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Continuous Orbit Equivalence for Automorphism Systems of Equivalence

Relations

Xiangqi Qiang and Chengjun Hou*

Abstract. We introduce notions of continuous orbit equivalence and strong (respective,

weak) continuous orbit equivalence for automorphism systems of étale equivalence

relations, and characterize them in terms of the semi-direct product groupoids, as well

as their reduced groupoid C∗-algebras and the associated C∗-automorphism systems

of group actions or coactions on them. In particular, we study topological rigidity of

expansive automorphism actions on compact (connected) metrizable groups.

1. Introduction

The interplay between orbit equivalence of topological dynamical systems and C∗-algebras

has been studied by many authors. An early celebrated result in this direction is the

work on strong orbit equivalence of minimal homeomorphisms on Cantor sets given by

Giordano, Putnam and Skau [8]. Later, Tomiyama and Boyle–Tomiyama studied a gen-

eralization of GPS’s result to the case of topologically free homeomorphisms on compact

Hausdorff spaces (see [3, 31]). In [13], Matsumoto introduced the notion of continuous

orbit equivalence of one-sided topological Markov shifts and characterized them in terms

of the existence of diagonal preserving ∗-isomorphisms between the associated Cuntz–

Krieger algebras. In [18], Matui and Matsumoto gave a classification result of two-sided

irreducible topological Markov shifts in the sense of flow equivalence by means of contin-

uous orbit equivalence of one-sided topological Markov shifts. We can refer to [5, 6] for

some generalizations on flow equivalence and study on the relation between topological

conjugacy of two-sided shifts of finite type and the associated stabilized Cuntz–Krieger al-

gebras with the canonical Cartan subalgebras and gauge actions. More recently, in [14,15],

Matsumoto introduced notions of asymptotic continuous orbit equivalence, asymptotic

conjugacy and asymptotic flip conjugacy in Smale spaces and characterized them in terms

of their groupoids and asymptotic Ruelle algebras with their dual actions. He also char-

acterized topological conjugacy classes of one-sided topological Markov shifts in terms of

the associated Cuntz–Krieger algebras and its gauge actions with potentials in [17].
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Our interests lie in group actions. As a topological analogue of the classification

results on the probability measure preserving actions in the sense of orbit equivalence,

Li introduced the notion of continuous orbit equivalence for continuous group actions

and proved that two topologically free systems are continuously orbit equivalent if and

only if their associated transformation groupoids are isomorphic (see [11]). By Renault’s

result in [24], these conditions are also equivalent to the existence of a C∗-isomorphism

preserving the canonical Cartan subalgebras between the corresponding crossed product

algebras. In [7], Li’s rigidity result has been generalized to the case of group actions with

torsion-free and abelian essential stabilisers.

The local conjugacy relations from expansive group action systems are generalizations

of asymptotic equivalence relations of Smale spaces (see [21, 29]). In [9], we character-

ized continuous orbit equivalence of expansive systems up to local conjugacy relations

and showed that two expansive actions are asymptotically continuous orbit equivalent if

and only if the associated semi-direct product groupoids of local conjugacy relations are

isomorphic.

In this paper, we consider continuous orbit equivalence between automorphism sys-

tems of étale equivalence relations. Given an étale equivalence relation R on a com-

pact metrizable space X, let G ↷α (X,R) be a dynamical system arising from an au-

tomorphism action of a countable group G on R in the sense that each αg is an au-

tomorphism of R as an étale groupoid. Denote by R ⋊α G the associated semi-direct

product groupoid. We say that two systems G ↷α (X,R) and H ↷β (Y,S) conju-

gate if there exist an isomorphism φ̃ : R → S as étale groupoids and a group isomor-

phism θ : G → H such that φ̃(gγ) = θ(g)φ̃(γ) for γ ∈ R and g ∈ G. We call the set

[x]G,R = {y ∈ X : (gx, y) ∈ R for some g ∈ G} the bi-orbit of x. Motivated by the

notion of usual orbit equivalence of dynamical systems, we say that G ↷ (X,R) and

H ↷ (Y,S) are orbit equivalent if there exists a homeomorphism φ : X → Y such that

φ([x]G,R) = [φ(x)]H,S for x ∈ X. We say they are continuously orbit equivalent if there

exist a homeomorphism φ : X → Y , continuous maps a : R×G → H and b : S ×H → G

such that both the maps ((x, y), g) ∈ R × G → (φ(x), a((x, y), g)φ(g−1y)) ∈ S and

((x, y), g) ∈ S × H → (φ−1(x), b((x, y), g)φ−1(g−1y)) ∈ R are well-defined and contin-

uous. The following are the main results.

Theorem 1.1 (Theorem 4.12). Assume that G ↷α (X,R) and H ↷β (Y,S) are essen-

tially free. Then the following statements are equivalent.

(i) G↷α (X,R) and H ↷β (Y,S) are continuously orbit equivalent;

(ii) R⋊α G and S ⋊β H are isomorphic as étale groupoids;

(iii) there exists a C∗-isomorphism Φ from C∗
r (R ⋊α G) onto C∗

r (S ⋊β H) such that
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Φ(C(X)) = C(Y ).

Here the notion of essential freeness for G↷α (X,R) is a generalization and analogue

of topological freeness of dynamical systems. When R = {(x, x) : x ∈ X} is a trivial

étale equivalence relation, or R is the local conjugacy relation or asymptotic equivalence

relation arising from an expansive system G ↷α X or an irreducible Smale space (X,φ),

this result is reduced to Theorem 1.2 in [11], Theorem 3.4 in [14] and Theorem 4.2 in [9].

In addition, we also introduce two stronger versions of continuous orbit equivalence for

automorphism systems, namely strong continuous orbit equivalence and weak continuous

orbit equivalence. The properties of these two stronger versions correspond to two special

orbit equivalence with some uniform conditions, and are also analogues of asymptotic flip

conjugacy in [14] and (strong) asymptotic conjugacy in [9]. Let ρα be the canonical cocycle

from R⋊αG onto G. It follows from [7, Lemma 6.1] that ρα gives us a C∗-coaction system

(C∗
r (R⋊α G), G; δα).

Theorem 1.2 (Corollary 4.16). Assume that G ↷α (X,R) and H ↷β (Y,S) are essen-

tially free. Then

(i) G↷α (X,R) and H ↷β (Y,S) are weakly continuously orbit equivalent if and only

if there is an isomorphism Λ: R⋊α G→ S ⋊β H such that Λ(R) = S. Moreover, if

these conditions hold, then there is a C∗-isomorphism Φ: C∗
r (R⋊αG) → C∗

r (S⋊βH)

such that Φ(C(X)) = C(Y ) and Φ(C∗
r (R)) = C∗

r (S).

(ii) G ↷α (X,R) and H ↷β (Y,S) are strongly continuously orbit equivalent if and

only if there exist an étale groupoid isomorphism Λ: R⋊αG→ S ⋊βH and a group

isomorphism θ : G→ H such that θρα = ρβΛ.

These two statements are also equivalent to the existence of a conjugacy ϕ from the

coaction system (C∗
r (R⋊αG), G; δα) onto (C∗

r (S⋊αH), H; δβ) with ϕ(C(X)) = C(Y ).

Furthermore, when R and S are minimal or X and Y are connected, these two notions

of strong continuous orbit equivalence and weak continuous orbit equivalence are equivalent.

The assumption of essential freeness in the above theorems is necessary. Automorphism

systems on local conjugacy relations from expansive actions are typical examples. The

automorphism systems of local conjugacy relations from a full shift G↷ AG over a finite

set A and an irreducible Smale space (X,ψ) are essentially free (see [9,14]). The following

result generalizes Matsumoto’s result.

Theorem 1.3 (Theorem 5.2). Let Z ↷α X be an expansive system generated by a homeo-

morphism φ on X, and let Rα be the local conjugacy relation associated to Z ↷α X.

Assume that X is infinite and has no isolated points. Then Z ↷α (X,Rα) is essentially

free.
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In [2], Bhattacharya proved that topological conjugacy and algebraic conjugacy be-

tween two automorphism actions on compact abelian connected metrizable spaces are in

agreement. We have a rigidity result for automorphism actions on nonabelian groups.

Proposition 1.4 (Proposition 6.5, Proposition 6.8). Let G↷α (X,R) and H ↷β (Y,S)
be two systems on local conjugacy relations from topologically free, expansive automorphism

actions on compact and connected metrizable groups X and Y , respectively. Assume that

the homoclinic group ∆α associated to G ↷α X is dense in X. Then the following state-

ments are equivalent:

(i) G↷α (X,R) and H ↷β (Y,S) are conjugate;

(ii) G↷α (X,R) and H ↷β (Y,S) are weakly continuously orbit equivalent;

(iii) G↷α X and H ↷β Y are conjugate;

(iv) G↷α X and H ↷β Y are algebraically conjugate.

In particular, two hyperbolic toral automorphisms on Rn/Zn are flip conjugate if and

only if the Z-actions they generate are continuously orbit equivalent up to the associated

local conjugacy relations.

This paper is organized as follows. Section 3 characterizes conjugacy of automorphism

systems of étale equivalence relations and the reduced C∗-algebra of the associated semi-

direct product groupoid of equivalence relations. In Section 4, we introduce notions of

continuous orbit equivalence, strong- and weak- continuous orbit equivalence for automor-

phism systems, and characterize them in terms of the semi-direct product groupoids and

the corresponding C∗-algebras. In Section 5, we discuss essential freeness of automorphism

systems on local conjugacy equivalence relations arising from expansive actions, and in

Section 6, we study topological rigidity of expansive automorphism actions on compact

(connected) metrizable groups. As an example, we characterize the structure of the local

conjugacy relation from a hyperbolic toral automorphism on the n-torus.

2. Preliminaries

Unless otherwise specified, all our groups are discrete and countable, their identity ele-

ments are denoted by the same symbol e, and all topological groupoids are second count-

able, locally compact and Hausdorff. We refer to [23, 28] for more details on topological

groupoids and their C∗-algebras, and refer to [19,32] for C∗-dynamical systems.

For a topological groupoid G, let G(0) and G(2) be the unit space and the set of compos-

able pairs, respectively. The range and domain maps r, d from G onto G(0) are defined by
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r(g) = gg−1 and d(g) = g−1g, respectively. If r and d are local homeomorphisms then G is

called to be étale. For u, v ∈ G(0), we write Gu = r−1(u), Gu = d−1(u) and Gv
u = Gv ∩ Gu.

When G is étale, these sets are discrete and countable, and G(0) is open and closed in G.
Recall that G is topologically principle if {u ∈ G(0) : Gu

u = {u}} is dense in G(0).

Each equivalence relation R ⊆ X × X on a topological space X is a groupoid with

multiplication (x, y)(w, z) = (x, z) if y = w and inverse (x, y)−1 = (y, x). If we identify

(x, x) with x, then the unit space R(0) equals X and the range (resp. domain) map is

defined by r(x, y) = x (resp. d(x, y) = y). If there exists a topology on R (not necessarily

the relative product topology from X × X) for which R is an étale groupoid, then R is

called an étale equivalence relation on X. In this case, if every R-equivalence class is dense

in X then R is minimal.

By a dynamical system, denoted by G ↷α X (or simply by G ↷ X), we mean an

action α of a group G on a second countable, locally compact and Hausdorff space X

by homeomorphisms. The action α is usually expressed as (g, x) ∈ G × X → gx ∈
X. The associated transformation groupoid X ⋊ G is given by the set X × G with the

product topology, multiplication (x, g)(y, h) = (x, gh) if y = g−1x, and inverse (x, g)−1 =

(g−1x, g−1). Clearly, X ⋊ G is étale, and if (x, e) is identified with x then its unit space

equals X, its range map is given by r(x, g) = x, and its domain map by d(x, g) = g−1x.

A system G↷ X is said to be topologically free if for every e ̸= g ∈ G, {x ∈ X : gx ̸= x}
is dense in X. From [11, Corollary 2.3], G ↷ X is topologically free if and only if

X ⋊ G is topologically principal. Two systems G ↷ X and H ↷ Y are conjugate if

there exist a homeomorphism φ : X → Y and a group isomorphism θ : G → H such that

φ(gx) = θ(g)φ(x) for x ∈ X and g ∈ G.

A map Φ: G → H between étale groupoids G and H is a homomorphism if it is con-

tinuous and, for all (γ, γ′) ∈ G(2), we have (Φ(γ),Φ(γ′)) ∈ H(2) and Φ(γγ′) = Φ(γ)Φ(γ′).

Moreover, if Φ is a homeomorphism such that Φ and Φ−1 are homomorphisms, then it

is called an isomorphism. In this case, the restriction, Φ|G(0) , of Φ to the unit space

G(0) is a homeomorphism from G(0) onto H(0). A homomorphism from G into a group

Γ is also called a cocycle on G. Two étale equivalence relations R ⊆ X × X and

S ⊆ Y × Y are isomorphic if and only if there exists a homeomorphism φ : X → Y

such that φ× φ : (x, y) ∈ R → (φ(x), φ(y)) ∈ S is an isomorphism.

Given an étale groupoid G, the linear space, Cc(G), of continuous complex functions

with compact support on G is a ∗-algebra under the operations: f∗(γ) = f(γ−1) and

f ∗g(γ) =
∑

γ′∈Gd(γ)
f(γγ′−1)g(γ′) for f, g ∈ Cc(G) and γ ∈ G. For each u ∈ G(0), there is a

∗-representation Indu of Cc(G) on the Hilbert space l2(Gu) of square summable functions

on Gu by Indu(f)(ξ)(γ) =
∑

γ′∈Gu
f(γγ′−1)ξ(γ′) for f ∈ Cc(G), ξ ∈ l2(Gu) and γ ∈ Gu.

The reduced C∗-algebra C∗
r (G) of G is the completion of Cc(G) with respect to the norm
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∥f∥red = supu∈G(0) ∥ Indu(f)∥ for f ∈ Cc(G). Since G(0) is clopen in G, Cc(G(0)) is contained

in Cc(G) in the canonical way, and this extends to an injection C0(G(0)) ↪→ C∗
r (G). For

an open subgroupoid H of G, Cc(H) can be embedded into Cc(G) as a ∗-subalgebra, so
C∗
r (H) is embedded into C∗

r (G) as a C∗-subalgebra in the canonical way. The C∗-algebra

C∗
r (X ⋊G) of the transformation groupoid is isomorphic to the reduced crossed product

C0(X)⋊α,r G (see [28]).

Given two groups N , H and a homomorphism φ from H into the automorphism group

Aut(N) of N , the semi-direct product, denoted by N ⋊φ H, of N by H is defined as

the set N ×H with group law given by the formulas (n, h)(n1, h1) = (nφh(n1), hh1) and

(n, h)−1 = (φh−1(n−1), h−1).

3. Automorphism systems of étale equivalence relations and the associated

semi-direct product groupoids

Given an étale equivalence relation R on a compact metrizable space X, we call a dy-

namical system G ↷α R an automorphism system if each αg is an automorphism of R
as an étale groupoid. Clearly, this system induces an action, also denoted by α, of G on

X by homeomorphisms such that g(x, y) = (gx, gy) for g ∈ G and (x, y) ∈ R. We use

the notation G ↷α (X,R) (or G ↷ (X,R) for short) to denote such an automorphism

system.

The semi-direct product groupoid, R ×α G, attached to G ↷α (X,R), is the set

R × G with multiplication ((x, y), g)((u, v), h) = ((x, gv), gh) if u = g−1y, and inverse

((x, y), g)−1 = ((g−1y, g−1x), g−1). The unit space identifies withX by identifying ((x, x), e)

with x. Then r((x, y), g) = x and d((x, y), g) = g−1y. Endowed with the relative product

topology from R × G, the groupoid R ×α G is étale (see [23]). The following is another

characterization of the semi-direct product groupoid.

Definition 3.1. Let

R⋊α G = {(x, g, y) | g ∈ G, x, y ∈ X, (x, gy) ∈ R}.

Then, under the following multiplication and inverse,

(x, g, y)(y, h, v) = (x, gh, v) and (x, g, y)−1 = (y, g−1, x),

R⋊α G is a groupoid. Define a map γ0 : R⋊α G → R×α G, by γ0(x, g, y) = ((x, gy), g),

which is a bijection with inverse γ−1
0 ((x, y), g) = (x, g, g−1y). We transfer the product

topology from R×α G over to R ⋊α G. Then R ⋊α G is an étale groupoid and γ0 is an

étale groupoid isomorphism.
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Remark 3.2. If we identify the unit space (R ⋊α G)
(0) with X as topological spaces by

identifying (x, e, x) with x, then r(x, g, y) = x and d(x, g, y) = y. The equivalence re-

lation R and the transformation groupoid X ⋊ G can be embedded into R ⋊α G as

étale subgroupoids through the identifications (x, y) ∈ R → (x, e, y) ∈ R ⋊α G and

(x, g) ∈ X ⋊G→ (x, g, g−1x) ∈ R⋊α G.

One can check that the map ρα : R⋊αG→ G, defined by ρα(x, g, y) = g, is a cocycle.

We call two automorphism systems G↷α (X,R) and H ↷β (Y,S) on compact metriz-

able spaces conjugate if there exist an isomorphism φ̃ : R → S and a group isomorphism

θ : G→ H such that φ̃(gγ) = θ(g)φ̃(γ) for γ ∈ R and g ∈ G. Clearly, this is equivalent to

there being a homeomorphism φ : X → Y and a group isomorphism θ : G→ H such that

φ× φ : (x, y) ∈ R → (φ(x), φ(y)) ∈ S is an isomorphism and φ(gx) = θ(g)φ(x) for x ∈ X

and g ∈ G. In particular, the two systems G↷α X and H ↷β Y are conjugate.

Proposition 3.3. If G ↷α (X,R) and H ↷β (Y,S) are conjugate, then there is an

isomorphism, Λ: R⋊α G→ S ⋊β H, such that Λ(R) = S and Λ(X ⋊G) = Y ⋊H.

Assume that one of the following statements holds:

(i) X and Y are connected.

(ii) R and S are minimal.

Then the above converse holds, i.e., G ↷α (X,R) and H ↷β (Y,S) are conjugate if

and only if there is an isomorphism, Λ: R ⋊α G → S ⋊β H, such that Λ(R) = S and

Λ(X ⋊G) = Y ⋊H.

Proof. Assume that G ↷α (X,R) and H ↷β (Y,S) are conjugate by a homeomorphism

φ from X onto Y and a group isomorphism θ from G onto H. Define the map Λ from

R ⋊α G into S ⋊β H by Λ(x, g, y) = (φ(x), θ(g), φ(y)). Then Λ is an isomorphism with

inverse Λ−1(u, h, v) = (φ−1(u), θ−1(h), φ−1(v)) and Λ(R) = S and Λ(X ⋊G) = Y ⋊H.

For the converse, let Λ be an isomorphism from R ⋊α G onto S ⋊β H such that

Λ(R) = S and Λ(X ⋊G) = Y ⋊H. Let φ be the restriction of Λ to X, and let a = ρβΛ

and b = ραΛ
−1. Then φ is a homeomorphism from X onto Y , and a and b are continuous

cocycles onR⋊αG and S⋊βH, respectively. Moreover, Λ(x, g, y) = (φ(x), a(x, g, y), φ(y)),

and its inverse Λ−1(u, h, v) = (φ−1(u), b(u, h, v), φ−1(v)). The fact that Λ(R) = S implies

that a(x, e, y) = e and φ × φ : (x, y) ∈ R → (φ(x), φ(y)) ∈ S is an isomorphism. The

requirement that Λ(X ⋊G) = Y ⋊H gives us that

(3.1) φ(x) = a(x, g, g−1x)φ(g−1x).

Also since (x, g, g−1x)(g−1x, e, g−1y)(g−1y, g−1, y) = (x, e, y) for (x, y) ∈ R and g ∈ G, we

have a(x, g, g−1x) = a(y, g, g−1y). By symmetry, b has a similar property to a.
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Assume that X and Y are connected. Since the restricted map a|X⋊G : X ⋊ G →
H is continuous, we have, for every g ∈ G, the map a|X×{g} is a constant, and thus

a(x, g, g−1x) = a(y, g, g−1y) for all x, y ∈ X and g ∈ G. Similarly, we have b(u, h, h−1u) =

b(v, h, h−1v) for all u, v ∈ Y and h ∈ H.

Assume that R and S are minimal. For x, y ∈ X and g ∈ G, we choose a sequence

{xn} in X converging to y and satisfying (xn, x) ∈ R for each n. From the above proof,

a(xn, g, g
−1xn) = a(x, g, g−1x) for each n, which implies that a(x, g, g−1x) = a(y, g, g−1y)

from the continuity of a. Similarly, we have b(u, h, h−1u) = b(v, h, h−1v) for all u, v ∈ Y

and h ∈ H.

Consequently, under the hypothesis of (i) or (ii), there exist two maps θ : G→ H and

ϑ : H → G such that a(x, g, g−1x) = θ(g) and b(u, h, h−1u) = ϑ(h) for every x ∈ X, u ∈ Y ,

g ∈ G and h ∈ H. Since Λ is an isomorphism with inverse Λ−1, θ is a group isomorphism

with inverse ϑ. Moreover, (3.1) implies that φ(gx) = θ(g)φ(x) for x ∈ X and g ∈ G.

Hence G↷α (X,R) and H ↷β (Y,S) are conjugate.

Given an automorphism system G↷α (X,R), one can check that the map

αg(f)(x, y) = f(g−1x, g−1y)

for f ∈ Cc(R), (x, y) ∈ R and g ∈ G gives a C∗-dynamical system (C∗
r (R), G, α). Let

Cc(G,C
∗
r (R)) be the set of all continuous complex functions from G to C∗

r (R) with com-

pact support. Then it is a ∗-algebra over C under the following multiplication and invo-

lution:

(ξ ∗ η)(g) =
∑
h∈G

ξ(h)αh(η(h
−1g)), ξ∗(g) = αg(ξ(g

−1)∗)

for ξ, η ∈ Cc(G,C
∗
r (R)). The reduced crossed product C∗-algebra, denoted by C∗

r (R)⋊α,r

G, associated to the C∗-dynamical system is defined to be the closure of Cc(G,C
∗
r (R))

under the reduced crossed norm (see [19,32]). By identifying an element a ∈ C∗
r (R) with

the element ξa ∈ Cc(G,C
∗
r (R)) defined by ξa(e) = a and ξa(g) = 0 for g ̸= e, C∗

r (R) can

be embedded into C∗
r (R) ⋊a,r G as a unital C∗-subalgebra. When G is abelian, we let

(C∗
r (R)⋊α,rG, Ĝ, α̂) be the (dual) C

∗-automorphism system of the dual group Ĝ, defined

by

α̂ξ(f)(g) = ⟨ξ, g⟩f(g)

for ξ ∈ Ĝ, f ∈ Cc(G,C
∗
r (R)) and g ∈ G, where ⟨ξ, g⟩ is the value of the character ξ ∈ Ĝ

at g ∈ G.

Recall that a conjugacy between two C∗-dynamical systems (A, G, α) and (B, H, β) is
a ∗-isomorphism ϕ : A → B that is α-β equivariant in the sense that there exists a group

isomorphism θ : G → H satisfying that ϕαg = βθ(g)ϕ for each g ∈ G. If such a ϕ exists,

we call two systems conjugate. Note that the existence of an isomorphism between two
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étale equivalence relations R on X and S on Y is equivalent to the existence of a C∗-

isomorphism between their associated reduced groupoid C∗-algebras C∗
r (R) and C∗

r (S)
preserving the canonical subalgebras C(X) and C(Y ) (see [23]). Thus one can check the

following proposition by definitions.

Proposition 3.4. Two automorphism systems G ↷α (X,R) and H ↷β (Y,S) are con-

jugate if and only if there is a conjugacy ϕ between (C∗
r (R), G, α) and (C∗

r (S), H, β) such
that ϕ(C(X)) = C(Y ).

In this case, there exists a ∗-isomorphism Λ: C∗
r (R)⋊α,r G→ C∗

r (S)⋊β,rH such that

Λ(C∗
r (R)) = C∗

r (S) and Λ(C(X)) = C(Y ).

From [23, Proposition II.5.1], when G is abelian, the canonical cocycle ρα on R⋊α G

induces the dual action, denoted by ρ̂α, of the dual group Ĝ on C∗
r (R⋊α G), defined by

(ρ̂αξf)(x, g, y) = ⟨ξ, g⟩f(x, g, y)

for ξ ∈ Ĝ, f ∈ Cc(R⋊α G), (x, g, y) ∈ R⋊α G. Thus, this forms a C∗-dynamical system

(C∗
r (R⋊αG), Ĝ, ρ̂α). Moreover, if G = Z, then the fixed point algebra of ρ̂α is isomorphic

to C∗
r (R) (see [25, Proposition 3.3.7]). The following theorem characterizes the reduced

groupoid C∗-algebra of R ⋊α G by the crossed product construction, which is perhaps a

well-known fact, as we were unable to find an explicit reference, we provide a proof.

Theorem 3.5. Let G ↷α (X,R) be an automorphism system. Then C∗
r (R ⋊α G) is

isomorphic to C∗
r (R)⋊α,rG. Moreover, if G is abelian, then the two C∗-dynamical systems

(C∗
r (R⋊α G), Ĝ, ρ̂α) and (C∗

r (R)⋊α,r G, Ĝ, α̂) are conjugate.

Proof. To simplify symbols, let G = R⋊α G. Define

Φ(ξ)(x, g, y) = ξ(g)(x, gy) for ξ ∈ Cc(G,Cc(R)) and (x, g, y) ∈ G

and

Ψ(η)(g)(x, y) = η(x, g, g−1y) for η ∈ Cc(G) and g ∈ G, (x, y) ∈ R.

One can check that Φ: Cc(G,Cc(R)) → Cc(G) and Ψ: Cc(G) → Cc(G,Cc(R)) are ∗-
isomorphisms such that Φ and Ψ are inverse to each other.

Given x ∈ X, let l2(Rx) be the Hilbert space of all square-summable complex-

valued functions on the R-equivalent class Rx of x. We consider two Hilbert spaces

l2(G, l2(Rx)) =
{
φ : G → l2(Rx)

∣∣ ∑
g∈G ∥φ(g)∥2 < +∞

}
and l2(Gx) =

{
ψ : Gx → C

∣∣∑
γ∈Gx

∥ψ(γ)∥2 < +∞
}
. Then the map Ux, defined by (Uxφ)(y, g, x) = φ(g)(g−1y, x) for

φ ∈ l2(G, l2(Rx)) and (y, g, x) ∈ Gx, is a unitary operator from l2(G, l2(Rx)) onto l
2(Gx).
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Let πx and λx be the regular representations of Cc(G) on l2(Gx) and Cc(R) on l2(Rx)

associated to x, respectively. Then we have the direct sums of representations

π =
⊕
x∈X

πx : Cc(G) →
⊕
x∈X

B(l2(Gx)), λ =
⊕
x∈X

λx : Cc(R) →
⊕
x∈X

B(l2(Rx)).

Then πx, λx, π and λ can be extended to their corresponding reduced groupoid C∗-algebras

and we use the same symbols to denote their extensions. Moreover, π and λ are faithful

representations of C∗
r (G) and C∗

r (R), respectively.

The representation λ induces a faithful representation

λ̃ : ξ ∈ Cc(G,C
∗
r (R)) →

⊕
x∈X

λ̃x(ξ) ∈
⊕
x∈X

B(l2(G, l2(Rx))),

where, for each x ∈ X, λ̃x is the representation of Cc(G,C
∗
r (R)) on the Hilbert space

l2(G, l2(Rx)), given by (λ̃x(ξ)φ)(g) =
∑

h∈G λx(αg−1(ξ(h)))φ(h−1g) for ξ ∈ Cc(G,C
∗
r (R)),

φ ∈ l2(G, l2(Rx)). Let λ̂x(ξ) = Uxλ̃x(ξ)U
∗
x for x ∈ X and ξ ∈ Cc(G,C

∗
r (R)). Then

λ̂ : ξ ∈ Cc(G,C
∗
r (R)) →

⊕
x∈X

λ̂x(ξ) ∈
⊕
x∈X

B(l2(Gx))

is a faithful representation. We can check that πxΦ(ξ) = λ̂x(ξ) for each x ∈ X, thus

πΦ(ξ) = λ̂(ξ) for all ξ ∈ Cc(G,Cc(R)).

In fact, for each φ in l2(G, l2(Rx)), (y, g, x) in Gx, we have

(πxΦ(ξ)Ux)(φ)(y, g, x) =
∑
h∈G

(u,h−1gx)∈R

[Φ(ξ)(y, h, u)][Uxφ(u, h
−1g, x)]

=
∑
h∈G

(g−1hu,x)∈Rx

[ξ(h)(y, hu)][φ(h−1g)(g−1hu, x)]

=
∑
h∈G

(v,x)∈Rx

ξ(h)(y, gv)φ(h−1g)(v, x)

and

Ux(λ̃x(ξ)(φ))(y, g, x) = (λ̃x(ξ)φ)(g)(g
−1y, x)

=
∑
h∈G

∑
(u,x)∈R

ξ(h)(y, gu)φ(h−1g)(u, x).

Then, for each ξ ∈ Cc(G,Cc(R)), we have

∥Φ(ξ)∥red = sup
x∈X

∥πx(Φ(ξ))∥B(l2(Gx)) = sup
x∈X

∥λ̂x(ξ)∥B(l2(Gx)).

Thus ∥Φ(ξ)∥red = ∥ξ∥red for ξ ∈ Cc(G,Cc(R)), and Φ is an isomorphism.

The conjugacy of two C∗-systems follows from the definitions of dual actions and the

construction of Ψ.
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Remark 3.6. For a countable discrete group Γ, let λ : g ∈ Γ → λg ∈ B(l2(Γ)) be the

left regular representation of Γ, and C∗
r (Γ) be the reduced group C∗-algebra of Γ. Let

δΓ : C
∗
r (Γ) → C∗

r (Γ) ⊗ C∗
r (Γ) (where we use the minimal tensor product) be the C∗-

homomorphism defined by δΓ(λg) = λg ⊗ λg for each g ∈ Γ. Given a unital C∗-algebra A,

we recall that a coaction of Γ on A is a nondegenerate homomorphism δ : A → A⊗C∗
r (Γ)

satisfying the coaction identity (δ ⊗ id) ◦ δ = (id⊗δΓ) ◦ δ, where id is the identity map.

We call (A,Γ; δ) a C∗-coaction system. Recall that two C∗-coaction systems (A, G; δ) and
(B, H; ϱ) are called conjugate if there exists a conjugacy ϕ between two systems, that is,

ϕ is a C∗-isomorphism from A onto B such that there exists an isomorphism θ : G → H

satisfying (ϕ ⊗ θ̃) ◦ δ = ϱ ◦ ϕ, where θ̃ : C∗
r (G) → C∗

r (H) is the C∗-isomorphism induced

by θ.

For an automorphism system G ↷α (X,R), it follows from [7, Lemma 6.1] that the

canonical cocycle ρα : R⋊α G→ G induces a coaction δα : C
∗
r (R⋊α G) → C∗

r (R⋊α G)⊗
C∗
r (G), of G on C∗

r (R⋊α G) such that δα(f) = f ⊗ λg when g ∈ G and f ∈ Cc(R⋊α G)

satisfy that supp(f) ⊆ ρ−1
α (g). This gives us a C∗-coaction system (C∗

r (R ⋊α G), G; δα).

On the other hand, for the C∗-system (C∗
r (R), G, α), there is a canonical dual coaction

α̂ : C∗
r (R) ⋊α,r G → (C∗

r (R) ⋊α,r G) ⊗ C∗(G) of G on C∗
r (R) ⋊α,r G, defined by α̂(a) =

a ⊗ I and α̂(ug) = ug ⊗ vg, where {a : a ∈ C∗
r (R)} ∪ {ug : g ∈ G} is the canonical

generators of C∗
r (R)⋊α,r G, and C

∗(G) is the full group C∗-algebra with generators {vg :

g ∈ G} (see [10]). Thus when G is amenable, we have the other C∗-coaction system

(C∗
r (R)⋊α,rG,G; α̂). Considering the above theorem, we conjecture that the two systems

(C∗
r (R⋊α G), G; δα) and (C∗

r (R)⋊α,r G,G; α̂) are conjugate when G is amenable.

4. Continuous orbit equivalence of automorphism systems

Given an automorphism system G ↷α (X,R) on a compact metrizable space X, for

x ∈ X, we let [x]G := {gx : g ∈ G} and [x]R := {y ∈ X : (x, y) ∈ R} be the orbits

of x under the action α and the relation R, respectively. We call the set [x]G,R = {y ∈
X : (gx, y) ∈ R for some g ∈ G} the bi-orbit of x. Clearly, [x]G,R =

⋃
y∈[x]G [y]R =⋃

y∈[x]R [y]G = d((R⋊α G)
x) = r((R⋊α G)x).

Recall that G↷ X and H ↷ Y are orbit equivalent if there exists a homeomorphism

φ : X → Y such that φ([x]G) = [φ(x)]H for x ∈ X. They are said to be continuously orbit

equivalent if there exist a homeomorphism φ : X → Y and continuous maps a : G×X → H

and b : H × Y → G such that φ(gx) = a(g, x)φ(x) for x ∈ X and g ∈ G, and φ−1(hy) =

b(h, y)φ−1(y) for y ∈ Y and h ∈ H (see [11]). Motivated by these notions, we introduce

the following definitions.

Definition 4.1. Two systems G ↷ (X,R) and H ↷ (Y,S) are orbit equivalent if there

exists a homeomorphism φ : X → Y such that φ([x]G,R) = [φ(x)]H,S for x ∈ X.
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In this case, for x, y ∈ X and g ∈ G with (gx, y) ∈ R, there exists h in H such that

(hφ(x), φ(y)) ∈ S. Similarly, for u, v ∈ Y and h ∈ H with (hu, v) ∈ S, there exists g in G

such that (gφ−1(u), φ−1(v)) ∈ R. Thus, we have the following notion.

Definition 4.2. Two systems G ↷ (X,R) and H ↷ (Y,S) are continuously orbit equiv-

alent and we write G ↷ (X,R) ∼coe H ↷ (Y,S), if there exist a homeomorphism

φ : X → Y and continuous maps a : R × G → H and b : S × H → G such that the

following maps:

((x, y), g) ∈ R×G→ (φ(x), a((x, y), g)φ(g−1y)) ∈ S

and

((x, y), g) ∈ S ×H → (φ−1(x), b((x, y), g)φ−1(g−1y)) ∈ R

are continuous.

Clearly, continuous orbit equivalence implies orbit equivalence for automorphism sys-

tems. Assume a system G ↷α X is free in the sense that, for g ∈ G and x ∈ X, gx = x

only if g = e. We consider two automorphism systems G ↷ (X,R1) and G ↷ (X,R2),

where R1 = {(x, x) : x ∈ X} is the trivial étale equivalence relation on X under the

relative product topology and R2 = {(x, gx) : x ∈ X, g ∈ G} is the orbit equivalence

relation under α. Noticing that the map (x, g) ∈ X ⋊G → (x, g−1x) ∈ R2 is a bijection,

we transfer the product topology on X ⋊G over to R2 via this map. Then R2 is an étale

equivalence relation on X.

Proposition 4.3. Assume that G↷ X is free. Then G↷ (X,R1) and G↷ (X,R2) are

continuously orbit equivalent, but not conjugate.

Proof. Let φ be the identity map on X, and let a((x, x), g) = g for ((x, x), g) ∈ R1 × G.

For each (x, y) ∈ R2, there exists unique an element in G, denoted by k(x, y), such that

y = k(x, y)x. Let b((x, y), g) = k(x, y)−1g for ((x, y), g) ∈ R2×G. Then φ, a and b satisfy

the requirements in Definition 4.2, thus G ↷ (X,R1) and G ↷ (X,R2) are continuously

orbit equivalent.

Since R1 and R2 are never isomorphic, G ↷ (X,R1) and G ↷ (X,R2) are not

conjugate.

Using the semi-direct product groupoid R⋊αG and the canonical homeomorphism γ0,

one can check the following lemma.

Lemma 4.4. Two systems G ↷ (X,R) ∼coe H ↷ (Y,S) if and only if there exist a

homeomorphism φ : X → Y and continuous maps a : R ⋊α G → H and b : S ⋊β H → G

such that the following maps:

(4.1) Ψ: (x, g, y) ∈ R⋊α G→ (φ(x), a(x, g, y), φ(y)) ∈ S ⋊β H
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and

(4.2) Ψ̃ : (u, h, v) ∈ S ⋊β H → (φ−1(u), b(u, h, v), φ−1(v)) ∈ R⋊α G

are continuous.

Recall that an étale groupoid G is topologically principal if {u ∈ G(0) : Gu
u = {u}} is

dense in G(0). Since G is assumed to be second countable, it follows from [4, 24] that it is

topologically principal if and only if the interior of G′ is G(0), where G′ =
⋃

u∈G(0) Gu
u is the

isotropy bundle of G. For G↷α (X,R), we have

(R⋊α G)
′ = {(x, g, x) : x ∈ X, g ∈ G, (x, gx) ∈ R}

and

(R×α G)
′ = {((x, gx), g) : x ∈ X, g ∈ G, (x, gx) ∈ R}.

Moreover, we have that γ0((R ⋊α G)
′) = (R ×α G)

′. Motivated by [9, 14], we have the

following notion.

Definition 4.5. A system G↷ (X,R) is said to be essentially free if for every e ̸= g ∈ G,

{x ∈ X : (x, gx) /∈ R} is dense in X.

One can easily see that G ↷ (X,R) is essentially free, if and only if the interior of

{x ∈ X : g[x]R = [x]R} in X is empty for every g ̸= e.

Lemma 4.6. A system G↷α (X,R) is essentially free if and only if R×αG (or R⋊αG)

is topologically principal.

Moreover, one of these two equivalent conditions implies that both of the systems G↷
X and G↷ R are topologically free.

Proof. It follows from the definitions that the topological principality of R×α G implies

the essential freeness of G ↷ (X,R), thus implies the topological freeness of G ↷ X.

To see that the essential freeness of G ↷α (X,R) implies the topological principality of

R ×α G, we only need to show that ((x, gx), g) is not in the interior of (R ×α G)
′ in

(R×α G) for each e ̸= g ∈ G and x ∈ X with (x, gx) ∈ R.

In fact, for otherwise, choose e ̸= g0 ∈ G and x0 ∈ X such that (x0, g0x0) ∈ R and

((x0, g0x0), g0) is an interior point of (R×αG)
′. Then there exists an open neighbourhood

Ũ of (x0, g0x0) in R such that

((x0, g0x0), g0) ∈ Ũ × {g0} ⊆ (R×α G)
′.

The last inclusion implies that y = g0x for each (x, y) ∈ Ũ . Hence {x ∈ X : (x, g0x) ∈ R}
contains the non-empty open subset r(Ũ) of X, which is contrast to the essential freeness

of G↷ (X,R).
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Assume G ↷ (X,R) is essentially free. Given e ̸= g ∈ G and a non-empty open

subset U ⊆ R, it follows from the openness of r(U) that there exists x0 ∈ r(U) with

(x0, gx0) /∈ R, thus x0 ̸= gx0. Choose (x0, y0) ∈ U . Then g(x0, y0) ̸= (x0, y0), which

implies that {(x, y) ∈ R : g(x, y) ̸= (x, y)} is dense in R. Hence G ↷ R is topologically

free.

Remark 4.7. The topological freeness of neither G↷ X nor G↷ R can imply the essential

freeness of G ↷ (X,R). To see this, if G ↷ X is free, then both systems G ↷ R1 and

G↷ R2 in Proposition 4.3 are free, and G↷ (X,R1) is essentially free, but G↷ (X,R2)

is not.

If G ↷α (X,R) and H ↷β (Y,S) are essentially free, then the mappings a and

b in Lemma 4.4 (or in Definition 4.2) are uniquely determined by (4.1) and (4.2). In

fact, suppose that a′ : R ⋊α G → H is another continuous map such that Ψ′ : (x, g, y) ∈
R⋊α G→ (φ(x), a′(x, g, y), φ(y)) ∈ S ⋊β H is continuous. Then

(x, g, y) ∈ R⋊α G→ (a(x, g, y)φ(y), a′(x, g, y)φ(y)) ∈ S

is continuous. Hence, from the continuity of a, a′ and ρα, for (x, g, y) ∈ R ⋊α G, there

exists an open neighbourhood Ũ of (x, g, y) such that the map d|
Ũ
: Ũ → d(Ũ) is a homeo-

morphism, ρα(γ) = g, a(γ) = a(x, g, y), and a′(γ) = a′(x, g, y) for each γ ∈ Ũ . For each

z ∈ φ(d(Ũ)), choose γ ∈ Ũ such that z = φ(d(γ)). The choice of Ũ implies that we can

assume that γ = (u, g, v), thus z = φ(v). Note that (φ(u), a(γ)z) and (φ(u), a′(γ)z), thus

(a(γ)z, a′(γ)z) are in S. Hence (a(x, g, y)z, a′(x, g, y)z) ∈ S for each z ∈ φ(d(Ũ)). The

essential freeness of H ↷β (Y,S) implies that a(x, g, y) = a′(x, g, y). By symmetry, b is

uniquely determined by (4.2).

Lemma 4.8. In Definition 4.2, if G ↷α (X,R) and H ↷β (Y,S) are essentially free,

then the mappings a and b are cocycles on R×α G and S ×β H, respectively.

Proof. We only need to show that the mappings a and b in Lemma 4.4 are cocycles. Let

γ1 = (x, g, y), γ2 = (y, h, z) ∈ R⋊αG be arbitrary, and write γ′ = γ1γ2 = (x, gh, z). From

the continuity of a and ρα, choose open neighbourhoods U , V and W of γ1, γ2 and γ′ in

R ⋊α G, respectively, such that a(γ) = a(γ1), ρα(γ) = g for each γ ∈ U , a(η) = a(γ2),

ρα(η) = h for each η ∈ V , and a(σ) = a(γ′), ρα(σ) = gh for each σ ∈ W . Since the

multiplication on (R⋊αG)
(2) is continuous at (γ1, γ2), we can assume that γη ∈W when

γ ∈ U , η ∈ V and (γ, η) ∈ (R ⋊α G)
(2). Also since the range r and domain d are local

homeomorphisms and d(γ1) = r(γ2) = y, we can assume that the restrictions d|U and r|V
are homeomorphisms onto their respective ranges and d(U) = r(V ).

For each ỹ ∈ φ(d(V )), choose η ∈ V such that ỹ = φ(d(η)). The choice of V permits

us to assume that η = (v, h, w) and a(η) = a(γ2). Hence ỹ = φ(w). Since v ∈ r(V ) =
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d(U), it follows from the choice of U that we have γ = (u, g, v) ∈ U and a(γ) = a(γ1).

Hence γη = (u, gh, w) ∈ W and a(γη) = a(γ′). The hypothesis on Ψ in Lemma 4.4

implies that (φ(u), a(γ)φ(v)), (φ(v), a(η)φ(w)) and (φ(u), a(γη)φ(w)) are all in S. Thus,
(a(x, g, y)a(y, h, z)ỹ, a(x, gh, z)ỹ) is in S for every ỹ ∈ φ(d(V )). The essential freeness of

H ↷β (Y,S) implies that a(x, g, y)a(y, h, z) = a(x, gh, z), thus a is a cocycle. By a similar

way, we can show that b is a cocycle.

Lemma 4.9. In Definition 4.2, if G ↷α (X,R) and H ↷β (Y,S) are essentially free,

then

b((φ(x), a((x, y), g)φ(g−1y)), a((x, y), g)) = g,

a((φ−1(u), b((u, v), h)φ−1(h−1v)), b((u, v), h)) = h

for every ((x, y), g) ∈ R×G and ((u, v), h) ∈ S ×H.

Proof. We only show that the maps a and b in Lemma 4.4 satisfy that

b(φ(x), a(x, g, y), φ(y)) = g, a(φ−1(u), b(u, h, v), φ−1(v)) = h

for every (x, g, y) ∈ R⋊α G and (u, h, v) ∈ S ⋊β H.

As before, let ρα and ρβ be the canonical cocycles on R⋊αG and S⋊βH, respectively.

For an arbitrary (x, g, y) ∈ R⋊αG, we have (φ(x), h, φ(y)) ∈ S⋊βH, where h = a(x, g, y).

From the continuity of b and ρβ, there exists an open neighbourhood U of (φ(x), h, φ(y))

in S ⋊β H such that ρβ(γ) = h, b(γ) = b(φ(x), h, φ(y)) for every γ ∈ U , and r|U , d|U are

homeomorphisms from U onto r(U) and d(U), respectively.

By the continuity of ρα, Ψ and a at (x, g, y), as well as that of φ at x and y, there is

an open neighbourhood V of (x, g, y) in R⋊α G such that

(i) ρα(γ) = g, a(γ) = h and Ψ(γ) ∈ U for every γ ∈ V ;

(ii) r|V and d|V are homeomorphisms from V onto r(V ) and d(V ), respectively;

(iii) φ(r(V )) ⊆ r(U) and φ(d(V )) ⊆ d(U).

For each v ∈ d(V ), let γ ∈ V such that d(γ) = v. The above condition (i) implies

that we can let γ = (u, g, v) and have a(γ) = h, thus Ψ(γ) = (φ(u), h, φ(v)) ∈ U . The

map Ψ̃ gives that (u, b(φ(u), h, φ(v))v) ∈ R. From the choice of U , b(φ(u), h, φ(v)) =

b(φ(x), h, φ(y)). It follows that (u, b(φ(x), h, φ(y))v) ∈ R. Also since (u, gv) ∈ R, we

have (b(φ(x), h, φ(y))v, gv) ∈ R. The essential freeness of G ↷α (X,R) implies that

b(φ(x), a(x, g, y), φ(y)) = b(φ(x), h, φ(y)) = g.

By a similar way, we can show that a(φ−1(u), b(u, h, v), φ−1(v)) = h for each (u, h, v) ∈
S ⋊β H.
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The following definition comes from [9, Definition 4.1].

Definition 4.10. For two étale equivalence relations R and S on X and Y , let G ↷ X

and H ↷ Y be two systems generating two automorphism systems G ↷ (X,R) and

H ↷ (Y,S). We say G ↷ X and H ↷ Y are continuously orbit equivalent up to R
and S, if there exist a homeomorphism φ : X → Y , continuous cocycles a : X ⋊ G → H,

b : Y ⋊H → G, σ : R → H, and τ : S → G satisfying the following conditions:

(i) σ(x, y)a(y, g) = a(x, g)σ(g−1x, g−1y) for (x, y) ∈ R and g ∈ G;

(ii) τ(x, y)b(y, g) = b(x, g)τ(g−1x, g−1y) for (x, y) ∈ S and g ∈ H;

(iii) The map ξ1 : (x, g) ∈ X × G → (a(x, g)−1φ(x), φ(g−1x)) ∈ S is well-defined and

continuous. Moreover,

b(φ(x), a(x, g))τ(ξ1(x, g)) = g for x ∈ X and g ∈ G.

(iv) The map ξ2 : (x, g) ∈ Y × H → (b(x, g)−1φ−1(x), φ−1(g−1x)) ∈ R is well-defined

and continuous. Moreover,

a(φ−1(x), b(x, g))σ(ξ2(x, g)) = g for x ∈ Y and g ∈ H.

(v) The map η1 : (x, y) ∈ R → (σ(x, y)−1φ(x), φ(y)) ∈ S is well-defined and continuous.

Moreover,

b(φ(x), σ(x, y))τ(η1(x, y)) = e for (x, y) ∈ R.

(vi) The map η2 : (x, y) ∈ S → (τ(x, y)−1φ−1(x), φ−1(y)) ∈ R is well-defined and con-

tinuous. Moreover,

a(φ−1(x), τ(x, y))σ(η2(x, y)) = e for (x, y) ∈ S.

Proposition 4.11. Let G ↷α (X,R) and H ↷β (Y,S) be two automorphism systems.

Then G ↷ X and H ↷ Y are continuously orbit equivalent up to R and S if and only if

R⋊α G and S ⋊β H are isomorphic as étale groupoids.

The proof of this proposition is the same as that of [9, Theorem 4.2] in which the local

conjugacy is not necessary. We only provide a brief proof. For details, see [9, Theorem 4.2].

Proof of Proposition 4.11. Assume that Λ: R ⋊α G → S ⋊β H is an isomorphism. Let

φ be the restriction of Λ to the unit space (R ⋊ G)(0) and let a(x, g) = ρβΛ(x, g, g
−1x),

σ(x, y) = ρβΛ(x, e, y), and b(u, h) = ραΛ
−1(u, h, h−1u), τ(u, v) = ραΛ

−1(u, e, v). Then φ,

a, b, σ and τ satisfy the requirements in Definition 4.10, thus G ↷ X and H ↷ Y are

continuously orbit equivalent up to R and S.
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Conversely, assume that there are maps φ, a, b, σ and τ satisfying the requirements

in Definition 4.10. Define

Λ(x, g, y) = (φ(x), a(x, g)σ(g−1x, y), φ(y)) for (x, g, y) ∈ R⋊α G.

Then Λ is an isomorphism from R ⋊α G onto S ⋊β H, whose inverse Λ−1 is defined by

Λ−1(u, h, v) = (φ−1(u), b(u, h)τ(h−1u, v), φ−1(v)).

Theorem 4.12. Assume that G ↷α (X,R) and H ↷β (Y,S) are essentially free. Then

the following statements are equivalent.

(i) G↷α (X,R) ∼coe H ↷β (Y,S);

(ii) G↷α X and H ↷β Y are continuously orbit equivalent up to R and S;

(iii) R⋊α G and S ⋊β H are isomorphic as étale groupoids;

(iv) there exists a C∗-isomorphism Φ from C∗
r (R ⋊α G) onto C∗

r (S ⋊β H) such that

Φ(C(X)) = C(Y ).

Proof. The equivalence of (ii) and (iii) follows from Proposition 4.11. From Lemma 4.6,

R⋊αG and S⋊βH are topological principal, thus the equivalence of (iii) and (iv) follows

from [7,24].

Assume (iii) holds, i.e., there is an isomorphism Λ from R ⋊α G onto S ⋊β H.

Let φ be the restriction of Λ to the unit space X, and let a(x, g, y) = ρβΛ(x, g, y) for

(x, g, y) ∈ R ⋊α G, b(u, h, v) = ραΛ
−1(u, h, v) for (u, h, v) ∈ S ⋊β H. Then φ is a home-

omorphism from X onto Y , and Λ(x, g, y) = (φ(x), a(x, g, y), φ(y)) and Λ−1(u, h, v) =

(φ−1(u), b(u, h, v), φ−1(v)). So φ, a and b satisfy the requirements in Lemma 4.4, thus

G↷α (X,R) ∼coe H ↷β (Y,S), i.e., (i) holds.
Assume (i) holds. From Lemma 4.4, there exist mappings φ, a and b such that the

mappings Ψ: (x, g, y) ∈ R ⋊α G → (φ(x), a(x, g, y), φ(y)) ∈ S ⋊β H and Ψ̃: (u, h, v) ∈
S⋊βH → (φ−1(u), b(u, h, v), φ−1(v)) ∈ R⋊αG are continuous. From Lemmas 4.8 and 4.9,

Ψ and Ψ̃ are étale groupoid isomorphisms and inverse to each other, thus (iii) holds.

Remark 4.13. For G ↷α X, let R1 = {(x, x) : x ∈ X} be as in Proposition 4.3. Then

R1⋊αG is isomorphic to the transformation groupoidX⋊G, and the notions of continuous

orbit equivalence for G ↷ (X,R1) and G ↷ X in Li’s sense are equivalent. Hence

Theorem 4.12 is a generalization of Theorem 1.2 in [11].

There are two special cases for orbit equivalence of two systems G ↷α (X,R) and

H ↷β (Y,S) via a homeomorphism φ : X → Y . One is, for each g ∈ G, there is h ∈ H

such that (hφ(x), φ(y)) ∈ S for each x, y ∈ X with (gx, y) ∈ R, and by symmetry, for each
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h ∈ H, there is g ∈ G such that (gφ−1(x), φ−1(y)) ∈ R for each x, y ∈ Y with (hx, y) ∈ S.
The other is, for each g ∈ G and x ∈ X, there is h ∈ H such that (hφ(x), φ(z)) ∈ S for

each (gx, z) ∈ R, and by symmetry, for each h ∈ H and y ∈ Y , there is g ∈ G such that

(gφ−1(y), φ−1(z)) ∈ R for each (hy, z) ∈ S. Inspired by these ideas, we have the following

notions, comparing with those of (strong) asymptotic conjugacy in [9, Definition 4.4].

Definition 4.14. We say G ↷ (X,R) and H ↷ (Y,S) are strongly continuously orbit

equivalent, and write G ↷ (X,R) ∼scoe H ↷ (Y,S), if they are continuously orbit

equivalent and in Definition 4.2 we can take the maps a to have a(γ, g) = a(γ′, g) for all

γ, γ′ ∈ R and b to have b(ν, h) = b(ν ′, h) for all ν, ν ′ ∈ S.
We say these two systems are weakly continuously orbit equivalent, and write G ↷

(X,R) ∼wcoe H ↷ (Y,S), if they are continuously orbit equivalent and in Definition 4.2

we can take the maps a to have a(γ, g) = a(γ′, g) for γ, γ′ ∈ R with d(γ) = d(γ′), and b

to have b(ν, h) = b(ν ′, h) for ν, ν ′ ∈ S with d(ν) = d(ν ′).

Remark 4.15. Clearly, the strong continuous orbit equivalence implies the weak one. If

G↷α X is free, then G↷ (X,R1) and G↷ (X,R2) in Proposition 4.3 are continuously

orbit equivalent, but not weakly continuously orbit equivalent, because they do not satisfy

the second special case.

The following corollary is an analogy to [9, Proposition 4.5].

Corollary 4.16. Assume that G↷α (X,R) and H ↷β (Y,S) are essentially free. Then

(i) G↷α (X,R) ∼wcoe H ↷β (Y,S) if and only if there is an isomorphism Λ: R⋊αG→
S ⋊β H such that Λ(R) = S.

Moreover, if these equivalent conditions hold, then there is a C∗-isomorphism Φ:

C∗
r (R⋊α G) → C∗

r (S ⋊β H) such that Φ(C(X)) = C(Y ) and Φ(C∗
r (R)) = C∗

r (S).

(ii) G ↷α (X,R) ∼scoe H ↷β (Y,S) if and only if there exist a homeomorphism

φ : X → Y and a group isomorphism θ : G → H such that Λ: (x, g, y) ∈ R⋊α G →
(φ(x), θ(g), φ(y)) ∈ S ⋊β H is an isomorphism if and only if there exist an étale

groupoid isomorphism Λ: R ⋊α G → S ⋊β H and a group isomorphism θ : G → H

such that θρα = ρβΛ.

The above equivalent statements are also equivalent to the two coaction systems

(C∗
r (R⋊αG), G; δα) and (C∗

r (S ⋊αH), H; δβ) being conjugate by a conjugacy ϕ with

ϕ(C(X)) = C(Y ).

Furthermore, when R and S are minimal or X and Y are connected, these two notions

of strong continuous orbit equivalence and weak continuous orbit equivalence are equivalent.
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Proof. One can check that if the map a in Definition 4.2 is a cocycle on R ×α G, then

a(γ, g) = a(γ′, g) for γ, γ′ ∈ R with d(γ) = d(γ′) if and only if a(γ, e) = e for all γ ∈ R.

By symmetry, b has a similar characterization when it is a cocycle. From Lemma 4.8,

Theorem 4.12 and its proof, we can obtain (i) and (ii), where the equivalence of the last

two statements in (ii) comes from [7, Theorem 6.2].

We now show that the weak continuous orbit equivalence of G↷α (X,R) and H ↷β

(Y,S) implies the strong one when R and S are minimal or X and Y are connected. To

see this, by assumption and the first paragraph of this proof, we have a homeomorphism

φ and two continuous cocycles a, b with a(x, e, y) = e for all (x, y) ∈ R and b(u, e, v) = e

for (u, v) ∈ S, satisfying Lemma 4.4.

Assume thatX and Y are connected. For each g ∈ G, the map x ∈ X → a(x, g, g−1x) ∈
H is continuous, thus it is a constant. Hence a(x, g, g−1x) = a(y, g, g−1y) for all x, y ∈ X.

By symmetry, b has a similar property.

Assume that R and S are minimal. For (x, y) ∈ R and g ∈ G, since

(x, g, g−1x)(g−1x, e, g−1y)(g−1y, g−1, y) = (x, e, y),

we have a(x, g, g−1x) = a(g−1y, g−1, y)−1 = a(y, g, g−1y). Given arbitrary x, y ∈ X and

g ∈ G, we choose a sequence {xn} in [x]R converging to y in X. Then {(xn, g, g−1xn)}
converges to (y, g, g−1y) in R ⋊α G, thus the continuity of a implies that a(x, g, g−1x) =

a(y, g, g−1y).

We remark that a(x, g, y) = a(x, g, g−1x)a(g−1x, e, y) = a(x, g, g−1x) for (x, g, y) ∈
R ⋊α G. Consequently, if one of the above two assumptions holds, then a(x, g, y) =

a(u, g, v) for (x, g, y), (u, g, v) ∈ R ⋊α G. By a similar way, we can show that b satisfies

a similar requirement. Hence G ↷α (X,R) and H ↷β (Y,S) are strongly continuously

orbit equivalent.

5. Local conjugacy relations from expansive systems

The condition of essential freeness of automorphism systems in Theorem 4.12 and Corol-

lary 4.16 is necessary. In this section, we give some examples satisfying the requirement.

Recall that a system G↷α X is called expansive if the action α is expansive, which means

for a metric d on X compatible with the topology, there exists a constant δ > 0 such that,

for x, y ∈ X, if d(gx, gy) < δ for all g ∈ G then x = y. For convenience, given a real-valued

function ψ on G, the notation limg→∞ ψ(g) = 0 means that, for any ϵ > 0, there exists a

finite subset F of G such that |ψ(g)| < ϵ for all g /∈ F .

A triple (U, V, γ), consisting of open subsets U , V of X and a homeomorphism γ : U →
V , is called a local conjugacy, if limg→∞ supz∈U d(gz, gγ(z)) = 0. Two points x and y

in X are said to be locally conjugate, if there exists a local conjugacy (U, V, γ) such that
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x ∈ U , y ∈ V and γ(x) = y. Let

Rα = {(x, y) ∈ X ×X : x and y are locally conjugate}

be the local conjugacy relation on X. From [27] (also see [29]), Rα is an étale equivalence

relation on X under the topology whose base consists of the sets of the form

{(x, γ(x)) : x ∈ U},

where (U, V, γ) is a local conjugacy. Moreover, G↷α X induces an automorphism system

G↷α Rα: g(x, y) = (gx, gy) for g ∈ G and (x, y) ∈ Rα. Thus we have an automorphism

system G↷α (X,Rα).

Remark 5.1. If two expansive systems G ↷α X and H ↷β Y are conjugate by a

homeomorphism φ from X onto Y and a group isomorphism ρ from G onto H, then

(φ(U), φ(V ), φγφ−1|φ(U)) is a local conjugacy for each local conjugacy (U, V, γ), thus

φ × φ : (x, y) ∈ Rα → (φ(x), φ(y)) ∈ Rβ is an isomorphism. Hence G ↷α (X,Rα)

and H ↷β (Y,Rβ) are conjugate, thus two notions of conjugacy for G ↷α (X,Rα) and

G↷α X are equivalent.

From [9, 14], the automorphism systems of local conjugacy relations associated to a

full shift G↷ AG over a finite set A and an irreducible Smale space (X,ψ) are essentially

free. The following result generalizes Matsumoto’s result in the Smale space case to the

Z-expansive system case.

Theorem 5.2. Let Z ↷α X be an expansive system generated by a homeomorphism φ on

X, and let Rα be the local conjugacy relation associated to Z ↷α X. Assume that X is

infinite and has no isolated points. Then Z ↷α (X,Rα) is essentially free.

Proof. For an arbitrary integer p ≥ 1, we first claim that the set

Xp =
{
x ∈ X : lim

n→∞
φpn(x) and lim

n→∞
φ−pn(x) exist

}
is countable.

In fact, when p = 1, it follows from [1, Theorem 2.2.22] thatX1 is countable. Moreover,

the expansiveness of φp implies that Xp is also countable for every p. For completeness,

we provide a proof for the claim. Since φ is expansive, it follows that the p-periodic point

set Fp(φ) = {x ∈ X : φp(x) = x} is finite, say Fp(φ) = {y1, y2, . . . , yk}. For each x ∈ Xp,

let limn→∞ φpn(x) = y and limn→∞ φ−pn(x) = z. One can see that y, z ∈ Fp(φ). For

1 ≤ i, j ≤ k, set Xp(i, j) =
{
x ∈ X : limn→∞ φpn(x) = yi, limn→∞ φ−pn(x) = yj

}
. Given

x ∈ Xp(i, j), we have limn→∞ φpn+r(x) = φr(yi) and limn→∞ φ−pn−r(x) = φ−r(yj) for

each 0 ≤ r ≤ p− 1. Hence there exists an integer N ≥ 2 such that d(φn(x), φn(yi)) < c/2
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for all n ≥ N and d(φ−n(x), φ−n(yj)) < c/2 for all n ≤ −N , where c is an expansive

constant for φ. Set

Xp,N (i, j) = {x ∈ X : d(φn(x), φn(yi)) < c/2 for all n ≥ N

d(φ−n(x), φ−n(yj)) < c/2 for all n ≤ −N}.

Thus Xp(i, j) =
⋃

N≥2Xp,N (i, j) and X =
⋃

1≤i,j≤kXp(i, j). To finish the claim, we show,

for each N ≥ 2 and 1 ≤ i, j ≤ k, the set Xp,N (i, j) is finite.

For otherwise, Xp,N (i, j) is infinite for some i, j, N . Choose δ < c/2 such that if

d(y, z) ≤ δ for y, z ∈ X then d(φl(y), φl(z)) < c/2 for each integer l with |l| ≤ N − 1.

Since Xp,N (i, j) is infinite, there are two different y, z in Xp,N (i, j) such that d(y, z) < δ.

Thus d(φl(y), φl(z)) < c for every integer l, which implies that y = z by expansiveness of

φ and is a contradiction. We have established the claim.

For each p ≥ 1, we next claim that if x ∈ X with (x, φp(x)) ∈ Rα, then x ∈ Xp.

We use the method in [22, Lemma 5.3] to prove the claim. Assume that z is a limit

point of {φpn(x) | n ≥ 1}. Choose a subsequence {mn} of positive integers such that

limn→∞ d(z, φpmn(x)) = 0. Thus limn→∞ d(φp(z), φpmn(φp(x))) = 0. Since (x, φp(x)) ∈
Rα, we have lim|n|→∞ d(φn(x), φn(φp(x))) = 0. Consequently, φp(z) = z, which implies

that each limit point of {φpn(x) | n ≥ 1} is in Fp(φ) = {y1, y2, . . . , yk}. Choose an open

neighbourhood Ui of yi such that Ui ∩ Uj = ∅ and φp(Ui) ∩ Uj = ∅ for i ̸= j, where Ui is

the closure of Ui. The limit point property of {φpn(x) | n ≥ 1} shows that there exists

N ≥ 1 such that φpn(x) ∈
⋃k

i=1 Ui for n ≥ N . If φpN (x) ∈ Ui0 for some i0, then, by the

choice of Ui’s, φ
pn(x) ∈ Ui0 for all n ≥ N . Hence the sequence {φpn(x) | n ≥ 1} has a

unique limit point zi0 , thus it converges.

By a similar argument, one can obtain that {φ−pn(x) | n ≥ 1} converges. Thus x ∈ Xp

and the claim is established. So for each nonzero integer p, we have {x ∈ X : (x, φp(x)) ∈
Rα} = {x ∈ X : (x, φ|p|(x)) ∈ Rα} ⊆ X|p|, thus {x ∈ X : (x, φp(x)) ∈ Rα} is countable.

Since X is infinite and has no isolated points, it follows that {x ∈ X : (x, φp(x)) /∈ Rα} is

dense in X for each nonzero integer p. Consequently, Z ↷α (X,Rα) is essentially free.

6. Expansive automorphism actions on compact groups

Let X be a compact metrizable group with an invariant compatible metric d, i.e., d(xy, xz)

= d(yx, zx) = d(y, z) for x, y, z ∈ X. Assume that G↷α X is an expansive automorphism

system in the sense that it is expansive and each αg is a continuous automorphism on X.

Let

∆α =

{
x ∈ X : lim

g→∞
d(αg(x), αg(e)) = 0

}
be the associated homoclinic group, which is an α-invariant countable subgroup of X in

the sense that αg(a) ∈ ∆α for every a ∈ ∆α and g ∈ G (see [29]). Denote by σ the
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left-multiplication action of ∆α on X:

σu(x) = ux for u ∈ ∆α and x ∈ X,

and by X ⋊σ ∆α the associated transformation groupoid. Let G↷α (X,R) be the auto-

morphism system associated to the local conjugacy equivalence relation as in Section 5.

Refer to [29, Lemma 3.7] for the following facts.

Lemma 6.1. Let G↷α X be an expansive automorphism system. Then

(i) two elements x and y in X are locally conjugate, if and only if they are homoclinic,

i.e., limg→∞ d(gx, gy) = 0, if and only if xy−1 ∈ ∆α, if and only if x−1y ∈ ∆α, if

and only if x−1 and y−1 are locally conjugate.

(ii) The map Λ: (x, y) ∈ R → (x, xy−1) ∈ X ⋊σ ∆α is an étale groupoid isomorphism.

Proof. We only give a proof for (ii). One can see that Λ is an algebraic isomorphism fromR
ontoX⋊σ∆α with inverse map Λ−1, defined by Λ−1(x, u) = (x, u−1x) for (x, u) ∈ X⋊σ∆α.

Given (x, y) ∈ R, for S ⊆ ∆α and an open subset U ⊆ X with x ∈ U and xy−1 ∈ S, we

define γ(z) = yx−1z for z ∈ U . Then (U, γ(U), γ) is a local conjugacy from x to y, and

Λ({(z, γ(z)) : z ∈ U}) ⊆ U × S, thus Λ is continuous at (x, y). By a similar way, we show

that Λ−1 is continuous, thus Λ is a homeomorphism.

Definition 6.2. Let Γ = ∆α ⋊ G be the semi-direct product of ∆α by G. Define the

action α̃ of Γ on X as follows. For (a, g) ∈ Γ and x ∈ X,

α̃(a,g)(x) = aαg(x).

One can check that Γ ↷α̃ X is an expansive affine system. We remark that ∆α

and G can be thought of as subgroups of Γ by identifying a ∈ ∆α with (a, e) ∈ Γ, and

g ∈ G with (e, g) ∈ Γ, thus the restrictions of α̃ to ∆α and G are the same as σ and α,

respectively. Hence the transformation groupoid X ⋊α̃ Γ contains X ⋊σ ∆α and X ⋊α G

as open subgroupoids.

Proposition 6.3. The map Λ: (x, g, y) 7→ (x, (xαg(y
−1), g)) is an isomorphism of R⋊αG

onto X ⋊α̃ Γ as étale groupoids. Moreover, Λ(R) = X ⋊σ ∆α, and Λ(X ⋊αG) = X ⋊α̃G.

Proof. From Lemma 6.1, Λ is well-defined and injective. For each (x, (a, g)) in X⋊α̃Γ, we

have (x, g, αg−1(a−1x)) ∈ R⋊αG and Λ(x, g, αg−1(a−1x)) = (x, (a, g)), thus Λ is bijective.

For (x, g, y), (u, h, z) ∈ R⋊α G, we have (x, g, y) and (u, h, z) are composable in R⋊α G,

if and only if u = y, if and only if Λ(x, g, y) and Λ(y, h, z) are composable in X ⋊α̃ Γ.

Moreover,

Λ(x, g, y)Λ(y, h, z) = (x, (xαg(y)
−1, g))(y, (yαh(z)

−1, h))
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= (x, (xαgh(z)
−1, gh))

= Λ((x, g, y)(y, h, z)).

The continuity of Λ is implied by Lemma 6.1 and the canonical homeomorphism γ0

from R⋊α G onto R×G. Hence Λ is an étale groupoid isomorphism.

Proposition 6.4. (i) The system G↷α X is topologically free, if and only if Γ ↷α̃ X

is topologically free, if and only if R ⋊α G is topologically principal, if and only if

G↷α (X,R) is essentially free.

(ii) If G is torsion-free and ∆α is dense in X, then G↷α X is topologically free.

Proof. (i) It follows from [11, Corollary 2.3], Lemma 4.6 and Proposition 6.3 that we only

need to show that the topological freeness for α and α̃ is equivalent. Since G can be

embedded into Γ as a subgroup and the restriction of α̃ to G is the same as the action α,

the topological freeness of α̃ implies that of α.

To see the contrary, it is sufficient to show that, for arbitrary (e, e) ̸= (a, g) ∈ Γ and

non-empty open subset U of X, there exists x ∈ U such that aαg(x) ̸= x.

In fact, since the restriction of α̃ to ∆α is free, we can assume that g ̸= e and a ̸=
e. Clearly, we can also assume that there exists y ∈ U such that aαg(y) = y. The

topologically freeness of α implies there is z ∈ y−1U such that αg(z) ̸= z. Let z = y−1x

for x ∈ U . Then aαg(x) ̸= x.

(ii) Given g ∈ G, assume that there exists an open subset U of X such that αg(z) = z

for every z ∈ U . We can let e /∈ U . Since ∆α is dense in X, there is x0 ∈ U ∩ ∆α,

thus limh→∞ d(αh(x0), e) = 0. If g ̸= e, then, from the torsion-freeness of G, the set

{gn : n ∈ Z} is infinite, we have limn→∞ d(αgn(x0), e) = 0, which contradicts the fact

x0 ̸= e and αgn(x0) = x0 for all n ∈ Z. Consequently, g = e, thus α is topologically

free.

Recall that two automorphism systems G ↷α X and H ↷β Y on compact metriz-

able groups are said to be algebraically conjugate if there exist a continuous isomorphism

φ : X → Y and an isomorphism ρ : G → H such that φ(αg(x)) = βρ(g)(φ(x)) for g ∈ G

and x ∈ X. From [2], when X and Y are abelian, the notions of algebraic conjugacy and

conjugacy for automorphism systems are equivalent. In the following we have a similar

result for automorphism actions on nonabelian groups.

Proposition 6.5. Let G ↷α (X,R) and H ↷β (Y,S) be two automorphism systems on

local conjugacy relations from topologically free, expansive automorphism actions on com-

pact and connected metrizable groups X and Y , respectively. Then the following statements

are equivalent:
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(i) G↷α (X,R) and H ↷β (Y,S) are conjugate;

(ii) G↷α (X,R) ∼wcoe H ↷β (Y,S);

(iii) G↷α X and H ↷β Y are continuously orbit equivalent;

(iv) G↷α X and H ↷β Y are conjugate.

Moreover, if ∆α is dense in X, then the above conditions are equivalent to the following

statement.

(v) G↷α X and H ↷β Y are algebraically conjugate.

Proof. Since X and Y are connected, the continuous orbit equivalence and conjugacy of

G↷α X and H ↷β Y are equivalent. To complete the proof, we only need to prove that

(ii)⇒ (iv) and (ii)⇒ (v) when ∆α is dense in X. From Corollary 4.16 and Proposition 6.3,

there is an étale groupoid isomorphism Λ: X ⋊α̃ (∆α ⋊ G) → Y ⋊
β̃
(∆β ⋊H) such that

Λ(X ⋊σ ∆α) = Y ⋊σ′ ∆β, where σ and σ′ are the left-multiplication actions, and α̃ and

β̃ are as in Definition 6.2. Since X and Y are connected, there exist a homeomorphism

φ : X → Y and a group isomorphism θ : ∆α ⋊G→ ∆β ⋊H such that

(6.1) φ(aαg(x)) = β̃θ(a,g)(φ(x)) for every (a, g) ∈ ∆α ⋊G and x ∈ X,

and θ(∆α) = ∆β, where ∆α and ∆β are subgroups of the semi-direct product groups as

before. Define two maps ξ : G → ∆β and ρ : G → H by θ(e, g) = (ξ(g), ρ(g)) for g ∈ G.

One can check that ρ is a group isomorphism by considering the inverse isomorphism θ−1.

Letting a = e, the identity of X, in (6.1), we have φ(αg(x)) = ξ(g)βρ(g)(φ(x)) for

every g ∈ G and x ∈ X. In particular, φ(e) = ξ(g)βρ(g)(φ(e)). Thus φ(αg(x)) =

φ(e)βρ(g)(φ(e)
−1φ(x)) for x ∈ X and g ∈ G. Define φ̃(x) = φ(e)−1φ(x) for x ∈ X.

Then φ̃ : X → Y is a homeomorphism and

φ̃(αg(x)) = βρ(g)(φ̃(x)) for x ∈ X and g ∈ G.

Consequently, G↷α X and H ↷β Y are conjugate.

Assume that ∆α is dense in X. We remark that θ(a, e) ∈ ∆β, thus β̃θ(a,e)(y) = θ(a, e)y

for a ∈ ∆α and y ∈ Y . Letting g = e, the identity of G, and letting x = e, the identity of

X, in (6.1), one can see that φ(a) = θ(a, e)φ(e) for a ∈ ∆α. Thus, by putting g = e in (6.1),

we have φ(ax) = θ(a, e)φ(x) = (φ(a)φ(e)−1)φ(x), which implies that φ̃(ax) = φ̃(a)φ̃(x)

for every a ∈ ∆α and x ∈ X. From the density of ∆α in X, the map φ̃ : X → Y is a

continuous isomorphism. So G↷α X and H ↷β Y are algebraically conjugate.

Proposition 6.6. Let G ↷α (X,R) be an automorphism system on the local conjugacy

relation from a topologically free, expansive automorphism action. Then the following

statements are equivalent.
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(i) C∗
r (R) is simple;

(ii) C∗
r (R) has a unique tracial state;

(iii) ∆α is dense;

(iv) C∗
r (R⋊α G) is simple;

(v) C∗
r (R⋊α G) has a unique tracial state.

Proof. For the equivalence of (i), (ii) and (iii), we refer to [29, Corollary 3.9]. From

Proposition 6.3, C∗
r (R ⋊α G) is isomorphic to C(X) ⋊r,α̃ Γ, thus they have the same

simplicity and the uniqueness of tracial states. From Proposition 6.4 and [11], X ⋊α̃ Γ is

topologically principal, thus there is a one-to-one correspondence between the family of

ideals of C(X)⋊r,α̃ Γ and that of α̃-invariant open subsets of X (see [23]).

Assume (iii) holds. Since each non-empty α̃-invariant open subset U in X is invariant

under the left-multiplication by elements in ∆α, we have U = X. Hence C(X) ⋊r,α̃ Γ is

simple, thus (iv) holds. On the contrary, if (iv) holds, then C(X)⋊r,α̃ Γ is simple, which

implies that the α̃-invariant open subset X \∆α of X is empty, where ∆α is the closure

of ∆α in X. Thus ∆α = X, i.e., (iii) holds.

For the implication (v) ⇒ (iii), assume that C∗
r (R ⋊α G), thus C(X) ⋊r,α̃ Γ, has a

unique tracial state. If ∆α is not dense in X, then the Haar measure ν on ∆α extends a

Borel probability measure ν̂ on X different from the Haar measure µ0 on X. Since µ0 is

invariant under the actions σ, α and α̃, for a Borel subset E of X and (a, g) ∈ Γ, we have

ν̂(α̃(a,g)(E)) = ν(α̃(a,g)(E ∩∆α)) = ν̂(E), thus ν̂ is α̃-invariant. The probability measures

ν̂ and µ0 produce two different tracial states on C(X)⋊r,α̃ Γ, which is a contradiction.

For the implication (iii) ⇒ (v), assume that ∆α is dense in X. Then the Haar measure

µ0 on X is the unique α̃-invariant Borel probability measure on X. From [30, Proposi-

tion 3.2.4], C(X)⋊r,α̃ Γ, and thus C∗
r (R⋊α G) has a unique tracial state.

Example 6.7 (Hyperbolic toral automorphisms). For n ≥ 2, we consider an expansive

Z-action on the n-dimensional torus Rn/Zn generated by a single hyperbolic toral auto-

morphism α. Let π : Rn → Rn/Zn be the usual quotient map. Recall that Rn/Zn is a

compact and connected additive group under the following metric compatible with the

quotient topology:

d(π(x), π(y)) = inf
z∈Zn

∥x− y − z∥ for x, y ∈ Rn,

where ∥ · ∥ is the Euclidean norm on Rn. The elements in Rn are denoted by column

vectors or row vectors.
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It is well-known that, for such a hyperbolic toral automorphism α on Rn/Zn, there is

a matrix A ∈ GL(n,Z) with det(A) = ±1 and having no eigenvalues of modules 1 such

that

α(π(x)) = π(Ax) for x ∈ Rn.

Then Rn = Es ⊕ Eu, where Es =
{
x ∈ Rn : limk→+∞Akx = 0

}
and Eu =

{
w ∈ Rn :

limk→+∞A−kw = 0
}
are two invariant subspaces of the linear map on Rn determined by

A. We remark that Es∩Zn = {0}, Eu∩Zn = {0}, and both subgroups π(Es) and π(Eu),

as well as the homoclinic group ∆α = π(Es) ∩ π(Eu) induced by α, are dense in Rn/Zn.

Moreover, the system Z ↷α Rn/Zn generated by α is topologically free (see [12]).

Each m ∈ Zn has the unique decomposition m = ms −mu ∈ Es ⊕Eu. Then the map

θ : Zn → ∆α by θ(m) = π(ms) (= π(mu)) is a group isomorphism. As before, we let σ be

the translation action of ∆α on Rn/Zn:

σu(x) = u+ x for u ∈ ∆α, x ∈ Rn/Zn.

Let τ be the action of Zn on Rn/Zn by homeomorphisms:

τn(x) = θ(n) + x for n ∈ Zn, x ∈ Rn/Zn.

Then Zn ↷τ Rn/Zn and ∆α ↷σ Rn/Zn are conjugate.

Denote by Zn⋊Z the semi-direct product of Zn by the automorphism given by A : m ∈
Zn → Am ∈ Zn. Let γ be the action of Zn ⋊ Z on Rn/Zn:

γ(m,k)(x) = θ(m) + αk(x) for (m, k) ∈ Zn ⋊ Z and x ∈ Rn/Zn.

So Zn ⋊ Z ↷γ Rn/Zn and ∆α ⋊ Z ↷α̃ Rn/Zn are conjugate, where α̃ is given by Defini-

tion 6.2.

We consider the multiplicative coordinate system on the n-dimensional torus by Tn :=

{(z1, z2, . . . , zn) : zi ∈ C, |zi| = 1 for 1 ≤ i ≤ n}. The correspondence

φ : [(x1, x2, . . . , xn)] ∈ Rn/Zn → (e2πix1 , e2πix2 , . . . , e2πixn) ∈ Tn

is an isomorphism between two representations, where [(x1, x2, . . . , xn)] = π(x1, x2, . . . , xn)

for (x1, x2, . . . , xn) ∈ Rn. Using this coordinate system, we can rewrite the above toral

automorphism α and the actions τ , γ as follows. Let A = (aij) and A−1 = (bij). Define

the automorphism β of Tn by

β(z1, z2, . . . , zn) = (za111 za122 · · · za1nn , za211 za222 · · · za2nn , . . . , zan1
1 zan2

2 · · · zann
n )

for (z1, z2, . . . , zn) ∈ Tn, the rotation action ρ of Zn on Tn by

ρm(v) = φ(θ(m))v for m ∈ Zn and v ∈ Tn,
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and the action γ̃ of Zn ⋊ Z on Tn by

γ̃(m,k)(v) = φ(θ(m))βk(v) for (m, k) ∈ Zn ⋊ Z and v ∈ Tn.

Then Zn ↷τ Rn/Zn and Zn ↷ρ Tn are conjugate, and Zn⋊Z ↷γ̃ Tn and Zn⋊Z ↷γ Rn/Zn

are conjugate.

From Lemma 6.1, Proposition 6.3 and the above, the local conjugacy relation R given

by α and the associated semi-direct product R⋊α Z are isomorphic to the transformation

groupoids Tn ⋊ρ Zn and Tn ⋊γ̃ (Zn ⋊ Z), respectively.
We still denote by ρ the automorphism action of Zn on C(Tn) induced by the system

Zn ↷ρ Tn:

ρm(f)(v) = f(φ(θ(m))−1v)

for m ∈ Zn, f ∈ C(Tn) and v ∈ Tn. Let ek, 1 ≤ k ≤ n, be the canonical basis of Zn and

θ(ek) = [(θk1, . . . , θkn)] ∈ ∆α, where θkj ∈ [0, 1]. Let Uj , 1 ≤ j ≤ n, be the unitaries in

C(Tn) defined by Uj(z1, . . . , zn) = zj for (z1, . . . , zn) ∈ Tn, and let Vk, 1 ≤ k ≤ n, be the

unitaries implementing the C∗-automorphism ρek on C(Tn). One can check that

(6.2) UjUk = UkUj , VjVk = VkVj , UjVk = e2πiθkjVkUj

for 1 ≤ j, k ≤ n. From Propositions 6.4 and 6.6, C∗
r (R), thus C(Tn) ⋊ρ Zn are simple

and have unique tracial states. Hence C(Tn) ⋊ρ Zn is generated by Uj , Vj , 1 ≤ j ≤ n,

thus is the 2n-dimensional noncommutative torus AΘ for a 2n× 2n real skew-symmetric

matrix Θ = (θ̃kl) defined by θ̃kl = 0 for 1 ≤ k, l ≤ n or n + 1 ≤ k, l ≤ 2n, θ̃kl = θk(l−n)

for 1 ≤ k ≤ n and n + 1 ≤ l ≤ 2n, and θ̃kl = −θl(k−n) for n + 1 ≤ k ≤ 2n and 1 ≤ l ≤ n

(see [26]). From [20], C∗
r (R) is an AT-algebra with real rank zero and the range of the

unique tracial state acting on K0(C
∗
r (R)) is an isomorphism invariant.

Similarly, we also denote by γ̃ the automorphism action of Zn ⋊ Z on C(Tn) induced

by the system Zn ⋊ Z ↷γ̃ Tn:

γ̃(m,k)(f)(v) = f((φθ(A−km))−1 · β−k(v))

for (m, k) ∈ Zn ⋊Z, f ∈ C(Tn) and v ∈ Tn. Let Uj , j = 1, 2, . . . , n, be the generating set

of C(Tn) as above, and let V ′
j , j = 1, 2, . . . , n and W be the unitaries implementing the

automorphisms γ̃(ej ,0) and γ̃(0,1) associated to the generating set (ej , 0) for 1 ≤ j ≤ n and

(0, 1) of Zn ⋊ Z. Then we have

UjUk = UkUj , V ′
jV

′
k = V ′

kV
′
j , UjV

′
k = e2πiθkjV ′

kUj ,

WUjW
∗ =

n∏
l=1

U
bjl
l , WV ′

jW
∗ =

n∏
l=1

V
′alj
l

(6.3)

for 1 ≤ j, k ≤ n. Since C(Tn) ⋊γ̃ (Zn ⋊ Z) is simple from Propositions 6.4 and 6.6, it is

generated by the unitaries Uj , V
′
j , 1 ≤ j ≤ n, and W satisfying the above relations.
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From the above arguments and [29, Theorems 3.33 and 3.36], we have the following

results which generalize [16, Theorem 2.9 and Proposition 6.1].

Proposition 6.8. Let α be a hyperbolic toral automorphism on Rn/Zn defined by a hy-

perbolic matrix A. Let R be the local conjugacy relation induced by α. Then

(i) C∗
r (R) is generated by the unitaries Uj, Vj, 1 ≤ j ≤ n, satisfying the relations

(6.2), thus is isomorphic to a simple 2n-dimensional noncommutative torus and is

an AT-algebra with real rank zero.

(ii) C∗
r (R ⋊α Z) is generated by unitaries Uj, V

′
j , 1 ≤ j ≤ n, and W satisfying the

relations (6.3).

Moreover, two hyperbolic toral automorphisms on Rn/Zn are flip conjugate if and only

if the Z-actions they generate are continuously orbit equivalent up to the associated local

conjugacy relations.
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