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The LP-L9 Boundedness and Compactness of Bergman Type Operators
Lijia Ding* and Kai Wang

Abstract. We investigate Bergman type operators on the complex unit ball, which
are singular integral operators induced by the modified Bergman kernel. We consider
the LP-L? boundedness and compactness of Bergman type operators. The results of
boundedness can be viewed as the Hardy—Littlewood—Sobolev (HLS) type theorem
in the case unit ball. We also give some sharp norm estimates of Bergman type
operators which in fact gives the upper bounds of the optimal constants in the HLS
type inequality on the unit ball. Moreover, a trace formula is given.

1. Introduction

Let BY be the unit ball on the d-dimensional complex Euclidian space C? with the nor-
malized Lebesgue measure dv. For a € R, the a-order Bergman type kernel function is

given by
1

(1= (z,w))*

Clearly the (d+1)-order Bergman type kernel function kg1 (z, w) is the standard Bergman

ko(z,w) =

kernel on B?. The Bergman type integral operator K, on L'(B?, dv) is defined by
Kaf(2) = [ Fa(zvw)f(w) duto),

where (z,w) = 21 + - - + zqW4 is the standard Hermitian inner product on C?. Such
operators K, play an important role in complex analysis of several variables and operator
theory; in particular, when a = d + 1, K441 is the standard Bergman projection on the
unit ball B¢ Indeed, for any o > 0, if we restrict K, to Bergman spaces, then every
K, is a special form of fractional radial differential operator, see Lemma below. The
fractional radial differential operators have many applications in the function space and

operator theory; see for examples [23,124]. On the other hand, the operators K, play a
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significant role in the characterization of the weighted Bloch spaces and Lipschitz spaces on
the unit ball; see [23-25]. We also consider the kernel integral operator K on L'(BY, dv)
for any o € R, which is given by

KifG) = [t dvtw),

The operators K can be regarded as Riesz potential operators on the bounded domain
B¢. Comparing to the classical Riesz potential operators on the real Euclidian space
R?, whose basic result concerning mapping properties is the Hardy-Littlewood-Sobolev
(HLS) theorem or inequality which essentially describes the boundedness of Riesz potential
operators Ry : LP(R?) — LI(RY); see [14,[17,120,21] and references therein. One of the
interesting questions involving the HLS inequality is the estimate of the optimal constant
[13][14].

For abbreviation, we replace LP(B?, dv) by LP(B?) or L for any 1 < p < oo without
confusion arises. The present paper mainly concerns the LP-L? boundedness, compactness
and norm estimates of Bergman type operators K,, K}: [P — L9 for 1 < p,q < oo.
Analogously, the results of LP-L? boundedness can be viewed as the HLS type theorem
with respect to K on B¢. Actually, on a more general bounded domain Q in C%, the
LP-L9 boundedness of Bergman type operators and in particular LP-L? boundedness of
the standard Bergman projection have attracted much interest in the past few decades.
As we all know, the standard Bergman projection is bounded for any bounded domain
when p = ¢ = 2. However, the results would be subtle in general. Nevertheless, the known
results depend strongly on the geometric property of the domain €2; we refer the reader
to |1,[249}/16,/18,24] for more recent progress on this issue.

Now return to our unit ball setting. In [8], X. Fang and Z. Wang established a re-
lation between the boundedness of standard Bergman projection and Berezin transform
on the weighted Bergman spaces on the unit disc D = B!. The compactness of stan-
dard Bergman projection Ko: L>®(D) — L4(D) for 1 < ¢ < oo was observed by K. Zhu
in [25, Section 3.6]. Recently, X. Fang and G. Cheng et al. |3] completely solved the LP-
L2 boundedness problem of K, on the unit disc I, and they also considered the LP-L?
boundedness of the Bergman type operator on the upper half plane. G. Cheng and X. Hou
et al. [4] solved the LP-L9 boundedness problem of K, in the special case of the « = 1 on
the unit ball B for any d > 1. Soon afterwards H. Kaptanoglu and A. Ureyen [11] solved
the LP-L9 boundedness problem of Bergman type operators in the general case. The re-
sults of boundedness of K, not only give a positive answer to the conjecture proposed
in [3] but also extend some classical results [6l/15,|18]24,25], the results of boundedness
of K are essentially the HLS type theorem as mentioned before. In the present paper
we will describe the LP-L? compactness of K, on the unit ball B? (d > 1); especially the
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relationship between the boundedness and compactness. Meanwhile, we estimate norms
of Bergman type operators which in fact gives the upper bounds of the optimal constants
in the HLS type inequalities on the unit ball. First, it is trivial that K, K : LP — L9 are
compact for any 1 < p,q < oo if @ < 0. Thus we mainly concern the case of a > 0. The
following theorems are main results of LP-L9 boundedness and compactness of Bergman
type operators; however, the norm estimates of Bergman type operators shall be given in
the following Section

Theorem 1.1. If d+ 1 < a < d+ 2, then the following conditions are equivalent:
(1) Ko: LP — L1 is bounded;
(2) KX: LP — LY is bounded;
(3) Ko: LP — L7 is compact;
(4) p, q satisfy one of the following inequalities:

(a) 1/(d+2—a)<p<oo,1/g>1/p+a—(d+1);
(b) p=o00, ¢ <1/(a—(d+1)).

As a consequence of Theorem the following HLS type inequality is established on
the bounded domain B,

HLS 1.2. Forany1 <p,s<oo, 1/s+1/p+a<d+2andd+1< a < d+2, then there

exists a constant C which depends only on p, a, d, s such that

(1.1)

I@9E) e |
/IBd /Bd ’1—<z,w>|0¢d ( )d ( ) SCHJCHLPHQHL

for all f € LP(B?), g € L*(BY).

Theorem 1.3. [11] If 0 < a < d+ 1, then the following conditions are equivalent:
(1) Ko: LP — L7 is bounded;
(2) Kf: LP — L7 is bounded;

(3) p, q satisfy one of the following inequalities:

l<p<(d+1)/(d+1—-a),1/¢>1/p+a/(d+1)—1;
p=(d+1)/(d+1—-a), g <oo;
(d+1)/(d4+1—a) <p< .
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Note that Ko, Kt: L' — L@/ are both unbounded under the condition of Theo-
rem but it turns out that K, is weak type (1, (d+1)/a), i.e., Ko, K : L' — L{d+1)/a0
are both bounded on B?, see the following Proposition which is a generalization of
the result that the standard Bergman projection is weak type (1,1) on some bounded
domains [6}/15]. By Theorem E this implies the HLS type inequality on B¢ as below.

HLS 1.4. For any1 < p,s < oo, 1/s+1/p+a/(d+1) <2 and a < d+1, then there exists
a constant C' that depends only on p, o, d, s such that (1.1) holds for all f € LP(BY),
g € L*(BY).

Comparing HLS and HLS [1.4] with the classical HLS inequality [13}[14}[17.[20]21]
on RY.

Theorem 1.5. If 0 < a < d + 1, then the following conditions are equivalent:
(1) Kq: LP — LY is compact;
(2) p, q satisfy one of the following inequalities:

(a) p=1,q<(d+1)/a;

(b) 1<p<(d+1)/(d+1—a),1/¢g>1/p+a/(d+1)—1;
(c) p=({d+1)/(d+1-a), g < oo

(d) d+1)/(d+1—-a)<p<oo.

Theorem 1.6. For a € R, then the following conditions are equivalent:

(1) a<d+2;

(2) there exist 1 < p,q < oo such that K,: LP — L7 is bounded;

(3) there exist 1 < p,q < oo such that K} : LP — LY is bounded;

(4) there exist 1 < p,q < oo such that K,: LP — L% is compact.
Theorem 1.7. If 0 < o < (d + 2)/2, then the following holds.

(1) Ko, K : L? — L? are Hilbert-Schmidt.

(2) Moreover, if d =1 and 0 < a < 3/2, then we have the trace formula,

(3 —2a)
PE2-a) 1) ’

) 1
Tr(K3Ka) = | Kyl st = (a— 1) (

where T is the usual Gamma function. When o = 1, the quantity on the right side

should be interpreted as 72 /6.
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The above theorems show that K,: LP — L% is bounded if and only if K}: LP — L4
is bounded. We know from Theorem that, when d+ 1 < a < d+ 2, K,: LP — L1
is compact if and only if K,: P — L% is bounded. However, it is no longer true if
0 < a <d+1 by Theorems and In particular, the standard Bergman projection
Kgy1: LP — L9 is compact if and only if 1 < ¢ < p < oo on BZ

We now explain briefly the main ideas of the proofs. Let us consider the above bound-
edness problem in the following viewpoint. Denote G(K,) by the set of (1/p,1/q) € E
such that K,: LP — L? is bounded, where E is given by

E={(z,y) eR*:0<z,y <1},

i.e., F is a unit square in the real plane R?. Following by T. Tao , G(K,) is called the
type diagram of the operator K, see Figure The similar idea was adopted in .
As we shall see that every G(K,) is convex and axisymmetric on the inside of E. We see
that the proof of the above boundedness theorems is equivalent to solving the correspond-
ing type diagrams. The convexities and axisymmetries of the type diagrams will make
the process simpler. Then combining with several embedding theorems of holomorphic
function spaces and some estimates of Bergman kernel on the unit ball, we completely
characterize the LP-L9 boundedness and compactness of K. Similarly, we can define the

type diagrams G(K[) of operators K, which are also convex and is axisymmetric; see

as
Figure The above main theorems show in fact that G(KJ) = G(K,) for any a € R.
After characterizing the boundedness and compactness of K, by using the hypergeomet-
ric function theory and the interpolation theory, we give some sharp norm estimates of
K., K. Tt is in fact that we estimate the upper bounds of the optimal constants in the
inequalities of HLS and HLS The results of this paper can be generalized to cover
some weighted Lesbegue integrable spaces and more general kernel operators on the unit

ball.

(d+2-a,1)

(0,0 —d—1)

Vd+l<a<dt? 2 0<a<dtl

Figure 1.1: Type diagrams G(K,) and G(K).

The paper is organized as follows. In Section [2| we give some basic properties of the
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operators K,. Section [3] provides the proof of Theorem Section [ is devoted to the
proofs of Theorems [1.5| and In Section |5, we give some sharp norm estimates of the

operators K,, K. In Section |§|, we prove the weak type boundedness result.

2. Basic properties of K,

In this section, we prove some results which will be frequently used in the sequel. We first
take a rough look at the property of type diagram G(K,) of the operator K,. We prove
that every G(K,) is convex and is axisymmetric on the inside of E' as mentioned before.
Let g be the diagonal line of the square E which connects points (0, 1) and (1,0). Clearly
G(K,) C E for any o € R.

Proposition 2.1. (1) If G(K,) # 0, then (0,1) € G(K,); if (1,0) € G(K,), then
G(K,) = E.

(2) For any a € R, the type diagram G(K,,) is convex and is axisymmetric about Iy on

the inside of E.

Proof. (1) This comes from the the continuity of embeddings of L-integrable spaces, i.e.,
the embedding P C L9 is continuous whenever p > ¢ > 1.

(2) To show that G(K,) is convex, it suffices to show that if (1/p1,1/q1), (1/p2,1/q2) €
G(K,), then 0(1/p1,1/q1) + (1 — 0)(1/p2,1/q2) € G(K,) for any 0 < 6 < 1. Indeed, it
is a direct corollary of the following Lemma [2.2] which is a classical complex interpolation
result. We now turn to the symmetry. By Fubini’s theorem, this implies that K, is
adjoint. Then, for 1 < p,q < oo, the boundedness of K,: P — L? is equivalent to the
boundedness of K, : LY — L¥' where p/, ¢’ are the conjugate numbers of p, g, respectively.
This means that (1/p,1/q) € G(K,,) if and only if (1/¢',1/p') € G(K4). It is easy to check
that (1/p,1/q) and (1/¢’,1/p’) are symmetric about Iz by the conjugate relationship. []

Lemma 2.2. [24] Suppose 1 < p1,p2,q1,q2 < 0o. Let T be a linear operator such that
T: LPt — LT 4s bounded with norm My and T: LP?2 — L% js bounded with norm Ms.
ThenT: LP — L7 is bounded with norm no more than MfM%_e, where 0 € (0, 1) satisfying

1 60 1-6 1 _6 1-0
+ + :

I

p 171 p2 q i q2

Remark 2.3. Proposition shows that the type diagram G(K,) is a bounded convex set
in the plane R?, then it suffices to find out all extreme points or the boundary points of
G(K,). The symmetry of G(K,) shows that is only need to find out a half. On the other
hand, Proposition holds for more general domains and adjoint operators.

Corollary 2.4. (1) If G(K}) # 0, then (0,1) € G(K}); if (1,0) € G(KT), then
G(K}) = E.



The LP-L? Boundedness and Compactness of Bergman Type Operators 719

(2) For any o € R, the type diagram G(K) is convex and is azisymmetric about lp on
the inside of E.

Corollary 2.5. If a <0, then G(K,) = G(K}) = E.

Corollary indicates that K,, K} : L? — L9 are bounded for any 1 < p,q < oo if
a < 0. For any B > —1, denote dvg(z) = cg(1 — |2|*)? dv(z), where cg = %. For
1 <p<oo,let A‘g = H(BY)NLP(dvs) be the weighted Bergman space on B%, where H (B<)
is the holomorphic function space on B?; in particular, A%o = H® is just the bounded
holomorphic function space. Recall that Ky.1 is the Bergman projection from LP onto
Ap, a well known result is that K41 (LP) = Af for 1 < p < co. We now establish a general

result for o > d + 1.

Proposition 2.6. Suppose that « > d+1 and 1 < p < oo, then

Ko(L¥) = Ko(A}) = AV, ..

To prove Proposition [2.6] we need some lemmas. The following Lemma 2.7 was proved
[3] in the case d = 1, by the same method, it can be proved in the general case, see [3,

Lemma 11] for more details.
Lemma 2.7. If a >0 and 1 < p < 0o, then
KoKgi1 =Ky on LP.

Lemma shows that for 1 < p,q < oo, K,: LP — L% is bounded if and only if
K,: A5 — Al is bounded. We now turn to the behavior of K, on holomorphic function
spaces. Recall first the definition of fractional radial differential operator R** on H (B?).
For any two real parameters s and ¢t with the property that neither d + s nor d + s + t is

a negative integer, the invertible operator R%! is given by

oo

FNd+1+s)l'(d+14+n+s+t)
s,t —
R7J(z) ZF(d+1+s+t)F(d+1+n+s)

fn(2)

n=0

forany f=5 " fneH (B?) with homogeneous expansion. In fact, it can be checked by
the direct calculation that the invertible operator of R*! is just R*T%~t. Be careful that
the invertible operator here merely means it is linear. We refer the reader to [24] for more
details.

Lemma 2.8. For a >0 and 1 < p < oo, the following holds on AL,

K _Ro,a—d—l
a = .
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Proof. Suppose f = > " fn € Af with the homogeneous expansion. By direct calcula-
tion, this implies that

o

B Fd+ 1DI'(a+n)
(2.1) Kaf = n;) I'(a)T(d+1+n) Jn:

This leads to the desired result. O

Proof of Proposition [2.6] Lemma implies that K,(LP) = K,(A}). We now prove
Ko(Ap) = A (—a
we infer that f € Af if and only if R%*~4~1 f € LP(dvp(n—_4_1)), namely f € Af if and only
if ROo—d=1f ¢ Az(a—d—l)' Note that K, = R%*~4~1 by Lemma it follows that f € Af
if and only if K, f € Ai(a_d_l). This shows that K, (A}) C Ai(a_d_l).
direction, suppose that g € Ag(oﬁdil). Since K, = R%*~~1 is invertible on H(B?), i.e.,
there exists f € H(B?) such that K,f = R®*~9=1f = g. From [24, Theorem 2.19], there

exists a positive constant ¢ which only depends on «, d, p such that

) By [23, Theorem 14], which is a characterization of Bergman space,

To prove another

1£lee < lgllar, -

This means that f € Af. Thus Ag C K, (A}). This completes the proof. O

(a—d-1)

Corollary 2.9. Suppose that « > d+ 1 and 1 < p < oo, then for any v > —1, the
following holds,

Ko(LP(dvy)) = Ko(AY) = A:er(aqu)'
The following Proposition gives the image of K, in case of p = oo. Let Bg denote

the weighted Bloch space on B? for 3 > 0, see the definition in |24, Section 7.1].
Proposition 2.10. For a > d+ 1, then Ko(H™®) C Ko(L*®) = Bo—q-

Proof. Observe that K,(L>) = By—q by [24, Theorem 7.1]. If & = d+1, then K411(H*) =
H>, thus K4:1(H*®) € By—q. Now, we turn to the case @ > d + 1. Note that

=

Ko(H™®) C Kq(Ap) for any 1 < p < oo, this implies by Proposition [2.6| that

(2.2) Ko(H®)C () Ao d1y:

1<p<oo

On the other hand, from [24, Theorem 2.1], which is a pointwise estimates of functions in

the weighted Bergman spaces, we know that
Combining (2.2]) with (2.3]), this implies that

Ko(H®) C () Bia-dy+(@r1)/p-1-

1<p<oo
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Together with the fact that the weighted Bloch space is strictly increased, namely Bg C Bgr
whenever 0 < 5 < (', this implies that K,(H>) C By_q. O

Remark 2.11. The monotonicity of the weighted Bloch space can be obtained as follows.
It is easy to see that the weighted Bloch space is increased, so it suffices to show that is
strict. For any 0 < 8 < 3, there exist p > 1 and € > 0 such that

d+¢
+ < p.

Combining (2.3)) and the following Lemma this implies that

B<p—1+

Bg € AZ(ﬁ*1)71+€ C Bg.

The reader can also consult [10].

3. Proof of Theorem

In this section, we prove Theorem Although LP-L? bounded results have been proved
in [11], for the self-contained purpose, we still give the different proofs here whose methods
shall be further applied to the compactness and norm estimates in the following sections.
We need several embedding theorems of holomorphic function spaces on the unit ball B.

For convenience, we state them without proof as follows.

Lemma 3.1. [23] Let 0 < g < p < co. Then Ag c A% if and only if (B+1)/p < (v+1)/q.

And in this case the inclusions are strict.

Lemma 3.2. [22,23] Suppose that 8 > 0, v > —1, p > 1, then Bg C A% if and only if
B—1<(14+7)/p. And in this case the inclusions are strict.

We also need the following lemmas.

Lemma 3.3. If d+1 < a < d+ 2, then K,: L™ — LY is bounded if and only if
g<1l/(a—(d+1)).
Proof. We first show that K,: L>® — L% is bounded if ¢ < 1/(a — (d 4+ 1)). Then, for
f € L, by |19 Proposition 1.4.10] and Holder’s inequality, this implies that

1
(3.1) 1Kaf(2)] <17 [

T ()™ do(w) < Callflloo(l = 210, [2] =17,
where Cy 4 is a constant. The condition ¢ < 1/(a—(d+1)) means that ¢((d+1)—a) > —1.
Then follows that K, f(z) € LY and K,: L* — L% is bounded. We now turn to
prove that K,: L* — L% is unbounded if ¢ > 1/(a — (d + 1)). By Hoélder’s inequality,
it is enough to prove that Ko: L — L1/(@=(@+1) is unbounded. It suffices to show
that K,(L*®) ¢ LY/ (e=(d+1)) * Qince Ko(L*®) = B,_g, it suffices to show that By_q ¢

A(l]/(a_(d+1)). Indeed, it is a fact from Lemma O
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Corollary 3.4. If d+1 < o < d+ 2, then Ko: LP — L' is bounded if and only if
p>1/((d+2)—a).

Proof. First, suppose p > 1/((d+2) —a). From Lemma3.3]and K, is an adjoint operator,
we know that Ko: LP — (L>)* is bounded if p > 1/((d + 2) — a). Proposition [2.6] implies
that K, (LP) = Ai(aidil). Since (p(a —d—1)+1)/p<(a—d—1)+(d+2)—a=1,it
follows by Lemma that AZ(a—d—l) C A}. Thus K,(L?) C L'. Note that L' C (L>)*,
this implies that K,: LP — L' is bounded.

Conversely, suppose that Ko: LP — L', p # oo is bounded. Then Ko: L® — LV
is bounded, where p’ = p/(p — 1). From Lemma this implies that p/(p — 1) = p' <
1/(a — (d + 1)), this means that p > 1/((d + 2) — «). Clearly the case of p = o is trivial
by Lemma (3.3 ]

Corollary 3.5. Ifd+1 < a <d+2, then
(1) KX: L™ — LY is bounded if and only if ¢ < 1/(a — (d + 1));
(2) KX: LP — L1 is bounded if and only if p > 1/((d +2) — «).

Proof. (1) For f € L*, by [19, Proposition 1.4.10] and Holder’s inequality, this implies
that

dv(w) < Caall flloo(l = [2)H170 |z =17,

(3.2) K1) < 1]lso / L

Bd |1 - <Z7w>‘a

where Cy,, is a constant. So, if ¢ < 1/(a — (d+ 1)), i.e., ¢((d+ 1) — @) > —1, then (3.2
implies that K, f(z) € L? and K1 : L — L7 is bounded. This means that

{(0, 1/q):1/¢g>a—(d+ 1)} C G(K)).

On the other hand, Lemma implies that the point (0,1/q) € G(K,) if and only if
1/qg > a—(d+1). Note that |K,(f)| < KS(|f]), this implies immediately that G(KT) C
G(K,). Hence, it follows that (0,1/q) € G(K,) if and only if 1/¢ > a — (d + 1). This
leads the desired result.

(2) The proof is similar to (1). O

Lemma 3.6. Suppose that d+1 < a < d+2 and1/q < 1/p+a—(d+1), then Ko: LP — L1

1s unbounded.

Proof. By the continuity of the embeddings of L-integrable spaces, it suffices to show that
Ky: LP — L7 is unbounded if d+1 < a < d+2,1/¢ =1/p+ o — (d+ 1). The cases
of p = 0o or ¢ = 1 have been proved in Lemma and Corollary For the case of
1 < p,q < o0, it suffices to show that K,(LP) ¢ L9. On the other hand, Proposition
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shows that K, (LP) = AP p(a—d—1)» Which is a holomorphic function space. Thus, it suffices
to show that

(3.3) K, (LP) = Ag(a i % AL
Since (p(a —d—1)+1)/p = 1/q, it follows that (3.3) holds by Lemma [3.1] This completes
the proof. O

Proof of Theorem [L.1]. Step 1. Proof of the equivalence that (1) < (2) < (4).

First, we prove that (1) is equivalent to (4). As mentioned before, it is equivalent
to proving that G(K,) is exactly the triangle region D; C E which determined by the
equations in Theorem [L.1(4), namely G(K,) = D;. Lemma Corollary and the
convexity of G(K,) imply that D; C G(K,). On the other hand, Lemma and the
convexity of G(K,) imply that E — Dy C E — G(K,), it follows that G(K,) C D;. Thus
G(K,) = D1. We now turn to prove that (2) is equivalent to (4), it is equivalent to proving
that G(K) = D;. Corollary |3.5| and the convexity of G(K ) implies that D1 C G(K).
Combining the fact that G(K[) C G(K,) = D1, then G(K}) = D;. This completes the
proof.

Step 2. We prove that (1) < (3).

Since compact operators must be bounded, it suffices to prove that
K,: LP — L7 is compact, if (1/p,1/q) € G(K4).
We first prove the following claim.
Claim. K: L™ — L% is compact if and only if ¢ < 1/(a — (d + 1)).

If Ko: L — L9 is compact, is immediate from Corollary (3.4 that ¢ < 1/(a— (d+1)).
We now prove the reverse, that is, to prove that K,: L> — L4 is compact if ¢ < 1/(a —
(d+1)). We need to show that for any bounded sequence in L, there is a subsequence
such that whose image under K, converges in L?. Suppose that {f,} € L is an arbitrary
bounded sequence and K is an arbitrary compact subset of BY. Moreover, we assume that

| fnlloo < C for any n > 1, where C' is a positive constant. Then we obtain

1
sup [ ()] < [l s /
2eK

T ey 000) < nlleo sup (g

K (1= \I)

Combining with that the image of K, is holomorphic, this implies that { K, f,} is a normal
family. Hence {f,} has a subsequence {f,;} such that K, f,, converges uniformly on
compact subsets of B to a holomorphic function g. By Fatou’s Lemma and boundedness
of K, it follows that

(34) ” lg|*dv < lim [ Ko fo|" dv < || Kol Lo, po im [ fn IS < oo.

j—oo JBd j—ro0
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This means that ¢ € LY. We now prove that there exists positive function g; € L4
such that |Ko fn;| < g1. We first observe that [19, Proposition 1.4.10] and the condition
g <1/(a—(d+ 1)) imply that

</Bd y1_<iw>|a dv(w)>q €L

Then by easy estimate, this implies that

(85)  [Kafu, ()] < Ifu o / ! !

—dv(w) < C _—
T e A Ty TS

Thus (.5]) shows that it is enough to take g = C [5q W dv(w). Combining ([3.4])
with (3.5]), this implies that

dv(w).

(Kafn, =9l < (g1 + gD € L', Vj>1.

By dominated convergence theorem, it gives that

1/q
lim HKOéf”j - QHq = lim </ |Kafnj - 9|qdv>
j—00 j—o0 Bd

1/q
= (/ lim Ko fn, — g|qdv> =0,
B J]—00

Combining the last claim with the basic fact that an operator is compact if and only if

and the claim follows.

its adjoint operator is still compact, thus we get that K, : LP — L' is compact if and only if
p < 1/(d+2—a). Then by the following Lemma 3.7} which is an interpolation result of the
compact operators, this implies that K,: LP — L? is compact if (1/p,1/q) € G(K,). O

Lemma 3.7. [5,12] Suppose that 1 < p1,p2,q1,q2 < 00 and q1 # oco. If a linear operator
T such that T: LP* — L% is bounded and T': LP? — L% is compact, then T: LP — L9 is
compact, where 6 € (0,1) satisfying
1 e 1- 1 6 1-90

+ + .

Y

P m P 4 o @
Remark 3.8. The compactness of K, : LP — L% for 1 < p,q < oo can be also proved by the
Carleson type measure theory on Bergman spaces, see definition in [23,24]. This strategy

will be adopted as we shall see in Section [4]

4. Proofs of Theorems and

Theorem characterizes the LP-L? boundedness of K,, K} when 0 < o < d+ 1. We
will completely characterize the LP-L¢ compactness of K, when 0 < a < d+ 1. It is
equivalent to solving the set F(K,), where F(K,) is defined by

F(K,) = {(1/p,1/q) €EFE :Ky,: LP — L%is compact}.
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It is easy to see that F/(K,) is a subset of G(K,). Theorem [1.5in fact shows that F'(K,)
and G(K,) differ only by a segment on the boundary of G(K,). Thus we always show
first that K, is compact on the other part of the boundary of G(K,). In the end of this
section, we give the proof of Theorem

Proposition 4.1. K4q: LP — L9 is compact if and only if 1 < g < p < o0.

Proof. From Theorem [I.3] we know that Kgyq: LP — L7 is bounded if and only if ¢ < p.
Since K411 is the standard Bergman projection, it is easy to see Kgy1: LP — LP is not
compact for any 1 < p < oo. Thus it suffices to show that K,: LP — L9 is compact if
q < p. Indeed, this can be proved by the similar method we used in Step 2 of proof of
Theorem [I.1] thus we omit it. O

Now, we recall some results on the hypergeometric function theory which we shall
use later on. For complex numbers «, £, v and complex variable z, we use the classical

notation o F (o, B;7; z) to denote
o0
a)i(B); 5
(4.1) 2Fi(e, Bi752) = ) (.,)]i%z]
with v # 0,—1,-2,..., where (a); = Hi;é(oz + k) is the Pochhammer symbol for any
complex number a.. The following lemma is in fact a restatement of |19, Proposition 1.4.10].

Lemma 4.2. [19] Suppose f € R and v > —1, then

/ (1 — |w|?)” do(w) = L(1+d)I(1+7)
B |1 — (z,w0)|? - T(+d+7)

oF1 (B, B;1+d +;|2%).

We also need the following lemma.

Lemma 4.3. [7, Chapter 2] The following three identities hold.
(1) 2Fi(a, B3y 2) = (1= 2)77* PaFi(y — a,y = B57;2);

(2) 2Fi(a, B 1) = REOR2=5 if Re(y — a — 8) > 0;

() d2Fi(aBi7:2) = CoFia+ 1,84+ Ly + 1;2).

Now, we introduce the following auxiliary function I, for any o < d+ 1. The function
I(r,z) on [0,1) x B? is denoted by

1
Talr 2) = /T<w<1 i (we )
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Since a < d + 1, it follows by (4.1) and Lemma that

1
I(r,2) < /IB%d de(w)
& (T +a/2)\? L'(d+1)
(4.2) —Z< I'(a/2) > TG+ 1T +d+1)

j=0
T+ 1)I(d+1-a)
 TI2d+1-a/2)

for any (r,z) € [0,1) x B, which means that I, is finite on [0,1) x B?. Moreover, I, is

increasing on [0, 1) X B in the following sense.
Lemma 4.4. Suppose r € [0,1), then

Io(r, z1) < In(r, 22),
whenever z1, z € Be and |z1| < |2

Proof. From ([@.2)), we know that I, is finite on [0,1) x BY. We now calculate its exact
value. It follows from [24, Lemma 1.8, 1.11] and the unitary invariance of the Lebesgue
measure that

Io(r,z) = /r o dv(w)

<fwl<t |1 = |zfwr|”
oo

- LU +a/2) 222jwj21)w
_/r<|w|<1j;)<r(a/2)r(j+1)) |2|™ |Jwy | dv(w)

(4.3) . ‘
2 <r<2(/2>+r@/-23 1))2 o1 2d / 221 gy /S €l do(€)

= (TG +a/2)\*T(d+ 1)1 — 20ty
> ( ) vy

for any z € B?. This leads to the desired result since all coefficients of the power series
expansion about |z| in (4.3]) are positive. O

Lemma 4.5. If0 < a<d+1, then K,: L> — L% is compact for any 1 < q < o0.

Proof. Since the continuity of the embeddings of L-integrable spaces, it suffices to prove
that K,: L>® — L> is compact. We first prove that, for any f € L>, then K, f € A(BY),
where A(B%) = H(B?) N C(B?) is the ball algebra. For f € L™, it is clear that Ko f is
holomorphic on the ball, i.e., Kof € H(B?). From Lemma and Lemma (2), this
implies that K, f(n) exists for any n € 9B? and
FNd+1)I'(d+1-«a)

T2(d+1— a/2)

[Kaf ()] < [ fllo
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We now prove that K, f is actually continuous on the closed ball B?. It suffices to prove
that K, f is continuous on OB¢, namely we need to prove that, for any n € 9B¢ and for
any point sequence {z,} in B satisfying z, — 7, we have Kof(zn) = Kof(n) as n — 0.
By Lemma and Lemma [4.3|(2) again, we have

1

T e P

Kaf(2)] < [1flloo /B ! = do(w) < | /B

a |1 —(z,w)
T(d+1)D(d+1—a)
I2(d+1-a/2)

(4.4)

= [[flloo

for any z € B%. Due to the absolute continuity of the integral, this implies that, for any
€ > 0, there exists 0 < § < 1 satistying

dv(w) €
) o e <

whenever v(F) < 6. Denote Fy = {z € B : {/1—6/2 < |2| < 1}. Note that v(Fs) =
d/2 < 6 and

1 . 1
(1= (zn,w))e (1= {n,w))

Then there exists N > 0 such that, for any n > N,

/Bd\pé (1= (znw))® (1= (nw))®

Combining this with (4.2)), (4.4), (4.5) and Lemma this implies that, for any n > N,

uniformly on B\ F5 as n — co.

1 1

dv(w) <

Kaf () = Kaf O < W01 [ | oy~ e | 00
1 1
l ”°°/F§ 0 Gl (0 (] )
1 1
(46) < 1l /Bd\Fa 0T G (= mape| @)

1
2 flle [ dv(w)
Fs ‘1 - <777w>’a

€ €
< o0 o 2 o0
< flloo + 21 f o
= || flloo-

This completes the proof of what K f is continuous on the closed ball B?. We turn to

prove that, for any bounded sequence in L*°, there exists a subsequence satisfying its

image under K, is convergent in L. Suppose that {f,} is a bounded sequence in L,
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then we have {K,f,} is in C(B?) and {Kqf,} is uniformly bounded by (&.4). We are in
a position to prove that {K, f,} is also equicontinuous. From (4.6]), we know that

1 1

(1= {zw)* (1= {nw))*

for arbitrary fixed n € OBY. Combining (4.7) with the unitary invariance of Lebsgue

measure and the symmetry of the unit ball, this implies that, for any € > 0, there exists

(4.7) lim

Bisz—n Jgd

dv(w) =0

0 < ¢ < 1 satisfying
1 1

(48) L= - ey

whenever z € BY, € 9B? and |z — n| < §'. Denote By_g 5 = {z € C*: [2] <1—¢§/2}
and Cs /9 = {2 € C?:1—6/2 < |z| <1}. Then the closed ball B? has the following

decomposition

dv(w) <

N ™

Bﬁ = 31,5//2 U C(;//Q and Bl*é//Z N Cg//g = @

Since the function 0 is uniformly continuous on compact set Bj_g /o X B, then

1
1—(z,w))*
there exists 0 < 6" < 1 such that
1 1
(4.9) ' <e

(1= {z,w))* (1= (z2,w))*

whenever (z1,w), (22, w) € Bi_g /5 X B? and |21 — 22| < &”. Set 8" = min{d’/2,6"}. We

now prove that, for any 21,z € B¢ such that |21 — 25| < ", then we have

(4.10) /Bd (1— (z1,w))® (1 — (22, w))®

In fact, there are two cases need to be considered. The first case is 21 € Cyr /o or 22 € Cgr /5.

1 1

dv(w) < e.

Without loss of generality, we can assume that z1 € Cy /o, then there exists an n € OB
satisfying |21 — n| < ¢§” < 4¢’/2. By triangle inequality, this implies that |29 — n| <
|22 — 21| + |21 — | < ¢§’. Together with (4.8]), this implies that

1 1

/[B;d (1 — (21, w))™ - (1= (20, w))" dv(w)
1 1
< /Bd (1 — (21, w))™ - 1 — (g, w))® dv(w)
1 1
+ /IBd (1 — (n,w))e - (1 — (22, w))" dv(w)

< e.

The second case is 21,22 € By_s /9. By (4.9), this implies that

J.

1 1

(1= {zr,0))™ (1= (22, w0))"

dv(w) < 6/ dv = e.
Bd
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This proves (4.10). Combining with

Kade0) = Kool < Wl [ | e = (e 20000

this implies that {K, f,} is equicontinuous. Thus by Arzela—Ascoli theorem, this implies

that { K, f,} has a convergency subsequence in the supremum norm. O
Corollary 4.6. If 0 < a < d+ 1, then the following holds:

(1) Ko: LP — L' is compact for any 1 < p < oo.

(2) Kuo: L' — L9 is compact if and only if ¢ < (d+1)/a.

(3) Kqo: LP — L* is compact if and only if p> (d+1)/(d+ 1 — «).
Proof. This comes from Lemmas and the fact that K, is adjoint. O

It remains to deal with the case 1 < p,q < oo, we need the following result about

Carleson type measures for Bergman spaces on the unit ball.

Lemma 4.7. [23] Suppose 1 < p < q¢ < oo and p is a positive Borel measure on B<.

Then the following conditions are equivalent:

1) If {f.} is a bounded sequence in AY and f,(z) — 0 for every z € B?, then
0

lim / ful? dp = 0.
n—o0o ]Bd
(2) For every (or some) s > 0, we have

. (1|2
lim
|z|=1- Jpa |1 — <z,w>|5+Q(d+1

7 dp(w) = 0.

The Borel measure in Lemma [£.7] is in fact the so-called vanishing Carleson measure.
If denote A9(du) by the weighted Bergman space A%(du) = H(B?) N LY(BY, du), then
Lemma [4.7(1) guarantees (or is equivalent to) that the embedding Id: A — A%(dp) is

compact.

Proposition 4.8. I[f0<a<d+1 and1 < p < q < oo, then the following are equivalent.
(1) Ko: LP — L7 is compact.
(2) Ko: A5 — Al is compact.

(3) The embedding Id: Al — Ag(d+1_a) is compact.
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4) 1/g>1/p+a/(d+1)—1.

Proof. We first prove that (1) is equivalent to (2). Clearly (1) implies (2). To prove
the reverse, note that 0 < a < d + 1, then Theorem [1.3| gives us that Kgyq: LP — Al
is bounded. Suppose that {f,} is an arbitrary bounded sequence in LP, thus we have
{Ka41fn} is a bounded sequence in Af. Then the compactness of operator K, : A5 — Al
implies that, there exists a subsequence {fy,} such that {K,(Kqy1fn;)} is convergent in
Al. Combining this with Lemma we infer that {K,f,,} is convergent in Af. This
proves that (2) implies (1).

We now prove that (2) is equivalent to (3). Similar to the proof of Proposition
by [23, Theorem 14] and [24, Theorem 2.19], it can be proved that

a—d—1,d+1—a., 59 q
R AG AL

and its inverse operator are bounded. Note that K, = RO*~4~1 on Ag and
Roc—d—l,d-l—l—ocRO,oc—d—lf — f, Vf c Ag

Then we have the following decomposition for the embedding Id,

:RO,afdfl Rocfdfl,d+lfoc

(4.11)  1d: Af Ze Al A gy s T = Ro-doLdtIae

Combining (4.11]) with the fact that R*~4~1.4+1=@ hag hounded inverse, this implies that

Ko Ab — Af is compact if and only if the embedding Id: Afj — Ag(d+1_a)

In the next, we prove that (3) is equivalent to (4). Suppose that {f,} is an arbitrary

is compact.

bounded sequence in Afj, then by [23, Theorem 20], the locally estimate for functions
in Af, this implies that {f,} is a normal family. Hence, by Fatou’s lemma, similar to
the proof of Theorem there exists a subsequence {f,,} and g € Af such that In,
converges uniformly to g on any compact subset of BY. Then { fn; — g} is in Al and
Jn; —g — 0 pointwise as j — oo. Together with Lemma it follows that the embedding

Id: A5 — Ag(d+1—a) is compact if and only if

(4.12) lim (1 [2P)°

|z|=1- Jpa |1 — <Z,w>|8+q(d+1)/p d“q(dﬂfa) (w) =0

for any s > 0. On the other hand, by [19, Proposition 1.4.10], this implies that (4.12)) is
equivalent to 1/¢ > 1/p+ «/(d + 1) — 1. This completes the proof. O

Proof of Theorem [I.5. When « = d + 1. Theorem [L.5] degenerates into Proposition
Now, we turn to the case 0 < a < d + 1. We first prove that (2) implies (1). In fact,
it is an immediate corollary from Lemmas and Corollary To see the reverse,
note that Theorem [1.3|and Proposition 4.8 give that (1) is not held if (2) is not held, this
implies that (1) implies (2), completing the proof. O
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Proof of Theorem 1.6 By Theorems and it is easy to see that (1) = (4) =
(2) & (3). Thus we only need to show that (2) = (1). It is equivalent to proving that

(2) is not true if neither is (1). It suffices to show that K,: L™ — L' is not bounded if
o > d+ 2. Suppose @ > d+ 2. In view to Proposition or [24, Theorem 7.1], this
implies that K, (L*°) = By_4. From Lemma we know that Bn_q ¢ L', this means
that K,: L>® — L' is not bounded. This completes the proof. ]

5. Norm estimates

In the previous sections, we have completely characterized the LP-LY boundedness of
K., K} and compactness of K,. In the present section, we will state and prove some
sharp norm estimates of K,, K, which give essentially the upper bounds of the optimal

constants in the HLS type inequalities.
Proposition 5.1. Ifd+1<a<d+2 and K,: LP — L9 is bounded, then

D(d+ )V (0 — (d + D) (el (d 41— ) +1)7

D(a/2)2T (=t (d+ 1 - a) +d+ 1) /717

| KallLp—re <

To prove Proposition [5.1] we first establish the following lemma.

Lemma 5.2. Suppose that d+1 < a < d+2 and (0,1/q) € G(K,) = G(K), then the
following holds.

(D) [Kallzoe—re < B llesre = || Jga b (-, w) dow)|] -

(2) In particular, when d = 1,

(61 WKallzmon < MKl = 1 fz)Z <P2P<(23—_ c?/)m B 1) |

(3) For any general (0,1/q) € G(K,) = G(K]),

a

[ Kallzoera < [ KQ |[Loos Lo
(5.2) _ D+ )"0 — (d+ 1)T(g(d+1 — a) + 1)/
- C(a/2)2T(q(d+1—a) +d+ 1)1 '

Proof. (1) Since |K,(f)| < KI(|f|), this implies that |Ky|/rec—re < [|KS||peo—ra if Ko
and K} are bounded. Note that [KJ f|(2) < || fllo [5a de(w) for any f € L,
hence

Kolieosin < WS lmose < | [ K20 dof)
B

La
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To see the reverse, we note that

IS e > Ve = | [ REC ) dofw
B

La

This leads to the desired result.
(2) We now turn to calculate the norm in the case of d = 1. It follows, by Lemma|4.3(2)

and what we have proven, that
Kl < 1Kq llpesr = /deFl(a/Za/?;dJr L;[2[?) do(z)
1
= d/ oF1(a/2,a/2;d + 1;7)r?  dr,
0

in the last equality we apply the integration in polar coordinates, see [24, Lemma 1.8],
and the unitary invariance of hypergeometric function oy (a/2,a/2;d + 1; |2|?). We now
use the differential properties listed in Lemma to calculate the integral in the case of
d = 1. We observe Lemma |4.3|3), it gives that

d%(?Fl(O‘/? ~La/2- L) = (5 - 1>2 2Fi(/2,0/2;25).

Integrating the two sides of the above equality, we get

(04142)2(2@(@/2 ~1,a/2-1;1;1) - 1).

Together with Lemma [4.3(2) yields the desired result.
(3) Combining (1) with Lemma [£.2] and Lemma [4.3(1)(2), it follows that

1
/ 2Fi(0)2,0/22;7) dr =
0

| K || oo a

— </IB%d (/Bd |1_<iw>‘a dv(w))q " (Z)>1/q

1/q
= ([ aFila/za/nas sl
Bd
1/q
= </d(1 — )1 B (d+1 — of2,d + 1 — a/2;d + 1; |z|2)qdv(z)>
B

1/q
<oFi(d+1—a/2,d+1—a/2;d+1;1) (/ (1 — |z>)ald+1=a) dv(z))
Bd

_ T(d+ )MV (o — (d + 1))D(g(d + 1 — @) + 1)1/9
B T(a/2)2T(q(d+1—a) +d+ 1)1/

This leads to ((5.2)). O
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Proof of Proposition [5.1] Suppose K} : LP — L7 is bounded, it is equivalent to (1/p,1/q)
€ G(K7). Then Theorem|[L.1|(3) guarantees 1/qg—1/p > a—(d+1). Using Theorem|L.1|(3)

again, we see that

(5.3) (0,1/g—1/p),(1 = (1/q —1/p),1) € G(K,)

and there exists 0 < 6 < 1 satisfying

(5:4) (1/p,1/q) =6-(0,1/¢ =1/p) + (1 =0) - (1 - (1/¢ —1/p),1).

Combining ([5.3)), (5.4) with Lemma it follows that

—La t-p~1 L1 1-p=1) 4y

(5.5) HKJHLMLQSHKJH; T o

1
We observe that the adjoint operator of K : L — La '-»~T is exactly the operator

1
KI: Li-G >0 — L' which means that

Kt = || KT )
IS o = IS

Applying this to (5.5)), yields

(5.6) [P [ HKCTHLOO

1
—~La t-p~ 1

Combining (5.6) with (5.3]) and applying Lemma this leads to the desired conclusion.

]
Corollary 5.3. Suppose C4 is the optimal constant in HLS then
2-1/s—1/ 1 1-1/s—=1/p
B I'(d+1) PT(a— (d+ D) ({mt—pr(d+ 1 —a) + 1)
1< 7o .
L(§)°T (o (@ + 1 —a) +d+ 1) /7P
We now turn to handle the case of 0 < o < d+ 1. Let kf (z,w) = W, z,w € B2

Obviously kI is the integral kernel function of the integral operator K.

Proposition 5.4. If0<a<d+1and1l/p—(1—a/(d+1)) <1/q<1/p, then

Dd+1)I(d+1— W) ) 1—(1/p—1/q)

2d+1-5

(5.7 |[Kallzrore < | KS|lp—re < ( -
(1—(p*1—q*1)))

In particular, when q = 0o, the inequality (5.7)) is an equality.
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Proof. We first prove that (5.7) is in fact equality in the case of ¢ = oco. From |21}

Proposition 5.4], we know that

p—1

dv(w P
(5.8) HKMMLwMZ\KJMLwMZSW></H()mx> |

= (zw) |

On the other hand, Lemma and Lemma [4.3|(2) yield

dv(w) ( por por 2)
———— 3 =2 : sd+1;|2|
/Bd 11— (z,w)|?-1 2(p—-1)"2(p - 1)
par pa
<, F cd+1;1
(5:) A (s g7 )
D(d+ 1T (d+1~ o)
D(d+1— 525)

Combining (5.8)) and ([5.9)), this implies that

p—1
r2(d+1- %)

p—1
Ld+1)I(d+1—2%)\ 7
(5.10) [Kallzr—roe = | K ||op—roe = (

We now turn to prove (5.7) in the general case. Note first that |K,(f)] < KJ(|f]), this
implies that ||Ku|lzr—re < |KS||Lp—re if K, and K are bounded. Since 1/p — (1 —
a/(d+1)) < 1/q < 1/p, Theorem [1.3] implies that

(5.11) (1/p,1/9),(1/p —1/¢,0), (1,1 = (1/p — 1/q)) € G(K])

and there exists 0 < 0 < 1 satisfying

(5.12) (1/p,1/q) =0-(1/p—1/q,0)+ (1 =0)- (1,1 = (1/p - 1/q)).

Combining (5.11)), (5.12) with Lemma [2.2] it follows that

(5.13) IES N pospe < IS o (1o T
Lr~1-a71 o0 11—~ 1—¢= 1)

1
Observe that the adjoint operator of K : Lr~T-a~T — L is exactly the operator K1 : L'
1

— L1-("'-a=Y  hence

(5.14) [Tl = K] !
L e L

-1, I )

p~1—q
Thus by (5.13) and (5.14]), it follows that

IKalpsrs < IKQN 0
Lr™"—a " 5[

Together with (5.10)), this completes the proof. O
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Corollary 5.5. Suppose that Cs is the optimal constant in HLS [1.4], then the following
holds.

(1) If1/p<1—1/s, then
o < DA+ Drd+1-a)
=T T2(d+1-a)2)

(2) If1/p—(1—a/(d+1)) <1—-1/s <1/p, then

o 2-(1/p=1/s)
Qﬁg(nd+mru+1—2p45ﬂ)> |

(A4 1= sy i=n)

Proof of Theorem [1.7. When « < (d+ 2)/2, by [19, Proposition 1.4.10], this implies that
the kernel function k} € L? (B xB?, dv x dv), thus K,, K}: L? — L? are Hilbert-Schmidt.
Note that

(5.15) Tr(K*K,) = /B d /B d’l_<z1w>|2adv(w)dv(z).

When a # 1, similar to (5.1f), yields the trace formula. We now deal with the spacial case
« = 1. Combining Lemma with (5.15)), this implies that

o0

1 1 9
Tr(K{Ky) = / 2F1(1,1;257r) dr = Z - = T ]
0

=17

Remark 5.6. By Proposition (3) and inductive method, we can get explicit trace for-
mulas for any dimension d > 1.

As a consequence of Theorem we obtain the following generalized Euler—Jacobi
identity.

Corollary 5.7. Suppose 0 < o < 3/2, then

- F(a+j) 2 1 F(3—2a)
5.16 CDla+j) \°_ Y
(10 2 (rorers) = @1 (Fea
When « = 1, the identity (5.16) is the well known Euler—Jacobi identity
,72 —_— T .
=0

When d =1, 0 < a < 3/2, we know that K,: L? — L? is compact by Theorem or
Theorem It is trivial to see that the spectrum o(K,) of the operator K, is exactly
the point spectrum. Note that every K|, is adjoint, then combining (2.1 with (5.16)), we

have the following.
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Corollary 5.8. Suppose that d =1 and 0 < a < 3/2, then K,: L? — L? is compact and

> MNa+7)
K,) = —_—
7o) g{r(wr(zﬂ)}
Moreover, in this case,

C(a+7)

K = T(@)(2+)
| Kallr2_r2 087550 T(@)T(2 + §)

6. The weak type boundedness result

In the last section we shall establish the weak type boundedness result for Bergman type
operators as mentioned above. Recall that k,, kI are the integral kernel functions of the
integral operators K, K respectively. For p > 1, the Lorentz space LP**> on B? is defined
by
Lo = {f : sup)\d}/p()\) < oo} ,
A>0
where d;(\) = v{z € B?: |f(2)| > A}. Note that LP>* C L% if p > ¢, and the inclusion

is continuous.
Proposition 6.1. If0 < a < d+ 1, then K., K} : L' — LU+1)/@% gre bounded.
Before proving the proposition, we first establish the following lemma.

Lemma 6.2. There exists a constant C' that only depends on o and d such that
ka2, )l parnsaee = Ikl 2) || Latn/ace <C
for any z € B,

Proof. By the unitary invariance of Lebesgue measure, we need only to consider the case

z=(]z|,0,...,0). Observe that
1
< )\‘i}.
||

Hence —p, 5@ < 2%, when |z| < 1/2. It follows that dj, (. .)(A) = 0 if A > 2%. Thus

1
w,z)

_ d 1 _ L
(6.1) dka(.,z)()\)—v{wEB ']1—<w,z>|0‘>>\ =viw: P w1y

1Ko (-, 2)ll Larn/aee <27

when |z| < 1/2. We now turn to the case 1/2 < |z| < 1. The conclusion comes immediately

from the following estimate

1, A<,
a/(d+1
(6.2) )‘dkié—;))()\) < (d.23d71)a/(d+1), 1< A< W,
0, A> o

(1=[z)e
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We now prove Let dV (w (%) _, dw, A\ dw, be the volume form. Then
dv = F(d+1) dv. Observe that /\da/gd%)(/\) < 1 if A < 1. We denote I by the subset in
the unit disk such that
1
< A—i} .
E

1 Ce
When 1 < A < e by (6.1) and Fubini’s theorem, we see that

1
I_{wleID):‘—wl
]

1
Ao (- 2)(A) —v{w. ’]z\ —wy
d

rd+1) [i\?
g(ddﬂ<z> /dwl/\dwl/ Hdwn/\dwn
T 2 I [wo |2+ +|wg 2 <1—|w1]? [ 2o

= d/l(l — w1 |*)T 1t do(wy)

1 1 1 1 d=1
<d (1 TR IR T ww) /f dv(w)

1 4

o3d—3__ L 4
<d- 2" e ge
d - 23d-1
T \@rn/ac
Then (63) implies that Adjy (*7)(\) < (d- 2 1)/@+D i 1 < X < —Lor. When
A > ﬁ, it is easy to see that dy_ (. .)(A) = 0. So Adzc{gfl:;)()\) =0if A > = \z|)a' O

Corollary 6.3. There exists a constant C that only depends on a and d such that, for
any z € B,
Il (25 M pearysaee = kg (+, 2)l pasysaee < C.

We now modify [21, Proposition 6.1] to suit our setting.

Lemma 6.4. [21] Suppose that k: B? x BY — C is measurable such that
1k(z, - )loree £ C, 2z € BY, a.e.

and

k(- w)|pre <C, we B, a.e.
for some 1 <r < oo and C' > 0. Then the operator T defined as

T1E) = [ ke w)fw) dotw)

is bounded from L' to L™*°. Moreover, if 1 < p < q < 0o such that 1/p+1/r =1/q+ 1,
then T is bounded from LP to LY.
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Proof of Proposition [6.1. o = d+ 1, K4,1 is the Bergman projection, then Ky,1: L' —
LY is bounded by the proof of |15, Theorem 6]. Indeed, similar to the proof of [15,

Theorem 6], by the Calderén-Zygmund decomposition, it can be proved that KJH: L'—
LY is bounded. When 0 < a < d + 1, by Lemmas and this implies that
Ko, K: L' — L1/ are hounded. This completes the proof. O

Remark 6.5. The sufficiency part of Theorem can be also proved with the help of
Lemmas and On the other hand, the necessity part of Theorem can be
reduced to the case of unit disk D by the natural isometric embedding from A (D) into
Ap (IB%d). It in fact provides an alternative approach to prove Theorem
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