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A New Condition for k-Wall–Sun–Sun Primes

Lenny Jones

Abstract. Let k ≥ 1 be an integer, and let (Un) be the Lucas sequence of the first

kind defined by

U0 = 0, U1 = 1 and Un = kUn−1 + Un−2 for n ≥ 2.

It is well known that (Un) is periodic modulo any integer m ≥ 2, and we let π(m)

denote the length of this period. A prime p is called a k-Wall–Sun–Sun prime if

π(p2) = π(p).

Let f(x) ∈ Z[x] be a monic polynomial of degree N that is irreducible over Q.

We say f(x) is monogenic if Θ = {1, θ, θ2, . . . , θN−1} is a basis for the ring of integers

ZK of K = Q(θ), where f(θ) = 0. If Θ is not a basis for ZK , we say that f(x) is

non-monogenic.

Suppose that k ̸≡ 0 (mod 4) and that D := (k2 + 4)/ gcd(2, k)2 is squarefree.

We prove that p is a k-Wall–Sun–Sun prime if and only if Fp(x) = x2p − kxp − 1 is

non-monogenic. Furthermore, if p is a prime divisor of k2+4, then Fp(x) is monogenic.

1. Introduction

Let k ≥ 1 be an integer, and let (Un) := (Un(k,−1)) be the Lucas sequence of the first

kind defined by

U0 = 0, U1 = 1 and Un = kUn−1 + Un−2 for n ≥ 2.

It is well known that (Un) is periodic modulo any integer m ≥ 2, and we let π(m) := πk(m)

denote the length of this period. A prime p is called a k-Wall–Sun–Sun prime if

(1.1) π(p2) = π(p).

Note that (Un) is the Fibonacci sequence when k = 1, and in this case, primes satisfying

(1.1) are simply called Wall–Sun–Sun primes. For the Fibonacci sequence, D. D. Wall

[15] first asked in 1960 about the existence of primes satisfying (1.1). In 1992, the Sun

brothers [13] showed that the first case of Fermat’s Last Theorem for exponent p fails

only if p satisfies (1.1). The question of whether any Wall–Sun–Sun primes exist is still
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18 Lenny Jones

unresolved, and as of December 2022, if p is a Wall–Sun–Sun prime, then p > 264 [4, 16].

However, the situation is quite different when k ≥ 2 [16].

Several conditions are known to be equivalent to (1.1). For example, it is easy to see

that Uπ(p) ≡ 0 (mod p2) is one such condition. Another, less obvious, equivalent condition

is Up−δp ≡ 0 (mod p2), where δp is the Legendre symbol
(
k2+4
p

)
. For more information

and proofs, see [1, 2, 8, 16].

It is the goal of this article to present a new condition equivalent to (1.1) that is quite

unlike any previously known condition. This new condition involves the concept of the

monogenicity of a certain polynomial, which we now describe. Suppose that f(x) ∈ Z[x] is
a monic polynomial that is irreducible over Q. Let ZK be the ring of integers of K = Q(θ),

where f(θ) = 0. Then [3]

(1.2) ∆(f) =
[
ZK : Z[θ]

]2
∆(K),

where ∆(f) and ∆(K) denote, respectively, the discriminants over Q of f(x) and the

number field K. We define f(x) to be monogenic if Θ =
{
1, θ, θ2, . . . , θdeg(f)−1

}
is a basis

for ZK . If Θ fails to be a basis for ZK , we say that f(x) is non-monogenic. Observe

then, from (1.2), that f(x) is monogenic if and only if
[
ZK : Z[θ]

]
= 1 or, equivalently,

∆(f) = ∆(K).

The main theorem of this article is as follows:

Theorem 1.1. Let p be a prime. Let k ≥ 1 be an integer such that k ̸≡ 0 (mod 4) and D
is squarefree, where

(1.3) D :=
k2 + 4

gcd(2, k)2
.

Then p is a k-Wall–Sun–Sun prime if and only if

the polynomial Fp(x) := x2p − kxp − 1 is non-monogenic.

Furthermore, if p is a prime divisor of k2 + 4, then Fp(x) is monogenic.

At first glance, Theorem 1.1 might appear to be just a special case of Theorem 1.2 in [8]

or Theorem 1.2 in [9]. However, upon closer inspection, we see that certain restrictions

on the prime p and the quadratic character of D modulo p are necessary in both [8]

and [9]. Therefore, Theorem 1.1 represents an improvement over both [8] and [9], in the

particular situation of k-Wall–Sun–Sun primes, since no such restrictions are required here.

Moreover, Theorem 1.1 provides explicit conditions under which Fp(x) is monogenic. Since

the particular situation of Theorem 1.1 might be more appealing to a broader audience

than the generality found in [9], and regardless of the fact that many of the same methods

are employed in [9], we give here a self-contained presentation with full details.
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2. Preliminaries

Throughout this article, we assume that k is a positive integer such that 4 ∤ k and D is

squarefree, where D is as defined in (1.3). We also let

� p and q denote primes,

� α = k+
√
k2+4
2 and β = k−

√
k2+4
2 ,

� f(x) := x2 − kx− 1 (the characteristic polynomial of the sequence (Un)),

� Fp(x) := x2p − kxp − 1,

� ordm(∗) denote the order of ∗ modulo the integer m ≥ 2,

� δp denote the Legendre symbol
(
k2+4
p

)
.

The first result gives some known facts concerning π(p2) and π(p).

Theorem 2.1. [5, 10]

(a) π(p2) ∈ {π(p), pπ(p)}.

(b) If δp = 1, then p− 1 ≡ 0 (mod π(p)).

(c) If δp = −1, then 2(p+ 1) ≡ 0 (mod π(p)).

The following lemma is a special case of [6, Theorem 1.1].

Lemma 2.2. Suppose that p is a divisor of k2 +4. If p = 2, then p is a k-Wall–Sun–Sun

prime if and only if k ≡ 0 (mod 4). If p ≥ 3, then p is not a k-Wall–Sun–Sun prime.

The next two theorems are due to Capelli [12].

Theorem 2.3. Let f(x) and h(x) be polynomials in Q[x] with f(x) irreducible. Suppose

that f(α) = 0. Then f(h(x)) is reducible over Q if and only if h(x)− α is reducible over

Q(α).

Theorem 2.4. Let c ∈ Z with c ≥ 2, and let α ∈ C be algebraic. Then xc −α is reducible

over Q(α) if and only if either there is a prime p dividing c such that α = γp for some

γ ∈ Q(α) or 4 | c and α = −4γ4 for some γ ∈ Q(α).

The discriminant of Fp(x) given in the next proposition follows from the formula for

the discriminant of an arbitrary monic trinomial [14].

Proposition 2.5. ∆(Fp) = (−1)(p+1)(2p−1)p2p(k2 + 4)p.
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The next theorem is essentially an algorithmic adaptation, specifically for trinomi-

als, of Dedekind’s Index Criterion [3], which is a standard tool used to determine the

monogenicity of an irreducible monic polynomial.

Theorem 2.6. [7] Let N ≥ 2 be an integer. Let K = Q(θ) be an algebraic number field

with θ ∈ ZK , the ring of integers of K, having minimal polynomial f(x) = xN +AxM +B

over Q, with gcd(M,N) = r, N1 = N/r and M1 = M/r. Let

D := NN1BN1−M1 − (−1)N1MM1(N −M)N1−M1AN1 .

A prime factor q of ∆(f) does not divide
[
ZK : Z[θ]

]
if and only if q satisfies one of the

following items:

(a) when q | A and q | B, then q2 ∤ B;

(b) when q | A and q ∤ B, then

either q | A2 and q ∤ B1 or q ∤ A2

(
(−B)M1AN1

2 − (−B1)
N1
)
,

where A2 = A/q and B1 =
B+(−B)q

e

q with qe || N ;

(c) when q ∤ A and q | B, then

either q | A1 and q ∤ B2 or q ∤ A1B
M−1
2

(
(−A)M1AN1−M1

1 − (−B2)
N1−M1

)
,

where A1 =
A+(−A)q

j

q with qj || (N −M), and B2 = B/q;

(d) when q ∤ AB and q | M with N = uqm, M = vqm, q ∤ gcd(u, v), then the polynomials

G(x) := xN/qm +AxM/qm +B and H(x) :=
AxM +B + (−AxM/qm −B)q

m

q

are coprime modulo q;

(e) when q ∤ ABM , then q2 ∤ D/rN1.

3. Proof of Theorem 1.1

We first prove some lemmas.

Lemma 3.1. The polynomial Fp(x) is irreducible over Q.

Proof. Clearly, f(x) is irreducible over Q since D is squarefree. Note that f(α) = 0. Let

h(x) = xp so that Fp(x) = f(h(x)). Assume, by way of contradiction, that f(h(x)) is
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reducible. Then, by Theorems 2.3 and 2.4, we have that α = γp for some γ ∈ Q(α). Then,

we see by taking norms that

N (γ)p = N (α) = −1,

which implies that p ≥ 3 and N (γ) = −1, since N (γ) ∈ Z. Thus, γ is a unit, and therefore

γ = ±αj for some j ∈ Z, since, in light of the fact that k ̸= 4, α is the fundamental unit

of Q(
√
D) [17]. Consequently,

α = γp = (±1)pαjp,

which implies that (±1)pαjp−1 = 1, contradicting the fact that α has infinite order in the

group of units of the ring of algebraic integers in the real quadratic field Q(
√
D).

Lemma 3.2. Suppose that p ≥ 3. Then

(a) ordm(α) = π(m) for m ∈ {p, p2},

(b) αp−1 ≡ 1 (mod p) if δp = 1,

(c) αp+1 ≡ −1 (mod p) if δp = −1.

Proof. It follows from [11] that the order, modulo an integer m ≥ 3, of the companion

matrix

C =

0 1

1 k


for the characteristic polynomial f(x) of (Un) is π(m). Since the eigenvalues of C are α

and β, we conclude that

ordm

α 0

0 β

 = ordm(C) = π(m) for m ∈ {p, p2}.

It follows that at least one of α and β has order π(m), and we can assume without loss of

generality, that ordm(α) = π(m), which establishes (a).

For (b) and (c), we have by Euler’s criterion that(√
k2 + 4

)p+1
= (k2 + 4)(p−1)/2(k2 + 4) ≡ δp(k

2 + 4) (mod p),

which implies that
(√

k2 + 4
)p ≡ δp

√
k2 + 4 (mod p). Hence,

αp+1 =

(
k +

√
k2 + 4

2

)(
k +

√
k2 + 4

2

)p

=

(
k +

√
k2 + 4

2

)
p∑

j=0

(
p

j

)(
k

2

)j
(√

k2 + 4

2

)p−j
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≡

(
k +

√
k2 + 4

2

)((
k

2

)p

+

(√
k2 + 4

2

)p)
(mod p)

≡

(
k +

√
k2 + 4

2

)(
k + δp

√
k2 + 4

2

)
(mod p)

≡

α2 (mod p) if δp = 1,

−1 (mod p) if δp = −1.

Since α ∈ (Z/pZ)∗ when δp = 1, we note that (b) also follows from Fermat’s Little

Theorem.

Lemma 3.3. Suppose that p ≥ 3. Then

Fp(β) ≡ 0 (mod p2) ⇐⇒ Fp(α) ≡ 0 (mod p2).

Proof. Note that if Fp(β) = β2p − kβp − 1 ≡ 0 (mod p2), then

(3.1) βp − k − β−p ≡ 0 (mod p2).

Since αβ ≡ −1 (mod p), we have that (αβ)p ≡ (−1)p ≡ −1 (mod p2). Thus, since αp ̸≡ k

(mod p) from Lemma 3.2, we have

Fp(β) ≡ 0 (mod p2) ⇐⇒ βp(βp − k) ≡ 1 (mod p2)

⇐⇒ αpβp(βp − k) ≡ αp (mod p2)

⇐⇒ −(βp − k) ≡ αp (mod p2)

⇐⇒ −(αp − k)(βp − k) ≡ αp(αp − k) (mod p2)

⇐⇒ −(αpβp − kαp − kβp + k2) ≡ αp(αp − k) (mod p2)

⇐⇒ 1 + k(αp + βp)− k2 ≡ αp(αp − 1) (mod p2)

⇐⇒ 1 + k(−β−p + βp)− k2 ≡ αp(αp − 1) (mod p2)

⇐⇒ 1 ≡ αp(αp − 1) (mod p2) (from (3.1))

⇐⇒ Fp(α) ≡ 0 (mod p2).

Lemma 3.4. Suppose that p ≥ 3. Let ZK denote the ring of integers of K = Q(θ), where

Fp(θ) = 0. Then

Fp(α) ≡ 0 (mod p2) ⇐⇒
[
ZK : Z[θ]

]
≡ 0 (mod p).

Proof. Since f(α) = α2 − kα − 1 = 0, we note that α2 ≡ kα + 1 (mod p), which implies

that

(3.2) α2p ≡ (kα+ 1)p (mod p2).
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Suppose first that Fp(α) = α2p − kαp − 1 ≡ 0 (mod p2). Observe then that

(3.3) −kαp − 1 ≡ −α2p (mod p2).

Let

G(x) = f(x) = x2 − kx− 1 and H(x) =
−kxp − 1 + (kx+ 1)p

p
.

Hence, G(α) ≡ 0 (mod p) and

pH(α) = −kαp − 1 + (kα+ 1)p

≡ −α2p + (kα+ 1)p (mod p2) (from (3.3))

≡ −α2p + α2p (mod p2) (from (3.2))

≡ 0 (mod p2).

Thus, G(x) and H(x) are not coprime modulo p so that
[
ZK : Z[θ]

]
≡ 0 (mod p) by

Theorem 2.6(d).

Conversely, suppose that
[
ZK : Z[θ]

]
≡ 0 (mod p). Then, we have by Theorem 2.6(d)

that G(x) and H(x) are not coprime modulo p. In light of Lemma 3.3, we assume then,

without loss of generality, that

(3.4) pH(α) = −kαp − 1 + (kα+ 1)p ≡ 0 (mod p2).

Hence,

Fp(α) = α2p − kαp − 1

≡ (kα+ 1)p − kαp − 1 (from (3.2))

≡ (kαp + 1)− kαp − 1 (mod p2) (from (3.4))

≡ 0 (mod p2),

which completes the proof.

Lemma 3.5. Suppose that p ≥ 3. Then

p is a k-Wall–Sun–Sun prime ⇐⇒ Fp(α) ≡ 0 (mod p2).

Proof. We consider the three cases: δp ∈ {0,−1, 1}.
Suppose first that δp = 0. Then k2 + 4 ≡ 0 (mod p), so that α ≡ k/2 (mod p) and

(k/2)2 ≡ −1 (mod p). Hence, (k/2)2p ≡ −1 (mod p2) or, equivalently,

(3.5) k2p ≡ −22p (mod p2).
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By Lemma 2.2, we have that p is not a k-Wall–Sun–Sun prime. We must show that

Fp(α) ̸≡ 0 (mod p2). Assume, by way of contradiction, that

Fp(α) ≡ (k/2)2p − k(k/2)p − 1 ≡ −1− k(k/2)p − 1 ≡ 0 (mod p2).

Thus,

(3.6) kp+1 ≡ −2p+1 (mod p2).

Squaring both sides of (3.6) yields

(3.7) k2(k2p) ≡ −4(−22p) (mod p2).

Note that p ∤ k since p ≥ 3. Therefore, k2 + 4 ≡ 0 (mod p2) from (3.5) and (3.7), which

contradicts the fact that D is squarefree, and completes the proof when δp = 0.

Suppose next that δp = −1. Assume first that p is a k-Wall–Sun–Sun prime. Then,

since π(p2) = π(p), we conclude from Theorem 2.1(c), and Lemma 3.2(a)(c) that

(3.8) (αp+1 − 1)(αp+1 + 1) ≡ α2(p+1) − 1 ≡ 0 (mod p2).

Note that αp+1−1 ̸≡ 0 (mod p) since αp+1+1 ≡ 0 (mod p) from Lemma 3.2(c). Therefore,

we see from (3.8) that αp+1+1 ≡ 0 (mod p2), or equivalently, that αp ≡ −α−1 (mod p2).

Hence,

Fp(α) = α2p − kαp − 1 ≡ α−2 + kα−1 − 1 ≡ −α2 − kα− 1

α2
≡ 0 (mod p2).

Conversely, assume that Fp(α) ≡ 0 (mod p2). Since δp = −1, we have that f(x) is

irreducible modulo p. Consequently, the only zeros of f(x) in (Z/p2Z)[
√
D] are α and

β = −α−1. Hence,

either αp ≡ α (mod p2) or αp ≡ β (mod p2).

If αp ≡ α (mod p2), then, from Lemma 3.2(c), we have that

k2 + 2 + k
√
k2 + 4

2
= α2 + 1 ≡ αp+1 + 1 ≡ 0 (mod p),

which implies that k2 + 2 ≡ 0 (mod p), and either p | k or k2 + 4 ≡ 0 (mod p). In either

case, we arrive at the contradiction that p = 2. Hence,

αp ≡ β ≡ −α−1 (mod p2) or equivalently, αp+1 ≡ −1 (mod p2).

Thus, α2(p+1) ≡ 1 (mod p2) so that

2(p+ 1) ≡ 0 (mod ordp2(α)).
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By Lemma 3.2(a) and Theorem 2.1(a), we have that

ordp2(α) = π(p2) ∈ {π(p), pπ(p)}.

Therefore, we see that π(p2) = pπ(p) is impossible since p2−1 ̸≡ 0 (mod p). Consequently,

π(p2) = π(p), which implies that p is a k-Wall–Sun–Sun prime.

Finally, suppose that δp = 1. Assume first that p is a k-Wall–Sun–Sun prime. Since

π(p2) = π(p), it follows from Theorem 2.1(b), and Lemma 3.2(a)(b) that

αp−1 ≡ 1 (mod p2) or equivalently, αp ≡ α (mod p2).

Thus, since f(α) = α2 − kα− 1 = 0, we have that

Fp(α) = α2p − kαp − 1 ≡ α2 − kα− 1 ≡ 0 (mod p2).

Conversely, assume that Fp(α) ≡ 0 (mod p2). Since f(α) = α2 − kα− 1 = 0, we have

that

(3.9) α+
1

α
= 2α− k.

Additionally, note that

α̂ = α− f(α)

f ′(α)
= α− α2 − kα− 1

2α− k
=

α2 + 1

2α− k

is the Hensel lift modulo p2 of α, so that f(α̂) ≡ 0 (mod p2). Then, since

Fp(α) = (αp)2 − k(αp)− 1 ≡ 0 (mod p2),

it follows that

αp ≡ α2 + 1

2α− k
(mod p2),

which implies that

αp−1 ≡ α+ 1/α

2α− k
≡ 1 (mod p2)

from (3.9). Hence, p− 1 ≡ 0 (mod ordp2(α)). By Lemma 3.2(a) and Theorem 2.1(a), we

have that

ordp2(α) = π(p2) ∈ {π(p), pπ(p)}.

Therefore, we see that π(p2) = pπ(p) is impossible since p−1 ̸≡ 0 (mod p). Consequently,

π(p2) = π(p), which implies that p is a k-Wall–Sun–Sun prime.

Combining Lemmas 3.4 and 3.5 yields the following.
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Lemma 3.6. Suppose that p ≥ 3. Let ZK denote the ring of integers of K = Q(θ), where

Fp(θ) = 0. Then

p is a k-Wall–Sun–Sun prime ⇐⇒
[
ZK : Z[θ]

]
≡ 0 (mod p).

We are now in a position to provide a proof of the main result.

Proof of Theorem 1.1. We first investigate the monogenicity of Fp(x). Let ZK denote the

ring of integers of K = Q(θ), where Fp(θ) = 0. Recall from Proposition 2.5 that

∆(Fp) = (−1)(p+1)(2p−1)p2p(k2 + 4)p.

Let q ̸= p be a prime divisor of ∆(Fp). Then k2 + 4 ≡ 0 (mod q). Suppose first that

q ≥ 3. Then q ∤ kp, and we use Theorem 2.6(e) to address q. Since D is squarefree, we

deduce that q2 ∤ D/p2, and therefore,
[
ZK : Z[θ]

]
̸≡ 0 (mod q). Suppose next that q = 2.

Then 2 | k, and we use Theorem 2.6(b) to address q. Since B1 = 0, the first condition

fails. However, since 4 ∤ k, we see that 2 ∤ A2, and so the second condition is satisfied.

Hence,
[
ZK : Z[θ]

]
̸≡ 0 (mod 2).

Thus, we have shown that the monogenicity of Fp(x) is completely determined by the

prime p. More explicitly, we have that

Fp(x) is monogenic ⇐⇒
[
ZK : Z[θ]

]
̸≡ 0 (mod p).

Consequently, if p ≥ 3, then the theorem follows from Lemma 3.6.

We now address the case p = 2. Recall that 4 ∤ k. We examine the two subcases:

k ≡ 2 (mod 4) and k ≡ 1 (mod 2).

If k ≡ 2 (mod 4), then k2 + 4 ≡ 0 (mod 2) and p = 2 is not a k-Wall–Sun–Sun prime

by Lemma 2.2. Since 2 | k, we apply Theorem 2.6(b), and use the same argument as used

above, to deduce that
[
ZK : Z[θ]

]
̸≡ 0 (mod 2). Therefore, the theorem is established

when p = 2 and k ≡ 2 (mod 4).

If k ≡ 1 (mod 2), then straightforward computations reveal that π(4) = 6 and π(2) =

3. Hence, p = 2 is not a k-Wall–Sun–Sun prime in this subcase as well, and we must show

that F2(x) is monogenic. We use Theorem 2.6(d) with q = p = 2 to see that

G(x) = x2 − kx− 1 and H(x) =
−kx2 − 1 + (kx+ 1)2

2
= kx

(
k − 1

2
x+ 1

)
.

Since G(x) is irreducible in F2[x], it follows that G(x) and H(x) are coprime in F2[x].

Hence, F2(x) is monogenic in this case, which completes the proof of the main statement

of the theorem.

Furthermore, it then follows immediately from Lemma 2.2 that Fp(x) is monogenic if

p is a prime divisor of k2 + 4.
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