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A Modified Iterative Method for Solving the Non-symmetric Coupled

Algebraic Riccati Equation

Li Wang* and Yibo Wang

Abstract. In this paper, a modified alternately linear implicit (MALI) iteration

method is derived for solving the non-symmetric coupled algebraic Riccati equation

(NCARE). In the MALI iteration algorithm, the coefficient matrices of the linear ma-

trix equations are fixed at each iteration step. In addition, the MALI iteration method

utilizes a weighted average of the estimates in both the last step and current step to

update the estimates in the next iteration step. Further, we give the convergence the-

ory of the modified algorithm. Last, numerical examples demonstrate the effectiveness

and feasibility of the derived algorithm.

1. Introduction

In this paper, we study the minimal non-negative solution of the non-symmetric coupled

algebraic Riccati equation (NCARE)

(1.1) Ri(X1, X2, . . . , Xs) = XiCiXi −XiDi −AiXi +Bi +
∑
j ̸=i

eijXj = 0,

where Xi ∈ Rm×n is the solution of the NCARE (1.1), i ∈ S, S = {1, 2, . . . , s} is a finite

set, Ai ∈ Rm×m, Bi ∈ Rm×n, Ci ∈ Rn×m, Di ∈ Rn×n, and eij is non-negative constant.

When s = 1, the NCARE (1.1) changes to the non-symmetric algebraic Riccati equation

(NARE)

R(X) = XCX −XD −AX +B = 0.

It is important to research the minimal non-negative solutions of the NCARE because

of their broad applications in many fields. For example, for the optimal control of jump

linear system, the feedback control law to minimize the quadratic performance index is

obtained by solving the NCARE with some constraints [1,7,12,14]. In addition, in particle

transport theory, the problem of particle transport scattering function can be transformed

to get the minimal non-negative solution of the NARE [2, 4, 13]. Moreover, introducing
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Wiener–Hopf decomposition to the Markov chain is a significative step in traffic flow,

and the problem of Wiener–Hopf decomposition can be converted to find the mininum

non-negative solution of the NARE [19].

In order to obtain the minimal non-negative solutions of the NARE (1.1), various iter-

ation schemes have been developed [3,8,10,11,15,20–22], such as classic Newton iteration

method, alternately implicit iteration method, structure-preserving doubling algorithm

and fixed point iteration method. In addition, Lu and Ma [17] proposed the linearized

implicit iteration method for solving the algebraic Riccati equations. Benner and Kuer-

schner [5] presented low-rank Newton-ADI methods for solving large non-symmetric alge-

braic Riccati equations. Later, Guan [9] derived modified alternately linearized implicit

iteration method for M -matrix algebraic Riccati equations. But there are very little re-

sults about the NCARE (1.1). In 2011, Luo [16] presented Newton iteration and fixed

point iteration to solve the NCARE (1.1), where the two methods required solving a

Sylvester equation at each step of the iterations. Recently, Zhang and Tan [23] proposed

the INewton iteration method and the alternately linear implicit method for solving the

NCARE (1.1), which avoided directly solving Sylvester equation. Motivated by above

work, we propose a modified iterative algorithm to find the minimal non-negative solu-

tions of the NCARE (1.1). Compared with some existing iterative algorithms, the modified

iterative algorithm has better numerical effectiveness.

The rest of the paper is organized as follows. In Section 2, we present the MALI

iteration algorithm to solve the NCARE (1.1). In Section 3, we show the convergence

of the MALI iteration algorithm. In Section 4, we use numerical examples to show the

feasibility and effectiveness of the modified iterative algorithm.

Throughout the paper, let A = [aij ] ∈ Rm×n and B = [bij ] ∈ Rm×n. We write A > 0

(A ≥ 0) if all aij > 0 (aij ≥ 0) for all i, j. If A > 0 (A ≥ 0), we say that A is a positive

(non-negative) matrix. A > B (A ≥ B) means A − B > 0 (A − B ≥ 0). A matrix

A ∈ Rn×n is called a Z-matrix if its off-diagonal elements are non-positive. Any Z-matrix

can be written as A = sI − B, where s is a positive constant and B a non-negative

matrix. Z-matrix is called a non-singular M -matrix if s > ρ(B) and a singular M -matrix

if s = ρ(B), where ρ(B) is the spectral radius. AT and ∥A∥ denote the transpose and the

spectral norm of matrix A, respectively.

The following are an assumption and some necessary lemmas.

Assumption 1.1. [23] For the NCARE (1.1) we can find non-negative matrices Y1, Y2,

. . . , Ys such that Ri(Y1, . . . , Ys) ≤ 0, and

Ki =

 Di −Ci

−Bi −
∑

j ̸=i eijYj Ai


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is a non-singular M -matrix or an irreducible singular M -matrix.

Lemma 1.2. [6] For a Z-matrix A ∈ Rn×n, the following statements are equivalent:

(1) A is a non-singular M -matrix;

(2) A−1 ≥ 0;

(3) Av > 0 for some positive vector v ∈ Rn;

(4) All eigenvalues of A have positive real parts.

Lemma 1.3. [18] Let A = (Aij) ∈ Rn×n be an M -matrix and B = (bij) ∈ Rn×n be a

Z-matrix. If the element of B satisfies

bii ≥ aii, aij ≤ bij ≤ 0, i ̸= j, 1 ≤ i, j ≤ n,

then B is also an M -matrix. Particularly, for any positive real θ, B = θI + A is an

M -matrix.

Lemma 1.4. [23] If Assumption 1.1 is met, then Bi ≥ 0, Ci ≥ 0, and the NCARE (1.1)

has a minimal non-negative solution S = (S1, . . . , Ss). Further, Di − CiSi and Ai − SiCi

are M -matrices.

2. The MALI iteration method

In [23], Zhang presented an alternately linearized implicit (ALI) iteration method for

NCARE (1.1) as follows.

ALI iteration scheme. Take a positive constant ζi such that

ζi = max

{
max

1≤j≤m
[Ai]jj , max

1≤j≤n
[Di]jj

}
,

then the iteration scheme is

X
k+1/2
i

(
ζiI + (Di − CiX

k
i )
)
= (ζiI −Ai)X

k
i +Bi +

∑
j ̸=i

eijX
k
j ,(

ζiI + (Ai −X
k+1/2
i Ci)

)
Xk+1

i = X
k+1/2
i (ζiI −Di) +Bi +

∑
j ̸=i

eijX
k+1/2
j .

In this section, we propose a modified alternately linearized implicit method for the

NCARE (1.1).

The MALI iteration scheme. Take a positive constant γi and βi such that

(2.1) γi = max
1≤j≤m

[Ai]jj , βi = max
1≤j≤n

[Di]jj ,



380 Li Wang and Yibo Wang

then the modified iteration scheme is

X
k+1/2
i (γiI +Di) = (γiI −Ai +Xk

i Ci)X
k
i +Bi

+

i−1∑
j=1

eij
(
ωX

k+1/2
j + (1− ω)Xk

j

)
+

s∑
j=i+1

eijX
k
j ,

(βiI +Ai)X
k+1
i = X

k+1/2
i (βiI −Di + CiX

k+1/2
i ) +Bi

+
i−1∑
j=i

eij
(
ωXk+1

j + (1− ω)X
k+1/2
j

)
+

s∑
j=i+1

eijX
k+1/2
j ,

(2.2)

where 0 ≤ ω ≤ 1 is a given parameter.

Compared with ALI iteration method, the modified method is more efficient since the

coefficient matrices of the modified iteration scheme (2.2) are fixed at each iteration step

and different parameters γi and βi are chosen based on different matrices Di and Ai. Then

less computational time is required for solving the NCARE (1.1). In addition, the modified

method utilizes a weighted average of the estimates in both the last step and current step

to update the estimates X
k+1/2
i and Xk+1

i . Therefore, the convergence performance of the

new method can be improved.

The algorithm is described as follows.

Algorithm 2.1.

Step 1: Input matrices Ai, Bi, Ci, Di, i = 1, 2, . . . , s, E = (eij) and ω > 0.

Step 2: Set X0
i = 0, a tolerance εout, k = 0, and compute

RES0i =

∥∥∥∥X0
i CiX

0
i −AiX

0
i −X0

i Di +Bi +
∑
j ̸=i

eijX
0
j

∥∥∥∥.
Step 3: Set γi, βi as (2.1).

Step 4: Compute

RESki =

∥∥Xk
i CiX

k
i −AiX

k
i −Xk

i Di +Bi +
∑

j ̸=i eijX
k
j

∥∥
RES0i

.

Step 5: Stop if max1≤i≤s(RES
k
i ) ≤ εout. Otherwise, go to Step 6.

Step 6: Compute

X
k+1/2
i =

(
(γiI −Ai +Xk

i Ci)X
k
i +Bi +

i−1∑
j=1

eij
(
ωX

k+1/2
j + (1− ω)Xk

j

)
+

s∑
j=i+1

eijX
k
j

)
× (γiI +Di)

−1,
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Xk+1
i = (βiI +Ai)

−1

(
X

k+1/2
i (βiI −Di + CiX

k+1/2
i ) +Bi

+

i−1∑
j=1

eij
(
ωXk+1

j + (1− ω)X
k+1/2
j

)
+

s∑
j=i+1

eijX
k+1/2
j

)
.

Step 7: Set k = k + 1 and go to Step 4.

3. Convergence analysis

In this section, we analyze the convergence of Algorithm 2.1.

Theorem 3.1. Let S = (S1, . . . , Ss) be the minimal non-negative solution of the NCARE

(1.1). If Assumption 1.1 is met, then the matrix sequence {Xk
i }, i = 1, 2, . . . , s, generated

by Algorithm 2.1, satisfies

(1) (X
k+1/2
i − Si)(γiI +Di) = (γiI −Ai +Xk

i Ci)(X
k
i − Si) + (Xk

i − Si)CiSi

+
i−1∑
j=1

eij
(
ω(X

k+1/2
j − Si) + (1− ω)(Xk

j − Sj)
)

+
s∑

j=i+1

eij(X
k
j − Sj);

(2) (X
k+1/2
i −Xk

i )(γiI +Di) = Ri(X
k
1 , . . . , X

k
i , . . . , X

k
s ) +

i−1∑
j=1

eijω(X
k+1/2
j −Xk

j );

(3) Ri(X
k+1/2
1 , . . . , X

k+1/2
i , . . . , Xk+1/2

s )

= (γiI −Ai +X
k+1/2
i Ci)(X

k+1/2
i −Xk

i ) + (X
k+1/2
i −Xk

i )CiX
k
i

+

i−1∑
j=1

eij(1− ω)(X
k+1/2
j −Xk

j ) +

s∑
j=i+1

eij(X
k+1/2
j −Xk

j );

(4) (βiI +Ai)(X
k+1
i − Si) = (X

k+1/2
i − Si)(βiI −Di + CiX

k+1/2
i ) + CiSi(X

k+1/2
i − Si)

+
i−1∑
j=1

eij
(
ω(Xk+1

j − Sj) + (1− ω)(X
k+1/2
j − Sj)

)
+

s∑
j=i+1

eij(X
k+1/2
j − Sj);

(5) (βiI +Ai)(X
k+1
i −X

k+1/2
i ) = Ri(X

k+1/2
1 , . . . , X

k+1/2
i , . . . , Xk+1/2

s )

+
i−1∑
j=1

eijω(X
k+1
j −X

k+1/2
j );
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(6) Ri(X
k+1
1 , . . . , Xk+1

i , . . . , Xk+1
s )

= (Xk+1
i −X

k+1/2
i )(βiI −Di + CiX

k+1
i ) +X

k+1/2
i Ci(X

k+1
i −X

k+1/2
i )

+

i−1∑
j=1

eij(1− ω)(Xk+1
j −X

k+1/2
j ) +

s∑
j=i+1

eij(X
k+1
j −X

k+1/2
j ).

Proof. We prove (1)–(3), and omit (4)–(6) here since the proof process for (4)–(6) is similar

to (1)–(3).

(1) From (2.2) and

Bi − SiDi = AiSi − SiCiSi −
i−1∑
j=1

eij
(
ωSj + (1− ω)Sj

)
−

s∑
j=i+1

eijSj ,

we get

(X
k+1/2
i − Si)(γiI +Di)

= (γiI −Ai +Xk
i Ci)X

k
i +Bi +

i−1∑
j=1

eij
(
ωX

k+1/2
j + (1− ω)Xk

j

)
+

s∑
j=i+1

eijX
k
j − Si(γiI +Di)

= (γiI −Ai +Xk
i Ci)X

k
i +

i−1∑
j=1

eij
(
ωX

k+1/2
j + (1− ω)Xk

j

)
+

s∑
j=i+1

eijX
k
j

+AiSi − SiCiSi −
i−1∑
j=1

eij
(
ωSj + (1− ω)Sj

)
−

s∑
j=i+1

eijSj − γiSi

= (γiI −Ai)X
k
i − (γiI −Ai)Si +Xk

i CiX
k
i −Xk

i CiSi +Xk
i CiSi − SiCiSi

+

i−1∑
j=1

eij
(
ω(X

k+1/2
j − Sj) + (1− ω)(Xk

j − Sj)
)
+

s∑
j=i+1

eij(X
k
j − Sj)

= (γiI −Ai +Xk
i Ci)(X

k
i − Si) + (Xk

i − Si)CiSi

+
i−1∑
j=1

eij
(
ω(X

k+1/2
j − Si) + (1− ω)(Xk

j − Sj)
)
+

s∑
j=i+1

eij(X
k
j − Sj).

(2) Using (2.2) again, it is easy to verify that

(X
k+1/2
i −Xk

i )(γiI +Di)

= (γiI −Ai +Xk
i Ci)X

k
i +Bi +

i−1∑
j=1

eij
(
ωX

k+1/2
j + (1− ω)Xk

j

)
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+

s∑
j=i+1

eijX
k
j − γiX

k
i −Xk

i Di

= Xk
i CiX

k
i −AiX

k
i +Bi −Xk

i Di +
i−1∑
j=1

eij
(
ωX

k+1/2
j + (1− ω)Xk

j

)
+

s∑
j=i+1

eijX
k
j

= Xk
i CiX

k
i −AiX

k
i +Bi −Xk

i Di +
i−1∑
j=1

eijX
k
j +

i−1∑
j=1

eijω(X
k+1/2
j −Xk

j ) +
s∑

j=i+1

eijX
k
j

= Ri(X
k
1 , . . . , X

k
i , . . . , X

k
s ) +

i−1∑
j=1

eijω(X
k+1/2
j −Xk

j ).

(3) From the first equation of (2.2), we have

Bi −X
k+1/2
i Di

= γiX
k+1/2
i − (γiI −Ai +Xk

i Ci)X
k
i −

i−1∑
j=1

eij
(
ωX

k+1/2
j + (1− ω)Xk

j

)
−

s∑
j=i+1

eijX
k
j .

Hence,

Ri(X
k+1/2
1 , . . . , X

k+1/2
i , . . . , Xk+1/2

s )

= X
k+1/2
i CiX

k+1/2
i −AiX

k+1/2
i −X

k+1/2
i Di +Bi

+
i−1∑
j=1

eij
(
ωX

k+1/2
j + (1− ω)X

k+1/2
j

)
+

s∑
j=i+1

eijX
k+1/2
j

= X
k+1/2
i CiX

k+1/2
i −AiX

k+1/2
i + γiX

k+1/2
i − (γiI −Ai +Xk

i Ci)X
k
i

−
i−1∑
j=1

eij
(
ωX

k+1/2
j + (1− ω)Xk

j

)
−

s∑
j=i+1

eijX
k
j

+
i−1∑
j=1

eij
(
ωX

k+1/2
j + (1− ω)X

k+1/2
j

)
+

s∑
j=i+1

eijX
k+1/2
j

= X
k+1/2
i CiX

k+1/2
i + (γiI −Ai)(X

k+1/2
i −Xk

i )−Xk
i CiX

k
i

+

i−1∑
j=1

eij(1− ω)(X
k+1/2
j −Xk

j ) +

s∑
j=i+1

eij(X
k+1/2
j −Xk

j )

= (γiI −Ai)(X
k+1/2
i −Xk

i ) +X
k+1/2
i CiX

k+1/2
i −X

k+1/2
i CiX

k
i +X

k+1/2
i CiX

k
i

−Xk
i CiX

k
i +

i−1∑
j=1

eij(1− ω)(X
k+1/2
j −Xk

j ) +
s∑

j=i+1

eij(X
k+1/2
j −Xk

j )

= (γiI −Ai +X
k+1/2
i Ci)(X

k+1/2
i −Xk

i ) + (X
k+1/2
i −Xk

i )CiX
k
i

+
i−1∑
j=1

eij(1− ω)(X
k+1/2
j −Xk

j ) +
s∑

j=i+1

eij(X
k+1/2
j −Xk

j ).
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Therefore, we have proven the conclusions (1)–(3).

Theorem 3.2. Let S = (S1, . . . , Ss) be the minimal non-negative solution of the NCARE

(1.1). If Assumption 1.1 is met, then the matrix sequence {Xk
i }, i = 1, 2, . . . , s, generated

by Algorithm 2.1 is well defined and is monotonically increasing and bounded,

(3.1) Ri(X
k+1
1 , . . . , Xk+1

i , . . . , Xk+1
s ) ≥ 0, 0 ≤ X0

i ≤ · · · ≤ Xk
i ≤ Xk+1

i ≤ · · · ≤ Si.

Moreover, {Xk
i } is convergent to the minimal non-negative solution Si of the NCARE (1.1).

Proof. (1) Because Ki is a non-singular M -matrix or an irreducible singular M -matrix,

then Bi ≥ 0, Ci ≥ 0 and Ki ≤ diag(Di, Ai), thus Ai and Di are M -matrices by Lemma 1.3.

Therefore,

(3.2) γiI −Ai ≥ 0, βiI −Di ≥ 0, i = 1, 2, . . . , s,

where γi, βi are from (2.1), and the matrices βiI + Ai and γiI +Di are also M -matrices

according to Lemma 1.3, then we get

(3.3) (γiI +Di)
−1 ≥ 0, (βiI +Ai)

−1 ≥ 0, i = 1, 2, . . . , s

with Lemma 1.2.

Next we demonstrate (3.1) by mathematical induction.

(i) When k = 0, we will prove (3.1) is true.

(a) Let’s prove X
1/2
i ≤ Si, i = 1, 2, . . . , s. Putting the initial matrix X0

i = 0 into the

Theorem 3.1(1), we get

X
1/2
i − Si

=

(
− (γiI −Ai)Si − SiCiSi +

i−1∑
j=1

eij
(
ω(X

1/2
j − Si) + (1− ω)(−Sj)

)
−

s∑
j=i+1

eijSj

)
× (γiI +Di)

−1.

(3.4)

Considering the above equation (3.4) with i = 1, we have

(3.5) X
1/2
1 − S1 =

(
− (γ1I −A1)S1 − S1C1S1 −

s∑
j=2

e1jSj

)
(γ1I +D1)

−1.

Thus from (3.5), (3.3) and (3.2), it follows that X
1/2
1 − S1 ≤ 0.
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Assume that X
1/2
i − Si ≤ 0, i ≤ l. Considering the equation (3.4) with i = l + 1, we

get

X
1/2
l+1 − Sl+1 = −

(
(γl+1I −Al+1)Sl+1 +

l∑
j=1

el+1,j

(
ω(Sj −X

1/2
j ) + (1− ω)Sj

)
+ Sl+1Cl+1Sl+1 +

s∑
j=l+2

el+1,jSj

)
(γl+1I +Dl+1)

−1.

By (3.2), (3.3) and induction assumption X
1/2
i − Si ≤ 0, i ≤ l, we get X

1/2
l+1 − Sl+1 ≤ 0.

Thus we have

(3.6) X
1/2
i ≤ Si, i = 1, 2, . . . , s

by principle of mathematical induction.

(b) Let’s prove X
1/2
i ≥ 0, i = 1, 2, . . . , s. Putting the initial matrix X0

i = 0 into the

iteration format (2.2), we get

(3.7) X
1/2
i (γiI +Di) = Bi +

i−1∑
j=1

ωeijX
1/2
j .

Considering the equation (3.7) with i = 1, we have X
1/2
1 (γ1I +D1) = B1. Hence, by (3.3)

we get X
1/2
1 = B1(γ1I +D1)

−1 ≥ 0.

Assumed that X
1/2
i ≥ 0, i ≤ l. Considering the equation (3.7) with i = l+ 1, we have

X
1/2
l+1 =

(
Bl+1 +

l∑
j=1

ωel+1,jX
1/2
j

)
(γl+1I +Dl+1)

−1.

By (3.3), we get X
1/2
l+1 ≥ 0. Hence, it has shown that X

1/2
i ≥ 0 for all i.

(c) Let’s prove X1
i ≥ X

1/2
i , i = 1, 2, . . . , s. Using the conclusion (3) of Theorem 3.1,

we can easily get

Ri(X
1/2
1 , . . . , X

1/2
i , . . . , X1/2

s )

= (γiI −Ai +X
1/2
i Ci)X

1/2
i +

i−1∑
j=1

eij(1− ω)X
1/2
j +

s∑
j=i+1

eijX
1/2
j ≥ 0

(3.8)

with (3.2). And from the conclusion (5) of Theorem 3.1, we have

(3.9) X1
i −X

1/2
i = (βiI +Ai)

−1

(
Ri(X

1/2
1 , . . . , X

1/2
i , . . . , X1/2

s ) +

i−1∑
j=1

eijω(X
1
j −X

1/2
j )

)
.

Then considering the equation (3.9) with i = 1, according to (3.3) and (3.8), we get

X1
1 −X

1/2
1 = (β1I +A1)

−1R1(X
1/2
1 , . . . , X

1/2
i , . . . , X1/2

s ) ≥ 0.
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Assume that X1
i −X

1/2
i ≥ 0, i ≤ l. Considering the equation (3.9) with i = l + 1, in

light of (3.3), (3.8) and the induction assumption X1
i −X

1/2
i ≥ 0, i ≤ l, we get

X1
l+1 −X

1/2
l+1

= (βl+1I +Al+1)
−1

(
Rl+1(X

1/2
1 , . . . , X

1/2
i , . . . , X1/2

s ) +
l∑

j=1

el+1,jω(X
1
j −X

1/2
j )

)
≥ 0.

Thus, by induction we have

(3.10) X1
i ≥ X

1/2
i , i = 1, 2, . . . , s.

(d) Let’s prove X1
i ≤ Si, i = 1, 2, . . . , s. Utilizing the conclusion (4) of Theorem 3.1,

we get

(βiI +Ai)(X
1
i − Si)

= (X
1/2
i − Si)(βiI −Di + CiX

1/2
i ) + CiSi(X

1/2
i − Si)

+
i−1∑
j=1

eij
(
ω(X1

j − Sj) + (1− ω)(X
1/2
j − Sj)

)
+

s∑
j=i+1

eij(X
1/2
j − Sj).

(3.11)

Considering the equation (3.11) with i = 1, according to (3.3), (3.2) and (3.6), we have

X1
1 − S1 = (β1I +A1)

−1

(
(X

1/2
1 − S1)(β1I −D1 + C1X

1/2
1 )

+ C1S1(X
1/2
1 − S1) +

s∑
j=2

e1j(X
1/2
j − Sj)

)
≤ 0,

that is, X1
1 ≤ S1.

Assume that X1
i ≤ Si, i ≤ l. For the equation (3.11) with i = l+1, according to (3.3),

(3.2), (3.6) and the induction assumption X1
i ≤ Si, i ≤ l, we have

X1
l+1 − Sl+1

= (βl+1I +Al+1)
−1

×
(
(X

1/2
l+1 − Sl+1)(βl+1I −Dl+1 + Cl+1X

1/2
l+1) +

s∑
j=l+2

el+1,j(X
1/2
j − Sj)

+

l∑
j=1

el+1,j

(
ω(X1

j − Sj) + (1− ω)(X
1/2
j − Sj)

)
+ Cl+1Sl+1(X

1/2
l+1 − Sl+1)

)
≤ 0.

Thus, by induction, we know that X1
i ≤ Si holds for all i.
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Moreover, for the conclusion (6) of Theorem 3.1 with k = 0, by (3.10) and (3.2) we get

Ri(X
1
1 , . . . , X

1
i , . . . , X

1
s ) = (X1

i −X
1/2
i )(βiI −Di + CiX

1
i ) +X

1/2
i Ci(X

1
i −X

1/2
i )

+
i−1∑
j=1

eij(1− ω)(X1
j −X

1/2
j ) +

s∑
j=i+1

eij(X
1
j −X

1/2
j ) ≥ 0.

By now, we have proven

0 ≤ X0
i ≤ X1

i ≤ Si, Ri(X
1
1 , . . . , X

1
i , . . . , X

1
s ) ≥ 0, i = 1, 2, . . . , s.

(ii) Assume that (3.1) is true for k ≥ 1, i.e.,

(3.12) 0 ≤ Xk−1
i ≤ Xk

i ≤ Si, Ri(X
k
1 , . . . , X

k
i , . . . , X

k
s ) ≥ 0, i = 1, 2, . . . , s.

(iii) Next we will prove (3.1) is true for k + 1.

(a’) Using conclusion (1) of Theorem 3.1 with i = 1, by (3.2), (3.12) and (3.3), we get

X
k+1/2
1 − S1 =

(
(γ1I −A1 +Xk

1C1)(X
k
1 − S1) + (Xk

1 − S1)C1S1 +

s∑
j=2

eij(X
k
j − Sj)

)
× (γ1I +D1)

−1

≤ 0,

that is, X
k+1/2
1 ≤ S1.

Assume that X
k+1/2
i ≤ Si, i ≤ l. Using conclusion (1) of Theorem 3.1 with i = l + 1,

by (3.2), (3.12), (3.3) and the induction assumption X
k+1/2
i ≤ Si, i ≤ l, we have

X
k+1/2
l+1 − Sl+1 =

(
(γl+1I −Al+1 +Xk

l+1Cl+1)(X
k
l+1 − Sl+1)

+ (Xk
l+1 − Sl+1)Cl+1Sl+1 +

s∑
j=l+2

el+1,j(X
k
j − Sj)

+

l∑
j=1

el+1,j

(
ω(X

k+1/2
j − Sj) + (1− ω)(Xk

j − Sj)
))

(γl+1I +Dl+1)
−1 ≤ 0.

Therefore,

(3.13) X
k+1/2
i ≤ Si, i = 1, 2, . . . , s.

(b’) Utilizing the conclusion (2) of Theorem 3.1, we get

(3.14) X
k+1/2
i −Xk

i =

(
Ri(X

k
1 , . . . , X

k
i , . . . , X

k
s )+

i−1∑
j=1

eijω(X
k+1/2
j −Xk

j )

)
(γiI +Di)

−1.
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Considering (3.14) with i = 1, according to (3.12) and (3.3), we have

X
k+1/2
1 −Xk

1 = R1(X
k
1 , . . . , X

k
i , . . . , X

k
s )(γ1I +D1)

−1 ≥ 0,

that is, X
k+1/2
1 ≥ Xk

1 .

Assume that X
k+1/2
i ≥ Xk

i , i ≤ l. Considering (3.14) with i = l + 1, by (3.12), (3.3)

and the assumption X
k+1/2
i ≥ Xk

i , i ≤ l, we get

X
k+1/2
l+1 −Xk

l+1

=

(
Rl+1(X

k
1 , . . . , X

k
i , . . . , X

k
s ) +

l∑
j=1

el+1,jω(X
k+1/2
j −Xk

j )

)
(γl+1I +Dl+1)

−1 ≥ 0.

Therefore, by induction,

(3.15) X
k+1/2
i ≥ Xk

i , i = 1, 2, . . . , s.

(c’) For the conclusion (3) of Theorem 3.1, by (3.2) and (3.15), we get

Ri(X
k+1/2
1 , . . . , X

k+1/2
i , . . . , Xk+1/2

s )

= (γiI −Ai +X
k+1/2
i Ci)(X

k+1/2
i −Xk

i ) + (X
k+1/2
i −Xk

i )CiX
k
i

+
i−1∑
j=1

eij(1− ω)(X
k+1/2
j −Xk

j ) +
s∑

j=i+1

eij(X
k+1/2
j −Xk

j ) ≥ 0.

(3.16)

And from conclusion (5) of Theorem 3.1, we have

Xk+1
i −X

k+1/2
i

= (βiI +Ai)
−1

(
Ri(X

k+1/2
1 , . . . , X

k+1/2
i , . . . , Xk+1/2

s ) +

i−1∑
j=1

eijω(X
k+1
j −X

k+1/2
j )

)
.

(3.17)

Considering the equation (3.17) with i = 1, by (3.3) and (3.16), we get

Xk+1
1 −X

k+1/2
1 = (β1I +A1)

−1R1(X
k+1/2
1 , . . . , X

k+1/2
i , . . . , Xk+1/2

s ) ≥ 0.

Assume that Xk+1
i ≥ X

k+1/2
i , i ≤ l. Considering the equation (3.17) with i = l + 1,

by (3.3), (3.16) and the assumption Xk+1
i ≥ X

k+1/2
i , i ≤ l, we can easily get

Xk+1
l+1 −X

k+1/2
l+1

= (βl+1I +Al+1)
−1

×
(
Rl+1(X

k+1/2
1 , . . . , X

k+1/2
i , . . . , Xk+1/2

s ) +

l∑
j=1

el+1,jω(X
k+1
j −X

k+1/2
j )

)
≥ 0.
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By induction,

(3.18) Xk+1
i ≥ X

k+1/2
i , i = 1, 2, . . . , s.

(d’) By making use of the conclusion (4) of Theorem 3.1 with i = 1, by (3.3), (3.2)

and (3.13), we know that

Xk+1
1 − S1 = (β1I +A1)

−1

(
(X

k+1/2
1 − S1)(β1I −D1 + C1X

k+1/2
1 )

+ C1S1(X
k+1/2
1 − S1) +

s∑
j=2

e1j(X
k+1/2
j − Sj)

)
≤ 0,

that is, Xk+1
1 ≤ S1.

Assume that Xk+1
i ≤ Si, i ≤ l. By making use of the conclusion (4) of Theorem 3.1

with i = l + 1, by (3.3), (3.2), (3.13) and the assumption Xk+1
i ≤ Si, i ≤ l, we can easily

get

Xk+1
l+1 − Sl+1 = (βl+1I +Al+1)

−1

(
(X

k+1/2
l+1 − Sl+1)(βl+1I −Dl+1 + Cl+1X

k+1/2
l+1 )

+
s∑

j=l+2

el+1,j(X
k+1/2
j − Sj)

+
l∑

j=1

el+1,j

(
ω(Xk+1

j − Sj) + (1− ω)(X
k+1/2
j − Sj)

)
+ Cl+1Sl+1(X

k+1/2
l+1 − Sl+1)

)
≤ 0.

Therefore, it holds that Xk+1
i ≤ Si for all i by induction.

Moreover, for the conclusion (6) of Theorem 3.1, by (3.2) and (3.18), we have

Ri(X
k+1
1 , . . . , Xk+1

i , . . . , Xk+1
s )

= (Xk+1
i −X

k+1/2
i )(βiI −Di + CiX

k+1
i ) +X

k+1/2
i Ci(X

k+1
i −X

k+1/2
i )

+
i−1∑
j=1

eij(1− ω)(Xk+1
j −X

k+1/2
j ) +

s∑
j=i+1

eij(X
k+1
j −X

k+1/2
j ) ≥ 0.

Thus, the proof of (3.1) is completed.

(2) From the above proof, we find that the matrix sequence {Xk
i } is non-negative,

monotonically increasing and bounded, so there must exist a non-negative matrix S∗
i such

that limk→∞Xk
i = S∗

i . And it also holds that limk→∞X
k+1/2
i = S∗

i . Obviously, Xk
i ≤ Si

implies S∗
i ≤ Si. On the other hand, by taking limits on both sides of (2.2), we get

S∗
i CiS

∗
i − S∗

i Di −AiS
∗
i +Bi +

∑
j ̸=i

eijS
∗
j = 0.
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Hence, S∗
i is also a non-negative solution of NCARE (1.1). And it holds that Si ≤

S∗
i because Si is a minimal non-negative solution of the NCARE (1.1) by Lemma 1.4.

Therefore, S∗
i = Si.

4. Numerical examples

In this section, we use the following examples to show the feasibility and effectiveness of

the modified methods for solving the minimal non-negative solution of the NCARE (1.1).

We compare the MALI method with the ALI method and the INewton method about the

iteration steps (IT), the computing times (CPU) and the norm of solution errors (RES).

RES is defined by

RESi =

∥∥Ri(X
k
1 , X

k
2 , . . . , X

k
s )
∥∥
∞∥∥Ri(X0

1 , X
0
2 , . . . , X

0
s )
∥∥
∞
, i = 1, 2, . . . , s.

Example 4.1. Consider the NCARE (1.1) with

A1 =


6.7 −1.4 −3

−3.3 4 −1

−1 −2 6

 , A2 =


5 −3.2 −3.5

−2.2 3 −3

−2.7 −3.8 4

 ,

D1 =

371 −2.8

0 389

 , D2 =

 376 −1.9

−0.5 375

 , B1 =


11 10

0.5 13

1 12

 , B2 =


1.5 1

1 2.3

1 1

 ,

C1 =

1.5 0 3

2 0.2 2.8

 , C2 =

2.4 2 2.2

3 0 1.4

 , [eij ] =

0.3 0.3

0.3 0.3

 .

We show the convergent performance of the ALI method, the INewton method and

the MALI method. Obviously, from Figure 4.1 and Table 4.1, we see that MALI method

is more efficient than the other two methods, and it only needs 4 steps and 0.0047s to

converge to the iteration solution.

Table 4.1: Example 4.1 (ω = 0.3).

Method ALI INewton MALI

IT 8 5 4

CPU 0.0056 0.0107 0.0047

RESmax 4.8588e-14 4.8213e-14 6.0970e-14
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Figure 1: Relative residual for Example 4.1

Table 1: Example 4.1 (ω = 0.3)

Method ALI INewton MALI
IT 8 5 4

CPU 0.0056 0.0107 0.0047
RES max 4.8588e-14 4.8213e-14 6.0970e-14

with the ALI method and the INewton method about the iteration steps (IT), the computing times (CPU)
and the norm of solution errors (RES). RES is defined by

RES i =‖ Ri(Xk
1, X

k
2, · · · , X

k
s ) ‖∞ / ‖ Ri(X0

1 , X
0
2 , · · · , X

0
s ) ‖∞, i = 1, 2, · · · , s,

Example 4.1 Consider the NCARE (1.1) with

A1 =


6.7 −1.4 −3
−3.3 4 −1
−1 −2 6

 , A2 =


5 −3.2 −3.5
−2.2 3 −3
−2.7 −3.8 4

 ,D1 =

371 −2.8
0 389

 ,D2 =

 376 −1.9
−0.5 375

 ,

B1 =


11 10
0.5 13
1 12

 , B2 =


1.5 1
1 2.3
1 1

 ,C1 =

1.5 0 3
2 0.2 2.8

 ,C2 =

2.4 2 2.2
3 0 1.4

 , [ei j] =

0.3 0.3
0.3 0.3

 .
We show the convergent performance of the ALI method, the INewton method and the MALI method.

Obviously, from Figure 1 and Table 1, we see that MALI method is more efficient than the other two
methods, and it only needs 4 steps and 0.0047s to converge to the iteration solution.

Example 4.2 [21] Consider the NCARE (1.1) with

Ai =


i −1

i
. . .

. . . −1
i


∈ Rn×n,Di =


2i −1

2i
. . .

. . . −1
2i


∈ Rn×n, Bi = 0.5In,

12

Figure 4.1: Relative residual for Example 4.1.

Example 4.2. [23] Consider the NCARE (1.1) with

Ai =


i −1

i
. . .

. . . −1

i

 ∈ Rn×n, Di =


2i −1

2i
. . .

. . . −1

2i

 ∈ Rn×n,

Bi = 0.5In, Ci = 0.2In, E = rand(s), i = 1, 2, . . . , s.

From Table 4.2, we see that the MALI method is convergent to the minimal non-

negative solution S of the NCARE (1.1) under the required precision when the parameter ω

is given differently. Especially when ω = 1.4, it only needs 15 steps and 0.0298s to converge

to the iteration solution. And the new method we presented works well in practical

computation when ω > 1, although we only proved its convergence when 0 ≤ ω ≤ 1.

Table 4.2: Example 4.2 with n = 6, s = 18.

ω IT CPU RESmax ω IT CPU RESmax

0.7 18 0.0359 7.8720e-13 1.3 17 0.0257 6.5866e-13

0.8 18 0.0284 6.7561e-13 1.4 15 0.0298 9.2094e-13

0.9 23 0.0375 1.4590e-13 1.5 20 0.0393 3.9634e-13

1.0 18 0.0344 5.7115e-13 1.6 18 0.0406 1.3460e-13

1.1 16 0.0348 4.1879e-13 1.7 22 0.0422 9.1307e-13

1.2 18 0.0358 8.4378e-13 1.8 23 0.0453 1.5437e-13
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Set s = 6, 8, 10; n = 18 and ω = 1.3. The iteration steps, CPU times and RES

residuals for the three methods are listed in Table 4.3. From Table 4.3, it can be seen

that the iteration steps and computational time of the MALI method are least among all

these methods. Therefore, with respect to the computing efficiency, the MALI method

outperforms the ALI and the INewton methods in [23]. And Figure 4.2 shows the relative

residual of Example 4.2 when s = 10, n = 18.

Table 4.3: Example 4.2 with n = 18.

Method ALI INewton MALI

IT 25 31 14

s = 6 CPU 0.0378 0.4987 0.0295

RESmax 5.4755e-11 4.9676e-11 4.5170e-11

IT 31 41 17

s = 8 CPU 0.0594 0.8202 0.0452

RESmax 7.0171e-11 8.1980e-11 1.6864e-11

IT 37 52 18

s = 10 CPU 0.0795 1.4928 0.0502

RESmax 7.0224e-11 7.4733e-11 2.0468e-11

Figure 2: Relative residual for Example 4.2, s = 10, n = 18

Ci = 0.2In, E = rand(s), i = 1, 2, · · · , s.
From Table 2, we see that the MALI method is convergent to the minimal non-negative solution S of

the NCARE (1.1) under the required precision when the parameter ω is given differently. Especially when
ω = 1.4, it only needs 15 steps and 0.0298s to converge to the iteration solution. And the new method we
presented works well in practical computation when ω > 1, although we only proved its convergence when
0 ≤ ω ≤ 1.

Set s = 6, 8, 10; n = 18 and ω = 1.3. The iteration steps, CPU times and RES residuals for the three
methods are listed in Table 3. From Table 3, it can be seen that the iteration steps and computational time of
the MALI method are least among all these methods. Therefore, with respect to the computing efficiency,
the MALI method outperforms the ALI and the INewton methods in [21]. And Figure 2 shows the relative
residual of Example 4.2 when s = 10, n = 18.

Example 4.3 [21] In this example, we consider the NCARE (1.1) with Ai = tridiag(−2iIm,Ri,−2iIm) ∈

Rn×n, Bi =
1

50
tridiag(1, 2, 1) ∈ Rn×n, Ci = ξBi, Di = tridiag(−2iIm,Ti,−2iIm) ∈ Rn×n, and E = rand(s),

where ξ > 0 is a given constant, i = 1, 2, · · · , s, n = m2, and

Ri = tridiag(−1, 4i +
200

(m + 1)2 ,−1) ∈ Rm×m,

Ti = tridiag(−1, 14i +
200

(m + 1)2 ,−1) ∈ Rm×m.

Set s = 12, m = 5 and ξ = 0.2. The iteration steps, CPU times and RES residuals for the three
methods are listed in Table 4. From Table 4, it can be observed that three iteration methods can converge
to the minimal non-negative solution of the NCARE (1.1). The computational time of the MALI method is
smaller than the ALI and the INewton methods if the parameter ω is chosen randomly in the range 0 to 1.
And the iteration steps of the MALI method is smaller than the ALI method. Hence, the MALI method that
we proposed outperforms the methods in [21] with respect to the computing efficiency. Figure 3 shows the
relative residual of Example 4.3.

13

Figure 4.2: Relative residual for Example 4.2, s = 10, n = 18.

Example 4.3. [23] In this example, we consider the NCARE (1.1) with

Ai = tridiag(−2iIm, Ri,−2iIm) ∈ Rn×n, Bi =
1

50
tridiag(1, 2, 1) ∈ Rn×n,

Ci = ξBi, Di = tridiag(−2iIm, Ti,−2iIm) ∈ Rn×n, and E = rand(s),
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where ξ > 0 is a given constant, i = 1, 2, . . . , s, n = m2, and

Ri = tridiag

(
−1, 4i+

200

(m+ 1)2
,−1

)
∈ Rm×m,

Ti = tridiag

(
−1, 14i+

200

(m+ 1)2
,−1

)
∈ Rm×m.

Set s = 12, m = 5 and ξ = 0.2. The iteration steps, CPU times and RES residuals for

the three methods are listed in Table 4.4. From Table 4.4, it can be observed that three

iteration methods can converge to the minimal non-negative solution of the NCARE (1.1).

The computational time of the MALI method is smaller than the ALI and the INewton

methods if the parameter ω is chosen randomly in the range 0 to 1. And the iteration

steps of the MALI method is smaller than the ALI method. Hence, the MALI method

that we proposed outperforms the methods in [23] with respect to the computing efficiency.

Figure 4.3 shows the relative residual of Example 4.3.

Table 4.4: Example 4.3 with s = 12, m = 5, ξ = 0.2.

Method ALI INewton MALI

IT 9 7 7

CPU 0.0612 0.4076 0.0536

RESmax 2.8477e-7 2.7532e-7 1.4686e-7

Table 2: Example 4.2 with n = 6, s = 18

ω IT CPU RES max ω IT CPU RES max

0.7 18 0.0359 7.8720e-13 1.3 17 0.0257 6.5866e-13
0.8 18 0.0284 6.7561e-13 1.4 15 0.0298 9.2094e-13
0.9 23 0.0375 1.4590e-13 1.5 20 0.0393 3.9634e-13
1.0 18 0.0344 5.7115e-13 1.6 18 0.0406 1.3460e-13
1.1 16 0.0348 4.1879e-13 1.7 22 0.0422 9.1307e-13
1.2 18 0.0358 8.4378e-13 1.8 23 0.0453 1.5437e-13

Table 3: Example 4.2 with n = 18

Method ALI INewton MALI
IT 25 31 14

s = 6 CPU 0.0378 0.4987 0.0295
RES max 5.4755e-11 4.9676e-11 4.5170e-11

IT 31 41 17
s = 8 CPU 0.0594 0.8202 0.0452

RES max 7.0171e-11 8.1980e-11 1.6864e-11
IT 37 52 18

s = 10 CPU 0.0795 1.4928 0.0502
RES max 7.0224e-11 7.4733e-11 2.0468e-11

Table 4: Example 4.3 with s = 12,m = 5, ξ = 0.2

Method ALI INewton MALI
IT 9 7 7

CPU 0.0612 0.4076 0.0536
RES max 2.8477e-7 2.7532e-7 1.4686e-7

Figure 3: Relative residual for Example 4.3 ( ξ = 0.2)
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Figure 4.3: Relative residual for Example 4.3 (ξ = 0.2).
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