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Bregman Projections and Parallel Extragradient Methods for Solving

Multiple-sets Split Problems

Fridoun Moradlou, Zeynab Jouymandi and Fahimeh Akhavan Ghassabzade*

Abstract. In this paper, utilizing Bregman projections which are different from the

sunny generalized nonexpansive retractions and generalized metric projection in Ba-

nach spaces, we introduce some new parallel extragradient methods for finding the

solution of the multiple-sets split equilibrium problem and the solution of the multiple-

sets split variational inequality problem in p-uniformly convex and uniformly smooth

Banach spaces. Moreover, we introduce a ∆-Lipschitz-type condition on the equi-

librium bifunctions to prove strongly convergent of the generated iterates in parallel

extragradient methods. To illustrate the usability of our results and also to show

the efficiency of the proposed methods, we present some comparative examples with

several existing schemes in the literature in finite and infinite dimensional spaces.

1. Introduction

Assume that Ci (i = 1, 2, . . . , r) and Qj (j = 1, 2, . . . , s) are nonempty, convex and closed

subsets of real Banach spaces E1 and E2, respectively and also, assume that C =
⋂r

i=1Ci

and Q =
⋂s

j=1Qj . Suppose that A : E1 → E2 is a bounded linear operator and fi : Ci ×
Ci → R (i = 1, 2, . . . , r) and gj : Qj ×Qj → R (j = 1, 2, . . . , s) are equilibrium bifunctions.

The multiple-sets split equilibrium problem (MSSEP) [16] is formulated as follows:

find x∗ ∈ C =
r⋂

i=1

Ci such that fi(x
∗, y) ≥ 0, ∀ y ∈ Ci, ∀ i = 1, 2, . . . , r,

where

Ax∗ ∈ Q =

s⋂

j=1

Qj such that gj(Ax∗, w) ≥ 0, ∀w ∈ Qj , ∀ j = 1, 2, . . . , s.

We denote the solution set of (MSSEP) by ME. In the case of r = s = 1, (MSSEP) reduces

to well known split equilibrium problem (SEP), which was first introduced by Moudafi [19].
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Assume that Ai : Ci → 2E
∗
1 and Bj : Qj → 2E

∗
2 are given mappings. The multiple-sets

split variational inequality problem (MSSVIP) [16] is formulated as follows:

find x∗ ∈ C =
r⋂

i=1

Ci such that ⟨y − x∗, Aix
∗⟩ ≥ 0, ∀ y ∈ Ci, ∀ i = 1, 2, . . . , r,

where

Ax∗ ∈ Q =
s⋂

j=1

Qj such that ⟨w −Ax∗, BjAx
∗⟩ ≥ 0, ∀w ∈ Qj , ∀ j = 1, 2, . . . , s.

We denote the solution set of (MSSVIP) by MS. If r = s = 1, then (MSSVIP) reduces to

split variational inequality problem (SVIP), which was first proposed by Censor et al. [6].

It is well known that the equilibrium problem [20] covers many problems in mathemat-

ics and sciences. Some of these problems are the optimization problem, the variational

inequality problem, the fixed point problem, the generalized Nash equilibrium problem in

game theory, the saddle point problem and others; (see [2, 12, 21, 22, 24]). So, it’s theory

and applications has been extensively studied by many researchers.

Auxiliary problem principle as a useful tool for solving optimization problem has been

introduced by Cohen [9] and then it has been extended to variational inequality [10].

Recently, the auxiliary problem principle has been extended to equilibrium problems by

Mastroeni [18] under the assumption that the equilibrium bifunction f satisfies the fol-

lowing Lipschitz-type condition:

(1.1) f(x, y) + f(y, z) ≥ f(x, z)− c1∥y − x∥2 − c2∥z − y∥2, ∀x, y, z ∈ C,

where c1, c2 > 0. In fact, this method is the famous classical extragradient method which

has been introduced by Korpelevich [17], if equilibrium problem is replaced by variational

inequality. The efficiency of the extragradient method has caused a great deal of attention

among researchers. So, many authors introduced extragradient algorithms for solving var-

ious problems in Hilbert spaces [13,16,24,25,27–29] and this method was first introduced

by Z. Jouymandi and F. Moradlou [14, 15] for solving equilibrium problem, variational

inequality problem and fixed point problem, utilizing sunny generalized nonexpansive re-

tractions and generalized metric projection in Banach spaces where the convergence of

the proposed algorithms was required f to satisfy in a ϕ∗-Lipschitz-type condition or

ϕ-Lipschitz-type condition [14,15].

In this paper, motivated by D. S. Kim and B. V. Dinh [16], we present some new

parallel extragradient algorithms (i.e., the algorithms have two extragradient steps) for

finding an element ME and MS, utilizing Bregman projections. Using these algorithms,

we present and establish some strong convergence theorems under suitable conditions.

Moreover, we give some numerical examples related to our algorithms and compare the
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results of our schemes with several existing ones in the literature. The number of iterations

and also CPU times to get the solution for the generated sequence by our methods to show

that our algorithms reach to a solution element faster than the other schemes.

2. Preliminaries

Suppose that E∗ is the dual of a Banach space E and S(E) is the unit sphere centered

at the origin of E. Let p ≥ 1, the Banach space E is called to be p-uniformly convex [26]

if there exists a constant c > 0 such that δE(ϵ) ≥ cϵp for all ϵ ∈ [0, 2], where δE(ϵ) is the

modulus of convexity of E. It is well known that for 1 < p ≤ 2, Lp is 2-uniformly convex

and for p ≥ 2, Lp is p-uniformly convex. The Banach space E is said to be uniformly

smooth if ρE(t)
t → 0 as t → 0, where ρE(t) is the smoothness modules of E. For p > 1, Lp

is uniformly smooth.

The mapping JpE from E to 2E
∗
defined by

(2.1) JpEx =
{
x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥∥x∗∥, ∥x∗∥ = ∥x∥p−1

}
, ∀x ∈ E

is called the generalized duality mapping, where p > 1 is a real number.

Let 1 < q ≤ 2 ≤ p with 1/p + 1/q = 1. If E is p-uniformly convex and uniformly

smooth, then JpE is monotone, one-to-one, onto and J−1
pE

= J∗
qE

(the generalized duality

mapping on E∗) [1, 7].

If E is uniformly smooth, then JpE is uniformly norm-to-norm continuous on bounded

sets of E [8] i.e., for a bounded set M of E and ε > 0, there exists δ > 0 such that

∥JpEx− JpEy∥ < ε

for all x, y ∈ M such that ∥x− y∥ < δ. Let E be a p-uniformly convex, uniformly smooth

real Banach space, we define the Bregman distance ∆E
p : E × E → R by

(2.2) ∆E
p (x, y) =

1

q
∥x∥p − ⟨y, JpEx⟩+

1

p
∥y∥p

for all x, y ∈ E. It is worth noting that, if p = q = 2, then ∆E
2 (x, y) =

1
2ϕ(y, x) [14] for

all x, y ∈ E and in a Hilbert space H, ∆H
2 (x, y) = 1

2∥x − y∥2 for all x, y ∈ H. Using the

definition of ∆E
p , we can easily conclude that

(2.3) ∆E
p (x, y) = ∆E

p (x, z) + ∆E
p (z, y) + ⟨z − y, JpEx− JpEz⟩, ∀x, y, z ∈ E

and

(2.4) ∆E
p (x, y) + ∆E

p (y, x) = ⟨x− y, JpEx− JpEy⟩, ∀x, y ∈ E.
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Moreover, in a p-uniformly convex space X, we have the following property [23]:

(2.5) τ∥x− y∥p ≤ ∆E
p (x, y)

for all x, y ∈ X and for some fixed number τ > 0.

Lemma 2.1. [23] Let C be a nonempty closed convex subset of a p-uniformly convex and

uniformly smooth real Banach space E and let (x, z) ∈ E × C. Then the following results

hold:

(i) z = ΠCx if and only if ⟨y − z, JpEx− JpEz⟩ ≤ 0 for all y ∈ C,

(ii) ∆E
p (ΠCx, z) + ∆E

p (x,ΠCx) ≤ ∆E
p (x, z),

(iii) ∆E
p (x,ΠCx) = miny∈C ∆E

p (x, y).

Thus ΠC : E → C is Bregman projection and is defined by ΠCx = argminy∈C ∆E
p (x, y).

For a convex subset C of a Banach space E, we denote by NC(ν) the normal cone for

C at a point ν ∈ C, i.e.,

NC(ν) := {x∗ ∈ E∗ : ⟨ν − y, x∗⟩ ≥ 0,∀ y ∈ C}.

Let f : E → (−∞,+∞] be a proper function. For x0 ∈ Dom(f), the subdifferential of f

at x0 as the subset of E∗ given by

∂f(x0) =
{
x∗ ∈ E∗ : f(x) ≥ f(x0) + ⟨x∗, x− x0⟩,∀x ∈ E

}
.

If ∂f(x0) ̸= ∅, then f is called subdifferentiable at x0. If ∂f(x0) is single valued, then f is

said to be Gâteaux differentiable at x0 which is denoted by ∇f(x0).

Suppose that C is a nonempty subset of a Banach space E. The bifunction f : C×C →
R is called

(i) pseudomonotone on C, i.e., f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ C,

(ii) jointly continuous, i.e., if x, y ∈ C and {xn} and {yn} are two sequences in C such

that xn → x and yn → y, then f(xn, yn) → f(x, y).

Lemma 2.2. [3,14] Let E be reflexive Banach space. If f : E → R∪{+∞} and g : E → R∪
{+∞} are nontrivial, convex, and lower semicontinuous functions and if 0 ∈ Int(Dom f −
Dom g), then

∂(f + g)(x) = ∂(f) + ∂(g).

Lemma 2.3. [3,14] Let C be a nonempty convex subset of a Banach space E and f : E →
R be a convex and subdifferentiable function, then f is minimized at x ∈ E if and only if

0 ∈ ∂f(x) +NC(x).
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3. Parallel extragradient methods

Throughout this paper, let Ci (i = 1, 2, . . . , r) andQj (j = 1, 2, . . . , s) be nonempty, convex

and closed subsets of p-uniformly convex and uniformly smooth real Banach spaces E1

and E2 respectively. Assume that C =
⋂r

i=1Ci and Q =
⋂s

j=1Qj . Also, we suppose

that A : E1 → E2 is a bounded linear operator and the bifunctions fi : Ci × Ci → R
(i = 1, 2, . . . , r) and gj : Qj×Qj → R (j = 1, 2, . . . , s) satisfy in following conditions which

are defined as follows:

(A1) fi(x, x) = 0 for all x ∈ Ci (i = 1, 2, . . . , r) and gj(x
′, x′) = 0 for all x′ ∈ Qj

(j = 1, 2, . . . , s).

(A2) fi (i = 1, 2, . . . , r) and gj (j = 1, 2, . . . , s) are pseudomonotone on Ci and Qj ,

respectively.

(A3) fi (i = 1, 2, . . . , r) and gj (j = 1, 2, . . . , s) are jointly continuous on Ci × Ci and

Qj ×Qj , respectively.

(A4) fi(x, · ) (i = 1, 2, . . . , r) and gj(x
′, · ) (j = 1, 2, . . . , s) are convex, lower semicon-

tinuous and subdifferentiable on Ci and Qj , respectively, for all x ∈ Ci and all

x′ ∈ Qj .

(A5) fi (i = 1, 2, . . . , r) and gj (j = 1, 2, . . . , s) satisfy ∆-Lipschitz-type condition:

∃ ci1, ci2 s.t. fi(x, y) + fi(y, z) ≥ fi(x, z)− ci1∆
E1
p (x, y)

− ci2∆
E1
p (y, z), ∀x, y, z ∈ Ci,

∃ c′j1 , c′j2 s.t. gj(x
′, y′) + gj(y

′, z′) ≥ gj(x
′, z′)− c′j1∆E2

p (x′, y′)

− c′j2 ∆
E2
p (y′, z′), ∀x′, y′, z′ ∈ Qj .

(3.1)

Example 3.1. Assume that f : C × C → R is a bifunction defined by f(x, y) = 5
q∥y∥p +

3⟨y, JpE1
x⟩ − 8

q∥x∥p. Since p ≥ 2, we obtain

f(x, y) + f(y, z)

= f(x, z)− 3

(
1

p
∥x∥p − ⟨y, JpE1

x⟩+ 1

q
∥y∥p

)
− 3

(
1

p
∥y∥p − ⟨z, JpE1

y⟩+ 1

q
∥z∥p

)

+ 3

(
1

p
∥x∥p − ⟨z, JpE1

x⟩+ 1

q
∥z∥p

)
+

(
8− 13

p

)
∥y∥2

≥ f(x, z)− 3∆E1
p (x, y)− 3∆E1

p (y, z),

i.e., f satisfies in the ∆-Lipschitz-type condition with c1 = c2 = 3.
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Remark 3.2. If p = q = 2, then ∆-Lipschitz-type condition reduces to ϕ-Lipschitz-type

condition and also If E1 and E2 are Hilbert spaces, then ∆-Lipschitz-type condition reduces

to Lipschitz-type condition (1.1).

Algorithm 3.3 (Parallel Extragradient Method).

Step 0: For all i = 1, 2, . . . , r and all j = 1, 2, . . . , s, choose the sequences {λi
n}, {γjn} ⊆

(0, 1] such that 0 < a ≤ λi
n, γ

j
n ≤ b < min

{
1
c ,

1
c′

}
, where c = max{ci1, c′j1 } and

c′ = max{ci2, c′j2 }. Also, {αi
n}, {βj

n} ⊆ [e, d] such that 0 < e ≤ d < 1 and

r∑

i=1

αi
n =

s∑

j=1

βj
n = 1, λn,r =

1

r

r∑

i=1

λi
n and γn,s =

1

s

s∑

j=1

γjn.

Step 1: Let x0 ∈ C. Set n = 0.

Step 2: Compute yin and zin (i = 1, 2, . . . , r) such that

(3.2) yin ∈ argmin
y∈Ci

{
λi
nfi(xn, y) + ∆E1

p (xn, y)
}
,

and

zin ∈ argmin
y∈Ci

{
λi
nfi(y

i
n, y) + ∆E1

p (xn, y)
}
.

Step 3: Put zn = J∗
qE1

(
λn,rJpE1

xn + (1− λn,r)
∑r

i=1 α
i
nJpE1

zin
)
and tn = ΠQ(Azn).

Step 4: Compute vjn and ujn (j = 1, 2, . . . , s) such that

vjn ∈ argmin
w∈Qj

{
γjngj(tn, w) + ∆E2

p (tn, w)
}
,

and

ujn ∈ argmin
w∈Qj

{
γjngj(v

j
n, w) + ∆E2

p (tn, w)
}
.

Step 5: Put un = J∗
qE2

(
γn,sJpE2

tn + (1− γn,s)
∑s

j=1 β
j
nJpE2

ujn
)
.

Step 6: Compute xn+1 = ΠDnxn, where Dn =
⋂n

k=0Ok ∩ A−1(Uk) such that O0 = C,

U0 = Q and

On =
{
x ∈ C : ∆E1

p (zn, x) ≤ ∆E1
p (xn, x)

}
,

and

Un =
{
w ∈ Q : ∆E2

p (un, w) ≤ ∆E2
p (tn, w)

}
.

Step 7: Set n := n+ 1 and go to Step 2.

We replace Step 2 and Step 4 in Algorithm 3.3 by the following steps:
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Algorithm 3.4 (Parallel Extragradient Algorithm or CQ Algorithm).

Step 2a: Compute yin and zin (i = 1, 2, . . . , r) such that

(3.3) yin = ΠCiJ
∗
qE1

(JpE1
xn − λi

nAixn), zin = ΠCiJ
∗
qE1

(JpE1
xn − λi

nAiy
i
n).

Step 4a: Compute vjn and ujn (j = 1, 2, . . . , s) such that

(3.4) vjn = ΠQjJ
∗
qE2

(JpE2
tn − γjnBjtn), ujn = ΠQjJ

∗
qE2

(JpE2
tn − γjnBjv

j
n).

Lemma 3.5. If fi (i = 1, 2, . . . , r) and gj (j = 1, 2, . . . , s) satisfy in the properties (A1)–

(A4), then the solution set ME is closed and convex.

Proof. To show the closedness of ME, suppose that xn ∈ ME such that xn → x∗. This implies

that xn ∈ C =
⋂r

i=1Ci such that fi(xn, y) ≥ 0 for all y ∈ Ci and Axn ∈ Q =
⋂s

j=1Qj

such that gj(Axn, t) ≥ 0 for all t ∈ Qj . Also, Axn → Ax∗, because of A is bounded linear.

Since C and Q are closed, we have x∗ ∈ C and Ax∗ ∈ Q and from the condition (A3), we

conclude fi(x
∗, y) ≥ 0 for all y ∈ Ci and gj(Ax

∗, y) ≥ 0 for all t ∈ Qj , therefore x∗ ∈ ME.

For proving convexity of ME, assume that x∗, x′ ∈ ME and 0 ≤ λ ≤ 1. So, λx∗ + (1 −
λ)x′ ∈ C =

⋂r
i=1Ci and λAx∗ + (1 − λ)Ax′ ∈ Q =

⋂s
j=1Qj , because of C and Q are

convex. Also, from conditions (A2) and (A4), we get

(3.5) fi(y, λx
∗ + (1− λ)x′) ≤ λfi(y, x

∗) + (1− λ)fi(y, x
′) ≤ 0

for all y ∈ Ci (i = 1, 2, . . . , r) and

(3.6) gj(z, λAx
∗ + (1− λ)Ax′) ≤ λgj(z,Ax

∗) + (1− λ)gj(z,Ax
′) ≤ 0

for all z ∈ Qj (j = 1, 2, . . . , s). Let yt = ty + (1 − t)(λx∗ + (1 − λ)x′) for all y ∈ Ci, and

zt = tz + (1− t)(λAx∗ + (1− λ)Ax′) all z ∈ Qj and all 0 < t < 1. Therefore, utilizing the

conditions (A1), (A4) and inequalities (3.5) and (3.6), we obtain

0 = fi(yt, yt) ≤ tfi(yt, y) + (1− t)fi(yt, λx
∗ + (1− λ)x′) ≤ tfi(yt, y)

and

0 = gj(zt, zt) ≤ tgj(zt, y) + (1− t)gj(zt, λAx
∗ + (1− λ)Ax′) ≤ tgj(zt, z).

Hence, fi(yt, y) ≥ 0 and gj(zt, z) for all y ∈ Ci and all z ∈ Qj . Letting t → 0 and using the

condition (A3), we derive that fi(λx
∗+(1−λ)x′, y) ≥ 0 for all y ∈ Ci (i = 1, 2, . . . , r) and

gj(λAx
∗ + (1− λ)Ax′), z) ≥ 0 for all z ∈ Qj (j = 1, 2, . . . , s), so λx∗ + (1− λ)x′ ∈ ME.

Lemma 3.6. For every x∗ ∈ ME, every i = 1, 2, . . . , r, every j = 1, 2, . . . , s and every

n ∈ N ∪ {0}, we obtain
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(i) ⟨y − yin, JpE1
xn − JpE1

yin⟩ ≤ λi
nfi(xn, y)− λi

nfi(xn, y
i
n), ∀ y ∈ Ci,

(ii) ∆E1
p (zin, x

∗) ≤ ∆E1
p (xn, x

∗)− (1− cλi
n)∆

E1
p (xn, y

i
n)− (1− c′λi

n)∆
E1
p (yin, z

i
n),

(iii) ⟨w − vjn, JpE2
vjn − JpE2

tn⟩ ≤ γjngj(tn, w)− γjngj(tn, v
j
n), ∀w ∈ Qj,

(iv) ∆E2
p (ujn, Ax∗) ≤ ∆E2

p (tn, Ax
∗)− (1− cγjn)∆E2

p (tn, v
j
n)− (1− c′γjn)∆E2

p (vjn, u
j
n).

Proof. Utilizing the condition (A4) and Lemmas 2.2 and 2.3, we get

zin ∈ argmin
y∈Ci

{λi
nfi(y

i
n, y) + ∆E1

p (xn, y)}

⇐⇒ 0 ∈ λi
n∂2fi(y

i
n, z

i
n) +∇2∆

E1
p (xn, z

i
n) +NCi(z

i
n).

Using Proposition 4.9 of [7], we have ∂
(∥·∥pE

p

)
= JpE · and from (2.2), we deduce that

∇2∆
E1
p (xn, z

i
n) = JpE1

zin − JpE1
xn. Thus wi ∈ ∂2fi(y

i
n, z

i
n) and wi ∈ NCi(z

i
n) exist such

that

(3.7) 0 = λi
nwi + JpE1

zin − JpE1
xn + wi,

therefore, using the definition of ∂2fi(y
i
n, z

i
n), we get

(3.8) ⟨y − zin, wi⟩ ≤ f(yin, y)− f(yin, z
i
n), ∀ y ∈ Ci.

Let x∗ ∈ ME. Letting y = x∗ in inequality (3.8), we conclude

⟨x∗ − zin, wi⟩ ≤ f(yin, x
∗)− f(yin, z

i
n).

So, using the definition of NCi(z
i
n) and equality (3.7), we obtain

(3.9) λi
n⟨zin − y, wi⟩ ≤ ⟨y − zin, JpE1

zin − JpE1
xn⟩, ∀ y ∈ Ci.

Setting y = x∗ in inequality (3.9), we have

(3.10) ⟨x∗ − zin, JpE1
zin − JpE1

xn⟩ ≥ λi
n{f(yin, zin)− f(yin, x

∗)} ≥ λi
nf(y

i
n, z

i
n)

since f(x∗, yin) ≥ 0 and fi is pseudomonotone on Ci. Replacing x, y and z by xn, y
i
n and

zin in inequality (3.1), respectively, we get

(3.11) f(yin, z
i
n) ≥ f(xn, z

i
n)− f(xn, y

i
n)− ci1∆

E1
p (xn, y

i
n)− ci2∆

E1
p (yin, z

i
n).

Using a similar argument, since yin = argminy∈Ci

{
λi
nf(xn, y) + ∆E1

p (xn, y)
}
, we have

(3.12) ⟨y − yin, JpE1
xn − JpE1

yin⟩ ≤ λi
n{f(xn, y)− f(xn, y

i
n)}, ∀ y ∈ Ci.

Hence (i) is proved and by the same argument as (i), inequality (iii) can be proved.
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Putting y = zin in inequality (3.12), we deduce

(3.13) ⟨zin − yin, JpE1
xn − JpE1

yin⟩ ≤ λi
n{f(xn, zin)− f(xn, y

i
n)}.

Combining inequalities (3.10), (3.11) and (3.13), we get

⟨x∗ − zin, JpE1
zin − JpE1

xn⟩
≥ ⟨yin − zin, JpE1

yin − JpE1
xn⟩ − ci1λ

i
n∆

E1
p (xn, y

i
n)− ci2λ

i
n∆

E1
p (yin, z

i
n).

Using above inequality and equality (2.3), we have

∆E1
p (xn, x

∗)−∆E1
p (zin, x

∗)

≥ ∆E1
p (xn, y

i
n) + ∆E1

p (yin, z
i
n)− ci1λ

i
n∆

E1
p (xn, y

i
n)− ci2λ

i
n∆

E1
p (yin, z

i
n)

≥ ∆E1
p (xn, y

i
n) + ∆E1

p (yin, z
i
n)− cλi

n∆
E1
p (xn, y

i
n)− c′λi

n∆
E1
p (yin, z

i
n).

Hence, (ii) is proved and by a similar way, (iv) can be proved.

Lemma 3.7. For all x∗ ∈ ME and all n ∈ N ∪ {0}, we get

(i) ∆E1
p (zn, x

∗) ≤ ∆E1
p (xn, x

∗),

(ii) ∆E2
p (un, Ax∗) ≤ ∆E2

p (tn, Ax
∗).

Proof. Assume that x∗ ∈ ME. Using Lemma 3.6(ii), equalities (2.1) and (2.2), and since

J−1
pE1

= J∗
qE1

, we obtain

∆E1
p (zn, x

∗) =
1

q
∥zn∥p − ⟨x∗, Jpzn⟩+

1

p
∥x∗∥p

=
1

q

∥∥∥∥∥J
∗
qE1

(
λn,rJpE1

xn + (1− λn,r)
r∑

i=1

αi
nJpE1

zin

)∥∥∥∥∥

p

− λn,r⟨x∗, JpE1
xn⟩

− (1− λn,r)
r∑

i=1

αi
n⟨x∗, JpE1

zin⟩+
1

p
∥x∗∥p

=
1

q

∥∥∥∥∥JpE1
J∗
qE1

(
λn,rJpE1

xn + (1− λn,r)
r∑

i=1

αi
nJpE1

zin

)∥∥∥∥∥

q

− λn,r⟨x∗, JpE1
xn⟩

− (1− λn,r)
r∑

i=1

αi
n⟨x∗, JpE1

zin⟩+
1

p
∥x∗∥p

≤ 1

q
λn,r∥JpE1

xn∥q +
1

q
(1− λn,r)

r∑

i=1

αi
n∥JpE1

zin∥q − λn,r⟨x∗, JpE1
xn⟩

− (1− λn,r)
r∑

i=1

αi
n⟨x∗, JpE1

zin⟩+
1

p
∥x∗∥p



172 Fridoun Moradlou, Zeynab Jouymandi and Fahimeh Akhavan Ghassabzade

≤ 1

q
λn,r∥xn∥p +

1

q
(1− λn,r)

r∑

i=1

αi
n∥zin∥p − λn,r⟨x∗, JpE1

xn⟩

− (1− λn,r)
r∑

i=1

αi
n⟨x∗, JpE1

zin⟩+
1

p
∥x∗∥p

= λn,r∆
E1
p (xn, x

∗) + (1− λn,r)
r∑

i=1

αi
n∆

E1
p (zin, x

∗)

≤ λn,r∆
E1
p (xn, x

∗) + (1− λn,r)
r∑

i=1

αi
n∆

E1
p (xn, x

∗)

= ∆E1
p (xn, x

∗).

Applying a similar manner, we can prove that ∆E2
p (un, Ax

∗) ≤ ∆E2
p (tn, Ax

∗).

Lemma 3.8. For all n ∈ N ∪ {0}, Dn is nonempty, closed and convex.

Proof. Assume that D∞ =
⋂∞

n=0Dn ⊆ Dn and x∗ ∈ ME. Using Lemma 3.7 for all k =

0, 1, 2, . . . , n, we obtain x∗ ∈ Ok and Ax∗ ∈ Uk. Therefore x
∗ ∈ Ok∩A−1(Uk), i.e., x

∗ ∈ Dn

for all n ∈ N ∪ {0}. Hence x∗ ∈ D∞. On the other hand, sine

(3.14) ∆E1
p (zn, x) ≤ ∆E1

p (xn, x) ⇐⇒ ⟨x, JpE1
xn − JpE1

zn⟩ ≤
1

q
(∥xn∥p − ∥zn∥p),

and also, since A is bounded linear and

(3.15) ∆E2
p (un, w) ≤ ∆E2

p (tn, w) ⇐⇒ ⟨w, JpE2
tn − JpE2

un⟩ ≤
1

q
(∥tn∥p − ∥un∥p).

We can conclude that for all k = 0, 1, 2, . . . , n, Ok ∩ A−1(Uk) is closed and convex and

cosequently for all n ∈ N ∪ {0}, Dn is closed and convex.

Lemma 3.9. The optimal solutions yin and zin (i = 1, 2, . . . , r) and vjn and ujn (j =

1, 2, . . . , s) in Algorithm 3.3, are uniquely determined.

Proof. Assume that yin, ý
i
n ∈ argminy∈Ci

{
λi
nfi(xn, y) +∆E1

p (xn, y)
}
for all i = 1, 2, . . . , r.

Utilizing of Lemma 3.6(i), we have

(3.16) ⟨y − yin, JpE1
xn − JpE1

yin⟩ ≤ λi
nfi(xn, y)− λi

nfi(xn, y
i
n), ∀ y ∈ Ci

and

(3.17) ⟨y − ýin, JpE1
xn − JpE1

ýin⟩ ≤ λi
nfi(xn, y)− λi

nfi(xn, ý
i
n), ∀ y ∈ Ci.

Putting y = ýin in (3.16) and y = yin in (3.17) and adding them, we obtain

(3.18) ⟨ýin − yin, JpE1
ýin − JpE1

yin⟩ ≤ 0.
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Since JpE1
is monotone so,

(3.19) ⟨ýin − yin, JpE1
ýin − JpE1

yin⟩ ≥ 0.

Thus, using inequalities (3.18) and (3.19), we obtain ⟨ýin − yin, JpE1
ýin − JpE1

yin⟩ = 0 and

since JpE1
is one to one, we get yin = ýin (i = 1, 2, . . . , r). Using the similar argument, we

can prove that zin, v
j
n and ujn (j = 1, 2, . . . , s) are uniquely determined.

Theorem 3.10. Suppose that ME ̸= ∅, then the sequence {xn}∞n=0 generated by Algo-

rithm 3.3 strong converges to the some solution φ ∈ ME, where φ = limn→∞ΠMExn.

Proof. Suppose that x∗ ∈ ME ⊆ D∞. It follows from Lemma 3.8 that, {xn} is well defined.

Also, since xn+1 = ΠDnxn and x∗ ∈ Dn for all n ∈ N ∪ {0}, utilizing Lemma 2.1(ii), we

conclude

(3.20) 0 ≤ ∆E1
p (xn+1, x

∗) ≤ ∆E1
p (xn, x

∗)−∆E1
p (xn, xn+1) ≤ ∆E1

p (xn, x
∗).

This implies that limn→∞∆E1
p (xn, x

∗) exists and so
{
∆E1

p (xn, x
∗)
}
is bounded. Therefore,

limn→∞∆E1
p (xn, xn+1) = 0 since ∆E1

p (xn, xn+1) ≤ ∆E1
p (xn, x

∗) −∆E1
p (xn+1, x

∗) → 0. So,

from inequality (2.5) for some fixed number τ > 0,

(3.21) τ∥xn − xn+1∥ ≤ ∆E1
p (xn, x

∗)−∆E1
p (xn+1, x

∗),

so {xn} is bounded. Also, for all n,m ∈ N ∪ {0} and m ≥ n, from inequalities (3.20) and

(3.21), we get

τ∥xn − xm∥ ≤ τ
(
∥xn − xn+1∥+ ∥xn+1 − xn+2∥+ ∥xn+2 − xn+3∥+ · · ·+ ∥xm−1 − xm∥

)

≤ ∆E1
p (xn, x

∗)−∆E1
p (xn+1, x

∗) + ∆E1
p (xn+1, x

∗)−∆E1
p (xn+2, x

∗)

+ ∆E1
p (xn+2, x

∗)−∆E1
p (xn+3, x

∗) + · · ·+∆E1
p (xm−1, x

∗)−∆E1
p (xm, x∗)

≤ ∆E1
p (xn, x

∗)−∆E1
p (xm, x∗).

Since limn→∞∆E1
p (xn, x

∗) exists, {xn} ⊆ Dn−1 is a Cauchy sequence and consequently

from Lemma 3.8, {xn} converges strongly to u. On the other hand, Dn ⊆ Dn−1 ⊆ Dn−2 ⊆
· · · ⊆ D0 so {xn} ⊆ D0 = C∩A−1Q. Also, C∩A−1Q =

⋂r
i=1Ci∩A−1

(⋂s
j=1Qj

)
is closed.

Hence, we can conclude that u ∈ C and Au ∈ Q.

Since xn+1 ∈ On and from inequalities (3.20) and (2.5), τ1 > 0 exists such that

lim
n→∞

τ1∥zn − xn+1∥p ≤ lim
n→∞

∆E1
p (zn, xn+1) ≤ lim

n→∞
∆E1

p (xn, xn+1) = 0.

Thus {zn} is bounded and zn → u and consequently Azn → Au because A is bounded

linear. Utilizing Lemma 2.1(ii) and uniformly norm-to-norm continuity of JpE2
on bounded
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sets, we get

lim
n→∞

∆E2
p (tn, Au) ≤ lim

n→∞
∆E2

p (Azn, Au)

= lim
n→∞

(
1

q
∥Azn∥2 − ⟨Au, JpE2

Azn⟩+
1

p
∥Au∥p

)

= 0

(3.22)

and

(3.23) lim
n→∞

∆E1
p (zn, x

∗) = lim
n→∞

∆E1
p (xn, x

∗).

Therefore {tn} is bounded and tn → Au. On the other hand, because of Axn+1 ∈ Un and

using a similar technique as (3.22), τ2 > 0 exists such that

lim
n→∞

τ2∥un −Axn+1∥p ≤ lim
n→∞

∆E2
p (tn, Axn+1) = 0.

Hence, {un} is bounded and un → Au and also utilizing a similar technique as (3.23), we

get

lim
n→∞

∆E2
p (un, Ax

∗) = lim
n→∞

∆E2
p (tn, Ax

∗).

In addition, it follows from the proof of Lemma 3.7 that for all i = 1, 2, . . . , r and all

j = 1, 2, . . . , s, we have

∆E1
p (zin, x

∗) ≤ ∆E1
p (xn, x

∗) =⇒ ∆E1
p (zn, x

∗) ≤ ∆E1
p (xn, x

∗)

and

∆E2
p (ujn, Ax

∗) ≤ ∆E2
p (tn, Ax

∗) =⇒ ∆E2
p (un, Ax

∗) ≤ ∆E2
p (tn, Ax

∗).

Therefore, ∆E1
p (zn, x

∗) ≤ ∆E1
p (zin, x

∗) and ∆E2
p (un, Ax

∗) ≤ ∆E2
p (ujn, Ax∗). Thus, from

Lemma 3.6(ii) and (iv) and inequality (2.5), τ ′3 > 0 and τ4 > 0 exist such that, for all

i = 1, 2, . . . , r and all j = 1, 2, . . . , s, we can obtain that

lim
n→∞

τ ′3(1− cb)∥xn − yin∥p

≤ lim
n→∞

(1− cb)∆E1
p (xn, y

i
n) ≤ lim

n→∞
(1− cλi

n)∆
E1
p (xn, y

i
n)

≤ lim
n→∞

(
∆E1

p (xn, x
∗)−∆E1

p (zin, x
∗)
)
≤ lim

n→∞
(
∆E1

p (xn, x
∗)−∆E1

p (zn, x
∗)
)

= 0

(3.24)

and

lim
n→∞

τ4(1− cb)∥tn − vjn∥p

≤ lim
n→∞

(1− cb)∆E2
p (tn, v

j
n) ≤ lim

n→∞
(1− cγjn)∆

E2
p (tn, v

j
n)

≤ lim
n→∞

(
∆E2

p (tn, Ax
∗)−∆E2

p (ujn, Ax
∗)
)
≤ lim

n→∞
(
∆E2

p (tn, Ax
∗)−∆E2

p (un, Ax
∗)
)

= 0.

(3.25)
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So, using inequalities (3.24) and (3.25) and the condition (1− cb) > 0, we obtain yin → u

and vjn → Au, due to xn → u and tn → Au. It follows from (i) and (iii) of Lemma 3.6 and

the condition a ≤ λi
n, γ

j
n ≤ 1 that

(3.26) ⟨y − yin, JpE1
xn − JpE1

yin⟩ ≤ fi(xn, y)− afi(xn, y
i
n), ∀ y ∈ Ci, ∀ 1 ≤ i ≤ r

and

(3.27) ⟨w − vjn, JpE2
vjn − JpE2

tn⟩ ≤ gj(tn, w)− agj(tn, v
j
n), ∀w ∈ Qj , ∀ 1 ≤ j ≤ s.

By letting n → ∞ in inequalities (3.26) and (3.27), it follows from the conditions (A1)

and (A3) and uniformly norm-to-norm continuity of JpE1
and JpE2

on bounded sets that

u ∈ C =

r⋂

i=1

Ci such that fi(u, y) ≥ 0, ∀ y ∈ Ci

and

Au ∈ Q =

s⋂

i=1

Qj such that gj(Au,w) ≥ 0, ∀w ∈ Qj ,

so u ∈ ME.

Now, assume that hn = ΠMExn, using inequality (3.20), we have

(3.28) ∆E1
p (xn+1, hn) ≤ ∆E1

p (xn, hn).

Thus, utilizing Lemma 2.1(iii) and inequality (3.28), we get

∆E1
p (xn+1, hn+1) = ∆E1

p (xn+1,ΠMExn+1) ≤ ∆E1
p (xn, hn).

Hence, limn→∞∆E1
p (xn, hn) exists and

{
∆E1

p (xn, hn)
}

is bounded and so (2.5) implies

{hn} is bounded. Since hn+m = ΠMExn+m for all m ∈ N, utilizing Lemma 2.1(ii) and

(3.28), we get

∆E1
p (xn+m, hn) + ∆E1

p (xn+m, hn+m) ≤ ∆E1
p (xn+m, hn) ≤ ∆E1

p (xn, hn),

thus we can conclude that

∆E1
p (xn+m, hn) ≤ ∆E1

p (xn, hn)−∆E1
p (xn+m, hn+m).

So, using (2.5) and the above inequality, there exists τ3 > 0 such that

τ3∥hn+m − hn∥p ≤ ∆E1
p (xn+m, hn) ≤ ∆E1

p (xn, hn)−∆E1
p (xn+m, hn+m).

Hence,

τ3∥hn+m − hn∥p ≤ ∆E1
p (xn, hn)−∆E1

p (xn+m, hn+m) → 0.
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So, τ3∥hn+m − hn∥p → 0. This implies that {hn} ⊆ ME is a Cauchy sequence and

so converges strongly to φ ∈ ME, due to Lemma 3.5 implies that ME is closed. Using

Lemma 2.1(i), we get ⟨u − hn, JpExn − JpEhn⟩ ≤ 0, taking the limits as n → ∞, we

have ⟨u− φ, JpEu− JpEφ⟩ ≤ 0, because JpE1
is uniformly norm-to-norm continuity of on

bounded sets. Also, ⟨u − φ, JpEu − JpEφ⟩ ≥ 0, due to JpE1
is monotone. Consequently,

u = φ, since JpE1
is one to one. Therefore xn → φ, where φ = limn→∞ΠMExn.

Theorem 3.11. Suppose that MS ̸= ∅, then the generated sequence {xn}∞n=0 by Algo-

rithm 3.4 strong converges to the some solution φ ∈ MS, where φ = limn→∞ΠMSxn.

Proof. In Algorithm 3.3, putting fi(x, y) = ⟨y − x,Aix⟩ for all x, y ∈ Ci (i = 1, 2, . . . , r).

Also, setting gj(x
′, y′) = ⟨y′−x′, Bjx

′⟩ for all x′, y′ ∈ Qj (j = 1, 2, . . . , s), where Ai : Ci →
E∗

1 and Bj : Qj → E∗
2 are two continuous mappings. Then, ME = MS and using (2.4), (3.2)

and Lemma 3.9, we have

yin = argmin
y∈Ci

{
⟨y − xn, λ

i
nAixn⟩+∆E1

p (xn, y)
}

= argmin
y∈Ci

{
⟨y − xn, λ

i
nAixn⟩+ ⟨y − xn, JpE1

y − JpE1
xn⟩ −∆E1

p (y, xn)
}

= argmin
y∈Ci

{〈
y − xn, JpE1

y − (JpE1
xn − λi

nAixn)
〉
−∆E1

p (y, xn)
}
.

(3.29)

The minimum amount of (3.29) occurs when ⟨yin − xn, JpE1
yin − (JpE1

xn − λi
nAixn)⟩ ≤ 0.

Consequently, utilizing Lemma 2.1(i), we get yin = ΠCiJ
∗
qE1

(JpE1
xn − λi

nAixn). Using the

same argument for zin, we have

zin = argmin
y∈Ci

{
⟨y − yin, λ

i
nAiy

i
n⟩+∆E1

p (xn, y)
}

= argmin
y∈Ci

{
⟨y − yin, λ

i
nAiy

i
n⟩+ ⟨y − yin, JpE1

y − JpE1
xn⟩

+ ⟨yin − xn, JpE1
y − JpE1

xn⟩ −∆E1
p (y, xn)

}

= argmin
y∈Ci

{〈
y − yin, JpE1

y − (JpE1
xn − λi

nAiy
i
n)
〉

+ ⟨yin − xn, JpE1
y − JpE1

xn⟩ −∆E1
p (y, xn)

}

= argmin
y∈Ci

{〈
y − yin, JpE1

y − (JpE1
xn − λi

nAiy
i
n)
〉
+∆E1

p (xn, y
i
n)−∆E1

p (y, yin)
}
.

(3.30)

So, the minimum amount of (3.30) occurs when

⟨zin − xn, JpE1
zin − (JpE1

xn − λi
nAiy

i
n)⟩ ≤ 0.

Consequently, utilizing Lemma 2.1(i), we get zin = ΠCiJ
∗
qE1

(JpE1
xn − λi

nAiy
i
n).

Using the same argument as above, we can obtain Step 4a of Algorithm 3.4 from Algo-

rithm 3.3. Hence, utilizing the analogous argument such as Theorem 3.10, we can conclude

that {xn} converge strongly to the some solution φ ∈ MS, where φ = limn→∞ΠMSxn.
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Remark 3.12. In a real Hilbert space, if r = s = 1, then (3.3) and (3.4) reduce to the

classical extragradient method which has been introduced by Korpelevich [17].

4. Numerical illustrations

In this section, to investigate the behavior of our algorithms, we present some numerical

examples in finite and infinite dimensional spaces. Moreover, to show the efficiency of our

algorithms, we compare the numerical results of them with other ones in the literature.

In finite dimensional case, the optimization subproblems have been solved by FMINCON

optimization toolbox in MATLAB R2015a. For more details about the notations which

are used in this section, we refer readers to [4, 5].

4.1. Finite dimensional case

Example 4.1. In Algorithm 3.3, put r = s = 2, E1 = R2 and E2 = R3. Also, assume

that C1 = {x ∈ R2 : ⟨x, p⟩ ≥ −2} and C2 = {x ∈ R2 : ⟨x, p⟩ ≤ 4}, where p = (1, 2).

Therefore, C = C1 ∩ C2 = {x ∈ R2 : −2 ≤ ⟨x, p⟩ ≤ 4}. Also, take

A =




1 −1

−0.5 2

3 −5


 , Q1 = {x ∈ R3 : ⟨x, q⟩ ≥ −3} and Q2 = {x ∈ R3 : ⟨x, q⟩ ≤ 2},

where q = (−1, 2, 5). It easy to see that Q = {x ∈ R3 : −3 ≤ ⟨x, q⟩ ≤ 2} and

ΠQx =
1

2
PQx =

1

2





x− ⟨x,q⟩−2
∥q∥2 q if ⟨x, q⟩ > 2,

x if −3 ≤ ⟨x, q⟩ ≤ 2,

x− ⟨x,q⟩+3
∥q∥2 q if ⟨x, q⟩ < −3.

Now, suppose that

f1(x, y) = 3∥y∥2 + 2⟨y, x⟩ − 5∥x∥2, f2(x, y) = 4∥y∥2 + 4⟨y, x⟩ − 8∥x∥2,
g1(x, y) = ∥y∥2 + 3⟨y, x⟩ − 4∥x∥2, g2(x, y) = ∥y∥2 + ⟨y, x⟩ − 2∥x∥2.

So, f1, f2, g1 and g2 satisfy in the conditions (A1)–(A5) with c11 = c12 = 2, c21 = c22 = 4,

c′11 = c′12 = 3 and c′21 = c′22 = 1, respectively. Consequently, min
{
1
c ,

1
c′

}
= 1

4 . Hence

ME = {0}.
Now, assume that λ1

n =
(
1
6

)n+1
, λ2

n = 1
5 − 1

2n+10 , γ
1
n =

(
1
5

)n+1
, γ2n = 1

4 − 1
n+6 . Also,

λi
nfi(xn, y

i
n) + ∆E1

p (xn, y
i
n) = min

y∈Ci

{
λi
nfi(xn, y) + ∆E1

p (xn, y)
}
, i = 1, 2,

λi
nfi(y

i
n, z

i
n) + ∆E1

p (xn, z
i
n) = min

y∈Ci

{
λi
nfi(y

i
n, y) + ∆E1

p (xn, y)
}
, i = 1, 2,
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γjngj(tn, v
j
n) + ∆E2

p (tn, v
j
n) = min

w∈Qj

{
γjngj(tn, w) + ∆E2

p (tn, w)
}
, j = 1, 2,

γjngj(v
j
n, u

j
n) + ∆E2

p (tn, u
j
n) = min

w∈Qj

{
γjngj(v

j
n, w) + ∆E2

p (tn, w)
}
, j = 1, 2.

Furthermore, zn = λ1
n+λ2

n
2 xn+

(
1−λ1

n+λ2
n

2

)
(α1

nz
1
n+α2

nz
2
n), un = γ1

n+γ2
n

2 tn+
(
1− γ1

n+γ2
n

2

)
(β1

nu
1
n+

β2
nu

2
n) and tn = ΠQ(Azn). Now, assume that α1

n = 5
8 − 1

n+9 , α
2
n = 3

8 +
1

n+9 , β
1
n = 3

7 − 1
2n+8 ,

β2
n = 4

7 + 1
2n+8 . Also, xn+1 = ΠDnxn = 1

2PDnxn = 1
2 argminx∈Dn

∥x − xn∥2 which

Dn =
⋂n

k=0Ok ∩
⋂n

k=0A
−1(Uk) and therefore using (3.14) and (3.15), we get

n⋂

k=0

Ok =
n⋂

k=0

{
x ∈ C : ⟨x, xk − zk⟩ ≤

1

2
(∥xk∥2 − ∥zk∥2)

}

and

n⋂

k=0

A−1(Uk) =

n⋂

k=0

{
A−1w : w ∈ Q and ⟨w, tk − uk⟩ ≤

1

2
(∥tk∥2 − ∥uk∥2)

}
.

Table 4.1: Obtained results for convergence behavior of the sequence {xn} generated by

algorithms (M1)–(M4) with starting point x0 = (−5, 2).

n (M1) (M2) (M3) (M4)

0 5.3852 5.3852 5.3852 5.3852

1 0.5590 0.9224 1.7145 0.2310

2 0.2365 0.5605 1.1923 0.7404

3 0.1035 0.3977 1.0275 2.5730

4 0.0471 0.2881 0.8909 8.2476

5 0.0210 0.2094 4.3479 0.0145
...

...
...

...
...

STOP 11 40 33 500

CPU(s) 2.600s 13.921s 11.467s 71.343s

Now, to get some comparison results, we consider the following algorithms and theo-

rems with above conditions, starting point x0 = (−5, 2) and stopping criteria ∥xn∥ < 10−3:

(M1) Our Algorithm 3.3 and Theorem 3.10.

(M2) Algorithm 3.3 and Theorem 3.1 of [16] with L1 = c, L2 = c′, ρik = λi
n, r

j
k = γjn and

µ = 0.1.
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(M3) Algorithm 3.4 and Theorem 3.2 of [16] with the considered condition for (M2).

(M4) Algorithm 3.3 and Theorem 1 of [11] with λ = 1
9 , µ = 1

3 , F1 = g1, F2 = g2 and

rn = γ1n.

The numerical results for the sequence {xn} generated by algorithms (M1)–(M4), show

that {∥xn∥} and consequently, {xn} converges strongly to 0, see Table 4.1 and Figure 4.1.

Also, the number of iterations and CPU times to get the solution imply that our paral-

lel extragradient method for solving (MSSEP), i.e., (M1) is faster than the other three

algorithms.
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n (M1) (M2) (M3) (M4)

0 5.3852 5.3852 5.3852 5.3852
1 0.5590 0.9224 1.7145 0.2310
2 0.2365 0.5605 1.1923 0.7404
3 0.1035 0.3977 1.0275 2.5730
4 0.0471 0.2881 0.8909 8.2476
5 0.0210 0.2094 4.3479 0.0145
...

...
...

...
...

STOP 11 40 33 500
CPU(s) 2.600s 13.921s 11.467s 71.343s

Table 1. Obtained results for convergence behavior of the sequence {xn} generated by algo-

rithms (M1) − (M4) with starting point x0 = (−5, 2).

The numerical results for the sequence {xn} generated by algorithms (M1)−(M4), show that

{∥xn∥} and consequently, {xn} converges strongly to 0, see TABLE 1 and FIGURE 1. Also,

the number of iterations and CPU times to get the solution imply that our parallel extra-

gradient method for solving (MSSEP), i.e., (M1) is faster than the other three algorithms.

Figure 1. Comparison results for the sequence {xn} generated by methods (M1) − (M4) with
starting point x0 = (−5, 2).

Example 4.2. In Algorithm 2, suppose that Ci, Qj , λ
i
n, γj

n, αi
n, βj

n for all i, j = 1, 2 and

A, tn, xn+1, p, q are the same as Example 4.1. Also, let A1 =

[
3 −2

−4 5

]
, A2 =

[
2 1

−3 −4

]
,

Figure 4.1: Comparison results for the sequence {xn} generated by methods (M1)–(M4)

with starting point x0 = (−5, 2).

Example 4.2. In Algorithm 3.4, suppose that Ci, Qj , λ
i
n, γ

j
n, αi

n, β
j
n for all i, j = 1, 2

and A, tn, xn+1, p, q are the same as in Example 4.1. Also, let

A1 =


 3 −2

−4 5


 , A2 =


 2 1

−3 −4


 , B1 =




4 −1 2

3 −4 7

2 −3 −1


 and B2 =




−3 −2 1

6 0 2

8 5 −3


 .

Therefore, MS = {0}. It is straightforward to calculate that

ΠC1x =
1

2
PC1x =

1

2

(
max

{
0,

−2− ⟨x, p⟩
∥p∥2

}
p+ x

)
,

ΠC2x =
1

2
PC2x =

1

2

(
min

{
0,

4− ⟨x, p⟩
∥p∥2

}
p+ x

)
,

ΠQ1x =
1

2
PQ1x =

1

2

(
max

{
0,

−3− ⟨x, q⟩
∥q∥2

}
q + x

)
,

ΠQ2x =
1

2
PQ2x =

1

2

(
min

{
0,

2− ⟨x, q⟩
∥q∥2

}
q + x

)
,
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and also

y1n =
1

2
PC1(xn − λ1

nA1xn), y2n =
1

2
PC2(xn − λ2

nA2xn),

z1n =
1

2
PC1(xn − λ1

nA1y
1
n), z2n =

1

2
PC2(xn − λ2

nA2y
2
n),

v1n =
1

2
PQ1(tn − γ1nB1tn), v2n =

1

2
PQ2(tn − γ2nB2tn),

u1n = PQ1(tn − γ1nB1v
1
n), u2n = PQ2(tn − γ2nB2v

2
n).

Table 4.2: The convergence behavior of the sequence {xn} generated by algorithms (M5)–

(M7) with starting point x0 = (−4, 3).

n (M5) (M6) (M7)

0 1.0022 5.000 5.000

1 0.7975 5.7989 5.5544

2 0.5979 6.1424 5.4915

3 0.4276 7.1049 5.6778

4 0.2811 8.5045 5.4214

5 0.1582 10.3512 6.1779
...

...
...

...

STOP 21 2130 No

CPU(s) 1.360s 64.021s No
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B1 =




4 −1 2
3 −4 7
2 −3 −1


 and B2 =




−3 −2 1
6 0 2
8 5 −3


. Therefore, MS = {0}. It is straightfor-

ward to calculate that

ΠC1x =
1

2
PC1x =

1

2
(max

{
0,

−2 − ⟨x, p⟩
∥p∥2

}
p+x) & ΠC2x =

1

2
PC2x =

1

2
(min

{
0,

4 − ⟨x, p⟩
∥p∥2

}
p+x),

and

ΠQ1x =
1

2
PQ1x =

1

2
(max

{
0,

−3 − ⟨x, q⟩
∥q∥2

}
q+x) & ΠQ2x =

1

2
PQ2x =

1

2
(min

{
0,

2 − ⟨x, q⟩
∥q∥2

}
q+x),

and also,

y1
n =

1

2
PC1(xn − λ1

nA1xn), y2
n =

1

2
PC2(xn − λ2

nA2xn),

z1
n =

1

2
PC1(xn − λ1

nA1y
1
n), z2

n =
1

2
PC2(xn − λ2

nA2y
2
n),

v1
n =

1

2
PQ1(tn − γ1

nB1tn), v2
n =

1

2
PQ2(tn − γ2

nB2tn),

u1
n = PQ1(tn − γ1

nB1v
1
n), u2

n = PQ2(tn − γ2
nB2v

2
n).

Now, we consider the following algorithms and theorems with the considered conditions in

Example 4.1, starting point x0 = (−4, 3) and stopping condition ∥xn∥ < 10−4 and compare

their results with each other.

(M5) Our Algorithm 2 and Theorem 3.2.

(M6) Corollary 3.2 of [17] with Fi = Ai, Gj = Bj, µ = 0.02 and L1, L2, ρ
i
k, r

j
k are the same

as (M2).

(M7) Corollary 3.4 of [17] with the considered conditions in (M6).

The obtained numerical results for the sequence {xn} generated by the above methods, i.e.,

(M5) − (M7), show that {xn} converges strongly to 0, see TABLE 2 and FIGURE 2.The

number of iterations and also CPU times to get the solution for the sequence {xn} show that

our Algorithm, (M5), reaches the stopping condition faster than the other schemes.

Figure 2. Obtained results for the sequence {xn} generated by algorithms (M5) − (M7) with
starting point x0 = (−4, 3).Figure 4.2: Obtained results for the sequence {xn} generated by algorithms (M5)–(M7)

with starting point x0 = (−4, 3).

Now, we consider the following algorithms and theorems with the considered conditions

in Example 4.1, starting point x0 = (−4, 3) and stopping condition ∥xn∥ < 10−4 and

compare their results with each other.
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(M5) Our Algorithm 3.4 and Theorem 3.11.

(M6) Corollary 3.2 of [16] with Fi = Ai, Gj = Bj , µ = 0.02 and L1, L2, ρ
i
k, r

j
k are the

same as in (M2).

(M7) Corollary 3.4 of [16] with the considered conditions in (M6).

The obtained numerical results for the sequence {xn} generated by the above methods,

i.e., (M5)–(M7), show that {xn} converges strongly to 0, see Table 4.2 and Figure 4.2. The

number of iterations and also CPU times to get the solution for the sequence {xn} show

that our algorithm, (M5), reaches the stopping condition faster than the other schemes.

4.2. Infinite dimensional case

Example 4.3. In Algorithm 3.4, put r = s = 2 and E1 = E2 = L2[1, 2] with

⟨x, y⟩ =
∫ 2

1
x(t)y(t) dt and ∥x∥2 =

∫ 2

1
x2(t) dt,

and also assume that

C1 = {x ∈ L2[1, 2] : ⟨x, t2⟩ ≥ −2} and C2 = {x ∈ L2[1, 2] : ⟨x, t2⟩ ≤ 4}.

Therefore,

C = C1 ∩ C2 = {x ∈ L2[1, 2] : −2 ≤ ⟨x, t2⟩ ≤ 4}.

Furthermore, take A = 2I, consequently A∗ = 2I, A−1 = 1
2I and ∥A∥ = 2. Also, set

Q1 = {x ∈ L2[1, 2] : ⟨x, t3⟩ ≥ −3} and Q2 = {x ∈ L2[1, 2] : ⟨x, t3⟩ ≤ 2}.

Thus, it is readily seen that Q = {x ∈ L2[1, 2] : −3 ≤ ⟨x, t3⟩ ≤ 2} and

ΠQx =
1

2
PQx =

1

2





x− ⟨x,t3⟩−2
∥t3∥2 t3, ⟨x, t3⟩ > 2,

x, −3 ≤ ⟨x, t3⟩ ≤ 2,

x− ⟨x,t3⟩+3
∥t3∥2 t3, ⟨x, t3⟩ < −3.

Moreover, A1 = 2I, A2 = 4I, B1 = 3I and B2 = I. Therefore, we can conclude that

ΠC1x =
1

2
PC1x =

1

2
max

{
0,

−2− ⟨x, t2⟩
∥t2∥2

}
t2 + x,

ΠC2x =
1

2
PC2x =

1

2
min

{
0,

4− ⟨x, t2⟩
∥t2∥2

}
t2 + x,

ΠQ1x =
1

2
PQ1x =

1

2
max

{
0,

−3− ⟨x, t3⟩
∥t3∥2

}
t3 + x,

ΠQ2x =
1

2
PQ2x =

1

2
min

{
0,

2− ⟨x, t3⟩
∥t3∥2

}
t3 + x,
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where λi
n, γ

j
n, αi

n, β
j
n, yin, z

i
n, v

j
n, u

j
n for all i, j = 1, 2 are the same as in Example 4.1 and

tn = ΠQ(2zn) =
1
2PQ(2zn). Also, using Proposition 29.23 of [4], we get xn+1 = ΠDnxn =

1
2PDnxn, consequently MS = {0}.

Table 4.3: The convergence behavior of the sequence {xn} generated by algorithms (M8)–

(M10) with starting point x0 =
1
2 ln(t).

n (M8) (M9) (M10)

0 0.2170 0.2170 0.2170

1 0.0216 0.1644 0.1728

2 0.0021 0.1387 0.1489

3 0.0002 0.1207 0.1316

4 0.0001 0.1059 0.1173
...

...
...

...

STOP 6 82 102

CPU(s) 0.382s 1.136s 80.467s
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n (M8) (M9) (M10)

0 0.2170 0.2170 0.2170
1 0.0216 0.1644 0.1728
2 0.0021 0.1387 0.1489
3 0.0002 0.1207 0.1316
4 0.0001 0.1059 0.1173
...

...
...

...
STOP 6 82 102
CPU(s) 0.382s 1.136s 80.467s

Table 3. The convergence behavior of the sequence {xn} generated by algorithms (M8)−(M10)

with starting point x0 =
1

2
ln(t).

where λi
n, γj

n, αi
n, βj

n, yi
n, zi

n, vj
n, uj

n for all i, j = 1, 2 are the same as Example 4.1 and tn =

ΠQ(2zn) = 1
2PQ(2zn). Also, using Proposition 29.23 of [5], we get xn+1 = ΠDnxn = 1

2PDnxn,

consequently MS = {0}.

Now, we consider following algorithms and theorems with the conditions of Example 4.3,

starting point x0 = 1
2 ln(t) and the stopping condition ∥xn∥ < 10−4 and compare their results

with each other.

(M8) Our Algorithm 2 and Theorem 3.2.

(M9) Corollary 3.2 of [17] with Fi = Ai, Gj = Bj, µ = 0.02 and L1, L2, ρ
i
k, r

j
k are the same

as (M2).

(M10) Corollary 3.4 of [17] with the considered conditions in (M9).

Comparison results which are reported in TABLE 3 and FIGURE 3 for the sequence {xn}
generated by methods (M8) − (M10), show that {xn} converges strongly to 0. The number

of iterations and also CPU times to get the solution for the sequence {xn} show that our

Algorithm, (M8), reaches the stopping condition faster than the other two algorithms.

Figure 3. Obtained results for the sequence {xn} generated by algorithms (M8)− (M10) with

starting point x0 =
1

2
ln(t).

Figure 4.3: Obtained results for the sequence {xn} generated by algorithms (M8)–(M10)

with starting point x0 =
1
2 ln(t).

Now, we consider following algorithms and theorems with the conditions of Exam-

ple 4.3, starting point x0 = 1
2 ln(t) and the stopping condition ∥xn∥ < 10−4 and compare

their results with each other.

(M8) Our Algorithm 3.4 and Theorem 3.11.

(M9) Corollary 3.2 of [16] with Fi = Ai, Gj = Bj , µ = 0.02 and L1, L2, ρ
i
k, r

j
k are the

same as in (M2).

(M10) Corollary 3.4 of [16] with the considered conditions in (M9).
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Comparison results which are reported in Table 4.3 and Figure 4.3 for the sequence {xn}
generated by methods (M8)–(M10), show that {xn} converges strongly to 0. The number

of iterations and also CPU times to get the solution for the sequence {xn} show that our

algorithm, (M8), reaches the stopping condition faster than the other two algorithms.

5. Conclusions

Utilizing Bregman projections, we have proposed a new parallel extragradient and some

new CQ algorithms for solving the multiple-sets split equilibrium problem and the multiple-

sets split variational inequality problem in p-uniformly convex and uniformly smooth Ba-

nach spaces. We have proven some theorems to show that the generated iterates by our

schemes are strongly convergent. To show the efficiency of our algorithm, we have pre-

sented some comparative numerical examples between our algorithms and some other ones

in the literature. The number of iterations and also CPU times have shown that conver-

gence of the generated sequences by parallel extragradient and CQ algorithms are faster

than some existing schemes in the literature.
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[23] F. Schöpfer, T. Schuster and A. K. Louis, An iterative regularization method for the

solution of the split feasibility problem in Banach spaces, Inverse Problems 24 (2008),

no. 5, 055008, 20 pp.

[24] J. J. Strodiot, T. T. V. Nguyen and V. H. Nguyen, A new class of hybrid extragradient

algorithms for solving quasi-equilibrium problems, J. Global Optim. 56 (2013), no. 2,

373–397.

[25] J. J. Strodiot, P. T. Vuong and T. T. V. Nguyen, A class of shrinking projection ex-

tragradient methods for solving non-monotone equilibrium problems in Hilbert spaces,

J. Global Optim. 64 (2016), no. 1, 159–178.

[26] Y. Takahashi, K. Hashimoto and M. Kato, On sharp uniform convexity, smoothness,

and strong type, cotype inequalities, J. Nonlinear Convex Anal. 3 (2002), no. 2, 267–

281.

[27] D. Q. Tran, M. L. Dung and V. H. Nguyen, Extragradient algorithms extended to

equilibrium problems, Optimization 57 (2008), no. 6, 749–776.

[28] P. T. Vuong, J. J. Strodiot and V. H. Nguyen, Extragradient methods and linesearch

algorithms for solving Ky Fan inequalities and fixed point problems, J. Optim. Theory

Appl. 155 (2012), no. 2, 605–627.

[29] , On extragradient-viscosity methods for solving equilibrium and fixed point

problems in a Hilbert space, Optimization 64 (2015), no. 2, 429–451.

Fridoun Moradlou

Department of Mathematics, Sahand University of Technology, Tabriz, Iran

E-mail addresses: moradlou@sut.ac.ir, fridoun.moradlou@gmail.com

Zeynab Jouymandi and Fahimeh Akhavan Ghassabzade

Department of Mathematics, Faculty of sciences, University of Gonabad, Gonabad, Iran

E-mail addresses: z jouymandi@sut.ac.ir, zjouymandi@gmail.com,

dakhavan@gonabad.ac.ir, akhavan gh@yahoo.com


	Introduction
	Preliminaries
	Parallel extragradient methods
	Numerical illustrations
	Finite dimensional case
	Infinite dimensional case

	Conclusions

