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p-adic Properties for Taylor Coefficients of Half-integral Weight Modular

Forms on Γ1(4)

Jigu Kim* and Yoonjin Lee

Abstract. For a prime p ≡ 3 (mod 4) and m ≥ 2, Romik raised a question about

whether the Taylor coefficients around
√
−1 of the classical Jacobi theta function θ3

eventually vanish modulo pm. This question can be extended to a class of modular

forms of half-integral weight on Γ1(4) and CM points; in this paper, we prove an

affirmative answer to it for primes p ≥ 5. Our result is also a generalization of the

results of Larson and Smith for modular forms of integral weight on SL2(Z).

1. Introduction and results

Let Z be the ring of integers, k ∈ Z or 1
2 + Z, and p ≥ 5 be a prime. Let R ⊂ C

be a commutative ring. Let Mk(R,Γ1(4)) be the space of modular forms of integral or

half-integral weight on Γ1(4) whose Fourier coefficients at the cusp ∞ belong to R.

For z = x + iy in the upper-half plane H, let q = e2πiz and f(z) =
∑
anq

n ∈
Mk(R,Γ1(4)). Let D be the derivative with respect to 2πiz; that is,

Df :=
1

2πi

d

dz
f = q

d

dq
f.

We denote by ∂ the Shimura–Maass differential operator, which is defined by

∂f := ∂kf := Df − k

4πy
f.

For a given point τ0 = x0 + iy0 ∈ H, we note that the transformation z 7→ w = (z −
τ0)/(z−τ0) maps H to the open unit disc around 0 and sends τ0 to the origin. The Taylor

expansion of f(z) = f
(
(τ0 − τ0w)/(1− w)

)
around w = 0 gives rise to

(1.1) (1− w)−kf

(
τ0 − τ0w

1− w

)
=

∞∑
n=0

∂nf(τ0)
(−4πy0w)

n

n!
,

where |w| < 1 and for k ∈ 1
2 + Z we take the branch of the square root having argument

in (−π/2, π/2]. (As mentioned in [14], we note that there is the sign error for the formula
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in [18, Proposition 17] and [7, (1.1)].) In order to obtain an algebraic number from the

Taylor coefficient, we further suppose that τ0 is a CM point and divide ∂nf(τ0) by a power

of some transcendental factor.

Let K be an imaginary quadratic field of discriminant d and τ0 be a CM point in K.

Let h(d) be the class number of K, wd the number of roots of unity in the ring of integers

OK , and χd the quadratic character associated to K. We define ΩK ∈ C as

ΩK :=
1√
2π|d|

(
d∏

k=1

γ

(
k

|d|

)χd(k)
) wd

4h(d)

,

where γ is the Gamma function. We note that ΩK is related with the Chowla–Selberg

formula. It is also well-known that for f ∈ Mk(Q,Γ′) with any congruence subgroup

Γ′ ⊂ SL2(Z) such that Γ′ ⊂ Γ1(4) if k ∈ 1
2 + Z, we have

∂nf(τ0) ∈ Q · Ω2n+k
K

(we refer to [18, p. 86]). Then we can take a complex number Ωτ0 ∈ Q · ΩK such that for

every k ∈ Z or 1
2 + Z, every f ∈Mk(Z,Γ1(4)) and all primes p ≥ 5, we have

(1.2) min
n∈N, k∈Z or 1

2
+Z,

f∈Mk(Z,Γ1(4))

{
ordp

(
∂nf(τ0)

Ω2n+k
τ0

)}
≥ 0,

where the p-adic valuation ordp is mentioned in (5.2); we note that Ωτ0 only depends on

τ0.

Let k′ ∈ 2Z and Γ(1) := SL2(Z). Larson and Smith defined Ω′
τ0 for Mk′(Z,Γ(1))

similarly and proved the following theorem for a CM point τ0 in K and an inertial or

ramified prime p in K.

Theorem 1.1. [7, Theorem 1.3] Let p ≥ 5 be a prime and k′ ∈ 2Z. Let f ∈Mk′(Z,Γ(1)),
and let τ0 be a CM point in Q(

√
d) of discriminant d < 0. If p satisfies

(
d
p

)
∈ {0,−1},

then we have
(∂nf)(τ0)

Ω
′2n+k
τ0

≡ 0 (mod pm)

for all m ≥ 2 and n ≥ (m− 1)p2.

Recently, many authors studied the Taylor coefficients of the classical Jacobi theta

θ3(z) :=
∞∑

n=−∞
eπin

2z

around τ0 = i (we refer to [2, 8, 10, 15, 16]). Romik defined (d(n))∞n=0 to be the sequence

such that

(1.3) (1− w)−1/2θ3

(
i+ wi

1− w

)
= θ3(i)

∞∑
n=0

d(n)

(2n)!

(
γ(1/4)4

8π2
√
2
w

)2n

, |w| < 1,
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and showed that d(n)’s are integers [8, Theorems 1 and 2]. Comparing (1.1) with (1.3),

we note that ∂nθ3(i) = 0 for odd n; this is because for z = z(w) = (i + wi)/(1 − w), we

have that θ3(z(−w)) = θ3(−1/z) =
√
z/iθ3(z) = ((1 + w)/(1 − w))1/2θ3(z(w)). Romik

also made the following conjecture.

Conjecture 1.2. [8, Conjecture 13(b) and Open problem 2] Let p be an odd prime. Then

we have

(a) If p ≡ 3 (mod 4), then d(n) ≡ 0 (mod p) for sufficiently large n.

(b) If p ≡ 1 (mod 4), the sequence {d(n) (mod p)}∞n=0 is periodic.

(c) If p ≡ 3 (mod 4) and m ≥ 2, then d(n) ≡ 0 (mod pm) for sufficiently large n.

(d) If p ≡ 1 (mod 4) and m ≥ 2, the sequence {d(n) (mod pm)}∞n=0 is periodic.

Part (a) is proved by Scherer [10, Theorem 1]: Scherer showed that d(n) ≡ 0 (mod p)

for p ≡ 3 (mod 4) and n ≥ (p2 + 1)/2. Both parts (b) and (d) are shown by Guerzhoy et

al. [2]. Guerzhoy et al. also generalized (d) to a broader class: f ∈Mk(Z,Γ1(4N)) (k ∈ Z
or 1

2 +Z, N ∈ N), CM points τ0 ∈ K, and splitting primes p in OK (see [2, Theorem 1.2]).

In the following Theorem 1.3, we generalize Theorem 1.1 to the space of modular forms

of half-integral weight on Γ1(4). Applying Theorem 1.3 to Conjecture 1.2(c) for p ≥ 5, we

prove that Conjecture 1.2(c) holds except for p = 3; this is stated in Theorem 1.4.

Theorem 1.3. Let p ≥ 5 be a prime, m ∈ N and 2k ∈ Z. Let f ∈ Mk(Z,Γ1(4)), and let

τ0 be a CM point in Q(
√
d) of discriminant d < 0. If p satisfies

(
d
p

)
∈ {0,−1}, then we

have
(∂nf)(τ0)

Ω2n+k
τ0

≡ 0 (mod pm),

where m ≥ 2, n ≥ (m− 1)p2, and Ωτ0 satisfies (1.2).

For p ≥ 5, Conjecture 1.2(c) follows from Theorem 1.3 by taking that f(z) =
∑

n∈Z q
n2 ∈

M1/2(Z,Γ1(4)) and τ0 = i/2 ∈ Q(
√
−4).

Theorem 1.4. Let p ≥ 5 be a prime and m ∈ N. If p ≡ 3 (mod 4), m ≥ 2 and

n ≥ ⌈(m− 1)p2/2⌉, then we have d(n) ≡ 0 (mod pm), where d(n) is defined in (1.3).

2. The algebra of Γ1(4)-quasimodular forms

In this section we recall some standard facts about the algebra of modular forms of half-

integral weight on Γ1(4) and their derivatives.
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To begin with, we recall definitions of modular forms of integral or half-integral weight.

For a function f : H → C of weight k ∈ Z and a matrix γ =
(
a b
c d

)
∈ SL2(Z), we define the

slash operator as

(f |kγ)(z) := (cz + d)−kf(γ · z), where γ · z := az + b

cz + d
.

In the case of weight k ∈ 1
2 + Z, we further assume that a matrix γ =

(
a b
c d

)
∈ Γ0(4) (i.e.,

4 | c), and we define the slash operator as

(f |kγ)(z) :=
( c
d

)
ε2kd
(√
cz + d

)−2k
f(γ · z),

where we take the branch of the square root having argument in (−π/2, π/2],
(
c
d

)
is the

extended Jacobi symbol (see [12] or [4, p. 178]), and

εd =

1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

For a level N ∈ N (4 | N if k ∈ 1
2 + Z), let χ be a Dirichlet character modulo N . A

function f : H → C is called a holomorphic modular form with Nebentypus χ of weight

k ∈ Z or 1
2 + Z on Γ0(N) if it is holomorphic on H and at the cusps of Γ0(N), and if

(f |kγ)(z) = χ(d)f(z)

for all γ ∈ Γ0(N). For such f whose Fourier coefficients belong to a ring R (Z ⊂ R ⊂ C),
we write f ∈ Mk(R,Γ0(N), χ), and we simply write f ∈ Mk(R,Γ0(N)) if χ = χtriv.

We note that −I =
(−1 0

0 −1

)
∈ Γ0(N), −I · z = z, (f |k(−I))(z) = −f(z) if k ∈ 1 +

2Z and (f |k(−I))(z) = f(z) otherwise. Therefore, using the fact that Mk(R,Γ1(4)) =

Mk(R,Γ0(4))⊕Mk(R,Γ0(4), χ−4), it follows that

Mk(R,Γ1(4)) =


Mk(R,Γ0(4)) if k ∈ 1

2 + Z,

Mk(R,Γ0(4), χ−4) if k ∈ 1 + 2Z,

Mk(R,Γ0(4)) if k ∈ 2Z.

Then we have that

M∗(R,Γ1(4)) :=
∞⊕
j=0

Mj/2(R,Γ1(4))

is the graded R-algebra.

For j ≥ 1 and n ∈ N, let σj(n) :=
∑

0<d|n d
j . Let Θ and F2 be the classical forms

Θ :=
∑
n∈Z

qn
2 ∈M1/2(Z,Γ1(4)) and F2 :=

∑
n odd ≥1

σ1(n)q
n ∈M2(Z,Γ1(4)).
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It is well-known that

M∗(C,Γ1(4)) = C[Θ, F2].

Furthermore, the next lemma follows by the same proof as in [5, p. 184].

Lemma 2.1. Let R be a ring such that Z ⊂ R ⊂ C and R(6) := R[1/2, 1/3]. Let k ∈ Z or
1
2 + Z and f ∈Mk(R,Γ1(4)). Then there exist elements ca,b ∈ R(6) such that

f =
∑

0≤a,b∈Z,
a/2+2b=k

ca,bΘ
aF b

2 .

For even k ∈ N, let Ek be the classical Eisenstein series, defined as

Ek = 1− 2k

Bk

∑
n≥1

σk−1(n)q
n,

where Bk is the k-th Bernoulli number. We note that Ek ∈Mk(Q,Γ(1)) for k ≥ 4, but E2

is not modular. We recall that D is the derivative with respect to 2πiz. The derivative of

a modular form of integral or half-integral weight is no longer modular but quasimodular,

which means that in the case of Γ1(4) it is an isobaric element of the ring C[Θ, F2, E2].

The derivative D preserves the ring R(6)[Θ, F2, E2] since we have

(2.1)


DΘ = (ΘE2 −Θ5 + 80ΘF2)/24,

DF2 = (F2E2 + 5Θ4F2 − 16F 2
2 )/6,

DE2 = (E2
2 −Θ8 − 224Θ4F2 − 256F 2

2 )/12.

To any g ∈ C[Θ, F2, E2], we attach a polynomial G(g;X,Y, Z) such that

g(z) = G(g; Θ(z), F2(z), E2(z)).

We denote by g0 the modular part of g, that is, g0(z) := G(g; Θ(z), F2(z), 0). When g = g0,

we simply write G(g;X,Y ) ∈ C[X,Y ] instead of G(g;X,Y, Z) ∈ C[X,Y, Z].
For modular forms of even integral weight on Γ(1), it is well-known that

∞⊕
j=0

M2j(C,Γ(1)) = C[E4, E6].

The derivative D preserves the ring of Γ(1)-quasimodular forms C[E4, E6, E2] since DE2 =

(E2
2−E4)/12, DE4 = (E2E4−E6)/3 and DE6 = (E2E6−E2

4)/2; so we define G(g;X,Y, Z)

such that

g(z) = G(g;E4(z), E6(z), E2(z)).

We have that for f ∈M2j(C,Γ(1)),

(2.2) G(f ;X,Y ) = G(f ;X8 +224X4Y +256Y 2, X12 − 528X8Y − 8448X4Y 2 +4096Y 3);
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this is because we have that

(2.3)

E4 = Θ8 + 224Θ4F2 + 256F 2
2 ,

E6 = Θ12 − 528Θ8F2 − 8448Θ4F 2
2 + 4096F 3

2 .

Now, let p ≥ 5 be a prime, let Z(p) be a local ring at p, and let n ≥ 0 be an integer. By

Lemma 2.1 and (2.1), if a Γ1(4)-modular form g has p-integral Fourier coefficients, then

G(Dng;X,Y, Z) also has p-integral coefficients. For m ∈ N, we denote by g ∈ (Z/pmZ)[[q]]
(resp., G(Dng;X,Y, Z) ∈ (Z/pmZ)[X,Y, Z]) the image obtained by reducing its Fourier

coefficients (resp., coefficients) mod pm under the the canonical map Z(p) → Z/pmZ.
The same property holds for a Γ(1)-modular form g ∈ Z(p)[[q]]; hence we similarly define

G(Dng;X,Y, Z) ∈ (Z/pmZ)[X,Y, Z].
Also, it is well-known that Ep−1 ∈Mp−1(Z(p),Γ(1)) and Ep+1 ∈Mp+1(Z(p),Γ(1)). Let

Ap and Ap be defined by

Ap := G(Ep−1;X,Y ), Ap := G(Ep−1;X,Y ),

which are elements in Z(p)[X,Y ].

3. Mod pm modular forms

Many authors generalized the theories of Serre [11] and Katz [3] regarding p-adic con-

gruences of modular forms of integral weight to those of half-integral weight (we refer

to [4, 13]). In this section we study some analogous facts on modulo pm congruences of

Γ1(4)-modular forms of half-integral weight in terms of (Z/pmZ)[X,Y ].

Let k ∈ Z or 1
2 + Z and m ∈ N. Let Γ′ ⊂ Γ(1) be a congruence subgroup such that

Γ′ ⊂ Γ1(4) if k ∈ 1
2+Z. By M̃k(Z/pmZ,Γ′) we denote the Z/pmZ-module (in (Z/pmZ)[[q]])

obtained from Mk(Z(p),Γ
′) by reducing its Fourier coefficients mod pm. The mod pm

filtration of f ∈ M̃k(Z/pmZ,Γ′) is defined to be

wpm(f) := inf
{
k′ | f = h for some h ∈ M̃k′(Z/pmZ,Γ′)

}
,

where we have the convention that the modular form 0 has weight −∞.

The following theorem is an analogue of partial results by Serre and Katz (see [6, Ch. X,

Theorem 7.5] and [7, Lemma 2.4]), and it will be used to prove Lemma 4.3.

Theorem 3.1. Let p ≥ 5 be a prime, k ∈ Z or 1
2+Z, and m ∈ N. Let f ∈Mk(Z(p),Γ1(4))

such that f ̸≡ 0 (mod pZ(p)[[q]]). The filtration wpm(f) is less than k if and only if

Ap(X,Y )p
m−1

divides G(f ;X,Y ) in (Z/pmZ)[X,Y ].

Proof. (⇐) It is trivial since Ap(Θ, F2)
pm−1 ≡ E

pm−1

p−1 ≡ 1 (mod pmZ(p)[[q]]).
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(⇒) If k ∈ Z, it directly follows from [3, Corollary 4.4.2]. Note that if g, h ∈ Z(p)[[q]]

are not congruent to 0 (mod pZ(p)[[q]]), then neither is gh as (Z/pZ)[[q]] is an integral

domain. Now, we assume that k ∈ 1
2 + Z, f ∈ Mk(Z(p),Γ1(4)), f ̸≡ 0 (mod pZ(p)[[q]])

and wpm(f) < k. Then we have that k + 1/2 ∈ Z, Θf ∈ Mk+1/2(Z(p),Γ1(4)), Θf ̸≡ 0

(mod pZ(p)[[q]]) and wpm(Θf) < k + 1/2; so we have that in (Z/pmZ)[X,Y ],

Ap(X,Y )p
m−1 ∣∣ G(Θf ;X,Y ).

We note that G(Θf ;X,Y ) = XG(f ;X,Y ). We recall Ap(X,Y ) := G(Ep−1;X,Y ) ∈
Z(p)[X,Y ], and we define Ãp(X,Y ) ∈ Fp[X,Y ] to be its reduction mod p. Let Fp be the

algebraic closure of Fp. It is well-known that over Fp, the irreducible factors of Ãp(X,Y )

must be of the form (see [6, pp. 166–167])

(3.1) X, Y , or X3 − αY 2 with α ̸= 1.

Let ⟨X, p⟩ be the ideal generated by X and p in the ring (Z/pmZ)[X,Y ]. By (2.2), we

have that in
(
(Z/pmZ)[X,Y ]

)
/⟨X, p⟩,

Ap(0, Y ) + ⟨X, p⟩ = Ãp((16Y )2, (16Y )3) + ⟨X, p⟩ = β(16Y )(p−1)/2 + ⟨X, p⟩

for some β ∈ Fp. By (3.1), we have that β is nonzero; so we get X ∤ Ap(X,Y ) in

(Z/pmZ)[X,Y ]. Therefore, Ap(X,Y )p
m−1

divides G(f ;X,Y ) in (Z/pmZ)[X,Y ].

Remark 3.2. (a) In the proof of Theorem 3.1 we show the property that X ∤ Ap(X,Y )

in (Z/pmZ)[X,Y ]. We mention that there is an alternative way for proving the prop-

erty without using (3.1) as follows, and this is suggested by an anonymous reviewer. It

is sufficient to show that the coefficient of Y (p−1)/2 in Ap(X,Y ) is not divisible by p.

The congruence subgroup Γ0(4) has three cusps {∞,−1/2, 0}, and the constant terms in

Fourier expansions of modular forms at cusps are given as follows:
Ep−1 has constant term 1 at all the cusps,

Θ has constant terms 1, 0, (1− i)/2 at the cusps ∞, −1/2, 0, respectively,

F2 has constant terms 0, 1/16, −1/64 at the cusps ∞, −1/2, 0, respectively

(cf. [13, Section 2 and p. 169]). Thus, the coefficient of Y (p−1)/2 in Ap(X,Y ) is the constant

term in the Fourier expansion of Ep−1/F
(p−1)/2
2 at −1/2, which is a power of 2.

(b) In Theorem 3.1 we require the condition that f ̸≡ 0 (mod pZ(p)[[q]]). We point

out that this condition is missing in [7, Lemma 2.4]; there is a counter example for this

as follows. Let k = pm−1(p − 1) + 4 and f = pE4E
pm−1

p−1 ∈ Mk(Z(p),Γ(1)). Then we

see that wpm+1(f) = wpm+1(E4) < k; however, Ap(X,Y )p
m

cannot divide G(f ;X,Y )

in (Z/pm+1Z)[X,Y ]. In fact, [7, Proposition 4.3] is proved by using [7, Lemma 2.4],

and it needs to be revised; for instance, we refer to Lemma 4.3, which is parallel to [7,

Proposition 4.3].
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4. A quasi-valuation νp on Z(p)[Θ, F2, E2]

For a prime p ≥ 5, Larson and Smith [7] defined a quasi-valuation vp on the ring of

Γ(1)-quasimodular forms Z(p)[E4, E6, E2], and they studied its properties by calculating

the Rankin–Cohen bracket. In this section, we define a quasi-valuation νp on the ring of

Γ1(4)-quasimodular forms Z(p)[Θ, F2, E2], and we prove that its properties are parallel to

the results of [7]. We remark that using a formula by Zagier (see Proposition 4.2) instead

of the Rankin–Cohen bracket simplifies proofs.

We begin by introducing quasi-valuations.

Definition 4.1. [9, p. 319] Let R be a commutative ring. A quasi-valuation on R is a

map ν : R→ Z ∪ {∞} such that for all x, y ∈ R,

(a) ν(x) = ∞ if and only if x = 0,

(b) ν(xy) ≥ ν(x) + ν(y),

(c) ν(x+ y) ≥ min{ν(x), ν(y)}.

We remark that ν is called a valuation on R if it further satisfies ν(xy) = ν(x) + ν(y)

for all x, y ∈ R. Now, let p ≥ 5 be a prime. By ⟨Ap
p, p⟩ we denote the ideal generated by Ap

p

and p in the polynomial ring Z(p)[X,Y, Z]. We define a map νp : Z(p)[X,Y, Z] → Z ∪ {∞}
by

νp(G) := sup
{
n | G ∈ ⟨Ap

p, p⟩n
}
.

Then νp is a quasi-valuation. For a Γ1(4)-quasimodular form g ∈ Z(p)[Θ, F2, E2], we simply

write νp(g) instead of νp(G(g;X,Y, Z)). We also have that for all g ∈ Z(p)[Θ, F2, E2],

νp(Dg) ≥ νp(g) and νp(g0) ≥ νp(g),

where g0 is the modular part of g.

Let k ∈ Z or 1
2 + Z and Γ′ ⊂ Γ(1) be a congruence subgroup such that Γ′ ⊂ Γ1(4) if

k ∈ 1
2 + Z. For f ∈ Mk(C,Γ′), we define a sequence of modular forms fn ∈ Mk+2n(C,Γ′)

recursively by

fn+1 :=

(
Dfn − k + 2n

12
E2fn

)
− n(n+ k − 1)

144
E4fn−1, n ≥ 0

with initial condition f0 = f and f−1 = 0. Then a formula by Zagier [17, (37)] is equivalent

to the following proposition (we also refer to [18, p. 55]).

Proposition 4.2. With the same notation as above, we have for any n ≥ 0,

Dnf =
n∑

j=0

(
n

j

)[
n+ k − 1

n+ k − 1− j

]
fn−j

(
E2

12

)j

,

where for x > y ≥ 0,
[
x
y

]
:= x(x− 1)(x− 2) · · · (y + 2)(y + 1) and

[
y
y

]
:= 1.
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Now, we further suppose that f ∈Mk(Z(p),Γ1(4)). By Lemma 2.1 and Proposition 4.2,

we have that

(4.1) G
(
(Dpf − (Dpf)0);X,Y, Z

)
∈ pZ(p)[X,Y, Z]

and

(4.2) G
(
(Dp2f − (Dp2f)0);X,Y, Z

)
∈ p2Z(p)[X,Y, Z].

Lemma 4.3. Let p ≥ 5 be a prime and k ∈ Z or 1
2 +Z. For f ∈Mk(Z(p),Γ1(4)), we have

νp(D
p2f) ≥ 2.

Proof. By (4.2) and applying Euler’s totient theorem to Fourier coefficients, we have

(Dp2f)0 ≡ Dp2f ≡ Dpf (mod p2Z(p)[[q]]).

By (4.1) we write

(Dpf)0 = Dpf − pH(E2),

where H(E2) =
∑p

j=1 h(j)E
j
2 and h(j) := 1

p

(
p
j

)[
p+k−1

p+k−1−j

]fp−j

12j
∈ Mk+2(p−j)(Z(p),Γ1(4)).

Therefore, we have

(Dpf)0 ≡ (Dp2f)0 − p

p∑
j=1

h(j)E
2p−j
p−1 E

j
p+1 (mod p2Z(p)[[q]]),

using the fact that Ep−1 ≡ 1 (mod pZ(p)[[q]]) and Ep+1 ≡ E2 (mod pZ(p)[[q]]). Let

g := (Dp2f)0 − p

p∑
j=1

h(j)E
2p−j
p−1 E

j
p+1.

We note that g ∈ Mk+2p2(Z(p),Γ1(4)), (D
pf)0 ∈ Mk+2p(Z(p),Γ1(4)) and their reductions

satisfy g = (Dpf)0 in (Z/p2Z)[[q]]; so we have wp2(g) ≤ (k + 2p2) − 2p(p − 1). Now, we

claim that

(4.3) νp(g) ≥ 2.

We first assume that g ̸≡ 0 (mod pZ(p)[[q]]). By applying Theorem 3.1 to g, there exists

an isobaric element F (X,Y ) of Z(p)[X,Y ] such that G(g;X,Y ) = F (X,Y )Ap(X,Y )p in

(Z/p2Z)[X,Y ]. Let g′ := F (Θ, F2) ∈Mk+p2+p(Z(p),Γ1(4)). Then we have g′ = g = (Dpf)0

in (Z/p2Z)[[q]], g′ ̸≡ 0 (mod pZ(p)[[q]]) and wp2(g
′) ≤ (k+ p2 + p)− p(p− 1). By applying

Theorem 3.1 to g′, Ap(X,Y )p divides F (X,Y ) in (Z/p2Z)[X,Y ]. Therefore, we have that

Ap(X,Y )2p | G(g;X,Y ) in (Z/p2Z)[X,Y ]; thus we have νp(g) ≥ 2. Secondly, we assume

that g ≡ 0 (mod pZ(p)[[q]]) and g ̸≡ 0 (mod p2Z(p)[[q]]). Let u(0) := 1
pg. Then u(0) ∈
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Mk+2p2(Z(p),Γ1(4)),
1
p(D

pf)0 ∈ Mk+2p(Z(p),Γ1(4)), u(0) = 1
p(D

pf)0 ̸= 0 in (Z/pZ)[[q]]
and wp(u(0)) = wp

(
1
p(D

pf)0
)
≤ (k + 2p2) − 2p(p − 1). For 1 ≤ j ≤ p, we define u(j)

recursively as follows. By applying Theorem 3.1 to u(j−1), there exists an isobaric element

F(j)(X,Y ) of Z(p)[X,Y ] such that G(u(j−1);X,Y ) = F (j)(X,Y )Ap(X,Y ) in (Z/pZ)[X,Y ].

Let u(j) := F(j)(Θ, F2) ∈ Mk+2p2−j(p−1)(Z(p),Γ1(4)). Then u(j) = u(j−1) =
1
p(D

pf)0 ̸= 0

in (Z/pZ)[[q]] and wp(u(j)) ≤ (k + 2p2 − j(p− 1))− (2p− j)(p− 1). Hence, we have that

G(u(0);X,Y ) = G(u(1);X,Y )Ap(X,Y ) = · · · = G(u(p);X,Y )Ap(X,Y )p in (Z/pZ)[X,Y ];

so νp(g) ≥ νp(u(0)) + 1 ≥ 2. Finally, we assume that g ≡ 0 (mod p2Z(p)[[q]]); then it is

clear that νp(g) ≥ 2. Therefore, the claim (4.3) follows. Consequently, by (4.2) and (4.3),

we get

νp(D
p2f) ≥ min

νp(Dp2f − (Dp2f)0), νp(g), νp

p p∑
j=1

h(j)E
2p−j
p−1 E

j
p+1

 ≥ 2.

Lemma 4.4. Let p ≥ 5 be a prime. Then

(a) νp(D
2Ep−1) ≥ 1,

(b) νp(D
p2Ep

p−1) ≥ 3.

Proof. (a) By Proposition 4.2, we have

D2Ep−1 = (Ep−1)2 + 2p(Ep−1)1
E2

12
+ p(p− 1)Ep−1

(
E2

12

)2

.

We note that (Ep−1)1 = DEp−1− p−1
12 E2Ep−1 and (Ep−1)2 = D(Ep−1)1− p+1

12 E2(Ep−1)1−
p−1
144E4Ep−1. We thus have that

(Ep−1)1 −
1

12
Ep+1 ∈ pMp+1(Z(p),Γ1(4)),

(Ep−1)2 ∈ pMp+3(Z(p),Γ1(4))

since Ep−1 ≡ 1 (mod pZ(p)[[q]]), Ep+1 ≡ E2 (mod pZ(p)[[q]]), and DE2 = (E2
2 − E4)/12.

By Lemma 2.1, we have that G((Ep−1)1;X,Y ) ∈ Z(p)[X,Y ] and G((Ep−1)2;X,Y ) ∈
pZ(p)[X,Y ]; so we get G(D2Ep−1;X,Y, Z) ∈ pZ(p)[X,Y, Z].

(b) By the product rule, we have

Dp2Ep
p−1 =

∑
j1+···+jp=p2

p2!

j1! · · · jp!
(Dj1Ep−1) · · · (DjpEp−1).

If p ∤ jr for some r, then p2 | p2!
j1!···jp! and there exists s such that js ≥ 2; so by (a) we

have that νp
( p2!
j1!···jp!(D

j1Ep−1) · · · (DjpEp−1)
)
≥ 3. If p | jr and jr ̸= p2 for every r, then
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p | p2!
j1!···jp! and there exist two different s1, s2 such that js1 ≥ p, js2 ≥ p; thus by (a)

we see that νp
( p2!
j1!···jp!(D

j1Ep−1) · · · (DjpEp−1)
)
≥ 3. The set of the remaining ordered

pairs is C :=
⋃p

r=1{(j1, . . . , jp) | jr = p2, js = 0 for all s ̸= r}. By Lemma 4.3, we have

thatνp
(∑

C
p2!

j1!···jp!(D
j1Ep−1) · · · (DjpEp−1)

)
= νp(pE

p−1
p−1D

p2Ep−1) ≥ 3. Therefore, we get

νp(D
p2Ep

p−1) ≥ 3.

Lemma 4.5. Let p ≥ 5 be a prime and k ∈ Z or 1
2 +Z. For f ∈Mk(Z(p),Γ1(4)), we have

νp(D
p2f) ≥ max{νp(f) + 1, 2}.

Proof. We have f =
∑νp(f)

r=0 pνp(f)−rh(r)E
rp
p−1, where h(r) ∈ Mk−rp(p−1)(Z(p),Γ1(4)). By

the product rule, we have that

Dp2(h(r)E
rp
p−1) =

p2∑
j0=0

(
p2

j0

)
(Dj0h(r))(D

p2−j0Erp
p−1)

=

p2∑
j0=0

(
p2

j0

)
(Dj0h(r))

∑
j1+···+jr=p2−j0

(p2 − j0)!

j1! · · · jr!
(Dj1Ep

p−1) · · · (D
jrEp

p−1).

If j0 = 0 and js ̸= p2 for all 1 ≤ s ≤ r, then p | p2!
j1!···jr! ; thus we have

νp

(
h(r)

∑
j1+···+jr=p2

p2∤js

p2!

j1! · · · jr!
(Dj1Ep

p−1) · · · (D
jrEp

p−1)

)
≥ r + 1

since νp(D
jsEp

p−1) ≥ νp(E
p
p−1) = 1. If j0 = 0 and js = p2 for some 1 ≤ s ≤ r, then

νp
(
h(r)

∑r
s=1E

(r−1)p
p−1 (Dp2Ep

p−1)
)
≥ r + 2 by Lemma 4.4(b). If 1 ≤ j0 < p2, then p |

(
p2

j0

)
;

hence we have νp
((

p2

j0

)
(Dj0h(r))(D

p2−j0Erp
p−1)

)
≥ r + 1 as νp(D

p2−j0Erp
p−1) ≥ νp(E

rp
p−1) =

r. If j0 = p2, then νp
(
(Dp2h(r))E

rp
p−1

)
≥ r + 2 by Lemma 4.3. Therefore, we have

νp
(
Dp2(h(r)E

rp
p−1)

)
≥ r+1; hence by Lemma 4.3 we get νp(D

p2f) ≥ max{νp(f)+1, 2}.

Proposition 4.6. Let p ≥ 5 be a prime and k ∈ Z or 1
2 +Z. For f ∈Mk(Z(p),Γ1(4)) and

m ∈ N, we have νp(D
mp2f) ≥ m+ 1.

Proof. We prove that ν(Dmp2f) ≥ m+1 by induction onm. Ifm = 1, we have νp(D
p2f) ≥

2 by Lemma 4.3. Suppose that for all m ≤ n, νp(D
mp2f) ≥ m + 1. By Proposition 4.2,

we have

Dnp2f =

np2∑
j=0

ajfnp2−j

(
E2

12

)j

,

where aj :=
(
np2

j

)[ np2+k−1
np2+k−1−j

]
. Then we have that

νp(D
(n+1)p2f) ≥ min

0≤j≤np2

{
νp

(
Dp2

(
ajfnp2−j

(
E2

12

)j
))}

≥ min
0≤j≤np2

{cj},
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where c0 := νp(D
p2fnp2) and cj := νp(ajfnp2−j) for 1 ≤ j ≤ np2.

By Lemma 4.5, it follows that νp(fnp2) ≥ νp(D
np2f) ≥ n + 1 and νp(D

p2fnp2) ≥
νp(fnp2) + 1; so we get c0 ≥ n + 2. If 1 ≤ j ≤ p2, then νp(fnp2−j) ≥ νp(D

np2−jf) ≥
νp(D

(n−1)p2f) ≥ n. Also, we have that p2 |
(
np2

j

)
for 1 ≤ j < p, and p divides both

(
np2

j

)
and

[ np2+k−1
np2+k−1−j

]
for p ≤ j < p2; thus we have cj ≥ n+ 2 for 1 ≤ j < p2. If p2 ≤ j ≤ np2,

then pp⌊j/p
2⌋ ∣∣ [ np2+k−1

np2+k−1−j

]
and νp(fnp2−j) ≥ νp(D

(n−⌈j/p2⌉)p2f) ≥ n − ⌈j/p2⌉ + 1; hence

we obtain cj ≥ n+ 2 for p2 ≤ j ≤ np2. Therefore, we get νp(D
(n+1)p2f) ≥ n+ 2.

5. Proofs of Theorems 1.3 and 1.4

In this section we prove Theorems 1.3 and 1.4. For z = x+ iy ∈ C, we denote

E∗
2(z) := E2(z)−

3

πy
.

Lemma 5.1. Let k ∈ Z or 1
2 + Z and f ∈Mk(C,Γ1(4)). Then ∂nf = G(Dnf ; Θ, F2, E

∗
2).

Proof. Let ϕ : C[Θ, F2, E2] → C[Θ, F2, E
∗
2 ] be the map that sends E2 to E

∗
2 . It follows that

∂ ◦ ϕ = ϕ ◦D from (2.1) and

(5.1)


∂Θ = (ΘE∗

2 −Θ5 + 80ΘF2)/24,

∂F2 = (F2E
∗
2 + 5Θ4F2 − 16F 2

2 )/6,

∂E∗
2 = (E∗

2
2 −Θ8 − 224Θ4F2 − 256F 2

2 )/12.

We show ∂nf = ϕ◦G(Dnf ; Θ, F2, E2) by induction on n. If n = 0, it is clear. Now, suppose

that ∂nf = ϕ ◦Dnf . Then we have ∂n+1f = ∂ ◦ ∂nf = ∂ ◦ ϕ ◦Dnf = ϕ ◦Dn+1f .

Let p ≥ 5 be a prime, k ∈ Z or 1
2 + Z and f ∈ Mk(Z,Γ1(4)). Let K be a quadratic

field of discriminant d < 0, let τ0 be a CM point in K, and let

cn(f, τ0,Ω) :=
∂nf(τ0)

Ω2n+k
.

We note that Θ(τ0)/Ω
1/2
K , F2(τ0)/Ω

2
K , E

∗
2(τ0)/Ω

2
K ∈ Q. Let F be a finite Galois extension

of Q containing these algebraic numbers, and let p be a prime of F lying above p. There

exists the ramification index e(p, F/Q) ∈ N such that ordp |Q = e(p, F/Q) ordp, where

ordp : F → Z and ordp : Q → Z are the usual discrete valuations. We define ordp : F → Q
to be

(5.2) ordp :=
1

e(p, F/Q)
ordp .

By removing denominators of these three algebraic numbers, we choose Ωτ0 to be an

algebraic multiple of ΩK such that for all primes p ≥ 5,

ordp
(
Θ(τ0)/Ω

1/2
τ0

)
≥ 0, ordp

(
F2(τ0)/Ω

2
τ0

)
≥ 0, ordp

(
E∗

2(τ0)/Ω
2
τ0

)
≥ 0.
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Then Ωτ0 satisfies (1.2) since cn(f, τ0,Ωτ0) ∈ Z(6)[Θ(τ0)/Ω
1/2
τ0 , F2(τ0)/Ω

2
τ0 , E

∗
2(τ0)/Ω

2
τ0 ].

Lemma 5.2. With the same notation as above, if p ≥ 5 is a prime such that
(
d
p

)
∈ {0,−1},

then we have that cn(Ep−1, τ0,Ωτ0) ≡ 0 (mod p).

Proof. See [7, Lemma 5.1].

Proof of Theorem 1.3. Let n ≥ (m− 1)p2 with m > 1. By Proposition 4.6, we have

G(Dnf ;X,Y, Z) =
∑

0≤j≤m

pm−jAjp
p Gj ,

where Gj ∈ Z(p)[X,Y, Z]. By Lemma 5.1, we have

cn(f, τ0,Ωτ0) =
G(Dnf ; Θ(τ0), F2(τ0), E

∗
2(τ0))

Ω2n+k
τ0

=
∑

0≤j≤m

pm−jcn(Ep−1, τ0,Ωτ0)
jpGj(Θ(τ0), F2(τ0), E

∗
2(τ0))

Ω
2n+k−jp(p−1)
τ0

.

By Lemma 5.2, we have cn(f, τ0,Ωτ0) ≡ 0 (mod pm).

Proof of Theorem 1.4. The Jacobi theta functions are defined as

θ2(z) =

∞∑
n=−∞

eπi(n+1/2)2z, θ3(z) :=

∞∑
n=−∞

eπin
2z, θ4(z) :=

∞∑
n=−∞

(−1)neπin
2z.

Let a := γ(1/4)

21/2π3/4 . It is well-known that

θ2(i/2) = 23/8a, θ3(i/2) =
(21/2 + 1)1/2

21/4
a and Θ(i/2) = θ3(i) = a.

(We refer to [1, p. 325]. We note that θ2(z) = 2eπiz/4ψ(e2πiz) and θ3(z) = φ(eπiz), where

ψ and φ are defined in [1, p. 323].) Since θ44 = θ43 − θ42, we have that

θ4(i/2) =
(21/2 − 1)1/2

21/4
a.

Furthermore, we have that

E4(i/2) =
33

4
a8

as E4(z) =
1
2

(
θ2(z)

8 + θ3(z)
8 + θ4(z)

8
)
(see [18, pp. 28–29]). By (2.3), we have that

F2(i/2) =
1

32
a4.

From (5.1) and ∂Θ(i/2) = 0, we have that

E∗
2(i/2) = −3

2
a4.
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Let K := Q(
√
−4) and let τ0 := iy0 := i/2 ∈ K. We have ΩK = a2/2 and take

Ωτ0 :=
1

21/4
ΩK =

1

25/4
a2.

Then Ωτ0 satisfies (1.2) since

Θ(τ0)

Ω
1/2
τ0

= 25/8,
F2(τ0)

Ω2
τ0

= 2−5/2,
E∗

2(τ0)

Ω2
τ0

= −23/2 · 3.

Now, we consider the Taylor series of Θ(z) around w = τ0:

(1− w)−1/2Θ

(
τ0 − τ0w

1− w

)
= (1− w)−1/2Θ

(
τ0 +

2iy0w

1− w

)
= (1− w)−1/2

∞∑
r=0

DrΘ(τ0)

r!

(
−4πy0w

1− w

)r

=

∞∑
n=0

∂nΘ(τ0)
(−4πy0w)

n

n!
.

(5.3)

By comparing (1.3) with (5.3), we have that

d(n) = 2−5/8 · ∂
2nΘ(τ0)

Ω
4n+1/2
τ0

as Θ(z) = θ3(2z). By Theorem 1.3, we have that

d(n) ≡ 0 (mod pm),

where p ≥ 5 is a prime such that p ≡ 3 (mod 4), m ≥ 2, and n ≥ ⌈(m− 1)p2/2⌉.
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