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Composition Operators on Hilbert Spaces of Dirichlet Series

Maofa Wang and Min He*

Abstract. Motivated by a theorem of Gordon and Hedenmalm in 1999, the study of

composition operators acting on various scales of function spaces of Dirchlet series has

arisen intensive interest. In this paper, we characterize the boundedness of compo-

sition operators induced by specific Dirichlet series symbols from Bergman space to

Hardy space of Dirichlet series.

1. Introduction

Let S = S(G) be the class of all analytic self-maps of a domain G of the complex plane

C and H(G) denote the space of all analytic functions on G. Each φ ∈ S induces a

composition operator Cφ : H(G) → H(G) defined as follows:

Cφf := f ◦ φ.

With regard to the theory of composition operators acting on analytic function spaces,

Gordon and Hedenmalm [11] initiated the study of composition operators on the Hardy

space of Dirichlet series H 2. A Dirichlet series f(s) =
∑∞

n=1 ann
−s belongs to H 2 if

∥f∥2H 2 :=
∞∑
n=1

|an|2 <∞.

By the Cauchy–Schwarz inequality, we observe that the elements of H 2 are analytic in

the half-plane C1/2, where for any real number θ,

Cθ := {s ∈ C : Re s > θ}.

The present paper is devoted to discussing the basic properties of composition operators

between Bergman spaces and Hardy spaces of Dirichlet series.
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First of all, let us recall our function spaces to work on. Let {ωn}n≥1 be a sequence of

nonnegative numbers. The space Hω is defined by

Hω =

f(s) =
∞∑
n=1

ann
−s : ∥f∥Hω =

( ∞∑
n=1

|an|2

ωn

)1/2

<∞

 .

For α > 0, the Bergman space Dα consists of Dirichlet series f(s) =
∑∞

n=1 ann
−s such

that

∥f∥2Dα
:=

∞∑
n=1

|an|2

[d(n)]α
<∞,

where d(n) denotes the number of divisors of the positive integer n. Due to d(n) = O(nϵ)

for every ϵ > 0 (see [12, Theorem 315]), one readily observes that Dα is a space of analytic

functions in C1/2 by Cauchy–Schwarz inequality.

The algebra H ∞ of bounded Dirichlet series on the right half-plane is defined in [15]

by Maurizi and Queffélec. We shall denote by ∥ · ∥∞ the norm on H ∞

∥f∥∞ := sup
Re s>0

|f(s)|.

As is well known, the main result in [8,18] demonstrated that composition operator Cφ is

bounded on H 2 if and only if φ is a member of the following class.

Definition 1.1. The Gordon–Hedenmalm class, denoted G , is the class of analytic func-

tions φ : C1/2 → C1/2 which can be expressed as

φ(s) = c0s+ ψ(s),

where c0 is a nonnegative integer, the Dirichlet series ψ converges uniformly in Cϵ for

every ϵ > 0 and has the following properties:

(a) If c0 > 0, then either ψ ≡ 0 or ψ(C0) ⊆ C0;

(b) If c0 = 0, then ψ(C0) ⊆ C1/2.

From then on, the research of composition operators on various scales of function

spaces of Dirichlet series has aroused great interest, see for example [1–5, 7, 10, 16, 17].

In particular, Bailleul and Bervig [2] extended the boundedness of composition operator

to Bergman spaces. Namely, for α > 0, a function φ : C1/2 → C1/2 induces a bounded

composition operator Cφ : Dα → Dβ, where

β =

2α − 1 if c0 = 0,

α if c0 ≥ 1
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if and only if φ ∈ G . In this paper, we follow the line of research to give some sufficient

and necessary conditions for the boundedness of composition operators induced by specific

Dirichlet series symbols from Bergman space Dα to Hardy space H 2. To simplify the

following description, we use G0 to denote the subclass of G of c0 = 0.

We need several notations to state our results. Let f be a Dirichlet series which

converges uniformly in Cϵ with ϵ > 0. For w ̸= f(+∞), the mean counting function is

defined by

Mf (w) = lim
δ→0+

lim
T→∞

π

T

∑
s∈f−1({w})
δ<Re s<∞
| Im s|≤T

Re s.

In this paper, we give the following sufficient condition for the boundedness of compo-

sition operators.

Theorem 1.2. Let α > 0 and φ ∈ G0. If Imφ is bounded on C0 and Mφ(s) = O(Re s−
1/2)2

α
for Re s→ (1/2)+, then Cφ is bounded from Dα to H 2.

As for the necessary condition, we obtain the following result.

Theorem 1.3. Let α > 0 and φ ∈ G0. If Cφ is bounded from Dα to H 2, then Mφ(s) =

O(Re s− 1/2)2
α
for Re s→ (1/2)+.

The structure of the paper is organized as follows. In Section 2, we recall some no-

tations and basic facts to be used in the sequel. Section 3 is devoted to the proof of

Theorems 1.2 and 1.3.

Notations. Throughout this paper, we use the letter C to denote absolute constants

which may change at every appearance but do not depend on the essential parameters.

We write A ≲ B or equivalently B ≳ A if there exists an inessential constant C such that

A ≤ CB. Similarly, we use the notation A ≈ B if both A ≲ B and B ≲ A hold.

2. Preliminaries

In this section, we collect some preliminaries that will be needed in the sequel.

2.1. Reproducing kernel

Let α > 0. The reproducing kernel of Dα at w in C1/2 is given by

Kα(s, w) := ζα(s+ w) =

∞∑
n=1

[d(n)]αn−(s+w).
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We recall from [19, pp. 240–241] that

(2.1) ζα(s) := [ζ(s)]2
α

∞∏
j=1

{
(1− p−s

j )2
α
(1 + 2αp−s

j + 3αp−2s
j + · · · )

}
= [ζ(s)]2

α
Φα(s),

where ζ is the Riemann zeta-function, pj denotes the j-th prime and the Euler product

Φα(s) converges absolutely in C1/2 with Φα(1) ̸= 0. Note that

∥Kα( · , w)∥2Dα
= ζα(2Rew).

Furthermore, if {wn} is any sequence of C1/2 such that Rewn → (1/2)+, then Kα( · ,wn)
∥Kα( · ,wn)∥Dα

→ 0 uniformly in C1/2+ϵ for every ϵ > 0 (see [6]).

Using the reproducing kernels, we have the following estimates for point evaluations.

Lemma 2.1. Let α > 0. Then for every f ∈ Dα and Re s > 1/2,

|f(s)| ≤
√
ζα(2Re s)∥f∥Dα .

Proof. A straightforward calculation based on reproducing kernel and duality yields

|f(s)|2 =
∣∣⟨f,Kα( · , s)⟩Dα

∣∣2 ≤ ζα(2Re s)∥f∥2Dα
.

2.2. Carleson measure

To state our results in terms of Carleson measure, we review the definition of non-conformal

spaces. For β > 0, the non-conformal Bergman space Dβ(C1/2) is the space of all analytic

functions f in C1/2 such that

∥f∥2Dβ(C1/2)
:=

∫ ∞

1/2

∫
R
|f(δ + it)|2(δ − 1/2)β−1 dtdδ <∞.

For simplicity, let H denote a Hilbert space of functions in C1/2 and µ be a positive Borel

measure on C1/2. We say that µ is a Carleson measure for H if there exists an absolute

constant C such that ∫
C1/2

|f(s)|2 dµ(s) ≤ C∥f∥2H , f ∈ H.

The infimum of all possible C in this inequality is said to be Carleson norm of µ with

respect to H.

A Carleson square is a closed square in C1/2 with one of its sides lying on the vertical

line σ = 1/2. In this paper, we mainly consider

Q(τ, ϵ) = [1/2, 1/2 + ϵ]× [τ − ϵ/2, τ + ϵ/2],
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where 0 < ϵ <∞ and τ ∈ R.
In this paper, we restrict our attention to the spaces Dα, Dβ(C1/2) for α, β > 0. Let

us start with the following well-known Carleson’s characterization for Dβ(C1/2). It can

be found in [21].

Lemma 2.2. Let β > 0 and µ be a Borel measure on C1/2. Then µ is a Carleson measure

for Dβ(C1/2) if and only if

µ(Q(τ, ϵ)) = O(ϵβ+1)

for every Carleson square Q(τ, ϵ), where the implied constant is independent of τ .

Let f(s) =
∑∞

n=1 ann
−s and D denote the differentiation operator on Dirichlet series,

Df(s) := f ′(s) = −
∞∑
n=2

an(log n)n
−s.

The following result shows the Carleson measure concerning differentiation operator.

Lemma 2.3. Let α > 0 and µ be a Borel measure on C1/2 with bounded support. Then

the following assertions are equivalent:

(1) For every Carleson square Q(τ, ϵ),

µ(Q(τ, ϵ)) = O(ϵ2
α+2),

where the implied constant is independent of τ .

(2) D : Dα → L2(µ) is bounded.

Auxiliary results will be needed to prove Lemma 2.3.

Lemma 2.4. Let α > 0, {ωn}n≥1 be a sequence of nonnegative numbers with
∑

n≤x ωn ≈
x(log x)2

α−1 and I be a bounded interval of R. Then there exists an absolute constant C

such that ∫ θ

1/2

∫
I
|f ′(δ + it)|2(δ − 1/2)2

α
dtdδ ≤ C∥f∥2Hω

for every f ∈ Hω and θ > 1/2.

Proof. Let f(s) =
∑N

n=1 ann
−s be a Dirichlet polynomial. For δ > 1/2, we calculate by

duality and Cauchy–Schwarz inequality∫
I
|f ′(δ + it)|2 dt = sup

g

∣∣∣∣∣
∫
I

N∑
n=2

an(log n)n
−δn−itg(t) dt

∣∣∣∣∣
2

= sup
g

∣∣∣∣∣
N∑

n=2

an(log n)n
−δ ĝ(log n)

∣∣∣∣∣
2

≤
N∑

n=2

|an|2

ωn

(log n)1+2α

n2δ−1
sup
g

N∑
n=2

|ĝ(log n)|2ωn

(log n)2α−1n
,

(2.2)
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where the supremum is taken over all g ∈ L2(I) of norm ≤ 1 and ĝ is the Fourier transform

of g:

ĝ(ξ) =

∫
I
e−itξg(t) dt,

which extends to an entire function of exponential type ≤ 1 (refer to [13, p. 25]). For

such ĝ, a inequality of Plancherel–Pólya (see [20, pp. 99–100]) shows that there exists an

absolute constant C1 such that

(2.3)

∫ ∞

−∞
|ĝ′(x)|2 dx ≤ C1

∫ ∞

−∞
|ĝ(x)|2 dx.

Moreover, for ξ ∈ (k, k + 1), we have

∥ĝ′∥L2(k,k+1) =

(∫ k+1

k
|ĝ′(x)|2 dx

)1/2

≥
(∫ ξ

k
|ĝ′(x)|2 dx

)1/2

=

(∫ ξ

k

∣∣∣∣∫
I
(−it)e−itxg(t) dt

∣∣∣∣2 dx
)1/2

≥
∫ ξ

k

∣∣∣∣∫
I
(−it)e−itxg(t) dt

∣∣∣∣ dx
≥
∣∣∣∣∫ ξ

k

∫
I
(−it)e−itxg(t) dtdx

∣∣∣∣ = ∣∣∣∣∫
I

∫ ξ

k
(−it)e−itx dx g(t) dt

∣∣∣∣
=

∣∣∣∣∫
I
(e−itξ − e−itk)g(t) dt

∣∣∣∣ = |ĝ(ξ)− ĝ(k)|,

which implies |ĝ(ξ)| ≤ |ĝ(k)|+ ∥ĝ′∥L2(k,k+1).

For g ∈ L2(I), recall that

(2.4) ∥g∥2L2(I) = ∥ĝ∥2L2 =
∑
k∈Z

|ĝ(k)|2.

Since
∑

n≤x ωn ≈ x(log x)2
α−1, inequalities (2.3) and (2.4) show that

N∑
n=2

|ĝ(log n)|2ωn

(log n)2α−1n
≤ |ĝ(log 2)|2ω2

(log 2)2α−1
+

∞∑
k=1

∑
n∈(ek,ek+1)

|ĝ(log n)|2ωn

(log n)2α−1n

≤ |ĝ(log 2)|2ω2

(log 2)2α−1
+

∞∑
k=1

2
(
|ĝ(k)|2 + ∥ĝ′∥2L2(k,k+1)

)
k2α−1ek

∑
n≤ek+1

ωn

≲ ∥g∥2L2(I) +

∞∑
k=1

2
(
|ĝ(k)|2 + ∥ĝ′∥2L2(k,k+1)

)
k2α−1ek

ek+1(k + 1)2
α−1

≤ ∥g∥2L2(I) + 22
α
e

( ∞∑
k=1

|ĝ(k)|2 +
∫ ∞

1
|ĝ′(x)|2 dx

)
≲ ∥g∥2L2(I).

(2.5)
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Inequalities (2.2) and (2.5) yield∫ θ

1/2

∫
I
|f ′(δ + it)|2(δ − 1/2)2

α
dtdδ ≲

N∑
n=2

|an|2

ωn

∫ θ

1/2
(log n)2

α+1n−2(δ−1/2)(δ − 1/2)2
α
dδ

≤ Γ(2α + 1)

22α+1

N∑
n=1

|an|2

ωn
,

where Γ denotes the gamma function. Using the density of Dirichlet polynomials on Hω,

we complete the proof.

We immediately observe the following corollary by Lemma 2.4.

Corollary 2.5. Let α > 0, σ > 1 and {ωn}n≥1 be a sequence of nonnegative numbers with∑
n≤x ωn ≈ x(log x)2

α−1. Then there exists a constant C > 0 such that∫ ∞

1/2

∫
R
|f ′(δ + it)|2 (δ − 1/2)2

α

|δ + it+ 1/2|σ
dtdδ ≤ C∥f∥2Hω

for every f ∈ Hω.

Proof. Let f(s) =
∑∞

n=1 ann
−s belong to Hω. One readily observes that |an| ≤

√
ωn∥f∥Hω .

Since ωn ≤
∑

k≤n ωk ≤ n(log n)2
α−1 and log n = O(nϵ) for every ϵ > 0, we deduce

√
ωn(log n) ≤ n1/2(log n)2

α−1+1/2 ≲ n3/4.

Then, for Re s > 2, we have

|f ′(s)| =

∣∣∣∣∣
∞∑
n=2

an(log n)n
−s

∣∣∣∣∣ ≤
∞∑
n=2

|an|(log n)
nRe s

≤ ∥f∥Hω

∞∑
n=2

√
ωn(log n)

nRe s

≤ ∥f∥Hω

∞∑
n=2

n−Re s+3/4

≤ ∥f∥Hω

(
2−Re s+3/4 +

∫ ∞

2
x−Re s+3/4 dx

)
≲ 2−Re s∥f∥Hω .

On account of σ > 1, Lemma 2.4 shows that∫ ∞

1/2

∫
R
|f ′(δ + it)|2 (δ − 1/2)2

α

|δ + it+ 1/2|σ
dtdδ

=

∫ 2

1/2

∫
R
|f ′(δ + it)|2 (δ − 1/2)2

α

|δ + it+ 1/2|σ
dtdδ +

∫ ∞

2

∫
R
|f ′(δ + it)|2 (δ − 1/2)2

α

|δ + it+ 1/2|σ
dtdδ

≲
∑
k

1

(1 + k2)σ/2

∫ 2

1/2

∫ k+1

k
|f ′(δ + it)|2(δ − 1/2)2

α
dtdδ

+ ∥f∥2Hω

∫ ∞

2

∫
R

2−2δ(δ − 1/2)2
α

(1 + t2)σ/2
dtdδ

≲ ∥f∥2Hω
.
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This completes the proof.

Proof of Lemma 2.3. (1) ⇒ (2). Let f belong to Dα. Since µ has bounded support, it is

easy to see that there exists a constant C1 > 0 such that∫
C1/2

|f ′(s)|2 dµ(s) =
∫
C1/2

∣∣∣∣ f ′(s)

(s+ 1/2)2α−1+2

∣∣∣∣2 |s+ 1/2|2α+4 dµ(s)

≤ C1

∫
C1/2

∣∣∣∣ f ′(s)

(s+ 1/2)2α−1+2

∣∣∣∣2 dµ(s).
Put F (s) = f ′(s)

(s+1/2)2α−1+2
. It follows from Lemma 2.2 that condition (1) implies µ is a

Carleson measure for D2α+1(C1/2). By the following asymptotic formula (refer to [19])∑
n≤x

[d(n)]α ≈ x(log x)2
α−1,

Corollary 2.5 shows that∫
C1/2

|f ′(s)|2 dµ(s) ≲
∫
C1/2

|F (s)|2 dµ(s) ≲ ∥F∥2D2α+1
≲ ∥f∥2Dα

.

(2) ⇒ (1). Consider a sequence of Carleson squares Qk = Q(τk, ϵk) with ϵk → 0+. Let

sk = 1/2 + ϵk + iτk and define the following functions

fk(s) =
Kα(s, sk)

∥Kα(s, sk)∥Dα

.

By equality (2.1), we have

|f ′k(s)|2 =
|ζ ′α(s+ sk)|2

ζα(2Re sk)
=

∣∣([ζ(s+ sk)]
2α · Φα(s+ sk))

′∣∣2
[ζ(2Re sk)]2

αΦα(2Re sk)

=

∣∣2α[ζ(s+ sk)]
2α−1 · ζ ′(s+ sk) · Φα(s+ sk) + [ζ(s+ sk)]

2α · Φ′
α(s+ sk)

∣∣2
[ζ(2Re sk)]2

αΦα(2Re sk)

≥
(
2α|ζ(s+ sk)|2

α−1 · |ζ ′(s+ sk)| · |Φα(s+ sk)| − |ζ(s+ sk)|2
α · |Φ′

α(s+ sk)|
)2

[ζ(2Re sk)]2
αΦα(2Re sk)

.

(2.6)

Let Φα(s) :=
∑∞

m=1 cmm
−s. Since Φα converges absolutely in C1/2, we have for Rew >

1/2,
∞∑

m=1

|cm|m−Rew ≲ 1.

Furthermore the fact logm = O(mϵ) for every ϵ > 0 yields that

|Φ′
α(s+ sk)| =

∣∣∣∣∣
∞∑

m=2

cm(logm)m−s−sk

∣∣∣∣∣ ≤
∞∑

m=2

|cm|(logm)m−Re s−Re sk

≲
∞∑

m=2

|cm|m−Re s−Re sk+1/4.
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Since Re s+Re sk > 1, we have Re s+Re sk − 1/4 > 3/4. Therefore,

(2.7) |Φ′
α(s+ sk)| ≲

∞∑
m=2

|cm|m−Re s−Re sk+1/4 ≲ 1.

Moreover, for every s ∈ Qk, it follows from [14, Theorems 8.3 and 8.4] that |ζ(s+ sk)| ≈
|ζ(2Re sk)| ≈ (ϵk)

−1 and |ζ ′(s+ sk)| ≈ (ϵk)
−2. Since Φα converges absolutely in C1/2 with

Φα(1) ̸= 0, these results together with inequality (2.7) show that

2α|ζ(s+ sk)|2
α−1 · |ζ ′(s+ sk)| · |Φα(s+ sk)| ≈ (ϵk)

−2α−1,

and

|ζ(s+ sk)|2
α · |Φ′

α(s+ sk)| ≲ (ϵk)
−2α ,

which implies

2α|ζ(s+ sk)|2
α−1 · |ζ ′(s+ sk)| · |Φα(s+ sk)| − |ζ(s+ sk)|2

α · |Φ′
α(s+ sk)| ≳ (ϵk)

−2α−1.

Then, by inequality (2.6), we deduce

(2.8) |f ′k(s)|2 ≳ ϵ−2α−2
k .

Then ∫
C1/2

|f ′k(s)|2 dµ(s) ≥
∫
Qk

|f ′k(s)|2 dµ(s) ≳
µ(Qk)

ϵ2
α+2

k

.

Hence

µ(Qk) ≲ ϵ2
α+2

k

∫
C1/2

|f ′k(s)|2 dµ(s) ≲ ϵ2
α+2

k ∥fk∥2Dα
= ϵ2

α+2
k .

2.3. Equivalent norm and a mean counting function

We will need the following non-injective change of variable formula concerning H 2 norm,

which can be found in [9, Theorem 1.3].

Lemma 2.6. Let φ ∈ G0. Then for every f ∈ H 2,

∥Cφf∥2H 2 = |f(φ(+∞))|2 + 2

π

∫ ∞

1/2

∫
R
|f ′(δ + it)|2Mφ(δ + it) dtdδ.

To study the property concerning the mean counting function Mφ(w), we introduce

the Nevanlinna class Nu of all Dirichlet series f which converge uniformly in Cϵ with ϵ > 0

and satisfy

lim
δ→0+

lim
T→∞

1

2T

∫ T

−T
log+ |f(δ + it)| dt <∞,

where log+ |f(δ+ it)| = max{0, log |f(δ+ it)|}. We recall the following result which plays

a significant role in our arguments. The proof can be found in [9, Lemma 6.5].
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Lemma 2.7. Let f ∈ Nu. Then for every open disc D(w, r) which does not contain

f(+∞),

Mf (w) ≤
1

πr2

∫
D(w,r)

Mf (δ + it) dtdδ.

Lemma 2.8. Let α > 0 and φ ∈ G0. Then the following statements are equivalent:

(1) Mφ(s) = O(Re s− 1/2)2
α
for Re s→ (1/2)+,

(2)
∫
Q(τ,ϵ) Mφ(δ + it) dtdδ = O(ϵ2

α+2) for every Carleson square Q(τ, ϵ), where the

implied constant is independent of τ .

Proof. (1) ⇒ (2). Consider a Carleson square Q = Q(τ, ϵ) with ϵ → 0+. From (1), we

deduce that there exists an absolute constant C such that∫
Q(τ,ϵ)

Mφ(δ + it) dtdδ ≤ C

∫
Q(τ,ϵ)

(δ − 1/2)2
α
dtdδ ≤ Cϵ2

α+2.

(2) ⇒ (1). Recall that if φ ∈ G0, then φ ∈ Nu (see [9, p. 35]). Set ϵ = Re s− 1/2. By

Lemma 2.7, we obtain

Mφ(s) ≲
1

ϵ2

∫
D(s,ϵ)

Mφ(δ + it) dtdδ ≤ 1

ϵ2

∫
Q(Im s,2ϵ)

Mφ(δ + it) dtdδ ≲ ϵ2
α
.

This completes the proof.

3. The boundedness of composition operators

The goal of this section is devoted to giving some sufficient and necessary conditions for the

boundedeness of composition operators from Bergman space to Hardy space of Dirichlet

series. We begin with the following lemma.

Lemma 3.1. Let α > 0, θ > 1/2 and φ ∈ G0. Then there exists a constant C := C(θ)

such that ∫ ∞

θ

∫
R
|P ′(δ + it)|2Mφ(δ + it) dtdδ ≤ C∥P∥2Dα

for every Dirichlet polynomial P (s) =
∑N

n=1 ann
−s.

Proof. Let e2(s) = 2−s and ϵ = θ − 1/2. Since d(n) = O(nϵ) and log n = O(nϵ) for every

ϵ > 0, we have

[d(n)]α(log n)2 ≲ [nϵ/(2α)]αnϵ/2 = nϵ.

The Cauchy–Schwarz inequality and Re s− ϵ/2 ≥ θ/2 + 1/4 > 1/2 show that

|P ′(s)|2 =

∣∣∣∣∣
N∑

n=2

an(log n)n
−s

∣∣∣∣∣
2

≤
N∑

n=2

|an|2

[d(n)]α

N∑
n=2

[d(n)]α(log n)2

n2Re s

≲ ∥P∥2Dα

N∑
n=2

n−2Re s+ϵ ≲ (log 2)22−2Re s∥P∥2Dα
= |e′2(s)|2 · ∥P∥2Dα

.
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Then, by φ ∈ G0 and Lemma 2.6, we deduce∫ ∞

θ

∫
R
|P ′(δ + it)|2Mφ(δ + it) dtdδ ≲

∫ ∞

θ

∫
R
|e′2(s)|2Mφ(δ + it) dtdδ · ∥P∥2Dα

≤ ∥Cφe2∥2H 2 · ∥P∥2Dα
≲ ∥e2∥2H 2 · ∥P∥2Dα

= ∥P∥2Dα
.

This completes the proof.

Proof of Theorem 1.2. Let P (s) =
∑N

n=1 ann
−s be a Dirichlet polynomial, then P ◦φ is a

Dirichlet series which is bounded in C0. Hence P ◦φ is in H ∞ and consequently belongs

to H 2. Let A be a constant such that | Imφ| ≤ A. Put w = δ + it, then

∥CφP∥2H 2 = |P (φ(+∞))|2 + 2

π

∫ ∞

1/2

∫ A

−A
|P ′(δ + it)|2Mφ(w) dtdδ.

Since Reφ(+∞) > 1/2 (see [11, p. 319]), we have

|P (φ(+∞))| ≲ ∥P∥Dα .

Hence, it suffices to prove that∫ ∞

1/2

∫ A

−A
|P ′(δ + it)|2Mφ(w) dtdδ ≲ ∥P∥2Dα

.

For Rew → (1/2)+, Mφ(w) = O(Rew− 1/2)2
α
, we see that there exists θ > 1/2 such

that for all 1/2 < δ = Rew < θ,

(3.1) Mφ(w) ≲ (δ − 1/2)2
α
.

We split the integral above into pieces I1 and I2 as follows:

I1 :=

∫ θ

1/2

∫ A

−A
|P ′(δ + it)|2Mφ(w) dtdδ

and

I2 :=

∫ ∞

θ

∫ A

−A
|P ′(δ + it)|2Mφ(w) dtdδ.

Since
∑

n≤x[d(n)]
α ≈ x(log x)2

α−1 (see [19]), applying Lemma 2.4 with I = [−A,A] and
inequality (3.1), we have

I1 ≲
∫ θ

1/2

∫ A

−A
|P ′(δ + it)|2(δ − 1/2)2

α
dtdδ ≲ ∥P∥2Dα

.

On the other hand, Lemma 3.1 yields

I2 ≤
∫ ∞

θ

∫
R
|P ′(w)|2Mφ(w) dtdδ ≲ ∥P∥2Dα

.
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From I1 and I2, we have ∥CφP∥H 2 ≲ ∥P∥Dα .

Assume that P denotes the class of all Dirichlet polynomials. By the density of P in

Dα, we can extend Cφ to a bounded operator T : Dα → H 2 such that T (P ) = Cφ(P )

for every P ∈ P. For any f ∈ Dα, there exists a sequence of Dirichlet polynomials {Pn}
converging to f in norm. Theorem 3 in [4] shows that for every s ∈ C1/2,

|T (f)(s)− T (Pn)(s)| ≲ ∥T (f)− T (Pn)∥H 2 ≲ ∥T∥ · ∥f − Pn∥Dα ,

which implies T (Pn(s)) converges to T (f)(s) as n → +∞. Since point evaluation at

φ(s) ∈ C1/2 is bounded by Lemma 2.1, one observes that Pn(φ)(s) converges to f(φ)(s)

when n→ +∞. Furthermore, T (Pn(s)) = Pn(φ)(s) yields T (f)(s) = f(φ(s)) = Cφ(f)(s).

Then ∥Cφf∥H 2 ≲ ∥f∥Dα .

Proof of Theorem 1.3. Let {wn}n≥1 be any sequence in C1/2 such that Rewn → (1/2)+.

Without loss of generality, we assume that

Rewn ≤ 1/2 + Reφ(+∞)

2
.

Put rn = Rewn−1/2
2 . For any s ∈ D(wn, rn), the fact Reφ(+∞) > 1/2 shows that

Re s ≤ Rewn + rn ≤ Reφ(+∞) + 1/2

2
+

Rewn − 1/2

2
< Reφ(+∞).

This means φ(+∞) is uniformly bounded away from the disc D(wn, rn). Recall that if

φ ∈ G0, then φ ∈ Nu (see [9, p. 35]). Hence Lemma 2.7 yields

Mφ(wn) ≤
1

πr2n

∫
D(wn,rn)

Mφ(δ + it) dtdδ.

Let us consider

fn(s) =
Kα(s, wn)

∥Kα(s, wn)∥Dα

.

Similar to the proof of inequality (2.8), we have

|f ′n(s)|2 ≳
1

r2
α+2

n
.

Therefore, in light of Lemma 2.6, we have

Mφ(wn)

(Rewn − 1/2)2α
≤ 1

22απ

∫
D(wn,rn)

1

r2
α+2

n
Mφ(δ + it) dtdδ

≲
∫
D(wn,rn)

|f ′k(δ + it)|2Mφ(δ + it) dtdδ ≤ ∥Cφfk∥2H 2 ≲ ∥fk∥2Dα
= 1,

which completes the proof.
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On the basis of Lemma 2.8, Theorems 1.2 and 1.3, we obtain the following results.

Corollary 3.2. Let α > 0 and φ ∈ G0. If Imφ is bounded on C0 and
∫
Q(τ,ϵ) Mφ(δ +

it) dtdδ = O(ϵ2
α+2) for every Carleson square Q(τ, ϵ), where the implied constant is inde-

pendent of τ , then Cφ is bounded from Dα to H 2.

Corollary 3.3. Let α > 0 and φ ∈ G0. If Cφ is bounded from Dα to H 2, then∫
Q(τ,ϵ) Mφ(δ + it) dtdδ = O(ϵ2

α+2) for every Carleson square Q(τ, ϵ), where the implied

constant is independent of τ .
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[3] M. Bailleul and P. Lefèvre, Some Banach spaces of Dirichlet series, Studia Math.

226 (2015), no. 1, 17–55.

[4] F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh.

Math. 136 (2002), no. 3, 203–236.

[5] , Compact composition operators on a Hilbert space of Dirichlet series, Illinois

J. Math. 47 (2003), no. 3, 725–743.

[6] F. Bayart and O. F. Brevig, Composition operators and embedding theorems for some

function spaces of Dirichlet series, Math. Z. 293 (2019), no. 3-4, 989–1014.
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