A New Condition for *k*-Wall–Sun–Sun Primes

Lenny Jones

Abstract. Let $k \ge 1$ be an integer, and let (U_n) be the Lucas sequence of the first kind defined by

$$U_0 = 0$$
, $U_1 = 1$ and $U_n = kU_{n-1} + U_{n-2}$ for $n \ge 2$.

It is well known that (U_n) is periodic modulo any integer $m \ge 2$, and we let $\pi(m)$ denote the length of this period. A prime p is called a k-Wall-Sun-Sun prime if $\pi(p^2) = \pi(p)$.

Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree N that is irreducible over \mathbb{Q} . We say f(x) is *monogenic* if $\Theta = \{1, \theta, \theta^2, \dots, \theta^{N-1}\}$ is a basis for the ring of integers \mathbb{Z}_K of $K = \mathbb{Q}(\theta)$, where $f(\theta) = 0$. If Θ is not a basis for \mathbb{Z}_K , we say that f(x) is *non-monogenic*.

Suppose that $k \neq 0 \pmod{4}$ and that $\mathcal{D} := (k^2 + 4)/\gcd(2, k)^2$ is squarefree. We prove that p is a k-Wall–Sun–Sun prime if and only if $\mathcal{F}_p(x) = x^{2p} - kx^p - 1$ is non-monogenic. Furthermore, if p is a prime divisor of $k^2 + 4$, then $\mathcal{F}_p(x)$ is monogenic.

1. Introduction

Let $k \ge 1$ be an integer, and let $(U_n) := (U_n(k, -1))$ be the Lucas sequence of the first kind defined by

$$U_0 = 0$$
, $U_1 = 1$ and $U_n = kU_{n-1} + U_{n-2}$ for $n \ge 2$.

It is well known that (U_n) is periodic modulo any integer $m \ge 2$, and we let $\pi(m) := \pi_k(m)$ denote the length of this period. A prime p is called a k-Wall-Sun-Sun prime if

(1.1)
$$\pi(p^2) = \pi(p).$$

Note that (U_n) is the Fibonacci sequence when k = 1, and in this case, primes satisfying (1.1) are simply called *Wall-Sun-Sun primes*. For the Fibonacci sequence, D. D. Wall [15] first asked in 1960 about the existence of primes satisfying (1.1). In 1992, the Sun brothers [13] showed that the first case of Fermat's Last Theorem for exponent p fails only if p satisfies (1.1). The question of whether any Wall–Sun–Sun primes exist is still

Received July 15, 2023; Accepted October 23, 2023.

Communicated by Ming-Lun Hsieh.

²⁰²⁰ Mathematics Subject Classification. Primary: 11R04; Secondary: 11B39, 11R09, 12F05.

Key words and phrases. k-Wall-Sun-Sun prime, monogenic.

unresolved, and as of December 2022, if p is a Wall–Sun–Sun prime, then $p > 2^{64}$ [4,16]. However, the situation is quite different when $k \ge 2$ [16].

Several conditions are known to be equivalent to (1.1). For example, it is easy to see that $U_{\pi(p)} \equiv 0 \pmod{p^2}$ is one such condition. Another, less obvious, equivalent condition is $U_{p-\delta_p} \equiv 0 \pmod{p^2}$, where δ_p is the Legendre symbol $\left(\frac{k^2+4}{p}\right)$. For more information and proofs, see [1, 2, 8, 16].

It is the goal of this article to present a new condition equivalent to (1.1) that is quite unlike any previously known condition. This new condition involves the concept of the monogenicity of a certain polynomial, which we now describe. Suppose that $f(x) \in \mathbb{Z}[x]$ is a monic polynomial that is irreducible over \mathbb{Q} . Let \mathbb{Z}_K be the ring of integers of $K = \mathbb{Q}(\theta)$, where $f(\theta) = 0$. Then [3]

(1.2)
$$\Delta(f) = \left[\mathbb{Z}_K : \mathbb{Z}[\theta]\right]^2 \Delta(K),$$

where $\Delta(f)$ and $\Delta(K)$ denote, respectively, the discriminants over \mathbb{Q} of f(x) and the number field K. We define f(x) to be monogenic if $\Theta = \{1, \theta, \theta^2, \dots, \theta^{\deg(f)-1}\}$ is a basis for \mathbb{Z}_K . If Θ fails to be a basis for \mathbb{Z}_K , we say that f(x) is non-monogenic. Observe then, from (1.2), that f(x) is monogenic if and only if $[\mathbb{Z}_K : \mathbb{Z}[\theta]] = 1$ or, equivalently, $\Delta(f) = \Delta(K)$.

The main theorem of this article is as follows:

Theorem 1.1. Let p be a prime. Let $k \ge 1$ be an integer such that $k \not\equiv 0 \pmod{4}$ and \mathcal{D} is squarefree, where

(1.3)
$$\mathcal{D} := \frac{k^2 + 4}{\gcd(2,k)^2}$$

Then p is a k-Wall-Sun-Sun prime if and only if

the polynomial $\mathcal{F}_p(x) := x^{2p} - kx^p - 1$ is non-monogenic.

Furthermore, if p is a prime divisor of $k^2 + 4$, then $\mathcal{F}_p(x)$ is monogenic.

At first glance, Theorem 1.1 might appear to be just a special case of Theorem 1.2 in [8] or Theorem 1.2 in [9]. However, upon closer inspection, we see that certain restrictions on the prime p and the quadratic character of \mathcal{D} modulo p are necessary in both [8] and [9]. Therefore, Theorem 1.1 represents an improvement over both [8] and [9], in the particular situation of k-Wall–Sun–Sun primes, since no such restrictions are required here. Moreover, Theorem 1.1 provides explicit conditions under which $\mathcal{F}_p(x)$ is monogenic. Since the particular situation of Theorem 1.1 might be more appealing to a broader audience than the generality found in [9], and regardless of the fact that many of the same methods are employed in [9], we give here a self-contained presentation with full details.

2. Preliminaries

Throughout this article, we assume that k is a positive integer such that $4 \nmid k$ and \mathcal{D} is squarefree, where \mathcal{D} is as defined in (1.3). We also let

- p and q denote primes,
- $\alpha = \frac{k + \sqrt{k^2 + 4}}{2}$ and $\beta = \frac{k \sqrt{k^2 + 4}}{2}$,
- $f(x) := x^2 kx 1$ (the characteristic polynomial of the sequence (U_n)),
- $\mathcal{F}_p(x) := x^{2p} kx^p 1$,
- $\operatorname{ord}_m(*)$ denote the order of * modulo the integer $m \ge 2$,
- δ_p denote the Legendre symbol $\left(\frac{k^2+4}{p}\right)$.

The first result gives some known facts concerning $\pi(p^2)$ and $\pi(p)$.

Theorem 2.1. [5,10]

(a)
$$\pi(p^2) \in \{\pi(p), p\pi(p)\}.$$

- (b) If $\delta_p = 1$, then $p 1 \equiv 0 \pmod{\pi(p)}$.
- (c) If $\delta_p = -1$, then $2(p+1) \equiv 0 \pmod{\pi(p)}$.

The following lemma is a special case of [6, Theorem 1.1].

Lemma 2.2. Suppose that p is a divisor of $k^2 + 4$. If p = 2, then p is a k-Wall-Sun-Sun prime if and only if $k \equiv 0 \pmod{4}$. If $p \geq 3$, then p is not a k-Wall-Sun-Sun prime.

The next two theorems are due to Capelli [12].

Theorem 2.3. Let f(x) and h(x) be polynomials in $\mathbb{Q}[x]$ with f(x) irreducible. Suppose that $f(\alpha) = 0$. Then f(h(x)) is reducible over \mathbb{Q} if and only if $h(x) - \alpha$ is reducible over $\mathbb{Q}(\alpha)$.

Theorem 2.4. Let $c \in \mathbb{Z}$ with $c \geq 2$, and let $\alpha \in \mathbb{C}$ be algebraic. Then $x^c - \alpha$ is reducible over $\mathbb{Q}(\alpha)$ if and only if either there is a prime p dividing c such that $\alpha = \gamma^p$ for some $\gamma \in \mathbb{Q}(\alpha)$ or $4 \mid c$ and $\alpha = -4\gamma^4$ for some $\gamma \in \mathbb{Q}(\alpha)$.

The discriminant of $\mathcal{F}_p(x)$ given in the next proposition follows from the formula for the discriminant of an arbitrary monic trinomial [14].

Proposition 2.5. $\Delta(\mathcal{F}_p) = (-1)^{(p+1)(2p-1)} p^{2p} (k^2 + 4)^p$.

The next theorem is essentially an algorithmic adaptation, specifically for trinomials, of Dedekind's Index Criterion [3], which is a standard tool used to determine the monogenicity of an irreducible monic polynomial.

Theorem 2.6. [7] Let $N \ge 2$ be an integer. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field with $\theta \in \mathbb{Z}_K$, the ring of integers of K, having minimal polynomial $f(x) = x^N + Ax^M + B$ over \mathbb{Q} , with gcd(M, N) = r, $N_1 = N/r$ and $M_1 = M/r$. Let

$$D := N^{N_1} B^{N_1 - M_1} - (-1)^{N_1} M^{M_1} (N - M)^{N_1 - M_1} A^{N_1}.$$

A prime factor q of $\Delta(f)$ does not divide $[\mathbb{Z}_K : \mathbb{Z}[\theta]]$ if and only if q satisfies one of the following items:

- (a) when $q \mid A$ and $q \mid B$, then $q^2 \nmid B$;
- (b) when $q \mid A$ and $q \nmid B$, then

either $q \mid A_2 \text{ and } q \nmid B_1$ or $q \nmid A_2 ((-B)^{M_1} A_2^{N_1} - (-B_1)^{N_1}),$ where $A_2 = A/q$ and $B_1 = \frac{B + (-B)^{q^e}}{q}$ with $q^e \mid\mid N;$

(c) when $q \nmid A$ and $q \mid B$, then

either $q \mid A_1 \text{ and } q \nmid B_2$ or $q \nmid A_1 B_2^{M-1} ((-A)^{M_1} A_1^{N_1 - M_1} - (-B_2)^{N_1 - M_1}),$ where $A_1 = \frac{A + (-A)^{q^j}}{q}$ with $q^j \mid |(N - M), \text{ and } B_2 = B/q;$

(d) when $q \nmid AB$ and $q \mid M$ with $N = uq^m$, $M = vq^m$, $q \nmid \gcd(u, v)$, then the polynomials

$$G(x) := x^{N/q^m} + Ax^{M/q^m} + B \quad and \quad H(x) := \frac{Ax^M + B + (-Ax^{M/q^m} - B)^{q^m}}{q}$$

are coprime modulo q;

(e) when $q \nmid ABM$, then $q^2 \nmid D/r^{N_1}$.

3. Proof of Theorem 1.1

We first prove some lemmas.

Lemma 3.1. The polynomial $\mathcal{F}_p(x)$ is irreducible over \mathbb{Q} .

Proof. Clearly, f(x) is irreducible over \mathbb{Q} since \mathcal{D} is squarefree. Note that $f(\alpha) = 0$. Let $h(x) = x^p$ so that $\mathcal{F}_p(x) = f(h(x))$. Assume, by way of contradiction, that f(h(x)) is

reducible. Then, by Theorems 2.3 and 2.4, we have that $\alpha = \gamma^p$ for some $\gamma \in \mathbb{Q}(\alpha)$. Then, we see by taking norms that

$$\mathcal{N}(\gamma)^p = \mathcal{N}(\alpha) = -1,$$

which implies that $p \geq 3$ and $\mathcal{N}(\gamma) = -1$, since $\mathcal{N}(\gamma) \in \mathbb{Z}$. Thus, γ is a unit, and therefore $\gamma = \pm \alpha^j$ for some $j \in \mathbb{Z}$, since, in light of the fact that $k \neq 4$, α is the fundamental unit of $\mathbb{Q}(\sqrt{\mathcal{D}})$ [17]. Consequently,

$$\alpha = \gamma^p = (\pm 1)^p \alpha^{jp},$$

which implies that $(\pm 1)^p \alpha^{jp-1} = 1$, contradicting the fact that α has infinite order in the group of units of the ring of algebraic integers in the real quadratic field $\mathbb{Q}(\sqrt{\mathcal{D}})$.

Lemma 3.2. Suppose that $p \ge 3$. Then

- (a) $\operatorname{ord}_m(\alpha) = \pi(m)$ for $m \in \{p, p^2\}$,
- (b) $\alpha^{p-1} \equiv 1 \pmod{p}$ if $\delta_p = 1$,
- (c) $\alpha^{p+1} \equiv -1 \pmod{p}$ if $\delta_p = -1$.

Proof. It follows from [11] that the order, modulo an integer $m \ge 3$, of the companion matrix

$$\mathcal{C} = \begin{bmatrix} 0 & 1 \\ 1 & k \end{bmatrix}$$

for the characteristic polynomial f(x) of (U_n) is $\pi(m)$. Since the eigenvalues of \mathcal{C} are α and β , we conclude that

$$\operatorname{ord}_m\left(\begin{bmatrix} \alpha & 0\\ 0 & \beta \end{bmatrix}\right) = \operatorname{ord}_m(\mathcal{C}) = \pi(m) \quad \text{for } m \in \{p, p^2\}.$$

It follows that at least one of α and β has order $\pi(m)$, and we can assume without loss of generality, that $\operatorname{ord}_m(\alpha) = \pi(m)$, which establishes (a).

For (b) and (c), we have by Euler's criterion that

$$\left(\sqrt{k^2+4}\right)^{p+1} = (k^2+4)^{(p-1)/2}(k^2+4) \equiv \delta_p(k^2+4) \pmod{p},$$

which implies that $(\sqrt{k^2+4})^p \equiv \delta_p \sqrt{k^2+4} \pmod{p}$. Hence,

$$\alpha^{p+1} = \left(\frac{k+\sqrt{k^2+4}}{2}\right) \left(\frac{k+\sqrt{k^2+4}}{2}\right)^p$$
$$= \left(\frac{k+\sqrt{k^2+4}}{2}\right) \sum_{j=0}^p \binom{p}{j} \left(\frac{k}{2}\right)^j \left(\frac{\sqrt{k^2+4}}{2}\right)^{p-j}$$

$$\equiv \left(\frac{k+\sqrt{k^2+4}}{2}\right) \left(\left(\frac{k}{2}\right)^p + \left(\frac{\sqrt{k^2+4}}{2}\right)^p\right) \pmod{p}$$

$$\equiv \left(\frac{k+\sqrt{k^2+4}}{2}\right) \left(\frac{k+\delta_p\sqrt{k^2+4}}{2}\right) \pmod{p}$$

$$\equiv \begin{cases} \alpha^2 \pmod{p} & \text{if } \delta_p = 1, \\ -1 \pmod{p} & \text{if } \delta_p = -1. \end{cases}$$

Since $\alpha \in (\mathbb{Z}/p\mathbb{Z})^*$ when $\delta_p = 1$, we note that (b) also follows from Fermat's Little Theorem.

Lemma 3.3. Suppose that $p \geq 3$. Then

$$\mathcal{F}_p(\beta) \equiv 0 \pmod{p^2} \iff \mathcal{F}_p(\alpha) \equiv 0 \pmod{p^2}.$$

Proof. Note that if $\mathcal{F}_p(\beta) = \beta^{2p} - k\beta^p - 1 \equiv 0 \pmod{p^2}$, then

(3.1)
$$\beta^p - k - \beta^{-p} \equiv 0 \pmod{p^2}.$$

Since $\alpha\beta \equiv -1 \pmod{p}$, we have that $(\alpha\beta)^p \equiv (-1)^p \equiv -1 \pmod{p^2}$. Thus, since $\alpha^p \neq k \pmod{p}$ from Lemma 3.2, we have

$$\begin{aligned} \mathcal{F}_{p}(\beta) &\equiv 0 \pmod{p^{2}} \iff \beta^{p}(\beta^{p}-k) \equiv 1 \pmod{p^{2}} \\ \iff \alpha^{p}\beta^{p}(\beta^{p}-k) \equiv \alpha^{p} \pmod{p^{2}} \\ \iff -(\beta^{p}-k) \equiv \alpha^{p} \pmod{p^{2}} \\ \iff -(\alpha^{p}-k)(\beta^{p}-k) \equiv \alpha^{p}(\alpha^{p}-k) \pmod{p^{2}} \\ \iff -(\alpha^{p}\beta^{p}-k\alpha^{p}-k\beta^{p}+k^{2}) \equiv \alpha^{p}(\alpha^{p}-k) \pmod{p^{2}} \\ \iff 1+k(\alpha^{p}+\beta^{p})-k^{2} \equiv \alpha^{p}(\alpha^{p}-1) \pmod{p^{2}} \\ \iff 1+k(-\beta^{-p}+\beta^{p})-k^{2} \equiv \alpha^{p}(\alpha^{p}-1) \pmod{p^{2}} \\ \iff 1 \equiv \alpha^{p}(\alpha^{p}-1) \pmod{p^{2}} \pmod{p^{2}} \end{aligned}$$

Lemma 3.4. Suppose that $p \geq 3$. Let \mathbb{Z}_K denote the ring of integers of $K = \mathbb{Q}(\theta)$, where $\mathcal{F}_p(\theta) = 0$. Then

$$\mathcal{F}_p(\alpha) \equiv 0 \pmod{p^2} \iff [\mathbb{Z}_K : \mathbb{Z}[\theta]] \equiv 0 \pmod{p}.$$

Proof. Since $f(\alpha) = \alpha^2 - k\alpha - 1 = 0$, we note that $\alpha^2 \equiv k\alpha + 1 \pmod{p}$, which implies that

(3.2)
$$\alpha^{2p} \equiv (k\alpha + 1)^p \pmod{p^2}.$$

Suppose first that $\mathcal{F}_p(\alpha) = \alpha^{2p} - k\alpha^p - 1 \equiv 0 \pmod{p^2}$. Observe then that

(3.3)
$$-k\alpha^p - 1 \equiv -\alpha^{2p} \pmod{p^2}.$$

Let

$$G(x) = f(x) = x^2 - kx - 1$$
 and $H(x) = \frac{-kx^p - 1 + (kx + 1)^p}{p}$

Hence, $G(\alpha) \equiv 0 \pmod{p}$ and

$$pH(\alpha) = -k\alpha^p - 1 + (k\alpha + 1)^p$$

$$\equiv -\alpha^{2p} + (k\alpha + 1)^p \pmod{p^2} \quad (\text{from } (3.3))$$

$$\equiv -\alpha^{2p} + \alpha^{2p} \pmod{p^2} \quad (\text{from } (3.2))$$

$$\equiv 0 \pmod{p^2}.$$

Thus, G(x) and H(x) are not coprime modulo p so that $[\mathbb{Z}_K : \mathbb{Z}[\theta]] \equiv 0 \pmod{p}$ by Theorem 2.6(d).

Conversely, suppose that $[\mathbb{Z}_K : \mathbb{Z}[\theta]] \equiv 0 \pmod{p}$. Then, we have by Theorem 2.6(d) that G(x) and H(x) are not coprime modulo p. In light of Lemma 3.3, we assume then, without loss of generality, that

(3.4)
$$pH(\alpha) = -k\alpha^p - 1 + (k\alpha + 1)^p \equiv 0 \pmod{p^2}.$$

Hence,

$$\mathcal{F}_p(\alpha) = \alpha^{2p} - k\alpha^p - 1$$

$$\equiv (k\alpha + 1)^p - k\alpha^p - 1 \quad (\text{from } (3.2))$$

$$\equiv (k\alpha^p + 1) - k\alpha^p - 1 \pmod{p^2} \quad (\text{from } (3.4))$$

$$\equiv 0 \pmod{p^2},$$

which completes the proof.

Lemma 3.5. Suppose that $p \ge 3$. Then

 $p \text{ is a } k\text{-}Wall\text{-}Sun\text{-}Sun \ prime \quad \Longleftrightarrow \quad \mathcal{F}_p(\alpha) \equiv 0 \pmod{p^2}.$

Proof. We consider the three cases: $\delta_p \in \{0, -1, 1\}$.

Suppose first that $\delta_p = 0$. Then $k^2 + 4 \equiv 0 \pmod{p}$, so that $\alpha \equiv k/2 \pmod{p}$ and $(k/2)^2 \equiv -1 \pmod{p}$. Hence, $(k/2)^{2p} \equiv -1 \pmod{p^2}$ or, equivalently,

(3.5)
$$k^{2p} \equiv -2^{2p} \pmod{p^2}.$$

By Lemma 2.2, we have that p is not a k-Wall–Sun–Sun prime. We must show that $\mathcal{F}_p(\alpha) \neq 0 \pmod{p^2}$. Assume, by way of contradiction, that

$$\mathcal{F}_p(\alpha) \equiv (k/2)^{2p} - k(k/2)^p - 1 \equiv -1 - k(k/2)^p - 1 \equiv 0 \pmod{p^2}.$$

Thus,

(3.6)
$$k^{p+1} \equiv -2^{p+1} \pmod{p^2}.$$

Squaring both sides of (3.6) yields

(3.7)
$$k^2(k^{2p}) \equiv -4(-2^{2p}) \pmod{p^2}$$
.

Note that $p \nmid k$ since $p \geq 3$. Therefore, $k^2 + 4 \equiv 0 \pmod{p^2}$ from (3.5) and (3.7), which contradicts the fact that \mathcal{D} is squarefree, and completes the proof when $\delta_p = 0$.

Suppose next that $\delta_p = -1$. Assume first that p is a k-Wall–Sun–Sun prime. Then, since $\pi(p^2) = \pi(p)$, we conclude from Theorem 2.1(c), and Lemma 3.2(a)(c) that

(3.8)
$$(\alpha^{p+1}-1)(\alpha^{p+1}+1) \equiv \alpha^{2(p+1)}-1 \equiv 0 \pmod{p^2}.$$

Note that $\alpha^{p+1}-1 \not\equiv 0 \pmod{p}$ since $\alpha^{p+1}+1 \equiv 0 \pmod{p}$ from Lemma 3.2(c). Therefore, we see from (3.8) that $\alpha^{p+1}+1 \equiv 0 \pmod{p^2}$, or equivalently, that $\alpha^p \equiv -\alpha^{-1} \pmod{p^2}$. Hence,

$$\mathcal{F}_p(\alpha) = \alpha^{2p} - k\alpha^p - 1 \equiv \alpha^{-2} + k\alpha^{-1} - 1 \equiv -\frac{\alpha^2 - k\alpha - 1}{\alpha^2} \equiv 0 \pmod{p^2}$$

Conversely, assume that $\mathcal{F}_p(\alpha) \equiv 0 \pmod{p^2}$. Since $\delta_p = -1$, we have that f(x) is irreducible modulo p. Consequently, the only zeros of f(x) in $(\mathbb{Z}/p^2\mathbb{Z})[\sqrt{\mathcal{D}}]$ are α and $\beta = -\alpha^{-1}$. Hence,

either
$$\alpha^p \equiv \alpha \pmod{p^2}$$
 or $\alpha^p \equiv \beta \pmod{p^2}$.

If $\alpha^p \equiv \alpha \pmod{p^2}$, then, from Lemma 3.2(c), we have that

$$\frac{k^2 + 2 + k\sqrt{k^2 + 4}}{2} = \alpha^2 + 1 \equiv \alpha^{p+1} + 1 \equiv 0 \pmod{p},$$

which implies that $k^2 + 2 \equiv 0 \pmod{p}$, and either $p \mid k$ or $k^2 + 4 \equiv 0 \pmod{p}$. In either case, we arrive at the contradiction that p = 2. Hence,

$$\alpha^p \equiv \beta \equiv -\alpha^{-1} \pmod{p^2}$$
 or equivalently, $\alpha^{p+1} \equiv -1 \pmod{p^2}$.

Thus, $\alpha^{2(p+1)} \equiv 1 \pmod{p^2}$ so that

$$2(p+1) \equiv 0 \pmod{\operatorname{ord}_{p^2}(\alpha)}$$

By Lemma 3.2(a) and Theorem 2.1(a), we have that

$$\operatorname{ord}_{p^2}(\alpha) = \pi(p^2) \in \{\pi(p), p\pi(p)\}.$$

Therefore, we see that $\pi(p^2) = p\pi(p)$ is impossible since $p^2 - 1 \not\equiv 0 \pmod{p}$. Consequently, $\pi(p^2) = \pi(p)$, which implies that p is a k-Wall–Sun–Sun prime.

Finally, suppose that $\delta_p = 1$. Assume first that p is a k-Wall–Sun–Sun prime. Since $\pi(p^2) = \pi(p)$, it follows from Theorem 2.1(b), and Lemma 3.2(a)(b) that

$$\alpha^{p-1} \equiv 1 \pmod{p^2} \quad \text{or equivalently}, \quad \alpha^p \equiv \alpha \pmod{p^2}.$$

Thus, since $f(\alpha) = \alpha^2 - k\alpha - 1 = 0$, we have that

$$\mathcal{F}_p(\alpha) = \alpha^{2p} - k\alpha^p - 1 \equiv \alpha^2 - k\alpha - 1 \equiv 0 \pmod{p^2}.$$

Conversely, assume that $\mathcal{F}_p(\alpha) \equiv 0 \pmod{p^2}$. Since $f(\alpha) = \alpha^2 - k\alpha - 1 = 0$, we have that

(3.9)
$$\alpha + \frac{1}{\alpha} = 2\alpha - k$$

Additionally, note that

$$\widehat{\alpha} = \alpha - \frac{f(\alpha)}{f'(\alpha)} = \alpha - \frac{\alpha^2 - k\alpha - 1}{2\alpha - k} = \frac{\alpha^2 + 1}{2\alpha - k}$$

is the Hensel lift modulo p^2 of α , so that $f(\hat{\alpha}) \equiv 0 \pmod{p^2}$. Then, since

$$\mathcal{F}_p(\alpha) = (\alpha^p)^2 - k(\alpha^p) - 1 \equiv 0 \pmod{p^2},$$

it follows that

$$\alpha^p \equiv \frac{\alpha^2 + 1}{2\alpha - k} \pmod{p^2},$$

which implies that

$$\alpha^{p-1} \equiv \frac{\alpha + 1/\alpha}{2\alpha - k} \equiv 1 \pmod{p^2}$$

from (3.9). Hence, $p-1 \equiv 0 \pmod{\operatorname{ord}_{p^2}(\alpha)}$. By Lemma 3.2(a) and Theorem 2.1(a), we have that

$$\operatorname{ord}_{p^2}(\alpha) = \pi(p^2) \in \{\pi(p), p\pi(p)\}.$$

Therefore, we see that $\pi(p^2) = p\pi(p)$ is impossible since $p-1 \not\equiv 0 \pmod{p}$. Consequently, $\pi(p^2) = \pi(p)$, which implies that p is a k-Wall–Sun–Sun prime.

Combining Lemmas 3.4 and 3.5 yields the following.

Lemma 3.6. Suppose that $p \geq 3$. Let \mathbb{Z}_K denote the ring of integers of $K = \mathbb{Q}(\theta)$, where $\mathcal{F}_p(\theta) = 0$. Then

 $p \text{ is a } k\text{-Wall-Sun-Sun prime} \iff [\mathbb{Z}_K : \mathbb{Z}[\theta]] \equiv 0 \pmod{p}.$

We are now in a position to provide a proof of the main result.

Proof of Theorem 1.1. We first investigate the monogenicity of $\mathcal{F}_p(x)$. Let \mathbb{Z}_K denote the ring of integers of $K = \mathbb{Q}(\theta)$, where $\mathcal{F}_p(\theta) = 0$. Recall from Proposition 2.5 that

$$\Delta(\mathcal{F}_p) = (-1)^{(p+1)(2p-1)} p^{2p} (k^2 + 4)^p$$

Let $q \neq p$ be a prime divisor of $\Delta(\mathcal{F}_p)$. Then $k^2 + 4 \equiv 0 \pmod{q}$. Suppose first that $q \geq 3$. Then $q \nmid kp$, and we use Theorem 2.6(e) to address q. Since \mathcal{D} is squarefree, we deduce that $q^2 \nmid D/p^2$, and therefore, $[\mathbb{Z}_K : \mathbb{Z}[\theta]] \not\equiv 0 \pmod{q}$. Suppose next that q = 2. Then $2 \mid k$, and we use Theorem 2.6(b) to address q. Since $B_1 = 0$, the first condition fails. However, since $4 \nmid k$, we see that $2 \nmid A_2$, and so the second condition is satisfied. Hence, $[\mathbb{Z}_K : \mathbb{Z}[\theta]] \not\equiv 0 \pmod{2}$.

Thus, we have shown that the monogenicity of $\mathcal{F}_p(x)$ is completely determined by the prime p. More explicitly, we have that

$$\mathcal{F}_p(x)$$
 is monogenic $\iff [\mathbb{Z}_K : \mathbb{Z}[\theta]] \not\equiv 0 \pmod{p}.$

Consequently, if $p \ge 3$, then the theorem follows from Lemma 3.6.

We now address the case p = 2. Recall that $4 \nmid k$. We examine the two subcases: $k \equiv 2 \pmod{4}$ and $k \equiv 1 \pmod{2}$.

If $k \equiv 2 \pmod{4}$, then $k^2 + 4 \equiv 0 \pmod{2}$ and p = 2 is not a k-Wall–Sun–Sun prime by Lemma 2.2. Since $2 \mid k$, we apply Theorem 2.6(b), and use the same argument as used above, to deduce that $[\mathbb{Z}_K : \mathbb{Z}[\theta]] \not\equiv 0 \pmod{2}$. Therefore, the theorem is established when p = 2 and $k \equiv 2 \pmod{4}$.

If $k \equiv 1 \pmod{2}$, then straightforward computations reveal that $\pi(4) = 6$ and $\pi(2) = 3$. Hence, p = 2 is not a k-Wall–Sun–Sun prime in this subcase as well, and we must show that $\mathcal{F}_2(x)$ is monogenic. We use Theorem 2.6(d) with q = p = 2 to see that

$$G(x) = x^2 - kx - 1$$
 and $H(x) = \frac{-kx^2 - 1 + (kx+1)^2}{2} = kx\left(\frac{k-1}{2}x + 1\right)$

Since G(x) is irreducible in $\mathbb{F}_2[x]$, it follows that G(x) and H(x) are coprime in $\mathbb{F}_2[x]$. Hence, $\mathcal{F}_2(x)$ is monogenic in this case, which completes the proof of the main statement of the theorem.

Furthermore, it then follows immediately from Lemma 2.2 that $\mathcal{F}_p(x)$ is monogenic if p is a prime divisor of $k^2 + 4$.

References

- Z. Bouazzaoui, Fibonacci numbers and real quadratic p-rational fields, Period. Math. Hungar. 81 (2020), no. 1, 123–133.
- [2] _____, On periods of Fibonacci sequences and real quadratic p-rational fields, Fibonacci Quart. 58 (2020), no. 5, 103–110.
- [3] H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer-Verlag, Berlin, 2000.
- [4] R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp. 66 (1997), no. 217, 433–449.
- [5] S. Gupta, P. Rockstroh and F. E. Su, Splitting fields and periods of Fibonacci sequences modulo primes, Math. Mag. 85 (2012), no. 2, 130–135.
- [6] J. Harrington and L. Jones, A note on generalized Wall-Sun-Sun primes, Bull. Aust. Math. Soc. (to appear).
- [7] A. Jakhar, S. K. Khanduja and N. Sangwan, Characterization of primes dividing the index of a trinomial, Int. J. Number Theory 13 (2017), no. 10, 2505–2514.
- [8] L. Jones, A connection between the monogenicity of certain power-compositional trinomials and k-Wall-Sun-Sun primes, arXiv:2211.14834.
- [9] _____, Generalized Wall-Sun-Sun primes and monogenic power-compositional trinomials, Albanian J. Math. 17 (2023), no. 2, 3–17.
- [10] M. Renault, The period, rank, and order of the (a, b)-Fibonacci sequence mod m, Math. Mag. 86 (2013), no. 5, 372–380.
- [11] D. W. Robinson, A note on linear recurrent sequences modulo m, Amer. Math. Monthly 73 (1966), 619–621.
- [12] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia Math. Appl. 77, Cambridge University Press, Cambridge, 2000.
- [13] Z. H. Sun and Z. W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith.
 60 (1992), no. 4, 371–388.
- [14] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099–1106.
- [15] D. D. Wall, *Fibonacci series modulo m*, Amer. Math. Monthly **67** (1960), 525–532.

- [16] Wall-Sun-Sun prime, https://en.wikipedia.org/wiki/Wall-Sun-Sun_prime.
- [17] H. Yokoi, On real quadratic fields containing units with norm -1, Nagoya Math. J. 33 (1968), 139–152.

Lenny Jones

Professor Emeritus, Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania 17257, USA

E-mail address: doctorlennyjones@gmail.com