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The Least Squares Solution with the Minimal Norm to a System of Mixed

Generalized Sylvester Reduced Biquaternion Tensor Equations

Anli Wei, Ying Li*, Shufang Yue and Jianli Zhao

Abstract. In this paper, we investigate the least squares solution with the minimal

norm to the system (1.1) over reduced biquaternion via complex representation of

reduced biquaternion tensors and the Moore–Penrose inverse of tensors. Besides,

we establish some necessary and sufficient conditions for the solvability to the above

system and give an expression of the general solution to the system when the solvability

conditions are met. Moreover, the algorithm and numerical example are presented to

verify the main results of this paper.

1. Introduction

In this paper, we prescribe the following notations. Cm×n represents the set of all m× n

complex matrices, Hm×n
r represents the set of all m × n reduced biquaternion matrices.

For a positive integer N , let [N ] = {1, . . . , N}, an order N tensor A = (ai1···iN )1≤ij≤Ij (j =

1, . . . , N) is a multidimensional array with I = I1I2 · · · IN entries. RI1×···×IN , CI1×···×IN ,

HI1×···×IN
r stand for the sets of all order N and dimension I1 × · · · × IN tensors over

the real number field R, complex number field C, and real reduced biquaternion algebra

Hr, respectively. Given A = (ai1···iN j1···jM ) ∈ CI1×···×IN×J1×···×JM , define ai1···iN j1···jM
to be conjugate of ai1···iN j1···jM , and let B = (bj1···jM i1···iN ) ∈ CJ1×···×JM×I1×···×IN be

the conjugate transpose of A, where bj1···jM i1···iN = ai1···iN j1···jM , denoted by A∗. When

bj1···jM i1···iN = ai1···iN j1···jM , B is called the transpose of A, denoted by AT . A tensor

D = (di1···iN j1···jN ) ∈ CI1×···×IN×I1×···×IN is called a diagonal tensor if all its entries are zero

except for di1···iN i1···iN . For a diagonal tensor, if all the diagonal entries di1···iN i1···iN = 1,

then D is a unit tensor, denoted by I. The zero tensor with suitable order is denoted

by O. For A ∈ CI1×···×IN×J1×···×JN , the Frobenius norm ∥ · ∥ of A is defined as ∥A∥ =(∑
i1···iN j1···jN |ai1···iN j1···jN |2

)1/2
. ReA and ImA represent the real and imaginary parts
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of the complex tensor A, respectively. ⊗ stands for the Kronecker product. ∗N stands for

the Einstein product.

Reduced biquaternions were introduced by Schütte and Wenzel in 1990, and have great

applications in signal and image processing, control and system theory, neural network,

etc. Sylvester equation is a very important kind of matrix equation in matrix theory. It

is widely applied in characteristic structure configuration, aerospace control technology,

numerical solution of differential equations, pattern recognition and so on. At present,

there have been a huge amount of papers to discuss the standard Sylvester equation and

its various generalized forms [3,4,6,8,17,18,20,22]. In recent decades, tensor conceived by

Tullio Levi-Civita [10], has attracted a lot of scholars to study. Tensor equations can be

used to model many problems in quantum physics, engineering and science, general rela-

tivity, data mining and so on [1,5,14,15,19]. More and more people are getting interested

in the Sylvester tensor equation and its generalization. Some results on tensor equations

and related problems can be found in [2,7,9,11–13,16,23–26]. In particular, [2] proposed

a projection method based on the tensor format and considered the preconditioned iter-

ative solvers of Sylvester tensor equations; [9] was concerned with the conjugate gradient

least squares algorithm to solve a class of tensor equations via the Einstein product and

proved that the solution of the tensor equation can be obtained within a finite number

of iterative steps in the absence of round-off errors; [26] focused on solving high order

Sylvester tensor equation arising in control theory and proposed some effective iterative

algorithms for solving Sylvester tensor equation; [25] investigated the solution to the least

squares problem for the quaternion Sylvester tensor equation and studied the convergence

properties of the proposed iterative method; [7] established some necessary and sufficient

solvability conditions for a system of quaternary-coupled Sylvester-type quaternion tensor

equations and gave an expression of the general solution to this system when it is solv-

able; [24] gave some necessary and sufficient conditions for the solvability to a system of a

pair of coupled two-sided Sylvester-type tensor equations over the quaternion algebra and

derived some solvability conditions and expressions of the η-Hermitian solutions to some

systems of coupled two-sided Sylvester-type quaternion tensor equations as applications,

etc.

To our knowledge, there has been little information on the system of mixed generalized

Sylvester reduced biquaternion tensor equations

A1 ∗N X = B1, Y ∗N A2 = B2, A3 ∗N Z = B3,

C1 ∗N X − Y ∗N D1 = E1, C2 ∗N Z − Y ∗N D2 = E2,
(1.1)

where Aσ, Bσ, Cτ , Dτ and Eτ (σ = 1, 2, 3, τ = 1, 2) are given reduced biquaternion tensors

and X , Y and Z are unknown reduced biquaternion tensors.

Motivated by above mentioned, as well as the wide applications of Sylvester-type tensor
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equations, we in this paper discuss the least squares solution with the minimal norm of the

system of mixed generalized Sylvester tensor equations (1.1) over the reduced biquaternion

algebra based on complex representation of reduced biquaternion tensors together with

the Moore–Penrose inverse of tensors. The least squares solution with the minimal norm

of (1.1) can be stated as follows.

Problem 1.1. Given the tensors in (1.1): A1,B1 ∈ HI1×···×IN×J1×···×JN
r , A2,B2 ∈

HJ1×···×JN×K1×···×KN
r , A3,B3 ∈ HL1×···×LN×J1×···×JN

r , C1, C2,D1,D2, E1, E2 ∈
HJ1×···×JN×J1×···×JN

r and

HL =
{
(X ,Y,Z) | X ,Y,Z ∈ HJ1×···×JN×J1×···×JN

r ,

∥A1 ∗N X − B1∥2 + ∥Y ∗N A2 − B2∥2 + ∥A3 ∗N Z − B3∥2

+ ∥C1 ∗N X − Y ∗N D1 − E1∥2 + ∥C2 ∗N Z − Y ∗N D2 − E2∥2 = min
}
.

Find out (Xl,Yl,Zl) ∈ HL such that

∥(Xl,Yl,Zl)∥2 = min
(X ,Y,Z)∈HL

∥(X ,Y,Z)∥2.

The solution (Xl,Yl,Zl) in Problem 1.1 is called the minimal norm least squares solu-

tion.

The remainder of this paper is organized as follows. In Section 2, we first overview

some basic definitions and related properties with regard to a complex tensor. Then we

give its complex representation for a reduced biquaternion tensor, and on this basis we

deduce some important properties. In Section 3, we establish some necessary and sufficient

conditions for the existence of a solution to the system (1.1), and give the general solution

to this system when it is solvable. In Section 4, we give an algorithm and numerical

example to prove that our results are feasible. In Section 5, we put some conclusions.

2. Preliminaries

2.1. An introduction to tensors

Definition 2.1. [1] Suppose A ∈ CI1×···×IN×K1×···×KN , B ∈ CK1×···×KN×J1×···×JM , the

Einstein product of tensors A and B is defined by the operation ∗N via

(A ∗N B)i1···iN j1···jM =
∑

k1···kN

ai1···iNk1···kN bk1···kN j1···jM ,

where A ∗N B ∈ CI1×···×IN×J1×···×JM .

In the following, we start by introducing the Kronecker product of tensors and block

complex tensors.
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Definition 2.2. [23] Suppose A ∈ CI1×···×IN×J1×···×JN , B ∈ CK1×···×KM×L1×···×LM , the

Kronecker product of the tensors A and B is defined as

A⊗ B := (ai1···iN j1···jNB).

Remark 2.3. (1) Note that it is a ‘Kr-block tensor’ whose (s, t)-subblock is ai1···iN j1···jNB
obtained via multiplied all the entries of B by a constant ai1···iN j1···jN , where s =

iN +
∑N−1

K=1

[
(iK − 1)

∏N
L=K+1 IL

]
and t = jN +

∑N−1
K=1

[
(jK − 1)

∏N
L=K+1 JL

]
.

(2) Obviously, this Kronecker product is non-commutative, that is, A ⊗ B ≠ B ⊗ A in

general.

Furthermore, the following properties of this Kronecker product can be found in [26].

Lemma 2.4. Suppose A ∈ CI1×···×IN×J1×···×JN and B, C ∈ CK1×···×KM×L1×···×LM . Then

(1) (A⊗ B)∗ = A∗ ⊗ B∗;

(2) A⊗ (B ⊗ C) = (A⊗ B)⊗ C;

(3) A⊗ (B + C) = A⊗ B +A⊗ C and (B + C)⊗A = B ⊗A+ C ⊗ A.

For a tensor D = (dj1···jN l1···lM ) ∈ CJ1×···×JN×L1×···×LM , D(j1···jN |:) = (dj1···jN :···:) ∈
CL1×···×LM is a subblock of D. Vc(D) is obtained by lining up all the subtensors in

a column. The t-th subblock of Vc(D) is D(j1···jN |:), where t = jN +
∑N−1

K=1

[
(jK −

1)
∏N

P=K+1 JP
]
. For instance, if D = (dj1j2l1) ∈ C3×2×3, then

Vc(D) =



D(11|:)

D(12|:)

D(21|:)

D(22|:)

D(31|:)

D(32|:)


.

Lemma 2.5. Suppose A ∈ CI1×···×IN×J1×···×JN , B ∈ CK1×···×KM×L1×···×LM and D ∈
CJ1×···×JN×L1×···×LM , then we have

(A⊗ B) ∗M Vc(D) = Vc(A ∗N D ∗M BT ).
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Example 2.6. Let A = (ai1i2j1j2) ∈ C2×3×2×2 and B ∈ CK1×···×KM×L1×···×LM , then we

can obtain

A⊗ B =



a1111B a1112B a1121B a1122B

a1211B a1212B a1221B a1222B

a1311B a1312B a1321B a1322B

a2111B a2112B a2121B a2122B

a2211B a2212B a2221B a2222B

a2311B a2312B a2321B a2322B


.

For D ∈ C2×2×L1×···×LM , we can further get

(A⊗ B) ∗M Vc(D)

=



a1111B a1112B a1121B a1122B

a1211B a1212B a1221B a1222B

a1311B a1312B a1321B a1322B

a2111B a2112B a2121B a2122B

a2211B a2212B a2221B a2222B

a2311B a2312B a2321B a2322B


∗M


D(11|:)

D(12|:)

D(21|:)

D(22|:)

 =



∑
j1j2

a11j1j2D(j1j2|:) ∗M BT∑
j1j2

a12j1j2D(j1j2|:) ∗M BT∑
j1j2

a13j1j2D(j1j2|:) ∗M BT∑
j1j2

a21j1j2D(j1j2|:) ∗M BT∑
j1j2

a22j1j2D(j1j2|:) ∗M BT∑
j1j2

a23j1j2D(j1j2|:) ∗M BT


= Vc(A ∗2 D ∗M BT ).

Definition 2.7. [23] Let A = (ai1···iN j1···jM ) ∈ CI1×···×IN×J1×···×JM , B = (ai1···iNk1···kM ) ∈
CI1×···×IN×K1×···×KM . Then the ‘row block tensor’ consisting of A and B is denoted by

(A B) ∈ CαN×L1×···×LM ,

where αN = I1 × · · · × IN , Li = Ji +Ki, i = 1, . . . ,M and

(A B)i1···iN l1···lM

=


ai1···iN l1···lM , i1 · · · iN ∈ [I1]× · · · × [IN ], l1 · · · lM ∈ [J1]× · · · × [JM ],

bi1···iN l1···lM , i1 · · · iN ∈ [I1]× · · · × [IN ], l1 · · · lM ∈ Γ1 × · · · × ΓM ,

0, otherwise,

where Γi = {Ji + 1, . . . , Ji +Ki}, i = 1, . . . ,M .

Similarly, for given tensors C = (cj1···jM i1···iN ) ∈ CJ1×···×JM×I1×···×IN and D =

(dk1···kM i1···iN ) ∈ CK1×···×KM×I1×···×IN , the ‘column block tensor’ consisting of C and D is

denoted by C

D

 = (CT DT )T ∈ CL1×···×LM×αN
.
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Suppose ρ1 = (A1 B1) and ρ2 = (A2 B2) are two ‘row block tensors’, where A1 ∈
CI1×···×IN×J1×···×JM , B1 ∈ CI1×···×IN×K1×···×KM , A2 ∈ CT1×···×TN×J1×···×JM , B2 ∈
CT1×···×TN×K1×···×KM . The ‘column block tensor’ ( ρ1ρ2 ) can be written asA1 B1

A2 B2

 ∈ Cβ1×···×βN×L1×···×LM ,

where βi = Ii + Ti, i = 1, . . . , N and Lj = Jj +Kj , j = 1, . . . ,M .

Next, we present some properties with regard to the product of some ‘block tensors’.

Lemma 2.8. [23] Suppose (A B),
( C
D
)
and

(
A1 B1
A2 B2

)
are the forms as in Definition 2.7.

Then

(1) F ∗N (A B) = (F ∗N A F ∗N B) ∈ CαN×L1×···×LM ;

(2)
( C
D
)
∗N F =

(
C∗NF
D∗NF

)
∈ CL1×···×LM×αN

;

(3) (A B) ∗M
( C
D
)
= A ∗M C + B ∗M D ∈ CαN×αN

;

(4)
( C
D
)
∗N (A B) =

(
C∗NA C∗NB
D∗NA D∗NB

)
∈ CL1×···×LM×L1×···×LM ;

(5)
(

A1 B1
A2 B2

)
∗M

( C
D
)
=

(
A1∗MC+B1∗MD
A2∗MC+B2∗MD

)
∈ Cβ1×···×βN×αN

;

(6) (G H)∗N
(

A1 B1
A2 B2

)
= (G∗NA1+H∗NA2 G∗N B1+H∗N B2) ∈ CS1×···×SN×L1×···×LM ,

where F ∈ CαN×αN
, G ∈ CS1×···×SN×I1×···×IN and H ∈ CS1×···×SN×T1×···×TN .

Now we introduce the definition of the Moore–Penrose inverse of a tensor over C via

the Einstein product, which is a generalization of the Moore–Penrose inverse of a matrix.

Definition 2.9. [21] SupposeA ∈ CI1×···×IN×J1×···×JN . The tensor X ∈ CJ1×···×JN×I1×···×IN

satisfying the following four complex tensor equalities:

(1) A ∗N X ∗N A = A,

(2) X ∗N A ∗N X = X ,

(3) (A ∗N X )∗ = A ∗N X ,

(4) (X ∗N A)∗ = X ∗N A

is called the Moore–Penrose inverse of A, denoted by A†.

The following lemma provides the solvability conditions and general solution to the

multilinear system A ∗N X = B, which is used to prove our main results thereinafter.
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Lemma 2.10. [21] Suppose A ∈ CI1×···×IN×J1×···×JN , X ∈ CJ1×···×JN×K1×···×KN and

B ∈ CI1×···×IN×K1×···×KN . Then we have the following statements:

(1) The least squares solutions of the multilinear system A∗N X = B can be represented

as

X = A† ∗N B + (I − A† ∗N A) ∗N W,

where W ∈ RJ1×···×JN×K1×···×KN is an arbitrary tensor. The minimal norm least

squares solution is X = A† ∗N B.

(2) The multilinear system A∗NX = B has a solution X ⋆ if and only if A∗NA†∗NB = B.
In that case, X ⋆ can be represented as

X ⋆ = A† ∗N B + (I − A† ∗N A) ∗N W,

where W ∈ RJ1×···×JN×K1×···×KN is an arbitrary tensor.

2.2. The complex representation of reduced biquaternion tensors

We know that a matrix A ∈ Hm×n
r can be written as A = A1+A2j, where A1, A2 ∈ Cm×n.

Similarly, a tensor A ∈ HI1×···×IN×J1×···×JM
r can also be expressed as A = A1+A2j, where

A1,A2 ∈ CI1×···×IN×J1×···×JM . Thus, the complex representation tensor of A = A1 +A2j

is given by f(A) =
(

A1 A2
A2 A1

)
∈ C2I1×···×2IN×2J1×···×2JM . Notice that f(A) is uniquely

determined by A.

Theorem 2.11. Suppose A = A1 +A2j ∈ HI1×···×IN×J1×···×JN
r and B = B1 + B2j ∈

HJ1×···×JN×I1×···×IN
r . Then we have

f(A ∗N B) = f(A) ∗N f(B).

Proof. By the complex representation tensor of A ∗N B and Lemma 2.8, we have

f(A ∗N B) = f(A1 ∗N B1 +A2 ∗N B2 + (A1 ∗N B2 +A2 ∗N B1)j)

=

A1 ∗N B1 +A2 ∗N B2 A1 ∗N B2 +A2 ∗N B1

A1 ∗N B2 +A2 ∗N B1 A1 ∗N B1 +A2 ∗N B2

 ,

and

f(A) ∗N f(B) =

A1 A2

A2 A1

 ∗N

B1 B2

B2 B1


=

A1 ∗N B1 +A2 ∗N B2 A1 ∗N B2 +A2 ∗N B1

A1 ∗N B2 +A2 ∗N B1 A1 ∗N B1 +A2 ∗N B2

 .

Thus, f(A ∗N B) = f(A) ∗N f(B).
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For A = A1 + A2j ∈ HI1×···×IN×J1×···×JN
r , we denote such an identification by the

symbol ⊜, that is,

A1 +A2j = A ⊜ ΦA = (A1,A2).

We also denote
−→
A = (ReA1, ImA1,ReA2, ImA2).

Note that ∥ΦA∥ =
∥∥−→A∥∥. Besides, we have Vc(A) = Vc(A1 +A2j) = Vc(A1) + Vc(A2)j,

Vc(A) ⊜ Vc(ΦA) =

Vc(A1)

Vc(A2)

 =

Vc(ReA1) + Vc(ImA1)i

Vc(ReA2) + Vc(ImA2)i



=

I iI O O

O O I iI

 ∗N


Vc(ReA1)

Vc(ImA1)

Vc(ReA2)

Vc(ImA2)


= ΩJN ∗N Vc(

−→
A),

where I ∈ CJ1×···×JN×J1×···×JN and ΩJN =
( I iI O O
O O I iI

)
.

Addition of two reduced biquaternion tensors A = A1 + A2j and B = B1 + B2j is

defined by

(A1 + B1) + (A2 + B2)j = (A+ B) ⊜ ΦA+B = (A1 + B1,A2 + B2).

Whereas multiplication of two reduced biquaternion tensors A, C is defined as

A ∗N C = (A1 +A2j) ∗N (C1 + C2j) = (A1 ∗N C1 +A2 ∗N C2) + (A1 ∗N C2 +A2 ∗N C1)j.

So A ∗N C ⊜ ΦA∗NC . We derive some properties of ΦA as follows.

Theorem 2.12. Suppose k is a real number and A,B ∈ HI1×···×IN×J1×···×JN
r , C ∈

HJ1×···×JN×I1×···×IN
r . Then

(1) A = B ⇐⇒ ΦA = ΦB;

(2) ΦA+B = ΦA +ΦB, ΦkA = kΦA;

(3) ΦA∗NC = ΦA ∗N f(C).

Proof. Since the proofs of (1) and (2) are easy, we omit them. We only prove (3). ΦA∗NC

can be expressed as

ΦA∗NC = (A1 ∗N C1 +A2 ∗N C2,A1 ∗N C2 +A2 ∗N C1)

= (A1,A2) ∗N

C1 C2
C2 C1

 = ΦA ∗N f(C).
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Theorem 2.13. Suppose A = A1 +A2j ∈ HI1×···×IN×J1×···×JN
r , B = B1 + B2j ∈

HJ1×···×JN×K1×···×KM
r and C = C1 + C2j ∈ HK1×···×KM×J1×···×JN

r . Then

Vc(ΦA∗NB∗MC) = f
[
(A1 ⊗ CT

1 +A2 ⊗ CT
2 ) + (A2 ⊗ CT

1 +A1 ⊗ CT
2 )j

]
∗M ΩKM

∗M Vc(
−→
B ),

where ΩKM
has the same structure as ΩJN , except for dimension.

Proof. By Theorems 2.11 and 2.12, we have

ΦA∗NB∗MC = ΦA ∗N f(B ∗M C) = ΦA ∗N f(B) ∗M f(C)

= (A1,A2) ∗N

B1 B2

B2 B1

 ∗M

C1 C2
C2 C1


= (A1 ∗N B1 ∗M C1 +A2 ∗N B2 ∗M C1 +A1 ∗N B2 ∗M C2 +A2 ∗N B1 ∗M C2,

A1 ∗N B1 ∗M C2 +A2 ∗N B2 ∗M C2 +A1 ∗N B2 ∗M C1 +A2 ∗N B1 ∗M C1).

Further, we can obtain

Vc(ΦA∗NB∗MC)

=

Vc(A1 ∗N B1 ∗M C1 +A2 ∗N B2 ∗M C1 +A1 ∗N B2 ∗M C2 +A2 ∗N B1 ∗M C2)

Vc(A1 ∗N B1 ∗M C2 +A2 ∗N B2 ∗M C2 +A1 ∗N B2 ∗M C1 +A2 ∗N B1 ∗M C1)


=

(A1 ⊗ CT
1 ) ∗M Vc(B1) + (A2 ⊗ CT

1 ) ∗M Vc(B2) + (A1 ⊗ CT
2 ) ∗M Vc(B2) + (A2 ⊗ CT

2 ) ∗M Vc(B1)

(A1 ⊗ CT
2 ) ∗M Vc(B1) + (A2 ⊗ CT

2 ) ∗M Vc(B2) + (A1 ⊗ CT
1 ) ∗M Vc(B2) + (A2 ⊗ CT

1 ) ∗M Vc(B1)


=

(A1 ⊗ CT
1 +A2 ⊗ CT

2 ) ∗M Vc(B1) + (A2 ⊗ CT
1 +A1 ⊗ CT

2 ) ∗M Vc(B2)

(A1 ⊗ CT
2 +A2 ⊗ CT

1 ) ∗M Vc(B1) + (A2 ⊗ CT
2 +A1 ⊗ CT

1 ) ∗M Vc(B2)


=

A1 ⊗ CT
1 +A2 ⊗ CT

2 A2 ⊗ CT
1 +A1 ⊗ CT

2

A1 ⊗ CT
2 +A2 ⊗ CT

1 A2 ⊗ CT
2 +A1 ⊗ CT

1

 ∗M

Vc(B1)

Vc(B2)


= f

[
(A1 ⊗ CT

1 +A2 ⊗ CT
2 ) + (A2 ⊗ CT

1 +A1 ⊗ CT
2 )j

]
∗M

Vc(B1)

Vc(B2)


= f

[
(A1 ⊗ CT

1 +A2 ⊗ CT
2 ) + (A2 ⊗ CT

1 +A1 ⊗ CT
2 )j

]
∗M ΩKM

∗M Vc(
−→
B ).

3. The solution for Problem 1.1

In this section, we are now in a position to solve Problem 1.1. For convenience, we setAσ =

Aσ
1+Aσ

2 j (σ = 1, 2, 3), Cτ = Cτ
1+Cτ

2 j, Dτ = Dτ
1+Dτ

2 j (τ = 1, 2), A1,B1 ∈ HI1×···IN×J1×···JN
r ,

A2,B2 ∈ HJ1×···JN×K1×···KN
r , A3,B3 ∈ HL1×···LN×J1×···JN

r , Cτ ,Dτ , Eτ ∈ HJ1×···JN×J1×···JN
r ,

P1 = f [(A1
1 ⊗ I) + (A1

2 ⊗ I)j] ∗N ΩJN
, P2 = f [(I ⊗ (A2

1)
T ) + (I ⊗ (A2

2)
T )j] ∗N ΩJN

,

P3 = f [(A3
1 ⊗ I) + (A3

2 ⊗ I)j] ∗N ΩJN
, P4 = f [(C1

1 ⊗ I) + (C1
2 ⊗ I)j] ∗N ΩJN

,

P5 = f [(I ⊗ (D1
1)

T ) + (I ⊗ (D1
2)

T )j] ∗N ΩJN
, P6 = f [(C2

1 ⊗ I) + (C2
2 ⊗ I)j] ∗N ΩJN

,

P7 = f [(I ⊗ (D2
1)

T ) + (I ⊗ (D2
2)

T )j] ∗N ΩJN
,



268 Anli Wei, Ying Li, Shufang Yue and Jianli Zhao

and

(3.1) P =



P1 O O

O P2 O

O O P3

P4 −P5 O

O −P7 P6


, G =

ReP

ImP

 , H =



Vc(ReΦB1)

Vc(ReΦB2)

Vc(ReΦB3)

Vc(ReΦE1)

Vc(ReΦE2)

Vc(ImΦB1)

Vc(ImΦB2)

Vc(ImΦB3)

Vc(ImΦE1)

Vc(ImΦE2)



.

By the complex representation of reduced biquaternion tensors mentioned above, we

can turn least squares problem of the system of mixed generalized Sylvester reduced bi-

quaternion tensor equations (1.1) into a corresponding problem of complex tensor equa-

tions. Next we give the main results of this paper.

Theorem 3.1. Suppose Aσ = Aσ
1 + Aσ

2 j, Bσ = Bσ
1 + Bσ

2 j (σ = 1, 2, 3), Cτ = Cτ
1 +

Cτ
2 j, Dτ = Dτ

1 + Dτ
2 j, Eτ = Eτ

1 + Eτ
2 j (τ = 1, 2), A1,B1 ∈ HI1×···IN×J1×···JN

r , A2,B2 ∈
HJ1×···JN×K1×···KN

r , A3,B3 ∈ HL1×···LN×J1×···JN
r , Cτ ,Dτ , Eτ ∈ HJ1×···JN×J1×···JN

r and let P,

G, H be as in (3.1). Hence the set HL of Problem 1.1 can be expressed as

(3.2)

HL =

(X ,Y,Z) ∈ HJ1×···JN×J1×···JN
r

∣∣∣∣

Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

 = G† ∗N H+ (I − G† ∗N G) ∗N ℧

 ,

where ℧ is an arbitrary tensor vector of appropriate order. And then, the minimal norm

least squares solution (Xl,Yl,Zl) of Problem 1.1 satisfies

(3.3)


Vc(

−→
Xl)

Vc(
−→
Yl)

Vc(
−→
Zl)

 = G† ∗N H.

Proof. For X ,Y,Z ∈ HJ1×···JN×J1×···JN
r , it follows from Theorem 2.13 that

∥A1 ∗N X − B1∥2 + ∥Y ∗N A2 − B2∥2 + ∥A3 ∗N Z − B3∥2 + ∥C1 ∗N X − Y ∗N D1 − E1∥2

+ ∥C2 ∗N Z − Y ∗N D2 − E2∥2
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= ∥ΦA1∗NX − ΦB1
∥2 + ∥ΦY∗NA2

− ΦB2
∥2 + ∥ΦA3∗NZ − ΦB3

∥2 + ∥ΦC1∗NX − ΦY∗ND1
− ΦE1

∥2

+ ∥ΦC2∗NZ − ΦY∗ND2
− ΦE2

∥2

= ∥Vc(ΦA1∗NX )− Vc(ΦB1)∥2 + ∥Vc(ΦY∗NA2)− Vc(ΦB2)∥2 + ∥Vc(ΦA3∗NZ)− Vc(ΦB3)∥2

+ ∥Vc(ΦC1∗NX )− Vc(ΦY∗ND1)− Vc(ΦE1)∥2 + ∥Vc(ΦC2∗NZ)− Vc(ΦY∗ND2)− Vc(ΦE2)∥2

=
∥∥f [(A1

1 ⊗ I) + (A1
2 ⊗ I)j] ∗N ΩJN

∗N Vc(
−→
X )− Vc(ΦB1

)
∥∥2

+
∥∥f [(I ⊗ (A2

1)
T ) + (I ⊗ (A2

2)
T )j] ∗N ΩJN

∗N Vc(
−→
Y )− Vc(ΦB2

)
∥∥2

+
∥∥f [(A3

1 ⊗ I) + (A3
2 ⊗ I)j] ∗N ΩJN

∗N Vc(
−→
Z )− Vc(ΦB3

)
∥∥2

+
∥∥f [(C1

1 ⊗ I) + (C1
2 ⊗ I)j] ∗N ΩJN

∗N Vc(
−→
X )

− f [(I ⊗ (D1
1)

T ) + (I ⊗ (D1
2)

T )j] ∗N ΩJN
∗N Vc(

−→
Y )− Vc(ΦE1)

∥∥2
+
∥∥f [(C2

1 ⊗ I) + (C2
2 ⊗ I)j] ∗N ΩJN

∗N Vc(
−→
Z )

− f [(I ⊗ (D2
1)

T ) + (I ⊗ (D2
2)

T )j] ∗N ΩJN
∗N Vc(

−→
Y )− Vc(ΦE2

)
∥∥2

=
∥∥P1 ∗N Vc(

−→
X )− Vc(ΦB1)

∥∥2 + ∥∥P2 ∗N Vc(
−→
Y )− Vc(ΦB2)

∥∥2 + ∥∥P3 ∗N Vc(
−→
Z )− Vc(ΦB3)

∥∥2
+
∥∥P4 ∗N Vc(

−→
X )− P5 ∗N Vc(

−→
Y )− Vc(ΦE1

)
∥∥2 + ∥∥P6 ∗N Vc(

−→
Z )− P7 ∗N Vc(

−→
Y )− Vc(ΦE2

)
∥∥2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



P1 O O

O P2 O

O O P3

P4 −P5 O

O −P7 P6


∗N


Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

−



Vc(ΦB1
)

Vc(ΦB2
)

Vc(ΦB3)

Vc(ΦE1
)

Vc(ΦE2
)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
P ∗N


Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

−



Vc(ΦB1
)

Vc(ΦB2
)

Vc(ΦB3)

Vc(ΦE1
)

Vc(ΦE2
)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

ReP

ImP

 ∗N


Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

−



Vc(ReΦB1
)

Vc(ReΦB2
)

Vc(ReΦB3)

Vc(ReΦE1
)

Vc(ReΦE2
)

Vc(ImΦB1)

Vc(ImΦB2
)

Vc(ImΦB3
)

Vc(ImΦE1)

Vc(ImΦE2
)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥G ∗N


Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

−H

∥∥∥∥∥∥∥∥
2

.

By Lemma 2.10, we get
Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

 = G† ∗N H+ (I − G† ∗N G) ∗N ℧.

Moreover, from (3.2), we know that the solution set HL is nonempty and is a closed
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convex set. Therefore, Problem 1.1 has a unique solution (Xl,Yl,Zl) ∈ HL. Now, we prove

that this unique solution (Xl,Yl,Zl) can be expressed as (3.3). It follows from the above

that

min
(X ,Y,Z)∈HL

(
∥(X ,Y,Z)∥2

)
= min

(X ,Y,Z)∈HL

(
∥X∥2 + ∥Y∥2 + ∥Z∥2

)
= min

(X ,Y,Z)∈HL

(∥∥Vc(
−→
X )

∥∥2 + ∥∥Vc(
−→
Y )

∥∥2 + ∥∥Vc(
−→
Z )

∥∥2)

= min
(X ,Y,Z)∈HL

∥∥∥∥∥∥∥∥∥


Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )


∥∥∥∥∥∥∥∥∥
2

.

Further, using Lemma 2.10 and (3.2), we can derive
Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

 = G† ∗N H.

Thus we can get (3.2) and (3.3). The proof is completed.

By virtue of Theorem 3.1 and Lemma 2.10, we derive the following conclusion.

Corollary 3.2. The system of mixed generalized Sylvester reduced biquaternion tensor

equations (1.1) has a solution (X ,Y,Z) if and only if

(3.4) G ∗N G† ∗N H = H.

In this case, the solution set of system (1.1) can be represented as

HS =

(X ,Y,Z)

∣∣∣∣

Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

 = G† ∗N H+ (I − G† ∗N G) ∗N ℧

 ,

where X ,Y,Z ∈ HJ1×···JN×J1×···JN
r and ℧ is an arbitrary tensor vector of appropriate

order. Furthermore, (1.1) has a unique solution (X ′
l ,Y ′

l ,Z ′
l) ∈ HS if and only if G has full

column rank, and the unique solution (X ′
l ,Y ′

l ,Z ′
l) satisfies

(3.5)


Vc(

−→
X ′
l )

Vc(
−→
Y ′
l)

Vc(
−→
Z ′
l)

 = G† ∗N H.
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Proof. According to the proof of Theorem 3.1 and Definition 2.9, we have

∥A1 ∗N X − B1∥2 + ∥Y ∗N A2 − B2∥2 + ∥A3 ∗N Z − B3∥2

+ ∥C1 ∗N X − Y ∗N D1 − E1∥2 + ∥C2 ∗N Z − Y ∗N D2 − E2∥2

=

∥∥∥∥∥∥∥∥∥G ∗N


Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

−H

∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥G ∗N G† ∗N G ∗N


Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

−H

∥∥∥∥∥∥∥∥∥
2

= ∥G ∗N G† ∗N H−H∥2,

thus we can obtain

∥A1 ∗N X − B1∥2 + ∥Y ∗N A2 − B2∥2 + ∥A3 ∗N Z − B3∥2

+ ∥C1 ∗N X − Y ∗N D1 − E1∥2 + ∥C2 ∗N Z − Y ∗N D2 − E2∥2 = 0

⇐⇒ ∥G ∗N G† ∗N H−H∥2 = 0

⇐⇒ G ∗N G† ∗N H = H.

So we get the formula in (3.4). Under the condition that (3.4) is established, the solution

(X ,Y,Z) of (1.1) satisfies

G ∗N


Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

 = H.

Also, in the light of Lemma 2.10, the solution (X ,Y,Z) of (1.1) satisfies
Vc(

−→
X )

Vc(
−→
Y )

Vc(
−→
Z )

 = G† ∗N H+ (I − G† ∗N G) ∗N ℧.

At the same time, the unique solution (3.5) can also be obtained.

4. Algorithm and numerical experiment

In this section, we first present an algorithm for solving Problem 1.1, which is based on

the discussions in Section 3. And then we use an example to illustrate our main results.

Algorithm 4.1. (Problem 1.1)

(1) Input the given tensors: Aσ = Aσ
1 +Aσ

2 j (σ = 1, 2, 3), Cτ = Cτ
1 +Cτ

2 j, Dτ = Dτ
1+Dτ

2 j,

A1,B1 ∈ HI1×···IN×J1×···JN
r , A2,B2 ∈ HJ1×···JN×K1×···KN

r , A3,B3 ∈ HL1×···LN×J1×···JN
r ,

C1, C2,D1,D2, E1, E2 ∈ HJ1×···JN×J1×···JN
r .
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(2) Compute ΩJN , P1, P2, P3, P4, P5, P6, P7, P, G and H, which are defined in

Section 3.

(3) According to (3.3), calculate the minimal norm least squares solution (Xl,Yl,Zl) of

Problem 1.1.

Now, we give the following numerical example to explain Algorithm 4.1. On the basis of

the discussions in Section 3, it is not hard to find that the expression of the minimal norm

least squares solution is the same as that of the solution. To make sure that Problem 1.1

has a solution, we suppose that the system (1.1) is consistent.

Example 4.2. Let I1 = J1 = K1 = L1 = 2, I2 = J2 = K2 = L2 = 2 and

A1(:, :, 1, 1) =

 k j

i+ j+ k 1 + i+ j

 , A1(:, :, 2, 1) =

 k k

1 + i+ j+ k 1 + k

 ,

A1(:, :, 1, 2) =

 i+ j 1

1 + j+ k i+ j

 , A1(:, :, 2, 2) =

1 + i+ j+ k 1 + i+ k

0 i+ k

 ,

A2(:, :, 1, 1) =

−1 + i+ j+ k −i+ k

0 i

 , A2(:, :, 2, 1) =

i+ j i− j

−i 1

 ,

A2(:, :, 1, 2) =

i+ j 0

0 1 + j

 , A2(:, :, 2, 2) =

 k 1

1− k 1 + i− j− k

 ,

A3(:, :, 1, 1) =

 0 i+ j

1 + j 1 + i+ k

 , A3(:, :, 2, 1) =

1 + j+ k 1 + i+ j

1 + i+ j 1 + j

 ,

A3(:, :, 1, 2) =

 j 0

k −1− j

 , A3(:, :, 2, 2) =

 i j

1 + k 1 + k

 ,

C1(:, :, 1, 1) =

−1 −1− i+ j+ k

−i −i+ j

 , C1(:, :, 2, 1) =

1 + j+ k 1 + i+ j+ k

1 + k k

 ,

C1(:, :, 1, 2) =

 i+ j+ k −j

−1 + i+ j i+ j+ k

 , C1(:, :, 2, 2) =

 i+ j k

i+ k 1 + j+ k

 ,

C2(:, :, 1, 1) =

 i+ j −1 + k

−1 + i+ k 1

 , C2(:, :, 2, 1) =

i+ j 0

1 −1− k

 ,

C2(:, :, 1, 2) =

1 + j+ k 1 + i+ j+ k

1 + j k

 , C2(:, :, 2, 2) =

 i+ k i+ j

1 + i+ k 0

 ,
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D1(:, :, 1, 1) =

 k i

j+ k j+ k

 , D1(:, :, 2, 1) =

 1 −1

−1 + i− k −k

 ,

D1(:, :, 1, 2) =

 1 + j i+ j+ k

1 + i+ j j+ k

 , D1(:, :, 2, 2) =

j+ k i+ j+ k

j j

 ,

D2(:, :, 1, 1) =

 −1 + j i

1 + i+ j+ k j

 , D2(:, :, 2, 1) =

i+ j+ k 1 + k

0 0

 ,

D2(:, :, 1, 2) =

1− j+ k 1 + i+ j+ k

−k i− j

 , D2(:, :, 2, 2) =

−1 + k −1 + i+ k

j −i+ j− k

 .

Let

X (:, :, 1, 1) =

 −1− j+ k i+ j+ k

−1 + i+ j− k j

 , X (:, :, 2, 1) =

−k i+ k

i j+ k

 ,

X (:, :, 1, 2) =

1 + i+ k i

1 + i+ j k

 , X (:, :, 2, 2) =

 −i 0

1− k −1− j− k

 ,

Y(:, :, 1, 1) =

 −k −1− i− j− k

−1− i− j j+ k

 , Y(:, :, 2, 1) =

 1 i

1 + i+ j i+ k

 ,

Y(:, :, 1, 2) =

 1 i

1 + i+ j+ k 0

 , Y(:, :, 2, 2) =

i+ j+ k i+ j− k

i+ j 1 + i+ k

 ,

Z(:, :, 1, 1) =

 −i+ j+ k i+ j+ k

1 + i+ j+ k −i+ k

 , Z(:, :, 2, 1) =

1− i− k 1 + k

1 + j 1− i+ j

 ,

Z(:, :, 1, 2) =

 1 + j+ k i− j

−1− i− j− k 1 + i− j

 , Z(:, :, 2, 2) =

 0 1 + i+ k

1 + i+ j k

 .

We can obtain the solution (Xm,Ym,Zm) with the minimal norm of the system of mixed

generalized Sylvester reduced biquaternion tensor equations (1.1) by MATLAB. In this

way, we can compute log10 ∥(Xl,Yl,Zl) − (Xm,Ym,Zm)∥ = −13.4292, which can demon-

strate the feasibility of Algorithm 4.1.

5. Conclusion

Based on complex representation of reduced biquaternion tensors and the Moore–Penrose

inverse of tensors, we have derived some necessary and sufficient conditions for the exis-

tence of the general solution to the system (1.1) and provided an expression of the general
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solution to the system when it is solvable. Moreover, an example has been furnished to

illustrate the main results.
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