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A Parallel Algorithm for Generalized Multiple-set Split Feasibility with

Application to Optimal Control Problems

Nguyen Thi Thu Thuy* and Nguyen Trung Nghia

Abstract. In this paper, we concentrate on the generalized multiple-set split feasibility

problems in Hilbert spaces and propose a new iterative method for this problem. One

of the most important of this method is using dynamic step-sizes, in which the informa-

tion of the previous step is the only requirement to compute the next approximation.

The strong convergence result of the suggested algorithm is proven theoretically un-

der some feasible assumptions. When considering the main results in some special

cases, we also obtain some applications regarding the solution of the multiple-set split

feasibility problem, the split feasibility problem with multiple output sets, and the

split feasibility problem as well as the linear optimal control problem. Some numer-

ical experiments on infinite-dimensional spaces and applications in optimal control

problems are conducted to demonstrate the advantages and computational efficiency

of the proposed algorithms over some existing results.

1. Introduction

Let H1,H1
2, . . . ,HN2 be (N + 1) real Hilbert spaces with inner product 〈 · , · 〉 and norm

‖ · ‖. The purpose of this paper is to construct several iterative algorithms to solve the

following generalized multiple-set split feasibility problem

(GSFP) find x∗ ∈ Ω :=

(
M⋂
i=1

Ci

)
∩

 N⋂
j=1

A−1
j

(
L⋂
k=1

Qkj

) ,

where M , N and L are positive integer numbers, Ci is a closed convex subset of H1,

i = 1, . . . ,M , Q1
j , . . . ,QLj are L closed convex subsets of Hj2, and Aj : H1 → Hj2 is a

bounded linear operator, j = 1, . . . , N . A more general form of (GSFP) is (GP) in [20].

Special cases. (a) When N = 1, H2 := H1
2, A := A1 and Qk := Qk1, k = 1, . . . , L, we have

the multiple-set split feasibility problem (MSFP) that is a general way to characterize the
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inverse problem of intensity-modulated radiation therapy. The MSFP introduced first by

Censor et al. [8] is to

(MSFP) find x∗ ∈ Ω1 =

(
M⋂
i=1

Ci

)
∩

(
A−1

(
L⋂
k=1

Qk

))
.

The CQ–algorithm has been extended by several authors in order to solve (MSFP) (see

the papers by Censor and Segal [10], Censor et al. [8], Masad and Reich [17], Xu [25,26],

and others). Many iterative projection methods for solving (MSFP) have been developed

(see, for example, [2, 4, 9, 15,22,23] and references therein).

To solve (MSFP), Anh [2] proved in 2017 that the following parallel algorithm

(1.1)

x0 ∈ H1, any element,

un = Axn, vn := PQkn
un, where kn = arg max

{
‖PQk

un − un‖ | k = 1, . . . , L
}
,

yn = xn − γnA∗(un − vn), zn := PCiny
n,

where in = arg max
{
‖PCiyn − yn‖ | i = 1, . . . ,M

}
,

xn+1 = ηnx
n + (1− ηn)zn − αnµF (zn), n ≥ 0,

converges strongly to x∗ ∈ Ω1 which is the unique solution of the following variational

inequality problem

(VIP) 〈(IH1 −F)x∗, x− x∗〉 ≥ 0, ∀x ∈ Ω1,

where IH1 is the identity operator on H1, F : H1 → H1, F := IH1 − F is a χ-strongly

monotone and ξ-Lipschitz continuous mapping, A∗ is the adjoint operator of A, under the

following conditions

{αn} ⊂ (0, 1), ∀n ≥ 0, lim
n→∞

αn = 0,

∞∑
n=0

αn =∞,(C1)

0 < µ <
2χ

ξ2
,(C2)

0 < a1 ≤ γn ≤ b1 <
2

‖A‖2 + 1
,(C3)

{ηn} ⊂ [0, 1) such that 0 ≤ ηn ≤ 1− αn, ∀n ≥ 0, lim
n→∞

ηn = η < 1.(C4)

At that time, Buong [4] introduced the following algorithm

(1.2)

x0 ∈ H1, any element,

xn+1 = (IH1 − αnµF )T1

[
IH1 − γA∗(IH2 − T2)A

]
xn, n ≥ 0,
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where T1 =
∑M

i=1 ηiPCi and T2 =
∑L

k=1 βkPQk
(or T1 = PCM · · ·PC1 and T2 = PQL

· · ·PQ1).

He proved that the algorithm (1.2) converges strongly to x∗ ∈ Ω1 which is the unique

solution of (VIP), under the conditions (C1), (C2) and

0 < γ <
1

‖A‖2
,(C3′)

ηi > 0 such that
M∑
i=1

ηi = 1, βk > 0 such that
L∑
k=1

βk = 1.(C4′)

(b) When M = 1, L = 1, C := C1 and Qj := Q1
j , we have the split feasibility problem

with multiple output sets, that introduced by Reich et al. [21] is to

(SMOS) find x∗ ∈ Ω2 := C ∩

 N⋂
j=1

A−1
j Qj

 .

They introduced a new iterative method by using an optimization approach

(1.3)

x0 ∈ H1, any element,

xn+1 = αnF(xn) + (1− αn)PC

[
xn − γn

∑N
j=1A∗j (IH

j
2 − PQj )Ajxn

]
, n ≥ 0,

where F : H1 → H1 is a contraction mapping with the contraction coefficient τ ∈ [0, 1).

They proved that the method (1.3) converges strongly to x∗ ∈ Ω2 which is the unique

solution to (VIP) with Ω1 replaced by Ω2 under the conditions (C1) and

(C3′′) 0 < a2 ≤ γn ≤ b2 <
2

N maxj=1,...,N

{
‖Aj‖2

} for all n ≥ 0.

(c) When M = N = L = 1, C := C1, Q := Q1
1, H2 := H1

2 and A := A1, we have the

two-set split feasibility problem that introduced first by Censor and Elfving [7] is to

(SFP) find x∗ ∈ Ω3 := C ∩ A−1Q.

In 2017, Anh et al. [1] considered the following algorithm

(1.4) xn+1 = (1− αn)PC
(
xn + γnA∗(PQAxn −Axn)

)
, n ≥ 0,

which converges strongly to the minimum-norm solution of (SFP) with the sequences {αn}
and {γn} satisfy the conditions (C1) and

(C3′′′) 0 < a3 ≤ γn ≤ b3 <
1

‖A‖2 + 1
for all n ≥ 0.

In the present article, our aim is to introduce a new iterative algorithm to solve (VIP)

with Ω1 replaced by Ω, the solution-set of (GSFP), by using the viscosity approximation
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method [18], the selective technique [12, 14], and a modification of the CQ–algorithm.

We prove the strong convergence of the presented algorithm which does not need any

prior information on the norm of the operators Aj , j = 1, . . . , N as (C3), (C3′), (C3′′),

(C3′′′). Also, the new algorithms do not require knowing the Lipschitz constant ξ and

the strongly monotone constant χ of the involving mapping. Moreover, our algorithm use

dynamic step-sizes, chosen based on information of the previous steps.

The remaining part of this paper is organized as follows. Section 2 displays some

lemmas that will be used for the validity and convergence of the algorithm. Section 3 is

devoted to the description of our proposed algorithm and its strong convergence result.

In Section 4, we applied our results to the study of finding a solution of (MSFP), (SMOS)

and (SFP). In Section 5, we illustrate the proposed method by considering some numerical

experiments. Finally, we consider an application of the proposed method to linear discrete

optimal control problems.

2. Preliminaries

In this section, we introduce some definitions and facts which can be used in the proof of

our main result.

Let H, H1 and H2 be real Hilbert spaces with inner product 〈 · , · 〉 and norm ‖ · ‖.
In what follows, we write xn ⇀ x to indicate that the sequence {xn} converges weakly

to x while xn → x indicates that the sequence {xn} converges strongly to x. Let C be

a nonempty, closed and convex subset of H. We know that, for each x ∈ H, there is a

unique point PCx ∈ C such that

‖x− PCx‖ = inf
u∈C
‖x− u‖.

The mapping PC : H → C is called the metric projection from H onto C and has the

following property

(2.1) 〈x− PCx, y − PCx〉 ≤ 0, ∀ y ∈ C,

(see, for example, [13, Section 3]).

Recall that a mapping T : C → C is said to be ξ-Lipschitz continuous if

‖T x− T y‖ ≤ ξ‖x− y‖ for all x, y ∈ C,

where ξ is a positive constant. T is said to be a contraction operator if ξ ∈ [0, 1),

and nonexpansive if ξ = 1. We denote the set of fixed points of T by Fix(T ), that is,

Fix(T ) = {x ∈ C | T x = x}. It follows from (2.1) that the metric projection PC is a

nonexpansive mapping and that Fix(PC) = C.
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A mapping F : H1 → H1 is said to be χ-strongly monotone on H1 if there exists χ > 0

such that

〈Fx−Fy, x− y〉 ≥ χ‖x− y‖2 for all x, y ∈ H1.

It is easy to see that if F is a contraction mapping with the contraction coefficient τ ∈ [0, 1),

IH1−F is ξ-Lipschitz continuous and χ-strongly monotone operator onH1 with ξ = (1+τ)

and χ = (1 − τ). So, if Ω is a nonempty closed convex subset of H1, then (VIP) has a

unique solution. Moreover, from (2.1), a point x∗ ∈ H1 is a solution of (VIP) if and only

if x∗ = PΩFx∗.

Lemma 2.1. (Opial’s lemma, [19]) Let C be a nonempty closed convex subset of a real

Hilbert space H and T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. If {xn} is a

sequence in C converging weakly to x∗ and if the sequence {(IH−T )xn} converges strongly

to y, then (IH − T )x∗ = y. In particular, if y = 0, then x∗ ∈ Fix(T ).

Lemma 2.2. [3] Let H be a real Hilbert space. Then for all x, y ∈ H,

2〈x, y〉 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2 = ‖x‖2 + ‖y‖2 − ‖x− y‖2.

Lemma 2.3. [11, 24] Let {sn} be a sequence of nonnegative numbers satisfying the con-

dition sn+1 ≤ (1− bn)sn+ bncn, n ≥ 0, where {bn} and {cn} are sequences of real numbers

such that

(i) {bn} ⊂ (0, 1) for all n ≥ 0 and
∑∞

n=0 bn =∞,

(ii) lim supn→∞ cn ≤ 0.

Then limn→∞ sn = 0.

Lemma 2.4. (Maingé, [16]) Let {sn} be a sequence of real numbers. Assume {sn} does

not decrease at infinity, that is, there exists at least a subsequence {snk
} of {sn} such that

snk
≤ snk+1 for all k ≥ 0. For any n ≥ n0, define an integer sequence {ν(n)} as

ν(n) = max{n0 ≤ k ≤ n | sk < sk+1}.

Then ν(n)→∞ as n→∞ and for all n ≥ n0 we have

max{sν(n), sn} ≤ sν(n)+1.

3. Algorithm and convergence

In this section, we introduce and investigate a new viscosity approximation method, a

selective technique, and a modification of the CQ–algorithm, to solve a class of generalized
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multiple-set split feasibility problems. This iterative method uses a new adaptive step size

criteria making them work well without the prior information about the norm of the

operators and the Lipschitz constant. The following conditions need to be satisfied in

order to obtain the convergence theorems of the suggested algorithms.

Assumption 3.1. (A1) Aj : H1 → Hj2 is a bounded linear mapping, j = 1, . . . , N .

(A2) F : H1 → H1 is a contraction mapping with the contraction coefficient τ ∈ [0, 1).

(A3) Ci is a closed convex subset of H1, i = 1, 2, . . . ,M .

(A4) Qkj , k = 1, 2, . . . , L, are L closed convex subsets of Hj2, j = 1, . . . , N .

(A5) The solution set Ω of (GSFP) is nonempty.

From the properties of Ci, Qkj and Aj for all i = 1, . . . ,M , j = 1, . . . , N and k =

1, . . . , L, we have that Ω is a closed convex subset of H1.

Our algorithm is expressed as follows.

Algorithm 3.2. Step 0. Select the initial point x0 ∈ H1 and the sequences {αn}, {ρn}
and {an} such that the conditions (C1) and (C4′′) are satisfied, where

(C4′′) 0 < a ≤ ρn ≤ b < 1, 0 < c ≤ an ≤ d <∞.

Set n := 0.

Step 1. Let `n = maxi=1,...,M{‖PCixn − xn‖}, $n = {i = 1, . . . ,M | ‖PCixn − xn‖ = `n}.

Step 2. Let `j,n = maxk=1,...,L{‖PQk
j
Ajxn−Ajxn‖}, j = 1, . . . , N , $j,n = {k = 1, . . . , L |

‖PQk
j
Ajxn −Ajxn‖ = `j,n}, j = 1, . . . , N .

Step 3. Let Ξn := max
{
`n,maxj=1,...,N{`j,n}

}
. If Ξn = `n then choose in ∈ $n and let

vn := PCinx
n and B := IH1 . Else, choose kn ∈ $jn,n and let vn := PQkn

jn

Ajnxn

and B := Ajn , where `jn,n = Ξn.

Step 4. Compute un = xn − γnB∗(Bxn − vn), where the step size γn is defined by

(3.1) γn = ρn
‖Bxn − vn‖2

‖B∗(Bxn − vn)‖2 + an
.

Step 5. Compute xn+1 = αnF(xn) + (1− αn)un.

Step 6. Set n := n+ 1 and go to Step 1.

Remark 3.3. We note here that the calculation criterion (3.1) is easy to be implemented.

Moreover, the condition (C4′′) is very simple and easy to check.
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We begin our analysis of this algorithm with the following proposition.

Proposition 3.4. Let {xn} be a sequence generated by Algorithm 3.2 and suppose that

all conditions in Assumption 3.1 are satisfied. Then the following statements hold true:

(i) The sequence {xn} is bounded.

(ii) For any u∗ ∈ Ω, the following inequality holds:

(3.2) ‖xn+1 − u∗‖2 ≤ [1− (1− τ)αn]‖xn − u∗‖2 + 2αn〈Fu∗ − u∗, xn+1 − u∗〉.

Proof. (i) First, we prove that the sequence {xn} in Algorithm 3.2 is bounded. Indeed,

for any u∗ ∈ Ω, the solution set of (GSFP), we consider the following two cases.

Case 1: `jn,n = Ξn. It follows from Steps 2, 3 and 4 in Algorithm 3.2, the property of

adjoint operator A∗jn , Ajnu∗ ∈ Qknjn , the nonexpansive property of PQkn
jn

and Lemma 2.2

that

‖un − u∗‖2

=
∥∥xn − γnA∗jn(IHjn

2 − PQkn
jn

)
Ajnx

n − u∗
∥∥2

= ‖xn − u∗‖2 + γ2n
∥∥A∗jn(IHjn

2 − PQkn
jn

)
Ajnx

n
∥∥2 − 2γn

〈
xn − u∗,A∗jn

(
IH

jn
2 − PQkn

jn

)
Ajnx

n
〉

= ‖xn − u∗‖2 + γ2n
∥∥A∗jn(IHjn

2 − PQkn
jn

)
Ajnx

n
∥∥2 − 2γn

〈
Ajnx

n −Ajnu
∗,
(
IH

jn
2 − PQkn

jn

)
Ajnx

n
〉

= ‖xn − u∗‖2 + γ2n
∥∥A∗jn(IHjn

2 − PQkn
jn

)
Ajnx

n
∥∥2

− γn
(
‖Ajnx

n −Ajnu
∗‖2 +

∥∥(IHjn
2 − PQkn

jn

)
Ajnx

n
∥∥2 − ∥∥PQkn

jn

Ajnx
n −Ajnu

∗∥∥2)
= ‖xn − u∗‖2 + γ2n

∥∥A∗jn(IHjn
2 − PQkn

jn

)
Ajnx

n
∥∥2

+ γn
(∥∥PQkn

jn

Ajnx
n − PQkn

jn

Ajnu
∗∥∥2 − ‖Ajnx

n −Ajnu
∗‖2 −

∥∥(IHjn
2 − PQkn

jn

)
Ajnx

n
∥∥2)

≤ ‖xn − u∗‖2 + γ2n
∥∥A∗jn(IHjn

2 − PQkn
jn

)
Ajnx

n
∥∥2

+ γn
(
‖Ajnx

n −Ajnu
∗‖2 − ‖Ajnx

n −Ajnu
∗‖2 −

∥∥(IHjn
2 − PQkn

jn

)
Ajnx

n
∥∥2)

= ‖xn − u∗‖2 + γ2n
∥∥A∗jn(IHjn

2 − PQkn
jn

)
Ajnx

n
∥∥2 − γn∥∥(IHjn

2 − PQkn
jn

)
Ajnx

n
∥∥2.

From the last inequality and (3.1), the condition of the step size γn and (C4′′), we obtain

‖un − u∗‖2 ≤ ‖xn − u∗‖2

+ ρ2
n

∥∥(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥4(∥∥A∗jn(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥2
+ an

)2∥∥A∗jn(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥2

− ρn

∥∥(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥4∥∥A∗jn(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥2
+ an
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≤ ‖xn − u∗‖2(3.3)

+ ρ2
n

∥∥(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥4(∥∥A∗jn(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥2
+ an

)2 (∥∥A∗jn(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥2
+ an

)

− ρn

∥∥(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥4∥∥A∗jn(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥2
+ an

= ‖xn − u∗‖2 − ρn(1− ρn)

∥∥(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥4∥∥A∗jn(IHjn
2 − PQkn

jn

)
Ajnxn

∥∥2
+ an

.

Case 2: `n = Ξn. It follows from Steps 1, 3 and 4 in Algorithm 3.2 that

‖un − u∗‖2 =
∥∥xn − γn(IH1)∗

(
IH1 − PCin

)
xn − u∗

∥∥2
,

and we also get

(3.4) ‖un − u∗‖2 ≤ ‖xn − u∗‖2 − ρn(1− ρn)

∥∥(IH1 − PCin
)
xn
∥∥4∥∥(IH1 − PCin

)
xn
∥∥2

+ an
.

It follows from the convexity of the norm function on H1, the contraction property of F
with the contraction coefficient τ ∈ [0, 1), (3.3), (3.4) and Step 5 in Algorithm 3.2 that

‖xn+1 − u∗‖ =
∥∥αn(Fxn − u∗) + (1− αn)(un − u∗)

∥∥
≤ αn

(
‖Fxn −Fu∗‖+ ‖Fu∗ − u∗‖

)
+ (1− αn)‖un − u∗‖

≤ αn
(
‖Fxn −Fu∗‖+ ‖Fu∗ − u∗‖

)
+ (1− αn)‖xn − u∗‖

≤ ταn‖xn − u∗‖+ αn‖Fu∗ − u∗‖+ (1− αn)‖xn − u∗‖

= [1− (1− τ)αn]‖xn − u∗‖+ (1− τ)αn
‖Fu∗ − u∗‖

1− τ

≤ max

{
‖xn − u∗‖, ‖Fu

∗ − u∗‖
1− τ

}
≤ · · ·

≤ max

{
‖x0 − u∗‖, ‖Fu

∗ − u∗‖
1− τ

}
.

This implies that the sequence {xn} is bounded. Since PCi and PQk
j

are the nonexpansive

mappings, Aj is the bounded linear operator for all i = 1, . . . ,M , j = 1, . . . , N and

k = 1, . . . , L and the boundedness of the sequence {an}, we get that

M := max

{
sup
n

∥∥(IH1 − PCin
)
xn
∥∥2

+ an, sup
n

∥∥A∗jn(IHj
2 − PQkn

jn

)
Ajnxn

∥∥2
+ an

}
<∞.
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(ii) Next, we will prove (3.2). Indeed, it follows from Steps 1–3 in Algorithm 3.2, (3.3)

and (3.4) that

(3.5) (Ξn)4 ≤ M

ρn(1− ρn)

(
‖xn − u∗‖2 − ‖un − u∗‖2

)
at the nth step iteration. It follows from the convexity of the function ‖ · ‖2, Step 5 in

Algorithm 3.2, the condition (C1) and (3.5) that

‖xn+1 − u∗‖2 = ‖αn(Fxn − u∗) + (1− αn)(un − u∗)‖2

≤ αn‖Fxn − u∗‖2 + (1− αn)‖un − u∗‖2

≤ αn‖Fxn − u∗‖2 + ‖un − u∗‖2

≤ αn‖Fxn − u∗‖2 + ‖xn − u∗‖2 − ρn(1− ρn)

M
(Ξn)4,

which implies that

(3.6) (Ξn)4 ≤ M

ρn(1− ρn)

(
‖xn − u∗‖2 − ‖xn+1 − u∗‖2 + αn‖Fxn − u∗‖2

)
.

From Step 5 in Algorithm 3.2 and the contraction property of F with the contraction

coefficient τ ∈ [0, 1), we have that

‖xn+1 − u∗‖2 =
〈
αn(Fxn − u∗) + (1− αn)(un − u∗), xn+1 − u∗

〉
= (1− αn)

〈
un − u∗, xn+1 − u∗

〉
+ αn

〈
Fxn − u∗, xn+1 − u∗

〉
≤ 1− αn

2

(
‖un − u∗‖2 + ‖xn+1 − u∗‖2

)
+ αn

〈
Fxn −Fu∗, xn+1 − u∗

〉
+ αn

〈
Fu∗ − u∗, xn+1 − u∗

〉
≤ 1− αn

2

(
‖un − u∗‖2 + ‖xn+1 − u∗‖2

)
+
αn
2

(
τ‖xn − u∗‖2 + ‖xn+1 − u∗‖2

)
+ αn

〈
Fu∗ − u∗, xn+1 − u∗

〉
.

This implies that

‖xn+1 − u∗‖2 ≤ (1− αn)‖un − u∗‖2 + αnτ‖xn − u∗‖2 + 2αn
〈
Fu∗ − u∗, xn+1 − u∗

〉
.

From (3.3), (3.4) and the last inequality, we obtain (3.2).

The following theorem shows the convergence of Algorithm 3.2.

Theorem 3.5. Suppose that all conditions in Assumption 3.1 are satisfied. Then the

sequence {xn} generated by Algorithm 3.2 converges strongly to the unique solution of

(VIP) with Ω1 replaced by Ω.



1078 Nguyen Thi Thu Thuy and Nguyen Trung Nghia

Proof. Since F is a contraction mapping, PΩF is a contraction mapping too. By Banach

contraction mapping principle, there exists a unique point x∗ ∈ Ω such that PΩFx∗ = x∗.

By (2.1) and the condition (A5), we obtain x∗ is the unique solution to the variational

inequality (VIP).

We will claim that limn→∞ ‖xn−x∗‖ = 0. Indeed, it follows from (3.2) with u∗ replaced

by x∗ that

‖xn+1 − x∗‖2 ≤ [1− (1− τ)αn]‖xn − x∗‖2

+ (1− τ)αn

[
2

1− τ
〈
Fx∗ − x∗, xn+1 − x∗

〉]
, n ≥ 0.

(3.7)

We consider two cases.

Case 1: There exists an integer n0 ≥ 0 such that ‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ for all

n ≥ n0.

Then limn→∞ ‖xn − x∗‖ exists. From the boundedness of the sequence {Fxn}, the

conditions (C1) and (C4′′), it follows from (3.6) with u∗ replaced by x∗ that Ξn → 0.

Since the definition of Ξn, the sequences {`n} and {`j,n} in Algorithm 3.2 also converge

to 0. This implies that

(3.8) lim
n→∞

∥∥(IH1 − PCi
)
xn
∥∥ = 0 for all i = 1, . . . ,M

and

(3.9) lim
n→∞

∥∥(IHj
2 − PQk

j

)
Ajxn

∥∥ = 0 for all j = 1, . . . , N and k = 1, . . . , L.

From Step 4 in Algorithm 3.2, (3.8) and (3.9), we obtain

(3.10) ‖xn − un‖ = γn‖B∗(Bxn − vn)‖ → 0 as n→∞.

From the boundedness of the sequence {xn}, Steps 4 and 5 in Algorithm 3.2 and the

condition (C1), we also have

‖xn+1 − un‖ = αn‖Fxn − un‖ → 0 as n→∞,

combining with (3.10), we have

(3.11) ‖xn+1 − xn‖ → 0 as n→∞.

Now we show that lim supn→∞〈Fx∗ − x∗, xn+1 − x∗〉 ≤ 0. Indeed, suppose that {xnk} is

a subsequence of {xn} such that

(3.12) lim sup
n→∞

〈
Fx∗ − x∗, xn − x∗

〉
= lim

k→∞

〈
Fx∗ − x∗, xnk − x∗

〉
.
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Since {xnk} is bounded, there exists a subsequence {xnkl} of {xnk} which converges weakly

to some point x†. Without loss of generality, we may assume that xnk ⇀ x†. We shall prove

that x† ∈ Ω. Indeed, from Lemma 2.1 and (3.8) we obtain x† ∈ Fix(PCi), that is, x† ∈ Ci
for all i = 1, . . . ,M . Hence x† ∈

⋂M
i=1 Ci. Moreover, since each Aj is a bounded linear

operator, Ajxnk ⇀ Ajx† for each j = 1, . . . , N . Using Lemma 2.1 and (3.9), we also obtain

Ajx† ∈ Qkj for each j = 1, . . . , N and k = 1, . . . , L. Hence x† ∈
⋂N
j=1A

−1
j

(⋂L
k=1Qkj

)
.

Consequently, x† ∈ Ω. So, from x∗ = PΩFx∗, (3.12) and (2.1), we deduce that

lim sup
n→∞

〈
Fx∗ − x∗, xn − x∗

〉
=
〈
Fx∗ − x∗, x† − x∗

〉
≤ 0,

which combined with (3.11) gives

(3.13) lim sup
n→∞

〈
Fx∗ − x∗, xn+1 − x∗

〉
≤ 0.

Now, the inequality (3.7) can be rewritten in the form

‖xn+1 − x∗‖2 ≤ (1− bn)‖xn − x∗‖2 + bncn, n ≥ 0,

where

bn = (1− τ)αn and cn =
2

1− τ
〈
Fx∗ − x∗, xn+1 − x∗

〉
.

Since τ ∈ [0, 1), {αn} ⊂ (0, 1) and
∑∞

n=0 αn = ∞, {bn} ⊂ (0, 1) and
∑∞

n=0 bn = ∞.

Consequently, from τ ∈ [0, 1) and (3.13), we have that lim supn→∞ cn ≤ 0. Finally, by

Lemma 2.3, limn→∞ ‖xn − x∗‖ = 0.

Case 2: There exists a subsequence {nk} of {n} such that ‖xnk − x∗‖ ≤ ‖xnk+1 − x∗‖
for all k ≥ 0.

Hence, by Lemma 2.4, there exists an integer and nondecreasing sequence {ν(n)} for

n ≥ n0 (for some n0 large enough) such that ν(n)→∞ as n→∞,

(3.14) ‖xν(n) − x∗‖ ≤ ‖xν(n)+1 − x∗‖ and ‖xn − x∗‖ ≤ ‖xν(n)+1 − x∗‖

for each n ≥ 0.

From (3.7) with n replaced by ν(n) and the condition (C1), we have

0 < ‖xν(n)+1 − x∗‖2 − ‖xν(n) − x∗‖2 ≤ 2αν(n)

〈
Fx∗ − x∗, xν(n)+1 − x∗

〉
.

Since αν(n) → 0 and {xν(n)} is bounded, we get

(3.15) lim
n→∞

(
‖xν(n)+1 − x∗‖2 − ‖xν(n) − x∗‖2

)
= 0.

By the similar argument as in Case 1, we obtain

lim
n→∞

∥∥(IH1 − PCi
)
xν(n)

∥∥ = 0 for all i = 1, . . . ,M
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and

lim
n→∞

∥∥(IHj
2 − PQk

i

)
Ajxν(n)

∥∥ = 0 for all j = 1, . . . , N and k = 1, . . . , L.

Also we get

‖xν(n)+1 − x∗‖2 ≤ [1− (1− τ)αν(n)]‖xν(n) − x∗‖2 + 2αν(n)

〈
Fx∗ − x∗, xν(n)+1 − x∗

〉
,

where lim supn→∞〈Fx∗ − x∗, xν(n)+1 − x∗〉 ≤ 0.

Since the first inequality in (3.14) and αν(n) > 0, we have that (1− τ)‖xν(n) − x∗‖2 ≤
2〈Fx∗ − x∗, xν(n)+1 − x∗〉. Thus, from lim supn→∞〈Fx∗ − x∗, xν(n)+1 − x∗〉 ≤ 0 and

τ ∈ [0, 1), we get limn→∞ ‖xν(n) − x∗‖2 = 0. This together with (3.15) implies that

limn→∞ ‖xν(n)+1 − x∗‖2 = 0, which together with the second inequality in (3.14) implies

that limn→∞ ‖xn − x∗‖ = 0. This completes the proof.

4. Corollaries

In this section, we consider some applications for solving (MSFP), (SMOS) and (SFP).

Taking N = 1, H2 := H1
2, A := A1 and Qk := Qk1, from Algorithm 3.2 and Theo-

rem 3.5, we have the following result for (MSFP).

Algorithm 4.1. Step 0. Select the initial point x0 ∈ H1 and the sequences {αn}, {ρn}
and {an} such that the conditions (C1) and (C4′′) are satisfied. Set n := 0.

Step 1. Let `n = maxi=1,...,M{‖PCixn − xn‖}.

Step 2. Let ̂̀n = maxk=1,...,L{‖PQk
Axn −Axn‖}.

Step 3. Let Ξn := max{`n, ̂̀n}. If `n = Ξn then choose in such that `n = ‖PCinx
n − xn‖

and let vn := PCinx
n and B := IH1 . Else, choose kn such that ̂̀n = ‖PQkn

Axn −
Axn‖ and let vn := PQkn

Axn and B := A.

Step 4. Compute un = xn − γnB∗
(
Bxn − vn

)
, where the step size γn is defined by (3.1).

Step 5. Compute xn+1 = αnFxn + (1− αn)un.

Step 6. Set n := n+ 1 and go to Step 1.

Corollary 4.2. Suppose that the conditions (A1)–(A4) are satisfied with N = 1. Then

the sequence {xn} generated by Algorithm 4.1 converges strongly to the unique solution of

(VIP), provided that the solution set Ω1 of (MSFP) is nonempty.

Take M = 1, L = 1, C := C1 and Qj := Q1
j . From Algorithm 3.2 and Theorem 3.5, we

have the following results to study (SMOS) introduced by Reich et al. [21].
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Algorithm 4.3. Step 0. Select the initial point x0 ∈ H1 and the sequences {αn}, {ρn}
and {an} such that the conditions (C1) and (C4′′) are satisfied. Set n := 0.

Step 1. Let `n = ‖PCxn − xn‖.

Step 2. Let ̂̀n = maxj=1,...,N{‖PQjAjxn −Ajxn‖}.

Step 3. Let Ξn := max{`n, ̂̀n}. If `n = Ξn then vn := PCx
n and B := IH1 . Else, choose

jn such that ̂̀n = ‖PQjn
Ajnxn−Ajnxn‖ and let vn := PQjn

Ajnxn and B := Ajn .

Step 4. Compute un = xn − γnB∗
(
Bxn − vn

)
, where the step size γn is defined by (3.1).

Step 5. Compute xn+1 = αnFxn + (1− αn)un.

Step 6. Set n := n+ 1 and go to Step 1.

Corollary 4.4. Suppose that the conditions (A1)–(A4) are satisfied with M = L = 1.

Then the sequence {xn} generated by Algorithm 4.3 converges strongly to the unique so-

lution of (VIP), with Ω1 replaced by Ω2, provided the solution set Ω2 of (SMOS) is

nonempty.

Taking M = L = 1, (MSFP) becomes (SFP). We consider the special case when F = 0

and in this situation, (VIP) becomes the problem of finding the minimum-norm solution

of (SFP). From Algorithm 4.1 and Corollary 4.2, we have the following result.

Corollary 4.5. Let C and Q be two nonempty closed convex subsets of two real Hilbert

spaces H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator such that

the solution set Ω3 of (SFP) is nonempty. Let {xn} be a sequence generated by

(4.1)



x0 ∈ H1, any element,

`n := ‖PCxn − xn‖, ̂̀
n := ‖PQAxn −Axn‖,

If `n > ̂̀n, vn := PCx
n, B := IH1 , else vn := PQAxn, B := A,

xn+1 = (1− αn)
(
xn − γnB∗(Bxn − vn)

)
, n ≥ 0,

where the step size γn is defined by (3.1) and the sequences {αn}, {ρn} and {an} satisfy the

conditions (C1) and (C4′′). Then the sequence {xn} converges strongly to the minimum-

norm solution of (SFP).

Remark 4.6. We have the following observations for the offered Algorithms 4.1, 4.3 and

the algorithm (4.1).

(1) The CQ–method [5] for (SFP) requiring two projections at each step is only weakly

convergent. Yu et al. [27] considered a strongly convergent algorithm for (SFP) and
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requires only two projections at each step. However, in this (SFP), the constrained

sets are given explicitly rather than the solution sets of (VIP) as in Algorithm 3.2

for (MSFP). Another strongly convergent algorithm for (SFP) proposed in [6] needs

four projections at each iteration step.

(2) Our iterative schemes are embedded with inertial effects, which allows them to accel-

erate the convergence speed of the algorithms. Furthermore, the Lipschitz constant

and norm of operator do not need to be known. Therefore, the convergence condi-

tions of algorithms obtained in this section are weaker than those in (1.1) of Anh [2],

(1.2) of Buong [4], (1.3) of Reich et al. [21] and (1.4) of Anh et al. [1], which makes

them more widespread and useful in practical applications.

5. Numerical experiment

In this section, we perform some computational tests that occur in infinite-dimensional

spaces and compare the offered iterative schemes with several previously known strongly

convergent algorithms, which including the algorithm (1.1) introduced by Anh [2], the

algorithm (1.2) presented by Buong [4] and the algorithm (1.3) suggested by Reich et

al. [21]. All the programs were implemented in Python 3.7 running on a laptop with

Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz, 12 GB RAM.

First, we illustrate the convergence of Algorithm 3.2.

Example 5.1. Take H1 = H2 = L2[0, 1] with the inner product 〈x, y〉 =
∫ 1

0 x(t)y(t) dt

and norm ‖x‖ =
( ∫ 1

0 x
2(t) dt

)1/2
for all x, y ∈ L2[0, 1]. Consider (GSFP) with

Ω :=

(
M⋂
i=1

Ci

)
∩

 3⋂
j=1

A−1
j

(
L⋂
k=1

Qkj

) ,

where the closed convex sets Ci ⊂ L2[0, 1] and Qkj ⊂ L2[0, 1], j = 1, 2, 3, are given by

Ci =
{
x ∈ L2[0, 1] | 〈ai, x〉 = bi

}
where ai(t) = ti+1 and bi =

1

2(4 + i)
,

Qk1 =
{
y ∈ L2[0, 1] | 〈ck1, y〉 ≥ dk1

}
where ck1(t) = t+ k and dk1 =

7

72
,

Qk2 =
{
y ∈ L2[0, 1] | 〈ck2, y〉 ≥ dk2

}
where ck2(t) = 2t+ k and dk2 =

5

48
,

Qk3 =
{
y ∈ L2[0, 1] | 〈ck3, y〉 ≥ dk3

}
where ck3(t) = 3t+ k and dk3 =

13

120

for all i = 1, . . . ,M , k = 1, . . . , L, t ∈ [0, 1], the operators Aj : L2[0, 1] → L2[0, 1], j =

1, 2, 3, are defined by (A1x)(t) = x(t)/3, (A2x)(t) = x(t)/4 and (A3x)(t) = x(t)/5. It

is easy to see that Aj , j = 1, 2, 3, are bounded linear operators. Since x(t) = t2/2 ∈ Ω,

Ω 6= ∅.
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In this example, we define the function ε1(n) as follows:

ε1(n) =
1

4

[
1

M

M∑
i=1

‖xn − PCixn‖2

+
1

L

L∑
k=1

(∥∥A1x
n − PQk

1
A1x

n
∥∥2

+
∥∥A2x

n − PQk
2
A2x

n
∥∥2

+
∥∥A3x

n − PQk
3
A3x

n
∥∥2)]

.

It can be seen that if at the nth step, ε1(n) = 0 then xn ∈ Ω, that is, xn is a solution of

(GSFP).

We now consider the convergence of Algorithm 3.2 with M = 30, L = 50, ρn = 0.75,

an = 0.25 for all n ≥ 0 and obtain Table 5.1 of numerical results with stop condition is

ε1(n) < 10−5.

αn (n+ 1)−0.95 (n+ 1)−1.0 (n+ 2)−0.95 (n+ 2)−1.0

Fx = 0.5x
Time (s) 770.42439 473.76078 811.52912 479.57265

Iter. (n) 79613 46197 79665 46460

Fx = 0.75x
Time (s) 464.73435 271.84241 438.13586 258.63001

Iter. (n) 42132 25803 42070 25094

Fx = 0.99x
Time (s) 19.87261 15.62950 16.93058 15.35156

Iter. (n) 1592 1448 1582 1439

Table 5.1: Performance of Algorithm 3.2 with initial point x0(t) = 1
2(10+t) for all t ∈ [0, 1].

Table 5.2 is the performance of Algorithm 3.2 with different starting points.

x0(t) = sin 2t x0(t) = cos 2t x0(t) = 1
2(1+t) x0(t) = 1

2(10+t)

Time (s) Iter. (n) Time (s) Iter. (n) Time (s) Iter. (n) Time (s) Iter. (n)

89.32911 8403 84.18712 5263 131.65541 12859 250.88909 25183

Table 5.2: Performance of Algorithm 3.2 with Fx = 0.75x, αn = (n+ 1)−1.0 and ε1(n) <

10−5.

The behavior of the approximation solution xn(t) with ε1(n) < 10−5 is presented in

Figure 5.1.
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x

x0(t) = sin 2t

The solution x∗(t) =
t2

2

xn(t) from Algorithm 3.2

Figure 5.1: The behavior of xn(t) with F(x) = 0.75x and x0(t) = sin(2t) for all t ∈ [0, 1]

and αn = (n+ 1)−1.0.

Example 5.2. In Example 5.1, take A := A1, Qk := Qk1, k = 1, . . . , L, and consider

(MSFP) with Ω1 :=
(⋂M

i=1 Ci
)
∩
(
A−1

(⋂L
k=1Qk

))
. Since x(t) = t2/2 ∈ Ω1, Ω1 6= ∅.

Now, we compare Algorithm 4.1 with two algorithms (1.1) and (1.2). The first one was

introduced by Anh [2] and the second one was introduced by Buong [4]. The operator and

parameters of these methods are chosen as follows:

• In our algorithm, we choose Fx = 0.5x, αn = 1
n+1 , ρn = 0.8, an = 10−3 for all n ≥ 0.

• In (1.1), Fx = 0.5x, αn = 1
n+1 , γn = 0.8, µ = 10−3 and ηn = 80n+1

81n+572 for all n ≥ 0.

• In (1.2), Fx = 0.5x, αn = 1
n+1 for all n ≥ 0, γ = 0.8, µ = 10−3, ηi = 2i

M(M+1) ,

i = 1, . . . ,M , and βk = 2k
L(L+1) , k = 1, . . . , L.

Alg. 4.1 Anh’s Alg. (1.1) Buong’s Alg. (1.2)

Time (s) Iter. (n) Time (s) Iter. (n) Time (s) Iter. (n)

x0(t) = 1
2(1+t) 1.45803 297 12.25931 2379 6.24796 952

x0(t) = 1
t2+1

0.64271 131 107.20125 23396 56.02806 8398

x0(t) = cos 10t 1.69369 336 53.12184 9991 8.16611 1166

Table 5.3: Performance of the three algorithms in Example 5.2 with different starting

points.

In this example, the defined function ε2(n) as follows:

ε2(n) =
1

2

(
1

M

M∑
i=1

∥∥xn − PCixn∥∥2
+

1

L

L∑
k=1

∥∥Axn − PQk
Axn

∥∥2

)
.
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Note that, if at the nth step, ε2(n) = 0 then xn ∈ Ω1, that is, xn is a solution of

(MSFP). In all the methods, we use the same stoping rule ε2(n) < 10−5. We have tested

the algorithms with different starting points, the results are presented in Table 5.3 and

Figure 5.2.

0 5 10
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x0(t) = cos 10t
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Figure 5.2: Performance of the three algorithms in Example 5.2 with different starting

points.

Table 5.4 and Figure 5.3 show the performance of the three algorithms with x0(t) =
1

t2+1
and different M and L.

Alg. 4.1 Anh’s Alg. (1.1) Buong’s Alg. (1.2)

Time (s) Iter. (n) Time (s) Iter. (n) Time (s) Iter. (n)

M = 5, L = 7 1.19461 1176 61.67297 63015 2.43713 2153

M = 15, L = 25 1.07309 379 57.49268 18795 17.22387 4959

M = 200, L = 100 7.56092 248 397.34452 18233 1978.76401 60392

Table 5.4: Performance of the three algorithms in Example 5.2 with different M and L.
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Figure 5.3: Performance of the three algorithms in Example 5.2 with different M and L.
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From Tables 5.3, 5.4 and Figures 5.2, 5.3, we can see that the our algorithm shows a

better behavior in most cases.

Example 5.3. Finally, we illustrate the convergence of Algorithm 4.3, without computing

‖Aj‖, j = 1, . . . , N , like the algorithm (1.3) which was introduced by Reich et al. [21].

In Example 5.1, take C := C1. Let Qj =
{
y ∈ L2[0, 1] | 〈cj , y〉 ≥ dj

}
, where cj(t) =

jt + 2 and dj = 13/120 and (Ajx)(t) = x(t)/(j + 2) for all j = 1, . . . , N , t ∈ [0, 1]. We

consider (SMOS) with

Ω2 := C ∩

 N⋂
j=1

A−1
j (Qj)

 .

Since x∗(t) = t2/2, Ω2 is nonempty. We implement Algorithm 4.3 with N = 100, Fx =

0.9x, ρn = 0.99 and an = 10−9. In this case, the defined function ε3(n) becomes

ε3(n) =
1

2

∥∥xn − PCxn∥∥2
+

1

N

N∑
j=1

∥∥Ajxn − PQjAjxn
∥∥2

 .

Note that, if at the nth step, ε3(n) = 0 then xn ∈ Ω2, that is, xn is a solution of (SMOS).

In Table 5.5, we use the starting point x0(t) = 1
2(1+t) and the stopping rule ε3(n) < 10−6.

αn = 1
n+1 αn = 1√

n+1
αn = 1

4√n+1

Time (s) Iter. (n) Time (s) Iter. (n) Time (s) Iter. (n)

Alg. 4.3 0.12290 17 1.41318 254 376.63804 63541

Table 5.5: Performance of Algorithm 4.3 in Example 5.3.

6. An application to discrete optimal control problems

In the section, we consider an application to discrete optimal control problems. Also, some

comparisons of our algorithm (4.1) with (1.4) of Anh et al. [1] are reported. All Python

codes were run on a PC with Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz, 12 GB RAM

under version Python 3.7.

Let Ai and Bi, i = 0, 1, . . . ,N − 1, be n × n and n × m real matrices, respectively.

Consider a linear discrete optimal control problem

xi+1 = Ai+1xi +Bi+1ui, ui ∈ Ci, i = 0, 1, . . . ,N − 1, x0 = 0, xN ∈ Q,

J(x, u) :=
N−1∑
i=0

‖ui‖2 → min
ui
,

(6.1)
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where Ci ⊂ Rm, i = 0, 1, . . . ,N − 1, and Q ⊂ Rn are closed convex subsets, which

describe the control and the state constraints, respectively. Constructing a matrix A :=[
A0 A1 . . . AN−1

]
of dimension n × Nm, in which Ai := ANAN−1 · · ·Ai+2Bi+1,

i = 0, 1, . . . ,N−2, and AN−1 = BN , and defining the set C := C0×C1×· · ·×CN−1 ⊂ Rm×
Rm×· · ·×Rm. Let u := (u0, u1, . . . , uN−1) be the vector of controls ui, i = 0, 1, . . . ,N −1,

and ‖u‖2 :=
∑N−1

i=0 ‖ui‖2. Then, the problem (6.1) becomes the following SFP

find u∗ = arg min
{
‖u‖ | u ∈ C, Au ∈ Q

}
.

According to algorithms (4.1) and (1.4), choose u0 arbitrarily, the next approximation

is determined by

(6.2)


`n := ‖PCu

n − un‖, ̂̀
n := ‖PQAun −Aun‖,

If `n > ̂̀n, vn := PCu
n, B := IR

Nm
, else vn := PQAun, B := A,

un+1 = (1− αn)
(
un − γnB>

(
Bun − vn

))
, n ≥ 0,

and

(6.3) un+1 = (1− αn)PC
(
un + γnA>

(
PQAun −Aun

))
, n ≥ 0,

where PCu =
(
PC0u0, PC1u1, . . . , PCN−1

uN−1

)
and Au =

∑N−1
i=0 Aiui for u = (u0, u1, . . . ,

uN−1).

Now considering a numerical experiment. Let us consider the following optimal control

problem

ẋ = x+ 4u, t ∈ (0, 1), |u(t)| ≤ 0.5, x(0) = 0, x(1) = 2,

J(x, u) :=

∫ 1

0
u2(t) dt→ min

u(t)
.

It can be seen that the optimal control is uopt(t) = e−t

2 sinh(1) . Divide the interval (0, 1) into

N parts with the step size h = 1/N and replacing ẋ(ti) ≈ (xi+1−xi)/h, ti = ih, we come

to problem (6.1) with Ai+1 = 1 + h, Bi+1 = 4h, Ai = 4h(1 + h)N−i−1, Ci = [−0.5, 0.5],

i = 0, 1, . . . ,N − 1, and Q = [2 − ε, 2 + ε], where ε = 10−7. It is well known that this

discretization has the error estimate O(h). This indicates that the difference between the

discretized solution un(t) and the original solution uopt(t) is proportional to the mesh size

h.

The computation shows that the iterations {un} defined by (6.2) are good approxi-

mations to the optimal control uopt(t) at grid points ti = ih, i = 0, 1, . . . ,N − 1. Indeed,

defining the approximation error function ε(n) :=
(∑N−1

i=0

(
uni − uopt(ti)

)2)1/2
, choosing

αn = 1/(104n0.75 + 1) and ρn = 0.75 for all n ≥ 0, we find that after n = 69 iterations,
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the error ε(n) = 0.001162 if h = 10−3 and an = 10−6; and after n = 1017 iterations, the

error ε(n) = 0.000367 if h = 10−4 and an = 10−9, which are acceptable compared to the

discretization error O(h).

Now we compare iterative methods (6.2) and (6.3). We take

• h = 10−3, αn = 1
10n+1 and an = 10−8 for all n ≥ 0,

• h = 10−4, αn = 1
103n+1

and an = 10−9 for all n ≥ 0,

and obtain Tables 6.1, 6.2 and Figure 6.1 of numerical results.

Our algorithm (6.2) Anh et al.’s algorithm (6.3)

ρn ε(n) Iter. (n) Time (s) γn ε(n) Iter. (n) Time (s)

0.5 0.0024952 398 3.4280 0.5 0.0024999 6817 76.6170

0.6 0.0024897 332 3.1551 0.6 0.0024997 5681 64.9117

0.7 0.0024952 284 2.7654 0.7 0.0024999 4869 57.8918

0.8 0.0024861 249 2.2786 0.8 0.0024991 4261 46.2954

0.9 0.0024897 221 1.9618 0.9 0.0024997 3787 41.5421

Table 6.1: Performance of two algorithms with h = 10−3 and the stopping rule ε(n) <

2.5× 10−3.

Our algorithm (6.2) Anh et al.’s algorithm (6.3)

ρn ε(n) Iter. (n) Time (s) γn ε(n) Iter. (n) Time (s)

0.5 0.00049977 1143 95.3601 0.5 0.00049995 9127 756.1902

0.6 0.00049987 952 80.5837 0.6 0.00049991 7606 628.6861

0.7 0.00049982 816 74.0353 0.7 0.00049995 6519 546.1119

0.8 0.00049977 714 57.4974 0.8 0.00049995 5704 544.7699

0.9 0.00049956 635 42.8769 0.9 0.00049997 5070 422.5159

Table 6.2: Performance of two algorithms with h = 10−4 and the stopping rule ε(n) <

5× 10−4.
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Figure 6.1: Performance of algorithms (6.2) and (6.3) with h = 10−4 and ρn = γn = 0.9.

In these cases, we can see that our algorithm (6.2) has better performance than (6.3)

of Anh et al. [1] does.

7. Conclusion

In this paper, we based on the viscosity approximation method, the selective technique and

the CQ–method to approach the solution of the generalized multiple-set split feasibility

problem in real Hilbert spaces and obtained a new self-adaptive algorithm for this problem.

The self-adaptive feature is expressed via the way to compute the step-sizes, in which the

only requirement is the information of the previous step, and the norm of the operator

involved is no more necessary. The strong convergence theorem of the proposed algorithm

is proven under some suitable conditions. We also obtained some strong convergence

results for the solution of (MSFP), (SMOS) and (SFP) as special cases of our main results.

The advantages and computational efficiency of the suggested iterative algorithms over

some existing ones were confirmed by several numerical experiments.
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