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Existence of Solutions for Asymptotically Periodic Fractional p-Laplacian

Equations

Shuwen He

Abstract. In this paper we study a class of asymptotically periodic fractional p-

Laplacian equations. Under the suitable conditions, the existence of ground state

solutions are obtained via the variational method.

1. Introduction

The aim of this paper is to consider the existence of ground state solutions for the following

fractional p-Laplace equation

(1.1) (−∆)spu+ V (x)|u|p−2u = f(x, u), x ∈ RN ,

where s ∈ (0, 1), p ∈ [2,∞), N > sp, V ∈ C(RN ,R) and f ∈ C(RN ×R,R) are asymptot-

ically periodic in x, the fractional p-Laplacian (−∆)sp is the nonlinear nonlocal operator

defined on smooth functions by

(−∆)spu(x) = 2 lim
r→0

∫
RN\Br(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN .

Nonlocal fractional operators arise in many different contexts, such as finance, quantum

mechanics, game theory and so on, see [5, 7, 17] and the references therein. In particular,

when p = 2, (1.1) gives back to a fractional Schrödinger equation

(1.2) (−∆)su+ V (x)u = f(x, u), x ∈ RN ,

here (−∆)s is the so-called fractional Laplacian operator of order s, which can be char-

acterized as (−∆)su = ℑ−1(|ξ|2sℑu), ℑ denotes the usual Fourier transform in RN . The

fractional Schrödinger equation originated from the study of particle problems in random

fields driven by Lévy processes in quantum mechanics. Specifically, it comes from an

expansion of the Feynman path integral from Brownian-like to Lévy-like quantum me-

chanical paths. Solutions of (1.2) are related to the existence of standing wave solutions

for the time-dependent fractional Schrödinger equation

i
∂ψ

∂t
= (−∆)sψ + (V (x) + ℏ)ψ − f(x, ψ) for all (x, t) ∈ RN × R,
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that is solutions of the form ψ(x, t) = e−iℏtu(x), where ℏ is a constant. In recent years,

under various assumptions on the potential and the nonlinearity, (1.2) has been widely

investigated by many authors, see, for instance [6, 8, 10–12, 14, 15, 21, 23, 26, 27, 29] and

references therein. It is particularly noteworthy that Zhang et al. [27] showed the existence

of ground state solutions for problem (1.2) with asymptotically periodic terms under the

Nehari type condition

(Ne) t 7→ f(x, t)

|t|
is strictly increasing on (−∞, 0) and (0,+∞).

Moreover, for the case of s = 1, the authors [28, 30] considered the concentration and

multiplication of ground states for the double phase problems including the p-Laplacian

and the asymptotic potentials.

At present, the research on the solutions of (1.1) has become one of the hot issues in

the field of nonlinear analysis. In [9], Cheng and Tang proved the existence of nontrivial

solutions for the case V and f are allowed to be sign-changing. After that, Torres [24]

obtained the radially symmetric solutions when V > 0 satisfies coercive condition and f

is p-superlinear. Furthermore, Ambrosio et al. [2] got the existence and concentration of

positive solutions for p-fractional Schrödinger equations. For more results about fractional

p-Laplacian problems, we refer the readers to [3, 4, 13,18–20] and the references therein.

Motivated by the works mentioned above, this paper investigates the existence of

ground state solutions for the problem (1.1) without the so-called p-Ambrosetti–Rabinowitz

growth condition (see [1]): there is η > p such that

(AR) 0 < ηF (x, t) ≤ f(x, t)t for all x ∈ RN and t ̸= 0.

At the same time, we require that V and f are asymptotically periodic at infinity in x,

and problem (1.1) no longer requires the (Ne) condition. In conclusion, the work of this

article is different from the above papers, and it also develops the relevant results of [27].

Before proving our results, we denote by F the class of functions g ∈ C(RN ,R)∩L∞(RN )

such that the set |{x ∈ RN : |g(x)| ≥ ε}| < ∞ for any ε > 0, where | · | is the Lebesgue

measure. Moreover, if t ̸= 0, let

F (x, t) =

∫ t

0
f(x, τ) dτ ≥ 0 and F̃ (x, t) =

1

p
f(x, t)t− F (x, t) > 0.

We assume that V and f satisfy the following conditions:

(V) there exist a constant a0 > 0 and a function V0 ∈ C(RN ,R), 1-periodic in xi,

1 ≤ i ≤ N , such that V0 − V ∈ F and

V0(x) ≥ V (x) ≥ a0 for all x ∈ RN ;
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(f1) f(x, t) = o(|t|p−2t) as |t| → 0 uniformly for x ∈ RN ;

(f2) lim|t|→∞
F (x,t)
|t|p = +∞ uniformly for x ∈ RN ;

(f3) there exist constants a1 > 0 and q ∈ (p, p∗s) such that

|f(x, t)| ≤ a1(1 + |t|q−1) for all (x, t) ∈ RN × R,

where p∗s =
Np

N−sp is the fractional critical exponent;

(f4) there exist a2 > 0, δ > 0, and w ∈ R with |w| ≤ δ, such that

|f(x, t+ w)− f(x, t)| ≤ a2|w|(1 + |t|q−1) for all (x, t) ∈ RN × R;

(f5) there exist q ∈ (p, p∗s) and functions g ∈ F , f0 ∈ C(RN × R), 1-periodic in xi,

1 ≤ i ≤ N , such that

(i) F (x, t) ≥ F0(x, t) =
∫ t
0 f0(x, τ) dτ for all (x, t) ∈ RN × R;

(ii) |f(x, t)− f0(x, t)| ≤ g(x)|t|q−1 for all (x, t) ∈ RN × R;

(iii) the map t 7→ f0(x,t)
|t|p−1 is increasing on (−∞, 0) and (0,+∞);

(f6) there exist a3 > 0 and β > N(q−p)
sp such that F̃ (x, t) ≥ a3|t|β;

(f′6) there exist σ, r > 0 and κ > N
sp such that

|f(x, t)|κ ≤ σ|t|(p−1)κF̃ (x, t) for all |t| ≥ r.

Our main results are as follows:

Theorem 1.1. Suppose that (V) and (f1)–(f6) hold. Then problem (1.1) has at least one

ground state solution.

Theorem 1.2. Suppose that (V), (f1)–(f5) and (f′6) hold. Then problem (1.1) has at least

one ground state solution.

Remark 1.3. (i) Obviously, (f2) is weaker than (AR) condition. For any t ≥ 0, an example

of f(x, t) satisfying (f1)–(f6) and (f′6) but not (AR) condition is

f(x, t) = ψ(x)tp−1 ln(1 + t) +
1

e|x|2
tp−1[ln(1 + t) + 1− cos t],

f0(x, t) = ψ(x)tp−1 ln(1 + t),

where p ≥ 2 and ψ(x) ∈ C(RN ,R) ∩ L∞(RN ) is some positive bounded 1-periodic in the

x-variables. Moreover, f(x,t)
tp−1 is oscillatory, not increasing, so the Nehari manifold method

in [27] cannot be applied.
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(ii) (f4) was introduced in [16], which is used to prove Lemma 3.3. One can deduce

that (f4) is equivalent to f being locally Lipschitzian in t and satisfying

|f ′t(x, t)| ≤ C(1 + |t|q−1) for some C > 0.

The paper is organized as follows. In Section 2, we present a variational framework

and give some lemmas. The proofs of Theorems 1.1 and 1.2 are given in Section 3.

Hereafter, we denote the usual norm of Lq(R) by ∥ · ∥q, C1, C2, . . . stand for different

positive constants. For any r > 0 and x ∈ RN , Br(x) := {y ∈ RN : |y−x| < r}. Moreover,

we use o(1) to denote any quantity which tends to zero when n→ ∞.

2. Variational setting and preliminaries

In this section, we will establish the variational framework for problem (1.1) and give some

useful lemmas. Let the working space

E =

{
u ∈W s,p(RN ) :

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy +

∫
RN

V (x)|u|p dx <∞
}

be equipped with the norm

∥u∥p =
∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy +

∫
RN

V (x)|u|p dx.

As a consequence, the energy functional for problem (1.1) is defined by

J (u) =
1

p

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy +

∫
RN

V (x)|u|p dx
)
−
∫
RN

F (x, u) dx

=
1

p
∥u∥p −

∫
RN

F (x, u) dx.

It is easy to see that J ∈ C1(E,R) and

⟨J ′(u), v⟩ =
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sp
dxdy

+

∫
RN

V (x)|u|p−2uv dx−
∫
RN

f(x, u)v dx

for all u, v ∈ E. Thus, critical points of J are weak solutions of problem (1.1) as a

standard argument. A solution u0 ∈ E of problem (1.1) is called a ground state solution

if

J (u0) = min{J (u) : u ∈ E \ {0},J ′(u) = 0}.

Lemma 2.1. [13] E is continuously embedded in Lq(R) for any q ∈ [p, p∗s] and compactly

in Lq
loc(R) for any q ∈ [p, p∗s). In particular, there exists a constant Cq > 0 such that

∥u∥q ≤ Cq∥u∥ for all q ∈ [p, p∗s] and u ∈ E.



Existence of Solutions for Asymptotically Periodic Fractional p-Laplacian Equations 333

We recall that {un} ⊂ X is called a Cerami sequence (in short (Ce)c sequence) at the

level c ∈ R if I(un) → c and (1+ ∥un∥X)∥I ′(un)∥X∗ → 0, where X is a Banach space and

I ∈ C1(X,R). We introduce the following lemma, the proof is standard.

Lemma 2.2. Suppose that (f1)–(f3) are satisfied. Then J satisfies the mountain pass

geometry:

(I1) there exist α, ρ > 0 such that J (u) ≥ α if ∥u∥ = ρ;

(I2) there is e ∈ E such that ∥e∥ > ρ and J (e) < 0.

Proof. In fact, (f1) and (f3) imply that for any ε > 0, there exists Cε > 0 such that

(2.1) |f(x, t)| ≤ ε|t|p−1 + Cε|t|q−1 and |F (x, t)| ≤ ε

p
|t|p + Cε

q
|t|q

for all (x, t) ∈ RN × R. Thus, together with (2.1) and Lemma 2.1, we obtain

J (u) ≥ 1

p
∥u∥p − ε

p

∫
RN

|u|p dx− Cε

q

∫
RN

|u|q dx

≥ 1− εCp
p

p
∥u∥p − CεC

q
q

q
∥u∥q.

If ε is small enough such that
1−εCp

p

p > 0, then there exist α, ρ > 0 such that J (u) ≥ α for

all ∥u∥ = ρ.

On the other hand, we fix û ∈ E, by using (f2), we have for t is large that

J (tû)

tp
=

1

p
∥û∥p −

∫
RN

F (x, tû)

(tû)p
ûp dx→ −∞,

then there certainly exists t0 > 0 such that ∥t0û∥ > ρ and J (t0û) < 0. We can take

e = t0û.

Define

c = inf
γ∈Γ

max
t∈[0,1]

J (γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, ∥γ(1)∥ > ρ,J (γ(1)) ≤ 0}. By Lemma 2.2 and

the variant of the mountain pass theorem (see [22]) with Cerami condition, there exists a

(Ce)c sequence {un} ⊂ E satisfying

(2.2) J (un) → c ≥ α > 0 and (1 + ∥un∥)∥J ′(un)∥E∗ → 0.

Lemma 2.3. [22] Suppose that J satisfies J (0) = 0, (I1) and (I2). Let Kc = {u ∈ E :

J ′(u) = 0 and J (u) = c}. If there exists γ0 ∈ Γ such that

c = max
t∈[0,1]

J (γ0(t)),

then J has a nontrivial critical point u ∈ Kc ∩ γ0([0, 1]).
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Lemma 2.4. Suppose that (f1), (f3) and (f6) are satisfied. Then any (Ce)c sequence of

J at the level c > 0 is bounded in E.

Proof. By using (2.2) and (f6), we have

c+ o(1) = J (un)−
1

p
⟨J ′(un), un⟩ =

∫
RN

F̃ (x, un) dx ≥ a3∥un∥ββ,

which implies that ∥un∥ββ ≤ C1. Now, recall the following interpolation inequality

∥u∥q ≤ ∥u∥tβ∥u∥1−t
γ , u ∈ Lβ(RN ) ∩ Lγ(RN ),

where 0 < β ≤ q ≤ γ, 1
q = t

β + 1−t
γ and t ∈ [0, 1]. Without loss of generality, we assume

that β < q and γ = p∗s, then one has

(2.3) ∥un∥qq ≤ ∥un∥tqβ ∥un∥
(1−t)q
p∗s

.

By (2.1), (2.2) and Lemma 2.1, we have

1

p
∥un∥p =

∫
RN

F (x, un) dx+ J (un)

≤ ε

p

∫
RN

|un|p dx+
Cε

q

∫
RN

|un|q dx+ C2

≤ εCp
p

p
∥un∥p +

Cε

q
∥un∥qq + C2.

Taking ε > 0 small such that
1−εCp

p

p > 0 and using (2.3) we deduce that

(2.4)
1− εCp

p

p
∥un∥p ≤

Cε

q
∥un∥qq + C2 ≤

Cε

q
∥un∥tqβ ∥un∥

(1−t)q
p∗s

+ C2 ≤ C̃ε∥un∥(1−t)q + C2.

Since β > N(q−p)
sp , we conclude that p > (1 − t)q. Therefore, (2.4) implies that {un} is

bounded in E.

Lemma 2.5. Suppose that (f1)–(f3) and (f′6) are satisfied. Then any (Ce)c sequence of J
at the level c > 0 is bounded in E.

Proof. Let {un} ⊂ E be a (Ce)c sequence of J . To check the boundedness of {un}, let us
argue by contradiction. Suppose that ∥un∥ → ∞. Let vn = un

∥un∥ , then ∥vn∥ = 1. Passing

to a subsequence, we can assume that vn ⇀ v in E, vn → v in Lq
loc(R

N ) (∀ q ∈ [p, p∗s)) and

vn(x) → v(x) a.e. in RN . Then, we can deduce that

o(1) =
⟨J ′(un), un⟩

∥un∥p
= 1−

∫
RN

f(x, un)vn
∥un∥p−1

dx
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and therefore

(2.5) lim
n→∞

∫
RN

f(x, un)vn
∥un∥p−1

dx = 1.

Using (f2) and (f′6), we have

σF̃ (x, t) ≥
∣∣∣∣f(x, t)ttp

∣∣∣∣κ ≥
∣∣∣∣pF (x, t)tp

∣∣∣∣κ → +∞ as t→ +∞.

For any r > 0, we set h(r) = inf{F̃ (x, t) : x ∈ RN , |t| ≥ r}. Then h(r) > 0 for all r > 0

and h(r) → +∞ as r → +∞. By (f′6) and for 0 ≤ a < b, we set Ωn(a, b) = {x ∈ RN : a ≤
|u(x)| < b} and Cb

a = inf
{ F̃ (x,t)

|t|p : x ∈ RN , a ≤ |t| < b
}
> 0. From (2.2) and the above

definitions, we obtain

c+ o(1) = J (un)−
1

p
⟨J ′(un), un⟩

=

∫
Ωn(0,a)

F̃ (x, un) dx+

∫
Ωn(a,b)

F̃ (x, un) dx+

∫
Ωn(b,+∞)

F̃ (x, un) dx

≥ Cb
a

∫
Ωn(a,b)

|un|p dx+ h(b)|Ωn(b,+∞)|.

Hence, there exists C3 > 0 such that

(2.6) max

{
Cb
a

∫
Ωn(a,b)

|un|p dx, h(b)|Ωn(b,+∞)|

}
≤ C3.

By virtue of h(r) → +∞ as r → +∞, we have |Ωn(b,+∞)| → 0 as b→ +∞, and

(2.7)

∫
Ωn(b,+∞)

|vn|λ dx ≤

(∫
Ωn(b,+∞)

|vn|p
∗
s dx

) λ
p∗s

|Ωn(b,+∞)|
p∗s−λ

p∗s → 0

for any λ ∈ [p, p∗s), as b→ +∞ uniformly in n. Moreover, from (2.6) we infer that

(2.8)

∫
Ωn(a,b)

|vn|p dx =
1

∥un∥p

∫
Ωn(a,b)

|un|p dx→ 0 as n→ ∞.

By (f1), for any ε > 0, there exists aε > 0 such that |f(x, t)| ≤ ε
3 |t|

p−1 for all |t| ≤ aε.

Thus

(2.9)∫
Ωn(0,aε)

f(x, un)vn
∥un∥p−1

dx ≤
∫
Ωn(0,aε)

ε|un|p−1|vn|
3∥un∥p−1

dx =
ε

3

∫
Ωn(0,aε)

|vn|p dx ≤ ε

3
for all n.

By using (f1) and (f3), there exist C4 > 0 and bε > aε such that |f(x, t)| ≤ C4|t|p−1 for all

x ∈ Ωn(aε, bε). Combining with (2.8), there exists N0 > 0 such that

(2.10)

∫
Ωn(aε,bε)

f(x, un)vn
∥un∥p−1

dx ≤ C4

∫
Ωn(aε,bε)

|vn|p dx ≤ ε

3
for all n ≥ N0.
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Set κ′ = κ
κ−1 ∈

(
1, N

N−sp

)
. It follows from (f′6), (2.6), (2.7) and Hölder’s inequality that∫

Ωn(bε,+∞)

f(x, un)vn
∥un∥p−1

dx

≤

[∫
Ωn(bε,+∞)

(
|f(x, un)|
|un|p−1

)κ

dx

] 1
κ
(∫

Ωn(bε,+∞)
|vn|pκ

′
dx

) 1
κ′

≤

(∫
Ωn(bε,+∞)

σF̃ (x, un) dx

) 1
κ
(∫

Ωn(bε,+∞)
|vn|pκ

′
dx

) 1
κ′

≤ (σC4)
1
κ

(∫
Ωn(bε,+∞)

|vn|pκ
′
dx

) 1
κ′

<
ε

3

(2.11)

as bε → +∞ and for all n ≥ N0. By virtue of (2.9)–(2.11), we have

lim
n→∞

∫
RN

f(x, un)vn
∥un∥p−1

dx = 0,

which contradicts (2.5). Then {un} is bounded in E.

3. Proofs of the main results

In this section, in order to prove the main results, we need to introduce the following two

technical results, the proofs may be found in [22,27].

Lemma 3.1. Suppose that (V) and (f5) are satisfied. Let {un} ⊂ E be a bounded sequence

and φn = φ( · − xn), for any φ ∈ E and {xn} ⊂ RN . If |xn| → ∞, then we have∫
RN

(V0(x)− V (x))|un|p−2unφn dx = o(1),∫
RN

(f0(x, un)− f(x, un))φn dx = o(1),∫
RN

(F0(x, un)− F (x, un)) dx = o(1).

Lemma 3.2. Suppose that ϕ ∈ F and µ ∈ [p, p∗s]. If {un} ⊂ E and un ⇀ u in E, then

lim
n→∞

∫
RN

ϕ|un|µ dx =

∫
RN

ϕ|u|µ dx.

It is noteworthy to obtain the existence of the ground state solutions of problem (1.1),

we study firstly the following periodic equations

(3.1) (−∆)spu+ V0(x)|u|p−2u = f0(x, u), u ∈W s,p(RN ),
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where V (x) ≡ V0(x) and f(x) ≡ f0(x) satisfy all the conditions of Theorems 1.1 or 1.2.

We define the energy functional of problem (3.1)

J0(u) =
1

p

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy +

∫
RN

V0(x)|u|p dx
)
−
∫
RN

F0(x, u) dx

=
1

p
∥u∥p0 −

∫
RN

F0(x, u) dx.

By concentration compactness principle and some standard variational arguments, it is

easy to see that problem (3.1) has a ground state solution ũ satisfying

c0 := J0(ũ) = inf
{
J0(u) : u ∈W s,p(RN ) \ {0},J ′

0(u) = 0
}
> 0.

Next, we investigate the following compactness conditions for J by using Lemmas 3.1

and 3.2.

Lemma 3.3. Let {un} ⊂ E be a bounded (Ce)c sequence for J and u be its weak limit.

Then we have either

(i) un → u in E, or

(ii) there exist k ∈ N, nontrivial solutions w1, w2, . . . , wk of problem (3.1) and k se-

quences of points {yin} ⊂ RN , 1 ≤ i ≤ k, such that

|yin| → +∞, |yin − yjn| → +∞, i ̸= j, 1 ≤ j ≤ k,

un −
k∑

i=1

wi( · − yin) → u and J (un) → J (u) +
k∑

i=1

J0(wi).

Proof. Let {un} be a bounded (Ce)c sequence of J and satisfy (2.2). Passing to a sub-

sequence if necessary, we may assume that un ⇀ u in E. Furthermore, one has that

J ′(u) = 0. If the case (i) does not hold. Set zn,1 = un − u, then zn,1 ⇀ 0 in E, the

Brézis–Lieb Lemma leads to

∥zn,1∥p = ∥un∥p − ∥u∥p + o(1).

By (f4), a standard argument shows that∫
RN

F (x, zn,1) dx =

∫
RN

F (x, un) dx−
∫
RN

F (x, u) dx+ o(1),∫
RN

f(x, zn,1)φdx =

∫
RN

f(x, un)φdx−
∫
RN

f(x, u)φdx+ o(1)

for all φ ∈ E with ∥φ∥ ≤ 1 (see [16,25]). Thus, it is easy to see that

(3.2) J (zn,1) = J (un)− J (u) + o(1)
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and

(3.3) J ′(zn,1) = J ′(un)− J ′(u) + o(1) = o(1).

If

ξ := lim sup
n→∞

sup
y∈RN

∫
B1(y)

|zn,1|p dx = 0,

then the compactness-Lions-type result (see Lemma 2.2 in [3]) implies that zn,1 → 0 in

Lq(RN ) (∀ q ∈ (p, p∗s)). Thus, by (2.2) and (3.3) one has

o(1) = ⟨J ′(zn,1), zn,1⟩ = ∥zn,1∥p −
∫
RN

f(x, zn,1)zn,1 dx = ∥zn,1∥p + o(1),

which implies that un → u, this is a contradiction. Thus ξ > 0. Going if necessary to a

subsequence, there exists {y1n} ⊂ RN such that

(3.4)

∫
B1(y1n)

|zn,1|p dx ≥ ξ

2
.

Set wn,1 = zn,1( · + y1n). Since {zn,1} is bounded, then {wn,1} is also bounded, and we

assume that wn,1 ⇀ w1 in E, wn,1 → w1 in L
q
loc (∀ q ∈ [p, p∗s)) and wn,1(x) → w1(x) a.e. on

RN . It follows from (3.4) that ∫
B1(0)

|wn,1|p dx ≥ ξ

2
,

then w1 ̸= 0. Moreover, since zn,1 ⇀ 0 in E, up to a subsequence, we can assume that

|y1n| → +∞. Define φn = φ( · − y1n) for all φ ∈ E, one can get that

⟨J ′(zn,1), φn⟩ − ⟨J ′
0(zn,1), φn⟩ =

∫
RN

(V (x)− V0(x))|zn,1|p−2zn,1φn dx

+

∫
RN

(f0(x, zn,1)− f(x, zn,1))φn dx.

By virtue of Lemma 3.1 and (3.3), we have

0 = lim
n→∞

⟨J ′(zn,1), φn⟩ = lim
n→∞

⟨J ′
0(zn,1), φn⟩ = lim

n→∞
⟨J ′

0(wn,1), φ⟩ = ⟨J ′
0(w1), φ⟩,

which implies that w1 is a nontrivial critical point of J0. Set zn,2 = un − w1( · − y1n)− u.

We replace zn,1 by zn,2 and repeat the above argument. If

lim sup
n→∞

sup
y∈RN

∫
B1(y)

|zn,2|p dx = 0,

then zn,2 → 0 in E, that is, un −w1( · − y1n) → u in E. Furthermore, since zn,2 → 0 in E,

it follows by translation that wn,1 → w1. Thus,

J0(wn,1) = J0(zn,1) → J0(w1).
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By using the fact that zn,1 ⇀ 0 and the conditions (V), (f5) and Lemma 3.2 we have

J (zn,1)− J0(zn,1) =

∫
RN

[
1

p
(V (x)− V0(x))|zn,1|p + (F0(x, zn,1)− F (x, zn,1))

]
dx→ 0.

Therefore, by (3.2) we have

J (un) = J (u) + J0(w1) + o(1).

This implies that the case (ii) holds for k = 1. Otherwise, we can find {y2n} ⊂ RN such

that (3.4) holds. Then passing to a subsequence |y2n| → +∞ and |y1n − y2n| → +∞ as

n → ∞. Similar to the above argument, let wn,2 = zn,2( ·+ y2n), then we can find w2 ̸= 0

such that up to a subsequence, wn,2 ⇀ w2 in E, wn,2 → w2 in Lq
loc (∀ q ∈ [p, p∗s)) and

wn,2(x) → w2(x) a.e. on RN . Moreover, w2 is a nontrivial critical point of J0.

Set zn,3 = un−w1( ·−y1n)−w2( ·−y2n)−u, then again by applying the above arguments,

the case (ii) holds for k = 2. Since J0(wi) ≥ c0 > 0 for all i and J (un) is bounded, the

iteration must stop at some finite index.

Proofs of Theorems 1.1 and 1.2. By virtue of Lemma 2.2 and Lemmas 2.4 or 2.5, there

exists a bounded (Ce)c sequence {un} ⊂ E satisfying (2.2). Up to a subsequence, we

assume that un ⇀ u in E, and J ′(u) = 0. It follows that u is a critical point of J . Next

we will split the argument into two cases.

Case 1: 0 < c < c0. If un ↛ u in E, applying Lemma 3.3, there exist k nontrivial

solutions w1, w2, . . . , wk of problem (3.1) such that

c = lim
n→∞

J (un) = J (u) +
k∑

i=1

J0(wi) ≥ kc0 ≥ c0,

which is a contradiction. Then un → u in E, this shows that J satisfies the (Ce)c

condition.

Case 2: c ≥ c0. Let J0(ũ) = c0 for ũ ∈W s,p(RN ). From (f5) we infer that

c ≤ max
t≥0

J (tũ) ≤ max
t≥0

J0(tũ) = J0(ũ) = c0 ≤ c.

Thus, c = maxt≥0 J (tũ) = c0 and there exists γ0 ∈ Γ such that

c = max
t∈[0,1]

J (γ0(t)).

We can invoke Lemma 2.3 to deduce that J has a nontrivial critical point at level c > 0.

In view of the above existence result, the set N := {u ∈ E \ {0},J ′(u) = 0} is not

empty. We claim that the ground state energy m := infu∈N J (u) is achieved. Indeed,

suppose that {un} ⊂ E is a minimizing sequence for m, that is,

J (un) → m, J ′(un) → 0 and un ̸= 0.



340 Shuwen He

Clearly, {un} is a (Ce)m sequence of J , from Lemmas 2.4 or 2.5 we deduce that it is

bounded. Then, we can obtain that m is achieved by using the same arguments as Cases 1

and 2. Thus, we know that m is a critical level. The proof is complete.
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