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Complex Ball Quotients and New Symplectic 4-manifolds with Nonnegative

Signatures

Anar Akhmedov, Sümeyra Sakallı* and Sai-Kee Yeung

Abstract. We construct new symplectic 4-manifolds with non-negative signatures

and with the smallest Euler characteristics, using fake projective planes, Cartwright–

Steger surfaces and their normal covers and product symplectic 4-manifolds Σg ×
Σh, where g ≥ 1 and h ≥ 0, along with exotic symplectic 4-manifolds constructed

in [7, 12]. In particular, our constructions yield to (1) infinitely many irreducible

symplectic and infinitely many non-symplectic 4-manifolds that are homeomorphic

but not diffeomorphic to (2n−1)CP2#(2n−1)CP2
for each integer n ≥ 9, (2) infinite

families of simply connected irreducible nonspin symplectic and such infinite families

of non-symplectic 4-manifolds that have the smallest Euler characteristics among the

all known simply connected 4-manifolds with positive signatures and with more than

one smooth structure. We also construct a complex surface with positive signature

from the Hirzebruch’s line-arrangement surfaces, which is a ball quotient.

1. Introduction

This article is a continuation of the previous work, carried out in [1–12], on the geography of

symplectic 4-manifolds. For some background and concise history on symplectic geography

problem, we refer the reader to the introductions in [4, 8, 11].

Our work here is greatly motivated and influenced by the recent work of Donald

Cartwright, Vincent Koziarz, and third author in [18] and the earlier work of Prasad and

the third author in [36, 37]. The main purpose of our article is to construct new mini-

mal symplectic 4-manifolds that are interesting with respect to the symplectic geography

problem.

Recall that the Bogomolov–Miyaoka–Yau equality is the equality c21 = 3c2 = 3e be-

tween the Chern numbers of compact complex surfaces of general type. (Equivalently,

c21 = 9χh on the (χh, c
2
1)-geography chart.) Due to Yau and Miyaoka [33, 39] we know

that if X is a compact complex surface of general type with c21(X) = 9χh(X), then the

universal cover of X is biholomorphic the open unit 4-ball B4 in C2. X is a quotient of
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B4 in C2 by an infinite discrete group, hence |π1(X)| = ∞. Then X is called a complex

ball quotient. Conversely, if the universal cover of a compact complex surface X is bi-

holomorphic to the unit 4-ball, then c21(X) = 9χh(X) which follows from direct curvature

computation (cf. the works of Guggenheimer, Borel and Hirzebruch in [23,25]). For more

about complex ball quotients the reader may see the survey [40].

In this paper, we study complex ball quotients: fake projective planes, Cartwright–

Steger surfaces, and their normal covers on the Bogomolov–Miyaoka–Yau line c21 = 9χh,

Hirzebruch’s line-arrangement surfaces and their quotients. By forming their symplec-

tic connected sums with the exotic symplectic 4-manifolds constructed in [7, 12], and

the product manifolds Σg × Σh, and applying a sequence of Luttinger surgeries along

the lagrangian tori, we obtain a family of new symplectic 4-manifolds with non-negative

signatures. More precisely, we produce (i) infinitely many irreducible symplectic and in-

finitely many non-symplectic 4-manifolds that are homeomorphic but not diffeomorphic

to (2n−1)CP2#(2n−1)CP2
for each integer n ≥ 9 (see Theorem 1.1), (ii) families of sim-

ply connected irreducible nonspin symplectic and non-symplectic 4-manifolds that have

the smallest Euler characteristics among the all known simply connected 4-manifolds with

positive signatures and with more than one smooth structure (see Theorem 1.2). We

also construct a new complex ball quotient by using the Hirzebruch’s line-arrangement

surfaces, which allows us to construct families of complex surfaces near the Bogomolov–

Miyaoka–Yau line with positive signatures (see Theorem 1.3).

Before stating our main results, let us fix some notation that will be used throughout

this paper. Given two 4-manifolds, X and Y , we will denote their connected sum by

X#Y . For a positive integer k ≥ 2, the connected sum of k copies of X will be denoted

by kX. CP2 denotes the complex projective plane, with its standard orientation, and CP2

denotes the underlying smooth 4-manifold CP2 equipped with the opposite orientation.

Our main results are the following theorems.

Theorem 1.1. Let M be (2n − 1)CP2#(2n − 1)CP2
for any integer n ≥ 9. Then there

exist an infinite family of irreducible symplectic and an infinite family of irreducible non-

symplectic 4-manifolds that all are homeomorphic but not diffeomorphic to M .

The theorem above improves one of the main results of [6,12] where exotic irreducible

smooth structures on (2n−1)CP2#(2n−1)CP2
for n ≥ 25 and for n ≥ 12 were constructed,

respectively. The next theorem improves the main results of [4, 6, 12] for the positive

signature cases.

Theorem 1.2. Let M be one of the following 4-manifolds.

(i) (2n− 1)CP2#(2n− 2)CP2
for any integer n ≥ 9.
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(ii) (2n− 1)CP2#(2n− 3)CP2
for any integer n ≥ 10.

Then there exist an infinite family of irreducible symplectic and an infinite family of irre-

ducible non-symplectic 4-manifolds that are homeomorphic but not diffeomorphic to M .

Let us recall that exotic irreducible smooth structures on (2n − 1)CP2#(2n − 1)CP2

for n ≥ 12, on (2n − 1)CP2#(2n − 2)CP2
for n ≥ 14, on (2n − 1)CP2#(2n − 3)CP2

for

n ≥ 13, and on (2n − 1)CP2#(2n − 4)CP2
for n ≥ 15 were constructed recently in [12]

(see also earlier work in [4, 6]). For closed simply connected nonspin exotic 4-manifolds

with signatures greater than 2, the reader may see [10]. At the time of writing this paper,

these were the smallest irreducible and exotic 4-manifolds with nonnegative signatures.

Moreover, they realize new points on the geography chart, i.e., no such manifolds with the

given invariants and properties were known previous to our work. The existence of exotic

CP2 is still unknown and it is the main open symplectic geography problem today.

In the above constructions, one of the main ingredients are complex ball quotients. In

the last main theorem of this article stated below, we construct a new complex ball quotient

by using the Hirzebruch’s line-arrangement surfaces, which allows one to construct families

of complex surfaces near the Bogomolov–Miyaoka–Yau line with positive signatures. Our

last main theorem is the following.

Theorem 1.3. There exists a smooth complex algebraic surface W with invariants c21(W )

= 432 and χh(W ) = 48 constructed as (Z/3Z)3-cover of CP2 branched over the Hesse

configuration.

We would like to note that such complex ball quotients with bigger invariants, K2

and χh, was initially studied by Hirzebruch [26, p. 134]. Ishida studied their quotients

in [27,28]. Barthel, Hirzebruch and Höfer gave further constructions in [15]. More recently,

in [16] Bauer and Catanese constructed complex ball quotients which are obtained from a

complete quadrangle arrangement in CP2. In [21] more constructions were given from the

complete quadrangle arrangement. In Theorem 1.3, we build our complex ball quotient

from the Hesse configuration. The invariants of our complex ball quotient is different than

the previously constructed ones, hence they are new.

Our paper is organized as follows. In Sections 2 and 3, we discuss some background

information and collect some building blocks that are needed in our constructions of

symplectic 4-manifolds. In Sections 4 and 5, we present the proofs of our main results. A

preliminary report on this work has been presented by the first author at Purdue University

and by the second author at various research seminars.
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2. Complex surfaces on the Bogomolov–Miyaoka–Yau line

2.1. Fake projective planes

A fake projective plane is a smooth complex surface which is not the complex projective

plane, but has the same Betti numbers as the complex projective plane. The small size of

the Betti numbers makes a fake projective plane a possible building block for constructing

interesting symplectic fourfolds with relatively simple topology. In this aspect, some ex-

otic four manifolds of relatively small numerical invariants have been obtained from fake

projective planes and Cartwright–Steger surface to be studied below, as given in [42,43].

The first fake projective plane was constructed by David Mumford in 1979 using p-

adic uniformization [34]. He also showed that there could only be a finite number of such

surfaces. Two more examples were found by Ishida and Kato [29] in 1998, and another

by Keum [30] in 2006. In 2007 [36] (see also Addendum [37]), the third author and Gopal

Prasad almost completely classified fake projective planes by proving that they fall into

“28 classes”. Using the arithmeticity of the fundamental group of fake projective planes,

and the formula for the covolume of principal arithmetic subgroups, they found twenty

eight non-empty distinct classes of fake projective planes. For a very small number of

classes, they left open the question of existence of fake projective planes in that class,

but conjectured that there are none. Finally, Donald Cartwright and Tim Steger verified

their conjecture and found there are altogether 50 complex conjugate pairs of the fake

projective planes, up to isomorphism, in each of the 28 classes [19].

Since a fake projective plane is a complex two ball quotient, it carries a Kähler metric,

the Poincaré metric, and hence supports a symplectic structure. The fact that a Kähler

surface supports a symplectic structure is used throughout the article without further

specification.

Example 2.1. In this example, we recall some properties of a fake projective plane F .

We refer the reader to [41, 44], where a complete classification of all smooth surfaces of

general type with Euler number 3 is given. There are 50 pairs of fake projective planes as

classified in [18,36,37], allowing complex conjugation, and one Cartwright–Steger surface

to be explained in Section 2.2.

For a fake projective plane F , the Euler characteristic and the Betti numbers of F are

e(F ) = 3, b1(F ) = 0 and b2(F ) = 1. F is a minimal complex surface of general type with

σ(F ) = 1, c21(F ) = 3e(F ) = 9 and χh(F ) = 1. The intersection form of F is odd, and has

rank 1. The fundamental group Π of F is a torsion-free cocompact arithmetic subgroup

of PU(2, 1), thus F is a ball quotient B2
C/Π. For 46 pairs of fake projective planes, the

canonical line bundle KF is divisible by 3, i.e., there is a line bundle L such that KF = 3L.

For the remaining four pairs of fake projective planes, we know that K = 3H+ τ for some



Complex Ball Quotients and New 4-manifolds 33

torsion line bundle τ .

2.2. Complex surfaces of Cartwright and Steger

In the process of classification of fake projective planes in [36], Prasad–Yeung observed

that there exists a maximal arithmetic lattice Γ with number fields denoted by C11 in the

notation of [36,37] which potentially may carry a torsion-free subgroup Π of index 864 in Γ

corresponding to Euler number 3 which will be a fake projective plane if b1 = 0. Prasad–

Yeung expected that such an example would not exist, which was verified by Cartwright

and Steger in [19]. In this process, Cartwright and Steger proved that there is a unique

Π up to conjugation with [Γ,Π] = 864 and has abelianization Z2. This corresponds

to a complex surface with irregularity q = 1 and Euler characteristic e = 3, named as

Cartwright–Steger surface. It is verified in [17] that the Cartwright–Steger surface is

defined over R and is unique as a complex surface. We denote the Cartwright–Steger

surface by M .

In fact, for each integer n ≥ 1, there is a homomorphism

ρn : Π → Z2 → Z → Z/Zn

following from the fact that H1(M,Z) = Z2. Hence by considering the kernel of ρn, we

find a normal subgroup Πn of Π with index n. Let Mn = B2(C)/Πn denote the quotient

of a complex hyperbolic space by a torsion free lattice Πn of PU(2, 1). Then M1 is the

Cartwright–Steger surfaceM , and the Euler characteristic ofMn is e(Mn) = ne(M1) = 3n.

For each n ≥ 1, Mn is a minimal complex surface of general type with σ(Mn) = n,

c21(Mn) = 3e(Mn) = 9n and χh(Mn) = n, hence it is a ball quotient. The Cartwright–

Steger surface M = M1 is used as a building block in this paper. We note that M is

neither a projective plane nor a fake projective plane. The intersection form of M is odd,

indefinite and modulo torsion is isomorphic to 3⟨1⟩⊕2⟨−1⟩. The Betti numbers of M are:

1, 2, 5, 2, 1. It is now known that M admits the Albanese map with the generic fiber of

genus 19 [18].

2.3. Covers of Cartwright–Steger surface

The main goal is to construct a symplectic surface (given in Lemma 2.5), from the

Cartwright–Steger surface, containing a curve of small numerical invariants to be used

as a building block in the proofs of Theorems 1.1 and 1.2. To obtain a surface of small

numerical invariants, we have to apply methods which are different than usual familiar al-

gebraic geometric constructions, such as branch cover of some curve configurations in P 2
C,

at the expense that we need to consider some group actions on surfaces which are difficult

to visualize geometrically. The computation is given in terms of explicit discrete group
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elements describing the lattice Π, or rather the maximal arithmetic lattice Γ containing

Π. As a first reading, the reader may just take Proposition 1 for granted, proceed to the

proof of our main results, and come back to this section for details of computations.

Since explicit computation is employed, sometimes with Magma, we summarize the

idea here. The idea is to construct an appropriate cover of degree 4 of the Cartwright–

Steger surface M containing an appropriate curve, both of small numerical invariants.

This is achieved using the presentation of π1(M), in a way more subtle than the obvious

construction from the kernel of some homomorphism of H1(M) described at the end of

the last subsection. An explicit presentation of π1(M) was given in [19], with more details

in [18]. We will use results obtained in [18] and refer the readers to [18] for any unexplained

notations, especially the group elements to be quoted.

In one of our constructions we will be using the curves b(Mc) or b
−1(Mc) in Proposi-

tion 2.4 of [18], where b ∈ Γ is a group element of the automorphism group of M̃ ∼= B2
C given

on page 658 of [18], Γ is the maximal arithmetic lattice of PU(2, 1) containing Π ∼= π1(M)

as mentioned in Section 2.2, and Mc is a line on B2
C explained in [18, Section 1.3, p. 662].

For simplicity, let us consider D̃ = b(Mc).

Recall that in the notation of [19,36], the maximal arithmetic lattice considered in this

case is denoted by Γ summarized in Theorem 1 of [18]. The lattice of the Cartwright–

Steger surface is denoted by Π with generators given by a1, a2, a3 explained in Theorem 2

of [18].

The map π : M = B2
C/Π → B2

C/Γ is a covering map of order 864. The quotient B2
C/Γ

is represented by the right-hand side of Figure 1 of [18] which we produce in Figure 2.1

below.

DA DB

P2

P3

P1

P5

P4

Figure 2.1: DA and DB.

Let D be the projection of D̃ on M . D is a component of π−1(DA) in the picture

and π−1(DA) is an immersed totally geodesic curve. The singularities of D could only
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be found in π−1(P1) and π−1(P2). D is a component of genus 4 in π−1(DA). According

to Proposition 2.4 of [18], the only singular points of the curve D is given by a point of

normal crossing.

Let Π
D̃

= {π ∈ Π : π(D̃) = D̃}. By Proposition 2.4(d) in [18], Π
D̃
\ D̃ has genus 4

by the Riemann–Hurwitz formula, see the text immediately after the proof of Proposi-

tion 2.4(d) on page 670 of [18], and we can find explicit generators ui, vi of ΠD̃
such that

[u1, v1][u2, v2][u3, v3][u4, v4] = 1. The following eight elements generate Π
D̃
:

p1 = a32a
−1
1 a−1

3 j8a−2
2 a−1

1 j4, p2 = a33a1a
2
3a2a1j

4a−1
3 j8a−2

3 a−1
1 a−3

3 ,

p3 = j8a−1
1 a−3

3 a22j
4a−2

3 a−1
1 a−3

3 , p4 = j8a2a1a
−2
2 a−1

1 j4a33a
2
1a

−1
2 ,

p5 = a33a1a
2
3j

4a−1
1 j8a23a1a

−3
2 , p6 = a33a1a2a1a3a

−3
2 ,

p7 = a33a1j
8a1a

−2
2 a−1

1 a23j
4, p8 = j4a−2

3 j8a2a1a2a1a
−2
2 ,

where ai’s are elements of Γ as given in [18, Theorem 1.6, Section 1.4, p. 664], and satisfy

the single relation

p−1
5 p−1

2 p5p1p3p
−1
8 p4p

−1
1 p−1

7 p−1
6 p7p2p

−1
3 p8p

−1
4 p6 = 1.

Here the group elements such as j is given by [18, Section 1.1]. The above gives a set of

generators for π1(D̂), where D̂ is the normalization of D.

To compute i∗(π1(D)) ⊂ π1(M), where i : D → M is the inclusion, note that i∗(π1(D))

is generated by i∗pj , j = 1, . . . , 8, together with loops around the nodal point. The

following two elements π1 and π2 of Π satisfy πi(b
−1(O)) ∈ b(Mc), i = 1, 2, and they are

taken from the third table on page 41 of the arXiv version of the paper [18]:

π1 := a33a1a
−1
2 , π2 := a2a

−2
1 a−1

3 a1a
−1
3 a−1

1 a−2
2 .

Consider the subgroup Γ1 of Γ given by Γ1 = ⟨Γ | p1, p2, p3, p4, p5, p6, p7, p8, π1π−1
2 ⟩. By

using the Magma program, cf. [45], one verifies immediately that Γ1 is a normal subgroup

of Π of index 4, and in fact that the quotient group is Z2 × Z2. No larger subgroup of Γ

containing Γ1 could be found from Magma and hence Γ1 is our candidate i∗(π1(D)).

In conclusion, we have the following

Proposition 2.2. D is an immersed totally geodesic curve satisfying the following prop-

erties.

(1) The normalization D̂ of D is a Riemann surface of genus 4.

(2) D ·D = −1.

(3) i∗π1(D) is a normal subgroup of π1(M) of index 4, and π1(M)/i∗π1(D) = Z2 × Z2.
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Denote by H the covering group π1(M)/i∗π1(D) = Z2 × Z2 in Proposition 2.2. We

have

1 → i∗π1(D) → π1(M) → H.

Consider now a normal unramified covering M̃ of M with covering group given by H. Let

p : M̃ → M be the covering map. From construction, p−1(D) consists of four connected

components. Let E be one such connected component. Then from the construction,

inclusion i∗π1(E) → π1(M̃) is an isomorphism. Hence we have

Lemma 2.3. E is a curve of self-intersection −1 on M̃ . The normalization of E is a

Riemann surface of genus 4. Moreover, i∗π1(E) → π1(M̃) is an isomorphism.

This follows from the construction. Note that a neighborhood of D in M is isomorphic

to a neighborhood of E in M̃ , as the covering is a normal covering with π1(M̃) a normal

subgroup of Π.

Lemma 2.4. The Chern numbers of M̃ are given by c21(M̃) = 36, c2(M̃) = 12.

This follows from the fact that the Chern numbers involved are multiplicative.

Lemma 2.5. M̃#CP2
contains a symplectic genus 5 curve Σ5 of self intersection −2.

Proof. It was shown in Lemma 2.3 that M̃ contains a curve E of self intersection −1, whose

normalization is a Riemann surface of genus 4. Since genus is a birational invariant,

the genus of E is 4 as well. We symplectically blow up E at its self intersection, so

that it becomes square −5 curve and the exceptional sphere e1 intersects it twice. We

symplectically resolve the two intersection points of the proper transform of E with e1,

which gives us genus 5 symplectic curve Σ5 of self intersection −2 inside M̃#CP2
.

3. Luttinger surgery and symplectic cohomology (2n− 3)(S2 × S2)

We briefly review the Luttinger surgery, and collect some symplectic building blocks that

will be used later in our constructions. For the details on Luttinger surgery, the reader is

referred to the papers [13,32].

Definition 3.1. LetX be a symplectic 4-manifold with a symplectic form ω, and the torus

Λ be a Lagrangian submanifold ofX. Given a simple loop λ on Λ, let λ′ be a simple loop on

∂(νΛ) that is parallel to λ under the Lagrangian framing. For any integer n, the (Λ, λ, 1/n)

Luttinger surgery on X is defined to be the XΛ,λ(1/n) = (X−ν(Λ))
⋃

ϕ(S1×S1×D2), the

1/n surgery on Λ with respect to λ under the Lagrangian framing. Here ϕ : S1×S1×∂D2 →
∂(X − ν(Λ)) denotes a gluing map satisfying ϕ([∂D2]) = n[λ′] + [µΛ] in H1(∂(X − ν(Λ))),

where µΛ is a meridian of Λ.
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It is shown in [13] that XΛ,λ(1/n) possesses a symplectic form that restricts to the

original symplectic form ω on X \ νΛ. The proof of the following lemma is easy to verify

and is left to the reader as an exercise.

Lemma 3.2. (1) π1(XΛ,λ(1/n)) = π1(X − Λ)/N(µΛλ
′n), where N(µΛλ

′n) denotes the

smallest normal subgroup of π1(X − Λ) that contains µΛλ
′n,

(2) σ(X) = σ(XΛ,λ(1/n)) and e(X) = e(XΛ,λ(1/n)).

3.1. Luttinger surgeries on product manifolds Σn × Σ2

We discuss Luttinger surgeries on the product manifolds Σn × Σ2. Recall from [5, 20]

that for each integer n ≥ 2, there is a family of irreducible pairwise non-diffeomorphic

4-manifolds {Yn(m) | m = 1, 2, 3, . . .} that have the same integer cohomology ring as

(2n−3)(S2×S2). Yn(m) are obtained by performing 2n+3 Luttinger surgeries (cf. [13,32])

and a single m torus surgery on Σ2×Σn, where Σn denotes a Riemann surface of genus n.

These 2n+ 4 torus surgeries are performed as follows:

(a′1 × c′1, a
′
1,−1), (b′1 × c′′1, b

′
1,−1), (a′2 × c′2, a

′
2,−1), (b′2 × c′′2, b

′
2,−1),

(a′2 × c′1, c
′
1,+1), (a′′2 × d′1, d

′
1,+1), (a′1 × c′2, c

′
2,+1), (a′′1 × d′2, d

′
2,+m),

together with the following 2(n− 2) additional Luttinger surgeries

(b′1 × c′3, c
′
3,−1), (b′2 × d′3, d

′
3,−1), . . . , (b′1 × c′n, c

′
n,−1), (b′2 × d′n, d

′
n,−1).

Here, ai, bi (i = 1, 2) and cj , dj (j = 1, . . . , n) denote the standard loops that generate

π1(Σ2) and π1(Σn), respectively. See Figure 3.1 for a typical Lagrangian tori along which

the surgeries are performed.

x

x

y

x

x

y

y y

x

y

aia
′
i

ai

bi

d
′
ja

′′
i

dj

bi

cj

c
′
j

cj

dj

Figure 3.1: Lagrangian tori a′i × c′j and a′′i × d′j .

Since m-torus surgery is non-symplectic for m ≥ 2, the manifold Yn(m) is symplectic

only when m = 1. Using Lemma 3.2, we see that the Euler characteristic of Yn(m) is 4n−4
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and its signature is 0. π1(Yn(m)) is generated by ai, bi, cj , dj (i = 1, 2 and j = 1, . . . , n)

and the following relations hold in π1(Yn(m)):

[b−1
1 , d−1

1 ] = a1, [a−1
1 , d1] = b1, [b−1

2 , d−1
2 ] = a2, [a−1

2 , d2] = b2,

[d−1
1 , b−1

2 ] = c1, [c−1
1 , b2] = d1, [d−1

2 , b−1
1 ] = c2, [c−1

2 , b1]
m = d2,

[a1, c1] = 1, [a1, c2] = 1, [a1, d2] = 1, [b1, c1] = 1,

[a2, c1] = 1, [a2, c2] = 1, [a2, d1] = 1, [b2, c2] = 1,

[a1, b1][a2, b2] = 1,
n∏

j=1

[cj , dj ] = 1,

[a−1
1 , d−1

3 ] = c3, [a−1
2 , c−1

3 ] = d3, . . . , [a−1
1 , d−1

n ] = cn, [a−1
2 , c−1

n ] = dn,

[b1, c3] = 1, [b2, d3] = 1, . . . , [b1, cn] = 1, [b2, dn] = 1.

The surfaces Σ2 × {pt} and {pt} × Σn in Σ2 × Σn are not affected by the above

Luttinger surgeries, and descend to surfaces in Yn(m). They are symplectic submanifolds

in Yn(1). Let us denote these symplectic submanifolds in Yn(1) by Σ2 and Σn. Note that

[Σ2]
2 = [Σn]

2 = 0 and [Σ2] · [Σn] = 1.

3.2. Luttinger surgeries on product manifolds Σn × T2

Next, we consider a slightly different construction and discuss Luttinger surgeries on Σn×
T2. Let us fix integers n ≥ 2, and m ≥ 1. Let Yn(1,m) denote smooth 4-manifold obtained

by performing the following 2n torus surgeries on Σn × T2:

(a′1 × c′, a′1,−1), (b′1 × c′′, b′1,−1), (a′2 × c′, a′2,−1), (b′2 × c′′, b′2,−1), . . . ,

(a′n−1 × c′, a′n−1,−1), (b′n−1 × c′′, b′n−1,−1), (a′n × c′, c′,+1), (a′′n × d′, d′,+m).

Let ai, bi (i = 1, 2, . . . , n) and c, d denote the standard generators of π1(Σn) and

π1(T2), respectively. Since all the torus surgeries listed above are Luttinger surgeries when

m = 1 and the Luttinger surgery preserves minimality, Yn(1, 1) is a minimal symplectic

4-manifold. The fundamental group of Yn(1,m) is generated by ai, bi (i = 1, 2, 3, . . . , n)

and c, d, and Lemma 3.2 implies that the following relations hold in π1(Yn(1,m)):

[b−1
1 , d−1] = a1, [a−1

1 , d] = b1, [b−1
2 , d−1] = a2, [a−1

2 , d] = b2, . . . ,

[b−1
n−1, d

−1] = an−1, [a−1
n−1, d] = bn−1, [d−1, b−1

n ] = c, [c−1, bn]
−m = d,

[a1, c] = 1, [b1, c] = 1, [a2, c] = 1, [b2, c] = 1,

[a3, c] = 1, [b3, c] = 1, . . . , [an−1, c] = 1, [bn−1, c] = 1,

[an, c] = 1, [an, d] = 1, [a1, b1][a2, b2] · · · [an, bn] = 1, [c, d] = 1.

We denote by Σ′
n ⊂ Yn(1,m) a genus n surface that descend from the surface Σn×{pt}

in Σn × T2. We again remark that Yn(1,m) is not symplectic when m > 1.
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4. Constructions of exotic 4-manifolds with nonnegative signatures from

Cartwright–Steger surfaces

In this section, we will construct families of simply connected non-spin symplectic and

smooth 4-manifolds with nonnegative signatures and small χh. We consider the surface

M̃ constructed above (see Section 2.3), with c21(M̃) = 36 and e(M̃) = 12. Using the

formulas σ = (c21−2e)/3 and χh = (e+σ)/4, we have σ(M̃) = χh(M̃) = 4. Recall that by

Lemma 2.5, M̃#CP2
contains a genus 5 symplectic curve Σ5 of self intersection −2 and

i∗π1(Σ5) → π1(M̃#CP2
) is a surjection. In our construction of symplectic 4-manifolds

with nonnegative signatures, M̃#CP2
along with Σ5 will serve as our first building block.

For our second building block we will use the minimal, simply connected and symplectic

4-manifolds Xg,g+2 and Xg,g+1 for which the following theorems hold:

Theorem 4.1. For any integer g ≥ 1, there exists a minimal symplectic 4-manifold Xg,g+2

obtained via Luttinger surgery such that

(i) Xg,g+2 is simply connected.

(ii) e(Xg,g+2) = 4g + 2, σ(Xg,g+2) = −2, c21(Xg,g+2) = 8g − 2, and χh(Xg,g+2) = g.

(iii) Xg,g+2 contains the symplectic surface Σ of genus 2 with self-intersection 0 and 2

genus g surfaces with self-intersection −1 intersecting Σ positively and transversally.

Theorem 4.2. There exists a minimal symplectic 4-manifold Xg,g+1 obtained via Lut-

tinger surgery such that

(i) Xg,g+1 is simply connected.

(ii) e(Xg,g+1) = 4g + 1, σ(Xg,g+1) = −1, c21(Xg,g+2) = 8g − 1, and χh(Xg,g+1) = g.

(iii) Xg,g+1 contains the symplectic surface Σ of genus 2 with self-intersection 0, and

genus g + 1 symplectic surface with self-intersection 0 intersecting Σ positively and

transversally.

Proof. For the details of the constructions of Xg,g+2 and Xg,g+1, we refer the reader

to [3, 7].

For the readers’ convenience, we go over the constructions of the manifolds Xg,g+2 and

Xg,g+1 for specific values of g, as needed in the following proofs in this Section.

In the rest of this section we prove Theorems 1.1 and 1.2.
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Proof of Theorem 1.1. We first construct symplectic and smooth manifolds with (σ, χh) =

(0, 9). In this construction, our first building block is M̃#CP2
containing genus 5 sym-

plectic surface Σ5 of self intersection −2. For our second building block, we use X1,3 in

the notation of Theorem 4.1.

Let us recall the construction of X1,3. In constructing X1,3, we first obtain a symplectic

genus 2 surface Σ2 with self-intersection 0, with two −1 spheres intersecting it positively

and transversally in T4#2CP2
. In addition, there are symplectic tori T2 of self intersections

zero each of which intersects Σ2 positively and transversally once. Next, we form the

symplectic connected sum of T4#2CP2
with Σ2 × Σ1 along the genus two surfaces Σ2

and Σ2 × {pt}. By performing the sequence of 6 appropriate ±1 Luttinger surgeries on

(T4#2CP2
)#Σ2=Σ2×{pt}(Σ2 × Σ1), we obtain the symplectic 4-manifold X1,3. Therefore,

we see that X1,3 contains a symplectic surface Σ2 with self intersection 0 and two tori T1

and T2 with self intersections −1 which have positive and transverse intersections with Σ2.

Note that T1 and T2 result from the internal sum of the punctured exceptional spheres in

T4#2CP2 \ ν(Σ2) and the punctured tori in Σ2 × Σ1 \ ν(Σ2 × {pt}). Moreover, there are

genus 2 surfaces of self intersections 0 inside X1,3. Each of them comes from the internal

sum of the one of the punctured tori in T4#2CP2 \ ν(Σ2) and one of the punctured tori in

Σ2 ×Σ1 \ ν(Σ2 × {pt}). Such a genus 2 surface Σ′
2 of square zero intersects Σ2 positively

and transversally at one point. We symplectically resolve the intersections of Σ2 with T1

and Σ2 with Σ′
2. Thus we obtain a genus 5 surface Σ5 of square +3 in X1,3. By blowing

up Σ5 at one point, we obtain a genus 5 surface Σ′
5 of square +2 in X1,3#CP2

.

Since the two symplectic building blocks M̃#CP2
and X1,3#CP2

contain symplectic

genus 5 surfaces of self intersections −2 and +2 respectively, we can form their symplectic

connected sum along these surfaces Σ5 and Σ′
5. Let

M0,9 = (M̃#CP2
)#Σ5=Σ′

5
(X1,3#CP2

).

Lemma 4.3. σ(M0,9) = 0, χh(M0,9) = 9, e(M0,9) = 36 and c21(M0,9) = 72.

Proof. We have σ(M0,9) = σ(M̃#CP2
) + σ(X1,3#CP2

) = 3 + (−3) = 0 and χh(M0,9) =

χh(M̃#CP2
)+χh(X1,3#CP2

)+(5−1) = 4+1+4 = 9. Consequently, we compute e(M0,9)

and c21(M0,9) as given in the statement.

Next, we show that M0,9 is an exotic copy of 17CP2#17CP2
and M0,9 is also smoothly

irreducible. Notice that M0,9 is symplectic and simply connected, which follows from

Gompf’s Symplectic Connected Sum Theorem [22] and Seifert–Van Kampen’s Theorem

respectively. Using Freedman’s classification theorem for simply-connected 4-manifolds

and the lemma above, M0,9 is homeomorphic to 17CP2#17CP2
. Since M0,9 is symplectic,

by Taubes’s theorem it has a non-trivial Seiberg–Witten invariant. Next, by appealing
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to the connected sum theorem for the Seiberg–Witten invariants, we deduce that the

Seiberg–Witten invariant of 17CP2#17CP2
is trivial. Thus, M0,9 is not diffeomorphic to

17CP2#17CP2
. Furthermore, M0,9 is a minimal symplectic 4-manifold by Usher’s Mini-

mality Theorem [38]. Since symplectic minimality implies smooth minimality M0,9 is also

smoothly minimal, and thus is smoothly irreducible [24]. By performing knot surgeries,

we realize infinitely many pairwise non-diffeomorphic, irreducible, symplectic and nonsym-

plectic 4-manifolds that are exotic copies of M0,9. Next by applying Theorem 5.3 in [6] and

Theorem 16 in [4] we also obtain infinitely many irreducible symplectic and infinitely many

irreducible non-symplectic 4-manifolds that are exotic copies of (2n−1)CP2#(2n−1)CP2

for any integer n ≥ 9. Since this construction scheme is well-known (see e.g. [7, 12]) we

omit the details here.

Proof of Theorem 1.2. (i) We split the proof of part (i) into two theorems. First we prove

it for n ≥ 10, then for n = 9 in which the construction is slightly different than n ≥ 10

case.

Theorem 4.4. Let M be (2n − 1)CP2#(2n − 2)CP2
for any integer n ≥ 10. Then

there exist an infinite family of irreducible symplectic 4-manifolds and an infinite family

of irreducible non-symplectic 4-manifolds that are homeomorphic but not diffeomorphic to

M .

Proof. First we build simply connected, symplectic and smooth 4-manifolds with (σ, χh) =

(1, 10), for which we use M̃#CP2
containing genus 5 curve Σ5 of self intersection −2 and

X2,4 in the notation of Theorem 4.1.

For the convenience of the reader, we briefly review the construction of X2,4. Take a

copy of T2×{pt} and {pt}×T2 in T2×T2 equipped with the product symplectic form, and

symplectically resolve the intersection point of these dual symplectic tori. The resolution

produces symplectic genus two surface of self intersection +2 in T2×T2. By symplectically

blowing up this surface twice, in T4#2CP2
, we obtain a symplectic genus 2 surface Σ2

with self-intersection 0, with two −1 spheres (i.e., the exceptional spheres resulting from

the blow-ups) intersecting it positively and transversally. We also note that Σ2 has a dual

symplectic torus T2 of self intersection zero intersecting Σ2 positively and transversally at

one point. Next, we form the symplectic connected sum of T4#2CP2
with Σ2 × Σ2 along

the genus two surfaces Σ2 and Σ2 × {pt}. By performing the sequence of 8 appropriate

±1 Luttinger surgeries on (T4#2CP2
)#Σ2=Σ2×{pt}(Σ2 × Σ2), we obtain the symplectic

4-manifold X2,4.

It can be seen from the construction that, there are genus 3 surfaces of self intersections

0 inside X2,4. Each of them comes from the internal sum of the one of the punctured tori in

T4#2CP2 \ ν(Σ2) and one of the punctured genus two surfaces in Σ2 ×Σ2 \ ν(Σ2 ×{pt}).
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Such a genus 3 surface of square zero intersects Σ2 positively and transversally at one

point. We symplectically resolve this intersection and obtain a genus 5 surface Σ′
5 of

square +2 in X2,4.

Since the two symplectic building blocks M̃#CP2
and X2,4 contain symplectic genus 5

surfaces of self intersections −2 and +2 respectively, we can form their symplectic con-

nected sum along these surfaces Σ5 and Σ′
5. Let

M1,10 = (M̃#CP2
)#Σ5=Σ′

5
X2,4.

Lemma 4.5. σ(M1,10) = 1, χh(M1,10) = 10, e(M1,10) = 39 and c21(M1,10) = 81.

Proof. We have σ(M1,10) = σ(M̃#CP2
) + σ(X2,4) = 3 + (−2) = 1 and χh(M1,10) =

χh(M̃#CP2
) + χh(X2,4) + (5− 1) = 4 + 2 + 4 = 10. Using the formulas c21 = 3σ + 2e and

e = 4χh − σ, we compute e(M1,10) and c21(M1,10) as given.

Similarly, using Lemma 4.5 and the above mentioned theorems, we show that M1,10 is

an exotic copy of 19CP2#18CP2
.

By applying knot surgeries and then Theorem 5.3 in [6] and Theorem 16 in [4] we

also obtain infinitely many irreducible symplectic and infinitely many irreducible non-

symplectic 4-manifolds that are homeomorphic but not diffeomorphic to (2n−1)CP2#(2n−
2)CP2

for any integer n ≥ 10.

Next, we prove Theorem 1.2(i) for n = 9 case for which we construct symplectic and

smooth manifolds with (σ, χh) = (1, 9). Similar to the previous case, we use M̃#CP2

containing genus 5 surface Σ5 of self intersection −2, and X1,2#CP2
in the notation of

Theorem 4.2, constructed in [7].

To construct X1,2, we first obtain a symplectic genus two surface of self intersection

0 in T4#CP2
as follows. Let us take a copy of T2 × {pt} and the braided torus Tβ

representing the homology class 2[{pt} × T2] in T2 × T2. The tori T2 × {pt} and Tβ

intersect at two points. We symplectically blow up one of these two intersection points,

and symplectically resolve the other intersection point to obtain the symplectic genus two

surface Σ2 of self intersection 0 in T4#CP2
. Note that the exceptional sphere S2 intersects

Σ2 positively and transversally twice. Next, we form the symplectic connected sum of

T4#CP2
with Σ2 × Σ1 along the genus two surfaces Σ2 and Σ2 × {pt}. By performing

the sequence of 6 appropriate ±1 Luttinger surgeries on (T4#CP2
)#Σ2=Σ2×{pt}(Σ2×Σ1),

we obtain the symplectic 4-manifold X1,2. It was shown in [7], X1,2 is an exotic copy of

CP2#2CP2
. Observe that as a result of the internal sum of the twice punctured sphere

S2 in T4#CP2 \ ν(Σ2) and the twice punctured tori in Σ2 ×Σ1 \ ν(Σ2 ×{pt}), we acquire

a symplectic genus 2 surface of self intersection −1 in X1,2 intersecting Σ2 positively and

transversally twice. We symplectically resolve the two intersections and get symplectic
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genus 5 surface of square +3 in X1,2. We blow up this surface at one point and obtain

symplectic genus 5 surface Σ′
5 of self intersection +2 in X1,2#CP2

.

Let us define

M1,9 = (M̃#CP2
)#Σ5=Σ′

5
(X1,2#CP2

).

Lemma 4.6. σ(M1,9) = 1, χh(M1,9) = 9, e(M1,9) = 35 and c21(M1,9) = 73.

Proof. We have σ(M1,9) = σ(M̃#CP2
) + σ(X1,2#CP2

) = 3 + (−2) = 1 and χh(M1,9) =

χh(M̃#CP2
)+χh(X1,2#CP2

)+(5−1) = 4+1+4 = 9. Consequently, we compute e(M1,9)

and c21(M1,9) as given.

Similarly, using Lemma 4.6 and the above mentioned theorems, we show that the

minimal symplectic 4-manifold M1,9 is an exotic copy of 17CP2#16CP2
. As above, we

also obtain infinitely many irreducible symplectic and non-symplectic 4-manifolds that

are homeomorphic but not diffeomorphic to 17CP2#16CP2
. Hence we have

Theorem 4.7. Let M be 17CP2#16CP2
. Then there exist an infinite family of irre-

ducible symplectic and an infinite family of irreducible non-symplectic 4-manifolds that

are homeomorphic but not diffeomorphic to M .

Theorems 4.4 and 4.7 prove Theorem 1.2(i).

(ii) To prove Theorem 1.2(ii), we first construct symplectic and smooth manifolds with

(σ, χh) = (2, 10). In this case, the first symplectic building blocks is M̃#CP2
along the

genus 5 surface Σ5 of self intersection −2. Our the second symplectic building block is

X2,3 in the notation of Theorem 4.2, which was constructed in [7].

Let us recall the construction of X2,3. We take a copy of T2 × {pt} and the braided

torus Tβ representing the homology class 2[{pt} × T2] in T2 × T2 (see [7, p. 581] for the

construction of Tβ). The tori T2×{pt} and Tβ intersect at two points. We symplectically

blow up one of these intersection points, and symplectically resolve the other intersection

point to obtain the symplectic genus two surface of self intersection 0 in T4#CP2
(see

[7, p. 581]). The symplectic genus 2 surface Σ2 has a dual symplectic torus T2 of self

intersections zero intersecting Σ2 positively and transversally at one point. We form the

symplectic connected sum of T4#CP2
with Σ2 × Σ2 along the genus two surfaces Σ2

and Σ2 × {pt}. By performing the sequence of 4 appropriate ±1 Luttinger surgeries on

(T4#CP2
)#Σ2=Σ2×{pt}(Σ2 × Σ2), we obtain the symplectic 4-manifold X2,3 constructed

in [7]. It can be seen from the construction that, X2,3 contains a symplectic surface Σ3 with

self intersection 0, resulting from the internal sum of the punctured torus in T4#CP2\ν(Σ2)

and one of the punctured genus two surfaces in Σ2 × Σ2 \ ν(Σ2 × {pt}). Σ3 intersects Σ2

positively and transversally at one point. (The reader may see Section 5.3 and Figure 7
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in [12] showing the construction steps for a similar case.) We now symplectically resolve

their intersection which gives genus five surface Σ′
5 of self intersection +2 in X2,3.

Let

M2,10 = (M̃#CP2
)#Σ5=Σ′

5
(X2,3).

Lemma 4.8. σ(M2,10) = 2, χh(M2,10) = 10, e(M2,10) = 38 and c21(M2,10) = 82.

Proof. We have σ(M2,10) = σ(M̃#CP2
) + σ(X2,3) = 3 + (−1) = 2 and χh(M2,10) =

χh(M̃#CP2
) + χh(X2,3) + (5− 1) = 4 + 2 + 4 = 10. Consequently, we compute e(M2,10)

and c21(M2,10).

Similarly, using Lemma 4.8 and the above mentioned theorems, we see that M2,10 is

an exotic copy of 19CP2#17CP2
and it is also smoothly irreducible. Moreover, by knot

surgeries and Theorem 5.3 in [6] and Theorem 16 in [4] we also obtain infinitely many

irreducible symplectic and infinitely many irreducible non-symplectic 4-manifolds that

are homeomorphic but not diffeomorphic to (2n − 1)CP2#(2n − 3)CP2
for any integer

n ≥ 10.

We would like to note that in constructing exotic 4-manifolds, constructing or showing

the existence of appropriate surfaces in the building blocks with small genus that capture

the fundamental group is the main challenge. With better understanding of our complex

building block we hope to revisit this problem.

Remark 4.9. In this remark, we discuss how to obtain a minimal symplectic 4-manifold

with the fundamental group Z2 and (σ, χh) = (0, 8). Since e = 4χh − σ = 32, such

a symplectic 4-manifold yields to a homology 15CP2#15CP2
with π1 ∼= Z2. Since the

covering group of the complex surface M (see Proposition 2.2) is Z2 × Z2, it has a degree

two unramified covering. Let us consider the normal unramified covering M2 of M with

covering group given by index two subgroup H ′ of π1(M). Let p : M2 → M be the covering

map. Notice that in this case the pull-back ofD under this Z2 covering is not isomorphic to

the fundamental group of the ambient manifold, but rather a normal subgroup of index 2.

Using the symplectic pair (M2#CP2
,Σ5) instead of (M1#CP2

,Σ5), and (X2,3,Σ
′
5) in our

above constructions (see the proof of Theorem 1.2(ii)) leads to the symplectic 4-manifold

with (σ, χh) = (0, 8) and π1 ∼= Z2.

5. Construction of a smooth complex algebraic surface on the BMY line

In this section, we construct a smooth complex algebraic surface with invariants K2 = 432

and χh = 48. This complex surface of general type W is on the BMY line c21 = 9χh, and

thus is a complex ball quotient. It is obtained as an abelian Galois covering of the complex

projective plane branched over an arrangement of 12 lines shown as in Figure 5.1, known
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in the literature as Hesse configuration. Such complex surfaces with bigger invariants, K2

and χh, was initially studied by Friedrich Hirzebruch (for example, see [26, p. 134]). Our

construction is motivated and similar in spirit to that of Bauer–Catanese in [16], where the

complex ball quotients are obtained from a complete quadrangle arrangement in CP2. The

invariants of our complex ball quotient W are different than the previously constructed

ones in the literature, hence it realizes a new point on the BMY-line. Moreover, since our

construction is geometric and we also present the fibration structure on W , it can be used

as a building block in other complex surface or symplectic 4-manifold constructions.

l1 l2 l3

l4

l5

l6

l7
l8

l9

l10

l11
l12

p1 p2 p3

p4 p5 p6

p7 p8 p9

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

Figure 5.1: Hesse arrangement in CP2.

5.1. Background on Galois coverings

Let us first give basics on Galois coverings. A Galois covering of a smooth algebraic variety

Y is a finite morphism h : X → Y of a normal algebraic variety X to Y such that the

function fields embedding C(Y ) ⊂ C(X) induced by h is a Galois extension. A finite

morphism h : X → Y is a Galois covering with Galois group G if and only if G coincides

with the group of covering transformations and acts transitively on every fiber of h, and

a finite branched covering is Galois if and only if the unramified part of the covering is

Galois.

We consider Galois coverings of the complex projective plane CP2 ramified over an

arrangement of lines L = L1 ∪ · · · ∪ Ln. The simple loops λi, 1 ≤ i ≤ n, around the

lines Li generate H1(CP2 \ L,Z) ≃ Zn−1, they satisfy λ1 + · · · + λn = 0. As for general

abelian Galois coverings, a Galois covering g : Y → CP2 of CP2 with abelian Galois group

G branched along L is uniquely determined by an epimorphism φ : H1(CP2 \ L,Z) ↠ G,
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and it exists for any such epimorphism. The covering g is branched along a line Li ⊂ L if

and only if φ(λi) ̸= 0.

Let φ : H1(CP2 \ L,Z) → (Z/qZ)k, k ≤ n − 1 be an epimorphism given by φ(λi) =

(ai,1, . . . , ai,k) where a1,j + · · ·+ an,j ≡ 0 mod q, for all j = 1, . . . , k, and let g : Y → CP2

be the corresponding Galois covering. Y is a normal surface with isolated singularities.

The singular points of Y can appear over the r-fold points of L with r ≥ 2. We call

two elements of (Z/qZ)k linearly independent over Z/qZ if they generate a subgroup

isomorphic to (Z/qZ)2 in (Z/qZ)k. Then due to Kulikov we have

Lemma 5.1. [31] If for each 2-fold point p = Li1 ∩Li2 of L, the pairs φ(λi1) and φ(λi2)

are linearly independent over Z/qZ in (Z/qZ)k, then the surface Y is nonsingular.

Next, we blow up the r-fold points, r ≥ 3, of the line arrangement L. Let σ : ĈP2 →
CP2 be this blow up, Ep be the exceptional divisor for an r-fold point p, and ϵp ∈ H1(ĈP2\
σ−1(L),Z) = H1(CP2 \ (L),Z) be a simple loop around Ep. The identification H1(ĈP2 \
σ−1(L),Z) = H1(CP2 \ (L),Z) composed with φ provides an epimorphism H1(ĈP2 \
σ−1(L),Z) → (Z/qZ)k. We consider the associated Galois covering f : X → ĈP2.

Lemma 5.2. [31] If for each r-fold point p = Li1 ∩ · · · ∩ Lir of L with r ≥ 3 either

the pairs φ(ϵp) and φ(λij ), 1 ≤ j ≤ r, are linearly independent over Z/qZ in (Z/qZ)k or

φ(ϵp) = 0, then X is nonsingular.

5.2. Construction of a complex ball quotient

Now we prove Theorem 1.3. In CP2, let us consider the Hesse arrangement H, which is a

configuration of 9 points pi (1 ≤ i ≤ 9) and 12 lines lj (1 ≤ j ≤ 12), such that each line

passes through 3 of the points pi and each point lies at the intersection of 4 of the lines lj

(see Figure 5.1). We blow up CP2 at the points p1, . . . , p9, and denote the blow up map by

π : T := ĈP2 → CP2. Let Ei be the exceptional divisor corresponding to the blow up at

the point pi for i = 1, . . . , 9. In the sequel, we will slightly abuse our notation and denote

the proper transform of a line lj using the same symbol, or l̃j when distinction is needed.

Let us now take the formal sum of the proper transforms lj of the 12 lines of the

arrangement and the 9 exceptional divisors Ei’s, and denote it by D. The divisor D in

T has only simple normal crossings. The homology classes of simple closed loops around

the lj ’s and the Ei’s generate H1(T −D,Z). Let us denote a loop encircling a line Ei or

lj by using the same letter. Then for each i = 1, . . . , 9, the class of Ei can be written as

a sum of the homology classes of 4 loops around the 4 lines intersecting Ei. To illustrate

this, notice that we have E1 = l1 + l4 + l7 + l10 and similar relations hold for the other

Ei’s. Moreover, the sum of the homology classes of 12 loops lj ’s are 0, which shows that

H1(T −D,Z) is a free group of rank 11.
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It is known that a surjective homomorphism φ : Z11 ≃ H1(T − D,Z) → (Z/3Z)3

determines an abelian (Z/3Z)3-cover p : W → T = ĈP2. We need that p is branched

exactly in D. Let us define φ as follows:

φ(l1) = (1, 0, 0), φ(l2) = (0, 1, 0), φ(l3) = (0, 0, 2),

φ(l4) = (1, 1, 0), φ(l5) = (1, 0, 1), φ(l6) = (0, 2, 1),

φ(l7) = (1, 1, 1), φ(l9) = (1, 1, 2), φ(l12) = (1, 2, 1),

φ(l8) = (2, 1, 1), φ(l10) = (1, 0, 1), φ(l11) = (0, 0, 2).

We note that φ(l1) + · · · + φ(l12) = 0. Moreover each of the following is linearly

independent (i.e., they are in different subgroups of (Z/3Z)3 of order 3, equivalently they

generate a subgroup isomorphic to (Z/3Z)2):

{φ(l1), φ(l2)}, {φ(l1), φ(l3)}, {φ(l2), φ(l3)},

{φ(l4), φ(l5)}, {φ(l4), φ(l6)}, {φ(l5), φ(l6)},

{φ(l7), φ(l9)}, {φ(l7), φ(l12)}, {φ(l9), φ(l12)},

{φ(l8), φ(l10)}, {φ(l8), φ(l11)}, {φ(l10), φ(l11)}.

Then we have

φ(E1) = φ(l1 + l4 + l7 + l10) = (1, 2, 2), φ(E2) = φ(l2 + l4 + l9 + l11) = (2, 0, 1),

φ(E3) = φ(l3 + l4 + l12 + l8) = (1, 1, 1), φ(E4) = φ(l1 + l5 + l11 + l12) = (0, 2, 1),

φ(E5) = φ(l2 + l5 + l7 + l8) = (1, 0, 0), φ(E6) = φ(l3 + l5 + l9 + l10) = (0, 1, 0),

φ(E7) = φ(l1 + l6 + l8 + l9) = (1, 1, 1), φ(E8) = φ(l2 + l6 + l12 + l10) = (2, 2, 0),

φ(E9) = φ(l3 + l6 + l7 + l11) = (1, 0, 0).

In addition, φ(l1 + l2 + l3 + l7 + l9 + l10) ̸= (0, 0, 0). These conditions ensure that φ gives

a (Z/3Z)3 Galois cover branched exactly in D (see [16, Lemma 2.3, part 1], also [31]).

We also note that each of the following are linearly independent (i.e., they are in

different subgroups of (Z/3Z)3 of order 3):

φ(E1) and φ(li), i = 1, 4, 7, 10; φ(E2) and φ(li), i = 2, 4, 9, 11;

φ(E3) and φ(li), i = 3, 4, 12, 8; φ(E4) and φ(li), i = 1, 5, 11, 12;

φ(E5) and φ(li), i = 2, 5, 7, 8; φ(E6) and φ(li), i = 3, 5, 9, 10;

φ(E7) and φ(li), i = 1, 6, 8, 9; φ(E8) and φ(li), i = 2, 6, 12, 10;

φ(E9) and φ(li), i = 3, 6, 7, 11.

Moreover, D has simple normal crossings, we deduce that the total space W is smooth

(see [31, Lemma 1.4]).
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Let us compute some invariants of the surface W , and verify that c21(W ) = K2
W = 432

and χh(W ) = 48.

Let H be the divisor class corresponding to the invertible sheaf O(1) on CP2. The

canonical sheaf wCP2 of CP2 is O(−2 − 1) = O(−3) which corresponds to the canonical

divisor −3H. Then, the canonical divisor KT of T is −3H +
∑9

i=1Ei where we denoted

the pullback of H by itself. By using the canonical divisor formula for abelian covers

(see [35, Proposition 4.2]), we compute

KW = p∗

((
−3H +

9∑
i=1

Ei

)
+

2

3

9∑
i=1

Ei +
2

3

(
12H − 4

9∑
i=1

Ei

))
= p∗

(
5H −

9∑
i=1

Ei

)
.

Since H ·Ei = 0, H2 = 1 and E2
i = −1, the above equality gives K2

W = 27(25− 9) = 432.

The Euler number e(W ) of W can be found as follows:

e(W ) = 27e
(
ĈP2 = CP2#9CP2)− 18 · 21e(CP1) + 12 · 48 = 144.

Thus c21(W ) = 3c2(W ), and W is a ball quotient. Since 12χh(W ) − c21(W ) = e(W ), we

have χh(W ) = 48 and complete the proof of Theorem 1.3.

Now we present the fibrations on the ball quotient W and find symplectic submanifolds

in W#25CP2
. Consider the map π ◦ p : W → CP2, where π is the blow up map, p is the

abelian cover. Let us take p1, one of the blown up points in CP2 which is the intersection

point of l1, l4, l7, l10 (see Figure 5.1). The pencil of lines in CP2 passing through p1 lifts to

a fibration on W . To determine the genus of the generic fiber of this fibration, we take a

line K passing through p1 such that its only intersection with the lines l1, l4, l7, l10 is p1.

In addition, K intersects the remaining 8 lines of the arrangement. These 8 intersection

points and the point p1 are 9 branch points on K. The preimage of the proper transform

K −E1 of K in W , which is the generic fiber of the given fibration, is a degree 3 cover of

K − E1 (cf. [14, p. 241]), branched at 9 points. For the determination of the genus g of

the surface above K − E1, we apply the Riemann–Hurwitz ramification formula

2g − 2 = 9(−2) + 9 · 8 =⇒ g = 28.

Therefore, generic fibers are of genus 28 surfaces. Moreover, there are at least 9 distinct

fibrations in W coming from the points pi’s.

Let us consider the 12 lines lj of the Hesse arrangement and determine their inverse

images in W under π ◦ p. We observe that on each lj , j = 1, . . . , 12, there are 5 branch

points. By the Riemann–Hurwitz formula, we have

2g − 2 = 9(−2) + 5 · 8 =⇒ g = 12.

Therefore, they lift to genus 12 curves. To find their self-intersections, we apply the

adjunction formula. Firstly, we note that each lj is blown up at three points, say pk, pl,



Complex Ball Quotients and New 4-manifolds 49

pm. For its proper transform l̃j in ĈP2, we have

[l̃j ] = H − Ek − El − Em.

Thus,

KW · [Σ12] = π∗

((
5H −

9∑
i=1

Ei

)
· (H − Ek − El − Em)

)
= 9(5− 1− 1− 1) = 18.

Using the adjunction formula 2g − 2 = 22 = KW · [Σ12] + [Σ12]
2, we have [Σ12]

2 = 4. On

the other hand, on each exceptional sphere Ei, there are 4 branch points. Thus, their

preimages are genus 8 curves in W :

2g − 2 = 9(−2) + 4 · 8 =⇒ g = 8.

Similarly as above,

KW · [Σ8] = π∗

((
5H −

9∑
i=1

Ei

)
· (Ei)

)
= 9

and by the adjunction formula we have 2g− 2 = 14 = KW · [Σ8] + [Σ8]
2; which shows that

[Σ8]
2 = 5.

Let us reconsider the pencil of lines in CP2 passing through p1 and take the line l1.

The preimage of its proper transform l̃1 is a genus twelve surface Σ12 with self-intersection

+4 in W . The exceptional divisors E1, E4 and E7 intersecting l̃1 lift to genus 8 curves

with self-intersections +5, each of which intersects Σ12 transversally once. Notice that the

lift of E1 gives rise to a section, and the union of lifts of the exceptional divisors E4, E7,

and the proper transform of intersecting l̃1 corresponds to a singular fiber of the given

fibration. We symplectically resolve their three transversal intersection points and obtain

genus 36 symplectic submanifold of W with self intersection +25. As in Section 2.3 of [12],

we have the following proposition.

Proposition 5.3. W#25CP2
contains an embedded symplectic genus 36 curve Σ36 with

self intersection 0. Furthermore, there is a surjection f∗ : π1(Σ36) → π1(W#25CP2
).

We note that by Proposition 5.3 and symplectic surgeries, one can obtain exotic 4-

manifolds on the positive signature region. However, since the Euler characteristics of

these manifolds are big, we do not include them here. We refer the reader to [12] for

similar constructions.
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421.

[24] M. J. D. Hamilton and D. Kotschick, Minimality and irreducibility of symplectic four-

manifolds, Int. Math. Res. Not. 2006, Art. ID 35032, 13 pp.

[25] F. Hirzebruch, Automorphe Formen und der Satz von Riemann–Roch, in: Symposium
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Sümeyra Sakallı

Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR, 72701,

USA

E-mail address: ssakalli@uark.edu

Sai-Kee Yeung

Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395, USA

E-mail address: yeungs@purdue.edu

https://www.math.purdue.edu/~yeungs/papers/magmafile1.txt

	Introduction
	Complex surfaces on the Bogomolov–Miyaoka–Yau line
	Fake projective planes
	Complex surfaces of Cartwright and Steger
	Covers of Cartwright–Steger surface

	Luttinger surgery and symplectic cohomology 
	Luttinger surgeries on product manifolds 
	Luttinger surgeries on product manifolds 

	Constructions of exotic 4-manifolds with nonnegative signatures from Cartwright–Steger surfaces
	Construction of a smooth complex algebraic surface on the BMY line
	Background on Galois coverings
	Construction of a complex ball quotient


