆∥p−1

W 1,p
h (V )

)(
∥uk∥W 1,p

h (V )
− ∥uλ⋆∥W 1,p

h (V )

)
+ ok(1).

Hence, ∥uk∥W 1,p
h (V )

→ ∥uλ⋆∥W 1,p
h (V )

as k → ∞. Then it follows from the uniformly

convexity of W 1,p
h (V ) (see Lemma A.1) and the Kadec–Klee property that

uk → uλ⋆ strongly in W 1,p
h (V ) as k → ∞.

Similarly, we can also prove

vk → vλ⋆ strongly in W 1,q
h (V ) as k → ∞.

Therefore,

(uk, vk) → (uλ⋆, vλ⋆) strongly in W as k → ∞.

Proof of Theorem 1.1. By Lemma 3.3 and the continuity of φλ, we know that φλ is

bounded from below. Then by Lemmas 3.4 and 2.5, we obtain that φλ attains its infimum

on W . Hence, there exists a (uλ⋆, vλ⋆) ∈ W such that φ(uλ⋆, vλ⋆) = inf(u,v)∈W φ(u, v).

Next, we prove (uλ⋆, vλ⋆) ̸= (0, 0). Assume that (uλ⋆, vλ⋆) = (0, 0). Then φ(0, 0) =

0 = inf(u,v)∈W φ(u, v). Let

u∗(x) =




1 if x = x1,

0 if x ̸= x1,
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where x1 ∈ V with e1(x1) > 0. If (i) of (F2) holds, then

inf
(u,v)∈W

φλ(u, v) ≤ inf
θ∈(0,+∞)

φλ(θu∗, 0)

= inf
θ∈(0,+∞)

(
1

p
θp∥u∗∥p

W 1,p
h (V )

−
∫

V
F (x, θu∗, 0) dµ− λ1θ

∫

V
e1u∗ dµ

)

≤ inf
θ∈(0,+∞)

(
1

p
θp∥u∗∥p

W 1,p
h (V )

+

∫

V
K1(x)|θu∗|β1 dµ− λ1θ

∫

V
e1u∗ dµ

)

= inf
θ∈(0,+∞)

(
1

p
θp∥u∗∥p

W 1,p
h (V )

+ µ(x1)θ
β1K1(x1)− λ1θµ(x1)e1(x1)

)
.

Note that β1 > 1, p > 1, µ(x1) > 0, e1(x1) > 0, K1(x1) > 0 and λ1 > 0. Then for each

λ1 > 0, there exists sufficiently small θ > 0 such that inf(u,v)∈W φ(u, v) < 0, which is a

contradiction. Similarly, if (ii) of (F2) holds, we also can obtain the same contradiction.

Moreover, if (uλ⋆, vλ⋆) = (uλ⋆, 0), then by (3.3), we have

∫

V
(|∇uλ⋆|p + h1|uλ⋆|p) dµ =

∫

V
Fu(x, uλ⋆, 0)uλ⋆ dµ+ λ1

∫

V
e1uλ⋆ dµ.

Hence, combining with (F1), we have

∥uλ⋆∥W 1,p
h (V )

≤ h
1/p
0



λ1∥e1∥

L
p

p−1 (V )
+ ∥g1∥

L
p

p−1 (V )

h0 − ∥f1∥∞




1
p−1

,

then by (2.1), we have

∥uλ⋆∥∞ ≤ µ
− 1

p

0



λ1∥e1∥

L
p

p−1 (V )
+ ∥g1∥

L
p

p−1 (V )

h0 − ∥f1∥∞




1
p−1

.

Similarly, when (uλ⋆, vλ⋆) = (0, vλ⋆), we have

∥vλ⋆∥∞ ≤ µ
− 1

q

0



λ2∥e2∥

L
q

q−1 (V )
+ ∥g2∥

L
q

q−1 (V )

h0 − ∥f2∥∞




1
q−1

.

Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1, in which we only need

to slightly modify the proof of Lemma 3.3 with replacing (F1) by (F′
1). We omit the

details.

4. Proofs for the super-(p, q)-linear case

Lemma 4.1. Assume that (H1) and (C1) hold. Then for each λ ∈ (0, λ0), there exists a

positive constant ρλ such that φ(u, v) > 0 whenever ∥(u, v)∥W = ρλ.
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Proof. Note that F (x, 0, 0) = 0. By (C1), for all (s, t) ∈ R2 with |(s, t)| < l0, we have

|F (x, s, t)| = |F (x, s, t)− F (x, 0, 0)|
≤ |F (x, s, t)− F (x, 0, t)|+ |F (x, 0, t)− F (x, 0, 0)|

≤
∫ |s|

0
|Fs(x, s, t)| ds+

∫ |t|

0
|Ft(x, 0, t)| dt

≤
∫ |s|

0

h0
q + 1

(
|s|p−1 + |t|

pq−q
p
)
ds+

∫ |t|

0

h0
q + 1

|t|q−1 dt

≤ h0
p(q + 1)

|s|p + h0
q + 1

|t|
pq−q

p |s|+ h0
q(q + 1)

|t|q

≤ 2h0
p(q + 1)

|s|p + (pq − q + p)h0
pq(q + 1)

|t|q.

It is easy to obtain that for each λ satisfying (1.8), there exists a ελ > 0 such that

0 < λ < λε :=
min{1, q − 1} · (Λ0 − ελ)

max{p,q}−1

2max{p,q}−1(pq + p)max
{
h
− 1

p

0 ∥e1∥
L

p
p−1 (V )

, h
− 1

q

0 ∥e2∥
L

q
q−1 (V )

} .

For any (u, v) ∈ W with ∥(u, v)∥W = Λ0−ελ, by (2.1), we have ∥u∥∞ < l0
2 and ∥v∥∞ < l0

2 ,

and so |(u(x), v(x))| ≤ ∥u∥∞ + ∥v∥∞ < l0 for all x ∈ V . Then

φλ(u, v) ≥
1

p
∥u∥p

W 1,p
h (V )

+
1

q
∥v∥q

W 1,q
h (V )

− 2h0
p(q + 1)

∫

V
|u|p dµ

− (pq − q + p)h0
pq(q + 1)

∫

V
|v|q dµ− λ

∫

V
(e1u+ e2v) dµ

≥
(
1

p
− 2

p(q + 1)

)
∥u∥p

W 1,p
h (V )

+

(
1

q
− pq − q + p

pq(q + 1)

)
∥v∥q

W 1,q
h (V )

− λ

∫

V
(e1u+ e2v) dµ

≥ min{1, q − 1}
pq + p

(
∥u∥p

W 1,p
h (V )

+ ∥v∥q
W 1,q

h (V )

)

− λmax
{
h
− 1

p

0 ∥e1∥
L

p
p−1 (V )

, h
− 1

q

0 ∥e2∥
L

q
q−1 (V )

}
∥(u, v)∥W

≥ min{1, q − 1}
2max{p,q}−1(pq + p)

∥(u, v)∥max{p,q}
W

− λmax
{
h
− 1

p

0 ∥e1∥
L

p
p−1 (V )

, h
− 1

q

0 ∥e2∥
L

q
q−1 (V )

}
∥(u, v)∥W

(4.1)

for any (u, v) ∈ W with ∥(u, v)∥W = Λ0−ελ. Let ρλ = Λ0−ελ. Hence, for each λ ∈ (0, λ0),

there exists a ρλ such that φ(u, v) ≥ αλ > 0 whenever ∥(u, v)∥W = ρλ, where

(4.2) αλ =
min{1, q − 1}

2max{p,q}−1(pq + p)
ρ
max{p,q}
λ − λmax

{
h
− 1

p

0 ∥e1∥
L

p
p−1 (V )

, h
− 1

q

0 ∥e2∥
L

q
q−1 (V )

}
ρλ.
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Lemma 4.2. Assume that (C2) holds. Then for each λ ∈ (0, λ0), there exists a (u∗∗λ, v∗∗λ)

∈ W with ∥(u∗∗λ, v∗∗λ)∥W > ρλ such that φ(u∗∗λ, v∗∗λ) < 0.

Proof. Let

u∗(x) = v∗(x) =




1 if x = x3,

0 if x ̸= x3,

where x3 ∈ V with µ(x3) > 0 and e1(x3) + e2(x3) > 0. Then
∫

V
|∇u∗|p dµ =

∑

x∈V
|∇u∗|p(x)µ(x)

=
∑

x∈V

(
1

2µ(x)

∑

y∼x

wxy(u
∗(y)− u∗(x))2

)p/2

µ(x)

=

(
1

2µ(x3)

∑

y∼x3

wx3y

)p/2

µ(x3) +
∑

x∼x3

(
1

2µ(x)

∑

x3∼x

wxx3

)p/2

µ(x)

=

(
deg(x3)

2µ(x3)

)p/2

µ(x3) +
∑

x∼x3

(
deg(x3)

2µ(x)

)p/2

µ(x)

=

(
deg(x3)

2

)p/2
(∑

x∼x3

(
1

µ(x)

)p/2−1

+
1

µ(x3)p/2−1

)

:= D1.

(4.3)

Similarly, we have

∫

V
|∇v∗|q dµ =

(
deg(x3)

2

)q/2
(∑

x∼x3

(
1

µ(x)

)q/2−1

+
1

µ(x3)q/2−1

)
:= D2.

Thus, by (C2), for all s ∈ R with s > l1, we have

φλ(su
∗, sv∗) =

sp

p
∥u∗∥p

W 1,p
h (V )

+
sq

q
∥v∗∥q

W 1,q
h (V )

−
∫

V
F (x, su∗(x), sv∗(x)) dµ

− λ

∫

V
(se1u

∗ + se2v
∗) dµ

=
sp

p
(D1 + µ(x3)h1(x3)) +

sq

q
(D2 + µ(x3)h2(x3))

− µ(x3)F (x3, s, s)− λsµ(x3)(e1(x3) + e2(x3))

≤ sp

p
(D1 + µ(x3)h1(x3)) +

sq

q
(D2 + µ(x3)h2(x3))

−Mµ(x3)(s
p + sq)− λsµ(x3)(e1(x3) + e2(x3))

= sp
(
D1 + µ(x3)h1(x3)

p
−Mµ(x3)

)
+ sq

(
D2 + µ(x3)h2(x3)

q
−Mµ(x3)

)

− λsµ(x3)(e1(x3) + e2(x3)),



572 Ping Yang and Xingyong Zhang

which implies φ(su∗, sv∗) → −∞ as s → +∞. Hence, for each λ ∈ (0, λ0), there exists sλ

large enough such that ∥(sλu∗, sλv∗)∥W > ρλ and φ(sλu
∗, sλv∗) < 0. Let u∗∗λ = sλu

∗ and

v∗∗λ = sλv
∗. Then the proof is completed.

Lemma 4.3. Assume that (F0), (C3), (H1) and (H′
2) hold. Then for each λ ∈ (0, λ0), φλ

satisfies the (PS)-condition.

Proof. Let {(uk, vk)} ⊂ W be a Palais–Smale sequence of φλ. Then there exists a positive

constant c such that

|φλ(uk, vk)| ≤ c for all k ∈ N and φ′
λ(uk, vk) → 0 as k → ∞.

Then, by (C3), we have

c+ ∥uk∥W 1,p
h (V )

+ ∥vk∥W 1,q
h (V )

= c+ ∥(uk, vk)∥W

≥ φλ(uk, vk)−
1

ν
⟨φ′

λ(uk, vk), (uk, vk)⟩

=

(
1

p
− 1

ν

)
∥uk∥pW 1,p

h (V )
+

(
1

q
− 1

ν

)
∥vk∥qW 1,q

h (V )

− 1

ν

∫

V
[νF (x, uk, vk)− Fu(x, uk, vk)uk − Fv(x, uk, vk)vk] dµ

− ν − 1

ν
λ

∫

V
(e1uk + e2vk) dµ

≥
(
1

p
− 1

ν

)
∥uk∥pW 1,p

h (V )
+

(
1

q
− 1

ν

)
∥vk∥qW 1,q

h (V )

− A

ν

∫

V
(|u|p + |v|q) dµ− ν − 1

ν
λ

∫

V
(e1uk + e2vk) dµ

≥
(
1

p
− 1

ν
− A

νh0

)
∥uk∥pW 1,p

h (V )
+

(
1

q
− 1

ν
− A

νh0

)
∥vk∥qW 1,q

h (V )

− (ν − 1)λ

ν

(
h
− 1

p

0 ∥e1∥
L

p
p−1 (V )

∥uk∥W 1,p
h (V )

+ h
− 1

q

0 ∥e2∥
L

q
q−1 (V )

∥vk∥W 1,q
h (V )

)
.

(4.4)

We claim that ∥(uk, vk)∥W is bounded. In fact, if

(4.5) ∥uk∥W 1,p
h (V )

→ ∞ and ∥vk∥W 1,q
h (V )

→ ∞ as k → ∞,

then (4.4) implies that

c+ ∥(uk, vk)∥W +
(ν − 1)λ

ν
max

{
h
− 1

p

0 ∥e1∥
L

p
p−1 (V )

, h
− 1

q

0 ∥e2∥
L

q
q−1 (V )

}
∥(uk, vk)∥W

≥ min

{(
1

p
− 1

ν
− A

νh0

)
,

(
1

q
− 1

ν
− A

νh0

)}(
∥uk∥pW 1,p

h (V )
+ ∥vk∥qW 1,q

h (V )

)

≥ min

{(
1

p
− 1

ν
− A

νh0

)
,

(
1

q
− 1

ν
− A

νh0

)}
1

2min{p,q}−1
∥(uk, vk)∥min{p,q}

W
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for all large k, which contradicts with (4.5). If

(4.6) ∥uk∥W 1,p
h (V )

→ ∞ as k → ∞

and ∥vk∥W 1,q
h (V )

is bounded for all k ∈ N, then by (4.4), there exists two positive constants

c0 and c1 such that

c0 + c1∥uk∥W 1,p
h (V )

≥
(
1

p
− 1

ν
− A

νh0

)
∥uk∥pW 1,p

h (V )

which contradicts with (4.6). Similarly, if ∥vk∥W 1,q
h (V )

→ ∞ as k → ∞ and ∥uk∥W 1,p
h (V )

is bounded for all k ∈ N, we can also obtain the same contradiction. Hence, the above

arguments imply that both ∥uk∥W 1,p
h (V )

and ∥vk∥W 1,q
h (V )

are bounded. So there exists a

positive constant c2 such that ∥uk∥W 1,p
h (V )

≤ c2 and ∥vk∥W 1,q
h (V )

≤ c2. Then we can find a

subsequence, still denoted by {uk}, such that uk ⇀ u⋆λ for some u⋆λ ∈ W 1,p
h (V ) as k → ∞,

and a subsequence of {vk}, which has the same subscript as the subsequence of {uk}, still
denoted by {vk}, such that vk ⇀ v⋆λ for some v⋆λ ∈ W 1,q

h (V ) as k → ∞. By Lemma 2.2,

we know that

(4.7) uk → u⋆λ and vk → v⋆λ in L∞(V ) as k → ∞.

Then by (3.2), we have

⟨φ′
λ(uk, vk)− φ′

λ(u
⋆
λ, v

⋆
λ), (uk − u⋆λ, 0)⟩

= ∥uk∥pW 1,p
h (V )

+ ∥u⋆λ∥pW 1,p
h (V )

−
∫

V

[
|∇uk|p−2Γ(uk, u

⋆
λ) + h1(x)|uk|p−2uku

⋆
λ

]
dµ

−
∫

V

[
|∇u⋆λ|p−2Γ(u⋆λ, uk) + h1(x)|u⋆λ|p−2u⋆λuk

]
dµ

+

∫

V
[Fu(x, u

⋆
λ, v

⋆
λ)− Fu(x, uk, vk)](uk − u⋆λ) dµ.

Let A1 = c2
1

h
1/p
0 µ

1/p
0

+ c2
1

h
1/q
0 µ

1/q
0

and A2 = ∥u⋆λ∥∞ + ∥v⋆λ∥∞. By (F0) and (4.7), we have

∫

V
[Fu(x, u

⋆
λ, v

⋆
λ)− Fu(x, uk, vk)](uk − u⋆λ) dµ

≤
∫

V
|Fu(x, u

⋆
λ, v

⋆
λ)− Fu(x, uk, vk)||uk − u⋆λ| dµ

≤
∫

V
[|Fu(x, uk, vk)|+ |Fu(x, u

⋆
λ, v

⋆
λ)|]|uk − u⋆λ| dµ

≤
[

max
|(s,t)|≤A1

a(|(s, t)|)
∫

V
b(x) dµ+ max

|(s,t)|≤A2

a(|(s, t)|)
∫

V
b(x) dµ

]
∥uk − u⋆λ∥∞

→ 0.

The rest of arguments are the same as Lemma 3.4.
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Lemma 4.4. Assume that (C1) and (C4) holds. Then for each λ ∈ (0, λ0), −∞ <

inf
{
φ(u, v) : (u, v) ∈ Bρλ

}
< 0, where ρλ is given in Lemma 4.1 and Bρλ =

{
(u, v) ∈ W |

∥(u, v)∥W ≤ ρλ
}
.

Proof. Let

u∗∗(x) = v∗∗(x) =




1 if x = x4,

0 if x ̸= x4,

where x4 ∈ V with µ(x4) > 0 and e1(x4) + e2(x4) > 0. Hence, by (4.3), we obtain that

D3 :=

∫

V
|∇u∗∗|p dµ =

(
deg(x4)

2

)p/2
(∑

x∼x4

(
1

µ(x)

)p/2−1

+
1

µ(x4)p/2−1

)
,

D4 :=

∫

V
|∇v∗∗|q dµ =

(
deg(x4)

2

)q/2
(∑

x∼x4

(
1

µ(x)

)q/2−1

+
1

µ(x4)q/2−1

)
.

Then for each λ ∈ (0, λ0), by (C4), for all t ∈ R with 0 < t < l2, we have

φλ(tu
∗∗, tv∗∗) =

tp

p
∥u∗∗∥p

W 1,p
h (V )

+
tq

q
∥v∗∗∥q

W 1,q
h (V )

−
∫

V
F (x, tu∗∗(x), tv∗∗(x)) dµ

− λ

∫

V
(te1u

∗∗ + te2v
∗∗) dµ

=
tp

p
(D3 + µ(x4)h1(x4)) +

tq

q
(D4 + µ(x4)h2(x4))

− µ(x4)F (x4, t, t)− λtµ(x4)(e1(x4) + e2(x4))

≤ tp

p
(D3 + µ(x4)h1(x4)) +

tq

q
(D4 + µ(x4)h2(x4))

+K3(x4)µ(x4)|t|β3 − λtµ(x4)(e1(x4) + e2(x4)).

(4.8)

Note that p > 1, q > 1, β3 > 1 and K3(x4) > 0. By (4.8), there exists a sufficiently small

t1,λ satisfying

0 < t1,λ < min

{
ρλ

2∥u∗∗∥
W 1,p

h (V )

,
ρλ

2∥v∗∗∥
W 1,q

h (V )

}

such that φ(t1,λu
∗∗, t1,λv∗∗) < 0. Clearly, ∥(t1,λu∗∗, t1,λv∗∗)∥W < ρλ. Hence, inf

{
φ(u, v) :

(u, v) ∈ Bρλ

}
≤ φ(t1,λu

∗∗, t1,λv∗∗) < 0. Moreover, it is easy to see that (4.1) still holds for

all (u, v) ∈ Bρλ . Then

φλ(u, v) ≥ −λmax
{
h
− 1

p

0 ∥e1∥
L

p
p−1 (V )

, h
− 1

q

0 ∥e2∥
L

q
q−1 (V )

}
ρλ,

which shows that φλ is bounded from below in Bρλ for each λ ∈ (0, λ0). So inf
{
φ(u, v) :

(u, v) ∈ Bρλ

}
> −∞.
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Proof of Theorem 1.3. By Lemmas 2.6, 4.1, 4.2 and 4.3, we obtain that for each λ ∈
(0, λ0), φλ has a critical value c∗ ≥ αλ > 0 with

c∗ := inf
γ∈Γ

max
t∈[0,1]

φλ(γ(t)),

where

Γ := {γ ∈ C([0, 1], X) : γ(0) = (0, 0), γ(1) = (u∗,λ, v∗,λ)}

and αλ is defined by (4.2). Hence, by Proposition 3.2, system (1.7) has one solution

(uλ⋆, vλ⋆) of positive energy. Obviously, (uλ⋆, vλ⋆) ̸= (0, 0). Otherwise, by the fact that

F (x, 0, 0) = 0 for all x ∈ V , we have φ(uλ⋆, vλ⋆) = 0, which contradicts with c∗ > 0.

Next, we prove that system (1.7) has one solution of negative energy if (C4) also holds.

The proof is motivated by [6, Theorem 3.3]. In fact, by Lemmas 4.1 and 4.4, we know

that

−∞ < inf
Bρλ

φλ < 0 < inf
∂Bρλ

φλ

for each λ ∈ (0, λ0). Set

1

n
∈
(
0, inf

∂Bρλ

φλ − inf
Bρλ

φλ

)
, n ∈ Z+.

Then there exists a (un, vn) ∈ Bρλ such that

(4.9) φλ(un, vn) ≤ inf
Bρλ

φλ +
1

n
.

As φλ(u, v) ∈ C1(W,R), we know φλ(u, v) is lower semicontinuous. Thus, by Lemma 2.4

we have

φλ(un, vn) ≤ φλ(u, v) +
1

n
∥(u, v)− (un, vn)∥W , ∀ (u, v) ∈ Bρλ .

Note that

φλ(un, vn) ≤ inf
Bρλ

φλ +
1

n
< inf

∂Bρλ

φλ.

Thus, (un, vn) ∈ Bρλ . Defining Mn : W → R by

Mn(u, v) = φλ(u, v) +
1

n
∥(u, v)− (un, vn)∥W ,

we have (un, vn) ∈ Bρλ minimizes Mn on Bρλ . Therefore, for all (u, v) ∈ W with

∥(u, v)∥W = 1, taking t > 0 small enough such that (un + tu, vn + tv) ∈ Bρλ , then

Mn(un + tu, vn + tv)−Mn(un, vn)

t
≥ 0,

which implies that

⟨φ′
λ(un, vn), (u, v)⟩ ≥ − 1

n
.
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Similarly, when t < 0 and |t| small enough, we have

⟨φ′
λ(un, vn), (u, v)⟩ ≤

1

n
.

Hence,

(4.10) ∥φ′
λ(un, vn)∥ ≤ 1

n
.

Passing to the limit in (4.9) and (4.10), we conclude that

φλ(un, vn) → inf
Bρλ

φλ and ∥φ′
λ(un, vn)∥ → 0 as n → ∞.

Hence, {(un, vn)} ⊂ Bρλ is a Palais–Smale sequence of φλ. By Lemma 4.3, {(un, vn)} has

a strongly convergent subsequence {(unk, vnk)} ⊂ Bρλ , and (unk, vnk) → (u⋆⋆, v⋆⋆) ∈ Bρλ

as nk → ∞. Consequently,

φλ(u
⋆⋆, v⋆⋆) = inf

Bρλ

φλ < 0 and φ′
λ(u

⋆⋆, v⋆⋆) = 0,

which implies that system (1.7) has a solution (u⋆⋆, v⋆⋆) ̸= (0, 0) of negative energy.

5. Examples

Example 5.1. Let p = 2 and q = 3. Consider the following system

(5.1)




−∆u+ h1(x)u = Fu(x, u, v) + λ1e1(x), x ∈ V,

−∆3v + h2(x)v = Fv(x, u, v) + λ2e2(x), x ∈ V,

where G = (V,E) is locally finite graph, the measure µ(x) ≥ µ0 = 1 for all x ∈ V ,

hi : V → R+, i = 1, 2, h1(x) = 3+dist(x, x1), h2(x) = 3+dist(x, x2), where x1 and x2 are

two fixed points in V and µ(x1) = µ(x2) = 1,

F (x, s, t) =





3
5

(
s5/3 + t5/3

)
if x = x1, x2,

0 if x ̸= x1, x2,
e1(x) = e2(x) =




1 if x = x1, x2,

0 if x ̸= x1, x2,

and λ1, λ2 > 0. Next, we verify that h1, h2 and F satisfy the conditions in Theorem 1.1:

� Obviously, when dist(x, xi) → +∞, hi(x) → +∞ and hi ≥ h0 = 3, i = 1, 2. Hence,

hi satisfies (H1), (H2), i = 1, 2.

� Let

f1(x) ≡ 1, g1(x) =




1 if x = x1, x2,

0 if x ̸= x1, x2.
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Then

∥f1∥∞ = 1 < min

{
h0
2
,

ph0
q(p− 1)

}
=

3

2
, ∥g1∥L2(V ) =

√
2.

Moreover,

|Fs(x, s, t)| = |s|2/3 ≤ |s|+ 1 ≤ f1(x)(|s|+ |t|3/2) + g1(x).

Similarly, let

f2(x) = f1(x), g2(x) = g1(x).

We also have

|Ft(x, s, t)| = |t|2/3 ≤ |t|2 + 1 ≤ f2(x)(|s|2 + |t|2) + g2(x).

Then F (x, s, t) satisfies (F1). Hence, F (x, s, t) also satisfies (F0).

� Let

β1 =
5

3
, K1(x) ≡

3

5
.

Then

F (x, s, 0) ≥ −3

5
|s|5/3.

Hence, F (x, s, t) satisfies (i) of (F2).

Hence, by Theorem 1.1, for each pair (λ1, λ2) ∈ (0,+∞) × (0,+∞), system (5.1) has

one nontrivial solution (uλ⋆, vλ⋆). Furthermore, if (uλ⋆, vλ⋆) = (uλ⋆, 0), then ∥uλ⋆∥∞ ≤√
2
2 (λ1 + 1). If (uλ⋆, vλ⋆) = (0, vλ⋆), then ∥vλ⋆∥∞ ≤ 21/3

(
λ2+1
2

)1/2
.

Example 5.2. Let p = 2 and q = 3. Consider the following system

(5.2)




−∆u+ h1(x)u = Fu(x, u, v) + λe1(x), x ∈ V,

−∆3v + h2(x)v = Fv(x, u, v) + λe2(x), x ∈ V,

where G = (V,E) is locally finite graph, the measure µ(x) ≥ µ0 > 0 for all x ∈ V , e1, e2 ∈
L2(V ), e1(x), e2(x) ̸≡ 0 and λ > 0. h1(x) = h2(x) = c1 dist(x, x1)− 1

dist(x,x2)+1 + 2, where

c1 is positive constant and x1 and x2 are two fixed points in V with e1(x1) + e2(x) > 0,

F (x, s, t) = M ln(1 + s4 + t4)(s4 + t4), M = max
{D1+µ(x1)h1(x1)

2µ(x1)
, D2+µ(x1)h2(x1)

3µ(x1)

}
+ 1 > 1,

D1 =
deg(x1)

2 (♯A+ 1), and

D2 =

(
deg(x1)

2

)3/2
(∑

x∼x1

1√
µ(x)

+
1√
µ(x1)

)
,

where ♯A is the number of elements in the set A = {x ∈ V | x ∼ x1}.
We verify that h1, h2 and F satisfy the conditions in Theorem 1.3:
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� Obviously, h1, h2 satisfy (H1) and h0 = 1.

� For any given constant B, when h1 = h2 = c1 dist(x, x1) − 1
dist(x,x2)+1 + 2 < B, we

have

c1 dist(x, x1) < B − 2 +
1

dist(x, x2) + 1
< B − 1.

Moreover, since V is a locally finite graph, the set Ai = {x ∈ V | hi ≤ B} ⊆ {x ∈
V | dist(x, x1) < B − 1} is finite. So,

∑
x∈Ai

µ(x) is finite, (H′
2) holds.

� By F (x, s, t), when |s| and |t| < 1, we have

|Fs(x, s, t)| = M

∣∣∣∣
4s3(s4 + t4)

1 + s4 + t4
+ 4s3 ln(1 + s4 + t4)

∣∣∣∣

≤ 4M

( |s|3(s4 + t4)

1 + s4 + t4
+ |s|3(1 + s4 + t4)

)

≤ 4M(4|s|3 + t4).

Moreover, when |s| < 1
16

√
M

and |t| < 1
(16M)2/5

, we have

16M |s|3 ≤ 1

4
|s|, 4Mt4 ≤ 1

4
|t|3/2.

So, when |(s, t)| ≤ 1
16

√
M
, Fs(x, s, t)| ≤ 1

4(|s| + |t|3/2). Similarly, when |s| < 1
4
√
M

and |t| < 1
64M , we can prove that

|Ft(x, s, t)| ≤ 4M(4|t|3 + s4) ≤ 1

4
(s2 + t2).

Hence, when |(s, t)| ≤ 1
64M ,

|Fs(x, s, t)| ≤
1

4
(|s|+ |t|3/2) and |Ft(x, s, t)| ≤

1

4
(s2 + t2).

It is that (C1) holds.

� When s > 1, F (x, s, s) = 4s4 ln(1 + 2s4) ≥ 4(s2 + s3). So, F satisfies (C2).

� Let ν = 4 and A = 1
4 . For all x ∈ V , we have

4F (x, s, t)− Fs(x, s, t)s− Ft(x, s, t)t = −4M
(s4 + t4)2

(1 + s4 + t4)
≤ 1

4
(s2 + |t|3).

So, (C3) holds.

� Let β3 = 2 and K3(x) ≡ 1. For all s ∈ R, F (x, s, s) = 2Ms4 ln(1 + 2s4) ≥ −s2. So,

(C4) holds.

Hence, by Theorem 1.3, when 0 < λ <
min
{

1
128M

min
{
µ
1/2
0 ,µ

1/3
0

}
,1
}2

32max
{
∥e1∥L2(V ),∥e2∥L3/2(V )

} , system (5.2) has one

nontrivial solution of positive energy and another nontrivial solution of negative energy.
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6. Conclusion

The existence of nontrivial solutions for system (1.7) is investigated when the nonlinear

term F satisfies the sub-(p, q)-linear condition or super-(p, q)-linear condition, which gen-

eralize some results in [12] in some sense. We present the concrete ranges of the parameter

λ1 and λ2. For the sub-(p, q)-linear case, we furthermore obtain a necessary condition for

the existence of the semi-trivial solutions, and for the super-(p, q)-linear case, we present

a weaker assumption of F than the well-known (AR)-condition. However, we do not in-

vestigate the existence of the non-semi-trivial solutions. A possible method to solve the

problem can be referred to [2, 3] and we shall try to do it in future works.

A. Appendix

In this section, we present some conclusions about W 1,s
h (V ) and φλ.

Lemma A.1. W 1,s
h (V ) is uniformly convex for all s > 1.

Proof. Since Ls(V ) is uniformly convex for all s > 1, by using Theorem 8 in [21], we have E

is uniformly convex, where E = Ls(V )×Ls(V ) with ∥(u, v)∥E =
(
∥u∥sLs(V )+∥v∥sLs(V )

)1/s
.

Define T : W 1,s
h (V ) → E by

T (u(x)) =
(
|∇u|(x), h(x)1/su(x)

)
,

where h(x) ≥ h0 > 0. Then

∥T (u)∥E =
(
∥∇u∥sLs(V ) + ∥h1/su∥sLs(V )

)1/s
=

(∫

V
|∇u|s + h|u|s dµ

)1/s

= ∥u∥
W 1,s

h (V )
.

So, T is an isometry. Hence, W 1,s
h (V ) is uniformly convex.

Lemma A.2. If F (x, s, t) satisfies (F0), then φλ ∈ C1(W,R), and

⟨φ′(u, v), (ϕ1, ϕ2)⟩ =
∫

V

[
|∇u|p−2Γ(u, ϕ1) + h1|u|p−2uϕ1 − Fu(x, u, v)ϕ1 − λ1e1ϕ1

]
dµ

+

∫

V

[
|∇v|q−2Γ(v, ϕ2) + h2|v|q−2vϕ2 − Fv(x, u, v)ϕ2 − λ2e2ϕ2

]
dµ.

Proof. Let

G(x, u, v) =
1

p
(|∇u|p + h1|u|p)µ(x) +

1

q
(|∇v|q + h2|v|q)µ(x)

− F (x, u, v)µ(x)− λ1e1uµ(x)− λ2e2vµ(x).
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Then
∑

x∈V G(x, u, v) = φλ(u, v). For any given (ϕ1, ϕ2) ∈ W and θ ∈ [−1, 1], we have

Gx(θ) ≜ G(x, u+ θϕ1, v + θϕ2)

=
1

p
(|∇(u+ θϕ1)|p + h1|u+ θϕ1|p)µ(x)

+
1

q
(|∇(v + θϕ2)|q + h2|v + θϕ2|q)µ(x)

− F (x, u+ θϕ1, v + θϕ2)µ(x)− λ1e1(u+ θϕ1)µ(x)− λ2e2(v + θϕ2)µ(x).

Hence, by (F0) and (1.2), we have

Gx(θ) ≤
2p−1

p
(|∇u|p + h1|u|p + |∇ϕ1|p + h1|ϕ1|p)µ(x)

+
2q−1

q
(|∇v|q + h2|v|q + |∇ϕ2|q + h2|ϕ2|q)µ(x)

+ a(|(u+ θϕ1, v + θϕ2)|)b(x)µ(x) + λ1|e1(u+ θϕ1)|µ(x) + λ2|e2(v + θϕ2)|µ(x)

≤ 2p−1

p
(|∇u|p + h1|u|p + |∇ϕ1|p + h1|ϕ1|p)µ(x)

+
2q−1

q
(|∇v|q + h2|v|q + |∇ϕ2|q + h2|ϕ2|q)µ(x)

+ max
|(s,t)|≤∥u∥∞+∥v∥∞+∥ϕ1∥∞+∥ϕ2∥∞

a(|(s, t)|)b(x)µ(x)

+ λ1|e1(u+ ϕ1)|µ(x) + λ2|e2(v + ϕ2)|µ(x).

(A.1)

Since u, ϕ1 ∈ W 1,p
h (V ), v, ϕ2 ∈ W 1,q

h (V ), a ∈ L∞(V ), b ∈ L1(V ), e1 ∈ L
p

p−1 (V ), e2 ∈
L

q
q−1 (V ), then

∑
x∈V Gx(θ) is convergence for all θ ∈ [−1, 1]. Moreover,

1

p

∂

∂θ
|∇(u+ θϕ1)|p

=
1

p

∂

∂θ
(|∇(u+ θϕ1)|2)p/2

=
1

2
|∇(u+ θϕ1)|p−2 ∂

∂θ
Γ(u+ θϕ1, u+ θϕ1)

=
1

2
|∇(u+ θϕ1)|p−2 ∂

∂θ

(
1

2µ(x)

∑

y∼x

wxy[(u(y) + θϕ1(y))− (u(x) + θϕ1(x))]
2

)

= |∇(u+ θϕ1)|p−2 1

2µ(x)

∑

y∼x

wxy[(u(y) + θϕ1(y))− (u(x) + θϕ1(x))](ϕ1(y)− ϕ1(x))

= |∇(u+ θϕ1)|p−2 1

2µ(x)

∑

y∼x

wxy

[
(u(y)− u(x))(ϕ1(y)− ϕ1(x)) + θ(ϕ1(y)− ϕ1(x))

2
]

= |∇(u+ θϕ1)|p−2(Γ(u, ϕ1) + Γ(θϕ1, ϕ1))

= |∇(u+ θϕ1)|p−2Γ(u+ θϕ1, ϕ1).
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Then

∂Gx(θ)

∂θ

= |∇(u+ θϕ1)|p−2Γ(u+ θϕ1, ϕ1)µ(x) + |∇(v + θϕ2)|q−2Γ(v + θϕ2, ϕ2)µ(x)

+ h1|u+ θϕ1|p−2(u+ θϕ1)ϕ1µ(x) + h2|v + θϕ2|q−2(v + θϕ2)ϕ2µ(x)

− Fu+θϕ1(x, u+ θϕ1, v + θϕ2)ϕ1µ(x)− Fv+θϕ2(x, u+ θϕ1, v + θϕ2)ϕ2µ(x)

− λ1e1ϕ1µ(x)− λ2e2ϕ2µ(x).

(A.2)

Since F (x, s, t) is continuously differentiable in (s, t) ∈ R2 for all x ∈ V , it is easy to obtain

that ∂Gx(θ)
∂θ is continuous in [−1, 1]. By (F0), we have

∂Gx(θ)

∂θ

≤ |∇(u+ θϕ1)|p−1|∇ϕ1|µ(x) +
(
h
1/p
1 |u+ θϕ1|

)p−1
h
1/p
1 |ϕ1|µ(x)

+ |∇(v + θϕ2)|q−1|∇ϕ2|µ(x) +
(
h
1/q
2 |v + θϕ2|

)q−1
h
1/q
2 |ϕ2|µ(x)

+
(
|Fu|ϕ1 + |Fv|ϕ2 + θλ1e1ϕ1 + θλ2e2ϕ2

)
µ(x)

≤
(
|∇(u+ θϕ1)|p + h1|u+ θϕ1|p

) p−1
p
(
|∇ϕ1|p + h1|ϕ1|p

)1/p
µ(x)

+
(
|∇(v + θϕ2)|q + h2|v + θϕ2|q

) q−1
q
(
|∇ϕ2|q + h2|ϕ2|q

)1/q
µ(x)

+ max
|(s,t)|≤∥u∥∞+∥v∥∞

a|(s, t)|b(x)(ϕ1 + ϕ2)µ(x) + λ1|e1ϕ1|µ(x) + λ2|e2ϕ2|µ(x)

≤ 2
(p−1)2

p
(
|∇u|p + |∇ϕ1|p + h1|u|p + h1|ϕ1|p

) p−1
p
(
|∇ϕ1|p + h1|ϕ1|p

)1/p
µ(x)

+ 2
(q−1)2

q
(
|∇v|q + |∇ϕ2|q + h2|v|q + h2|ϕ2|q

) q−1
q
(
|∇ϕ2|q + h2|ϕ2|q

)1/q
µ(x)

+ max
|(s,t)|≤∥u∥∞+∥v∥∞

a|(s, t)|b(x)(ϕ1 + ϕ2)µ(x) + λ1|e1ϕ1|µ(x) + λ2|e2ϕ2|µ(x)

≤ 2
(p−1)2

p
(
(|∇u|p + h1|u|p)

p−1
p + (|∇ϕ1|p + h1|ϕ1|p)

p−1
p
)(
|∇ϕ1|p + h1|ϕ1|p

)1/p
µ(x)

+ 2
(q−1)2

q
(
(|∇v|q + h2|v|q)

q−1
q + (|∇ϕ2|q + h2|ϕ2|q)

q−1
q
)(
|∇ϕ2|q + h2|ϕ2|q

)1/q
µ(x)

+ max
|(s,t)|≤∥u∥∞+∥v∥∞

a|(s, t)|b(x)(ϕ1 + ϕ2)µ(x) + λ1|e1ϕ1|µ(x) + λ2|e2ϕ2|µ(x).

(A.3)

Moreover, we have

∑

x∈V

∂Gx(θ)

∂θ

≤ 2
(p−1)2

p

(∑

x∈V

(
(|∇u|p + h1|u|p)

p−1
p +

(
|∇ϕ1|p + h1|ϕ1|p

) p−1
p
) p

p−1

) p−1
p

×
(∑

x∈V
|∇ϕ1|p + h1|ϕ1|p

)1/p

µ(x)
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+ 2
(q−1)2

q

(∑

x∈V

(
(|∇v|q + h2|v|q)

q−1
q + (|∇ϕ2|q + h2|ϕ2|q)

q−1
q
) q

q−1

) q−1
q

×
(∑

x∈V
|∇ϕ2|q + h2|ϕ2|q

)1/q

µ(x)

+ max
|(s,t)|≤∥u∥∞+∥v∥∞

a|(s, t)|∥b(x)∥L1(V )∥ϕ1 + ϕ2∥∞

+ λ1∥e1∥
L

p
p−1 (V )

∥ϕ1∥Lp(V ) + λ2∥e2∥
L

q
q−1 (V )

∥ϕ2∥Lq(V )

≤ 2
(p−1)2+1

p

(∑

x∈V

(
|∇u|p + h1|u|p + |∇ϕ1|p + h1|ϕ1|p

)
µ(x)

) p−1
p

×
(∑

x∈V
(|∇ϕ1|p + h1|ϕ1|p)µ(x)

)1/p

+ 2
(q−1)2+1

q

(∑

x∈V

(
|∇v|q + h2|v|q + |∇ϕ2|q + h2|ϕ2|q

)
µ(x)

) q−1
q

(A.4)

×
(∑

x∈V
(|∇ϕ2|q + h2|ϕ2|q)µ(x)

)1/q

+ max
|(s,t)|≤∥u∥∞+∥v∥∞

a|(s, t)|∥b(x)∥L1(V )∥ϕ1 + ϕ2∥∞

+ λ1∥e1∥
L

p
p−1 (V )

∥ϕ1∥Lp(V ) + λ2∥e2∥
L

q
q−1 (V )

∥ϕ2∥Lq(V )

= 2
(p−1)2+1

p
(
∥u∥p

W 1,p(V )
+ ∥ϕ1∥pW 1,p(V )

) p−1
p ∥ϕ1∥W 1,p(V ) + λ1∥e1∥

L
p

p−1 (V )
∥ϕ1∥Lp(V )

2
(q−1)2+1

q
(
∥v∥q

W 1,q(V )
+ ∥ϕ2∥qW 1,q(V )

) q−1
q ∥ϕ2∥W 1,q(V ) + λ2∥e2∥

L
q

q−1 (V )
∥ϕ2∥Lq(V )

+ max
|(s,t)|≤∥u∥∞+∥v∥∞

a|(s, t)|∥b(x)∥L1(V )∥ϕ1 + ϕ2∥∞

≤ 2
(p−1)2+1

p
(
∥u∥p−1

W 1,p(V )
+ ∥ϕ1∥p−1

W 1,p(V )

)
∥ϕ1∥W 1,p(V ) + λ1∥e1∥

L
p

p−1 (V )
∥ϕ1∥Lp(V )

+ 2
(q−1)2+1

q
(
∥v∥q−1

W 1,q(V )
+ ∥ϕ2∥q−1

W 1,q(V )

)
∥ϕ2∥W 1,q(V ) + λ2∥e2∥

L
q

q−1 (V )
∥ϕ2∥Lq(V )

+ max
|(s,t)|≤∥u∥∞+∥v∥∞

a|(s, t)|∥b(x)∥L1(V )∥ϕ1 + ϕ2∥∞.

So, we obtain that
∑

x∈V
∂Gx(θ)

∂θ is uniform convergence. Let H(θ) =
∑

x∈V
∂Gx(θ)

∂θ =

φλ(u+ θϕ1, v + θϕ2). Then by (A.1)–(A.4), we have

H ′(0) =

(∑

x∈V

∂Gx(θ)

∂θ

)∣∣∣∣
θ=0
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=
∑

x∈V

[
|∇u|p−2Γ(u, ϕ1) + h1|u|p−2uϕ1 − Fu(x, u, v)ϕ1 − λ1e1ϕ1

]
µ(x)(A.5)

+
∑

x∈V

[
|∇v|q−2Γ(v, ϕ2) + h2|v|q−2vϕ2 − Fv(x, u, v)ϕ2 − λ2e2ϕ2

]
µ(x)

= ⟨φ′
λ(u, v), (ϕ1, ϕ2)⟩.

So, for any given (ϕ1, ϕ2) ∈ W , by (A.5) and (1.1), we have

⟨φ′
λ(u, v), (ϕ1, ϕ2)⟩

≤
∫

V

[
|∇u|p−1|∇ϕ1|+ h1|u|p−2uϕ1 − Fu(x, u, v)ϕ1 − λ1e1ϕ1

]
dµ

+

∫

V

[
|∇v|q−1|∇ϕ2|+ h2|v|q−2vϕ2 − Fv(x, u, v)ϕ2 − λ2e2ϕ2

]
dµ

≤
(∫

V
|∇u|p dµ

) p−1
p
(∫

V
|∇ϕ1|p dµ

)1/p

+

(∫

V
h1|u|p dµ

) p−1
p
(∫

V
h1|ϕ1|p dµ

)1/p

+

(∫

V
|∇v|q dµ

) q−1
q
(∫

V
|∇ϕ2|q dµ

)1/q

+

(∫

V
h2|v|q dµ

) q−1
q
(∫

V
h2|ϕ2|q dµ

)1/q

+

∫

V

(
|Fu|ϕ1 + |Fv|ϕ2 + λ1e1θϕ1 + λ2e2θϕ2

)
dµ

≤ ∥u∥p−1
W 1,p(V )

∥ϕ1∥W 1,p(V ) + ∥v∥q−1
W 1,q(V )

∥ϕ2∥W 1,q(V )

+

∫

V
a(|(u, v)|)b(x)(ϕ1 + ϕ2) dµ+

∫

V
(λ1e1ϕ1 + λ2e2ϕ2) dµ

≤ ∥u∥p−1
W 1,p(V )

∥ϕ1∥W 1,p(V ) + ∥v∥q−1
W 1,q(V )

∥ϕ2∥W 1,q(V )

+ max
|(s,t)|≤∥u∥∞+∥v∥∞

a|(s, t)|∥b∥L1(V )(∥ϕ1∥∞ + ∥ϕ2∥∞)

+ λ1h
− 1

p

0 ∥e1∥
L

p
p−1 (V )

∥ϕ1∥W 1,p(V ) + λ2h
− 1

q

0 ∥e2∥
L

q
q−1 (V )

∥ϕ2∥W 1,q(V )

≤ max
{
∥u∥p−1

W 1,p(V )
, ∥v∥q−1

W 1,q(V )

}
∥(ϕ1, ϕ2)∥W

+max

{
1

(h0µ0)1/p
,

1

(h0µ0)1/q

}
max

|(s,t)|≤∥u∥∞+∥v∥∞
a|(s, t)|∥b∥L1(V )∥(ϕ1, ϕ2)∥W

+max
{
λ1h

− 1
p

0 ∥e1∥
L

p
p−1 (V )

, λ2h
− 1

q

0 ∥e2∥
L

q
q−1 (V )

}
∥(ϕ1, ϕ2)∥W .

Thus, φ′
λ(u, v) : W → R is bounded and linear operator, that is, φ′

λ(u, v) ∈ W ∗ which is

the dual space of W . Define the mapping φ′
λ : W → W ∗ by

φ′
λ : (u, v) 7→ φ′

λ(u, v).

Next, we prove that φ′
λ is continuous in W . For any sequence {(uk, vk)} ⊂ W with
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(uk, vk) → (u, v) in W as k → ∞, we have

(A.6)

∫

V
|∇(uk − u)|p dµ → 0,

∫

V
|(uk − u)|p dµ → 0,

∫

V
|∇(vk − v)|q dµ → 0,

∫

V
|(vk − v)|q dµ → 0

and by (2.1), we have

(A.7) uk(x) → u(x), vk(x) → v(x) for all x ∈ V as k → ∞.

Note that

⟨φ′
λ(u, v)− φ′

λ(uk, vk), (ϕ1, ϕ2)⟩

=

∫

V

[
|∇u|p−2Γ(u, ϕ1)− |∇uk|p−2Γ(uk, ϕ1) + h1(|u|p−2u− |uk|p−2uk)ϕ1

]
dµ

+

∫

V

[
|∇v|q−2Γ(v, ϕ2)− |∇vk|q−2Γ(vk, ϕ2) + h2(|v|q−2v − |vk|q−2vk)ϕ2

]
dµ

−
∫

V
(Fu(x, u, v)− Fuk

(x, uk, vk))ϕ1 dµ−
∫

V
(Fv(x, u, v)− Fvk(x, uk, vk))ϕ2 dµ

=

∫

V
|∇u|p−2Γ(u− uk, ϕ1) dµ+

∫

V

(
|∇u|p−2 − |∇uk|p−2

)
Γ(uk, ϕ1) dµ

+

∫

V
h1(|u|p−2u− |uk|p−2uk)ϕ1 dµ−

∫

V
(Fu(x, u, v)− Fuk

(x, uk, vk))ϕ1 dµ

+

∫

V
|∇v|q−2Γ(v − vk, ϕ2) dµ+

∫

V
(|∇v|q−2 − |∇vk|q−2)Γ(vk, ϕ2) dµ

+

∫

V
h2(|v|q−2v − |vk|q−2vk)ϕ2 dµ−

∫

V
(Fv(x, u, v)− Fvk(x, uk, vk))ϕ2 dµ

:= I + II.

Firstly, we prove that

I =

∫

V
|∇u|p−2Γ(u− uk, ϕ1) dµ+

∫

V
(|∇u|p−2 − |∇uk|p−2)Γ(uk, ϕ1) dµ

+

∫

V
h1(|u|p−2u− |uk|p−2uk)ϕ1 dµ−

∫

V
(Fu(x, u, v)− Fuk

(x, uk, vk))ϕ1 dµ

→ 0 as k → ∞.

By using Lemma 5.12 in [13], we have
∫

V
h1(|u|p−2u− |uk|p−2uk)ϕ1 dµ

≤
(∫

V
h1(|u|p−2u− |uk|p−2uk)

p
p−1 dµ

) p−1
p
(∫

V
h1|ϕ1|p dµ

)1/p

→ 0 as k → ∞.

(A.8)
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Similarly, by (F0), Lebesgue dominated convergence theorem, (A.7) and the continuity of

Fu, we also have

∫

V
(Fu(x, u, v)− Fuk

(x, uk, vk))ϕ1 dµ

≤
(∫

V
(Fu(x, u, v)− Fuk

(x, uk, vk))
p

p−1 dµ

) p−1
p
(∫

V
|ϕ1|p dµ

)1/p

→ 0 as k → ∞.

(A.9)

Moreover, by Hölder inequality and (A.6), we get

∫

V
|∇u|p−2Γ(u− uk, ϕ1) dµ

≤
∫

V
|∇u|p−2|∇(u− uk)| · |∇ϕ1| dµ

≤
(∫

V
|∇(u− uk)|p dµ

)1/p(∫

V
|∇u|

(p−2)p
p−1 · |∇ϕ1|

p
p−1 dµ

) p−1
p

≤
(∫

V
|∇(u− uk)|p dµ

)1/p(∫

V
|∇u|p dµ

) p−2
p
(∫

V
|∇ϕ1|p dµ

)1/p

→ 0 as k → ∞,

(A.10)

and

∫

V
(|∇u|p−2 − |∇uk|p−2)Γ(uk, ϕ1) dµ

≤
∫

V

∣∣|∇u|p−2 − |∇uk|p−2
∣∣|∇uk| · |∇ϕ1| dµ

=

∫

V

∣∣|∇u|p−2|∇uk| − |∇uk|p−1
∣∣|∇ϕ1| dµ

=

∫

V

∣∣|∇u|p−2
[
|∇u|+ (|∇uk| − |∇u|)

]
− |∇uk|p−1

∣∣|∇ϕ1| dµ

=

∫

V

∣∣|∇u|p−1 − |∇uk|p−1
∣∣|∇ϕ1| dµ+

∫

V
|∇u|p−2

∣∣|∇uk| − |∇u|
∣∣|∇ϕ1| dµ

≤
(∫

V

∣∣|∇u|p−1 − |∇uk|p−1
∣∣ p
p−1 dµ

) p−1
p
(∫

V
|∇ϕ1|p dµ

)1/p

+

(∫

V
|∇u|

(p−2)p
p−1

∣∣|∇uk| − |∇u|
∣∣ p
p−1 dµ

) p−1
p
(∫

V
|∇ϕ1|p dµ

)1/p

(A.11)

≤ (p− 1)

(∫

V
|∇ϕ1|p dµ

)1/p

×
(∫

V

∣∣|∇u| − |∇uk|
∣∣ p
p−1
(
|∇uk|p−2 + |∇u|p−2

) p
p−1 dµ

) p−1
p
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+

(∫

V
|∇ϕ1|p dµ

)1/p(∫

V
|∇u|p dµ

) p−2
p
(∫

V

∣∣|∇uk| − |∇u|
∣∣p dµ

)1/p

≤ (p− 1)

(∫

V
|∇ϕ1|p dµ

)1/p(∫

V
|∇(u− uk)|p dµ

)1/p

×
(∫

V
(|∇uk|p−2 + |∇u|p−2)

p
p−2 dµ

) p−2
p

+

(∫

V
|∇ϕ1|p dµ

)1/p(∫

V
|∇u|p dµ

) p−2
p
(∫

V
|∇(uk − u)|p dµ

)1/p

≤ 2
2
p (p− 1)

(∫

V
|∇ϕ1|p dµ

)1/p(∫

V
|∇(u− uk)|p dµ

)1/p

×
(∫

V
(|∇uk|p + |∇u|p) dµ

) p−2
p

+

(∫

V
|∇ϕ1|p dµ

)1/p(∫

V
|∇u|p dµ

) p−2
p
(∫

V
|∇(uk − u)|p dµ

)1/p

→ 0 as k → ∞.

So, by (A.8)–(A.11), we obtain that

I → 0 as k → ∞.

Similarly, we can prove that

II → 0 as k → ∞.

Hence,

⟨φ′
λ(u, v)− φ′

λ(uk, vk), (ϕ1, ϕ2)⟩ → 0 as k → ∞.

Then φ′
λ is continuous.
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