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The Lp-Lq Boundedness and Compactness of Bergman Type Operators

Lijia Ding* and Kai Wang

Abstract. We investigate Bergman type operators on the complex unit ball, which

are singular integral operators induced by the modified Bergman kernel. We consider

the Lp-Lq boundedness and compactness of Bergman type operators. The results of

boundedness can be viewed as the Hardy–Littlewood–Sobolev (HLS) type theorem

in the case unit ball. We also give some sharp norm estimates of Bergman type

operators which in fact gives the upper bounds of the optimal constants in the HLS

type inequality on the unit ball. Moreover, a trace formula is given.

1. Introduction

Let Bd be the unit ball on the d-dimensional complex Euclidian space Cd with the nor-

malized Lebesgue measure dv. For α ∈ R, the α-order Bergman type kernel function is

given by

kα(z, w) =
1

(1− 〈z, w〉)α
.

Clearly the (d+1)-order Bergman type kernel function kd+1(z, w) is the standard Bergman

kernel on Bd. The Bergman type integral operator Kα on L1(Bd, dv) is defined by

Kαf(z) =

∫
Bd
kα(z, w)f(w) dv(w),

where 〈z, w〉 = z1w1 + · · · + zdwd is the standard Hermitian inner product on Cd. Such

operators Kα play an important role in complex analysis of several variables and operator

theory; in particular, when α = d + 1, Kd+1 is the standard Bergman projection on the

unit ball Bd. Indeed, for any α > 0, if we restrict Kα to Bergman spaces, then every

Kα is a special form of fractional radial differential operator, see Lemma 2.8 below. The

fractional radial differential operators have many applications in the function space and

operator theory; see for examples [23, 24]. On the other hand, the operators Kα play a
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significant role in the characterization of the weighted Bloch spaces and Lipschitz spaces on

the unit ball; see [23–25]. We also consider the kernel integral operator K+
α on L1(Bd, dv)

for any α ∈ R, which is given by

K+
α f(z) =

∫
Bd

f(w)

|1− 〈z, w〉|α
dv(w).

The operators K+
α can be regarded as Riesz potential operators on the bounded domain

Bd. Comparing to the classical Riesz potential operators on the real Euclidian space

Rd, whose basic result concerning mapping properties is the Hardy–Littlewood–Sobolev

(HLS) theorem or inequality which essentially describes the boundedness of Riesz potential

operators Rα : Lp(Rd) → Lq(Rd); see [14, 17, 20, 21] and references therein. One of the

interesting questions involving the HLS inequality is the estimate of the optimal constant

[13,14].

For abbreviation, we replace Lp(Bd, dv) by Lp(Bd) or Lp for any 1 ≤ p ≤ ∞ without

confusion arises. The present paper mainly concerns the Lp-Lq boundedness, compactness

and norm estimates of Bergman type operators Kα,K
+
α : Lp → Lq for 1 ≤ p, q ≤ ∞.

Analogously, the results of Lp-Lq boundedness can be viewed as the HLS type theorem

with respect to K+
α on Bd. Actually, on a more general bounded domain Ω in Cd, the

Lp-Lq boundedness of Bergman type operators and in particular Lp-Lq boundedness of

the standard Bergman projection have attracted much interest in the past few decades.

As we all know, the standard Bergman projection is bounded for any bounded domain

when p = q = 2. However, the results would be subtle in general. Nevertheless, the known

results depend strongly on the geometric property of the domain Ω; we refer the reader

to [1, 2, 9, 16,18,24] for more recent progress on this issue.

Now return to our unit ball setting. In [8], X. Fang and Z. Wang established a re-

lation between the boundedness of standard Bergman projection and Berezin transform

on the weighted Bergman spaces on the unit disc D = B1. The compactness of stan-

dard Bergman projection K2 : L∞(D) → Lq(D) for 1 ≤ q < ∞ was observed by K. Zhu

in [25, Section 3.6]. Recently, X. Fang and G. Cheng et al. [3] completely solved the Lp-

Lq boundedness problem of Kα on the unit disc D, and they also considered the Lp-Lq

boundedness of the Bergman type operator on the upper half plane. G. Cheng and X. Hou

et al. [4] solved the Lp-Lq boundedness problem of Kα in the special case of the α = 1 on

the unit ball Bd for any d ≥ 1. Soon afterwards H. Kaptanoğlu and A. Üreyen [11] solved

the Lp-Lq boundedness problem of Bergman type operators in the general case. The re-

sults of boundedness of Kα not only give a positive answer to the conjecture proposed

in [3] but also extend some classical results [6, 15, 18, 24, 25], the results of boundedness

of K+
α are essentially the HLS type theorem as mentioned before. In the present paper

we will describe the Lp-Lq compactness of Kα on the unit ball Bd (d ≥ 1); especially the
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relationship between the boundedness and compactness. Meanwhile, we estimate norms

of Bergman type operators which in fact gives the upper bounds of the optimal constants

in the HLS type inequalities on the unit ball. First, it is trivial that Kα,K
+
α : Lp → Lq are

compact for any 1 ≤ p, q ≤ ∞ if α ≤ 0. Thus we mainly concern the case of α > 0. The

following theorems are main results of Lp-Lq boundedness and compactness of Bergman

type operators; however, the norm estimates of Bergman type operators shall be given in

the following Section 5.

Theorem 1.1. If d+ 1 < α < d+ 2, then the following conditions are equivalent:

(1) Kα : Lp → Lq is bounded;

(2) K+
α : Lp → Lq is bounded;

(3) Kα : Lp → Lq is compact;

(4) p, q satisfy one of the following inequalities:

(a) 1/(d+ 2− α) < p <∞, 1/q > 1/p+ α− (d+ 1);

(b) p =∞, q < 1/(α− (d+ 1)).

As a consequence of Theorem 1.1, the following HLS type inequality is established on

the bounded domain Bd.

HLS 1.2. For any 1 < p, s <∞, 1/s+ 1/p+α < d+ 2 and d+ 1 < α < d+ 2, then there

exists a constant C which depends only on p, α, d, s such that

(1.1)

∣∣∣∣∫
Bd

∫
Bd

f(w)g(z)

|1− 〈z, w〉|α
dv(w)dv(z)

∣∣∣∣ ≤ C‖f‖Lp‖g‖Ls
for all f ∈ Lp(Bd), g ∈ Ls(Bd).

Theorem 1.3. [11] If 0 < α ≤ d+ 1, then the following conditions are equivalent:

(1) Kα : Lp → Lq is bounded;

(2) K+
α : Lp → Lq is bounded;

(3) p, q satisfy one of the following inequalities:

(a) p = 1, q < (d+ 1)/α;

(b) 1 < p < (d+ 1)/(d+ 1− α), 1/q ≥ 1/p+ α/(d+ 1)− 1;

(c) p = (d+ 1)/(d+ 1− α), q <∞;

(d) (d+ 1)/(d+ 1− α) < p ≤ ∞.
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Note that Kα,K
+
α : L1 → L(d+1)/α are both unbounded under the condition of Theo-

rem 1.3, but it turns out that Kα is weak type (1, (d+1)/α), i.e., Kα,K
+
α : L1 → L(d+1)/α,∞

are both bounded on Bd, see the following Proposition 6.1, which is a generalization of

the result that the standard Bergman projection is weak type (1, 1) on some bounded

domains [6, 15]. By Theorem 1.3, this implies the HLS type inequality on Bd as below.

HLS 1.4. For any 1 < p, s <∞, 1/s+1/p+α/(d+1) ≤ 2 and α ≤ d+1, then there exists

a constant C that depends only on p, α, d, s such that (1.1) holds for all f ∈ Lp(Bd),
g ∈ Ls(Bd).

Comparing HLS 1.2 and HLS 1.4 with the classical HLS inequality [13, 14, 17, 20, 21]

on Rd.

Theorem 1.5. If 0 < α ≤ d+ 1, then the following conditions are equivalent:

(1) Kα : Lp → Lq is compact;

(2) p, q satisfy one of the following inequalities:

(a) p = 1, q < (d+ 1)/α;

(b) 1 < p < (d+ 1)/(d+ 1− α), 1/q > 1/p+ α/(d+ 1)− 1;

(c) p = (d+ 1)/(d+ 1− α), q <∞;

(d) (d+ 1)/(d+ 1− α) < p ≤ ∞.

Theorem 1.6. For α ∈ R, then the following conditions are equivalent:

(1) α < d+ 2;

(2) there exist 1 ≤ p, q ≤ ∞ such that Kα : Lp → Lq is bounded;

(3) there exist 1 ≤ p, q ≤ ∞ such that K+
α : Lp → Lq is bounded;

(4) there exist 1 ≤ p, q ≤ ∞ such that Kα : Lp → Lq is compact.

Theorem 1.7. If 0 < α < (d+ 2)/2, then the following holds.

(1) Kα,K
+
α : L2 → L2 are Hilbert–Schmidt.

(2) Moreover, if d = 1 and 0 < α < 3/2, then we have the trace formula,

Tr(K∗αKα) = ‖K+
2α‖L∞→L1 =

1

(α− 1)2

(
Γ(3− 2α)

Γ2(2− α)
− 1

)
,

where Γ is the usual Gamma function. When α = 1, the quantity on the right side

should be interpreted as π2/6.
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The above theorems show that Kα : Lp → Lq is bounded if and only if K+
α : Lp → Lq

is bounded. We know from Theorem 1.1 that, when d + 1 < α < d + 2, Kα : Lp → Lq

is compact if and only if Kα : Lp → Lq is bounded. However, it is no longer true if

0 < α ≤ d+ 1 by Theorems 1.3 and 1.5. In particular, the standard Bergman projection

Kd+1 : Lp → Lq is compact if and only if 1 ≤ q < p ≤ ∞ on Bd.
We now explain briefly the main ideas of the proofs. Let us consider the above bound-

edness problem in the following viewpoint. Denote G(Kα) by the set of (1/p, 1/q) ∈ E
such that Kα : Lp → Lq is bounded, where E is given by

E = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1},

i.e., E is a unit square in the real plane R2. Following by T. Tao [21], G(Kα) is called the

type diagram of the operator Kα, see Figure 1.1. The similar idea was adopted in [4, 11].

As we shall see that every G(Kα) is convex and axisymmetric on the inside of E. We see

that the proof of the above boundedness theorems is equivalent to solving the correspond-

ing type diagrams. The convexities and axisymmetries of the type diagrams will make

the process simpler. Then combining with several embedding theorems of holomorphic

function spaces and some estimates of Bergman kernel on the unit ball, we completely

characterize the Lp-Lq boundedness and compactness of Kα. Similarly, we can define the

type diagrams G(K+
α ) of operators K+

α , which are also convex and is axisymmetric; see

Figure 1.1. The above main theorems show in fact that G(K+
α ) = G(Kα) for any α ∈ R.

After characterizing the boundedness and compactness of Kα, by using the hypergeomet-

ric function theory and the interpolation theory, we give some sharp norm estimates of

Kα, K+
α . It is in fact that we estimate the upper bounds of the optimal constants in the

inequalities of HLS 1.2 and HLS 1.4. The results of this paper can be generalized to cover

some weighted Lesbegue integrable spaces and more general kernel operators on the unit

ball.

Figure 1.1: Type diagrams G(Kα) and G(K+
α ).

The paper is organized as follows. In Section 2, we give some basic properties of the
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operators Kα. Section 3 provides the proof of Theorem 1.1. Section 4 is devoted to the

proofs of Theorems 1.5 and 1.6. In Section 5, we give some sharp norm estimates of the

operators Kα, K+
α . In Section 6, we prove the weak type boundedness result.

2. Basic properties of Kα

In this section, we prove some results which will be frequently used in the sequel. We first

take a rough look at the property of type diagram G(Kα) of the operator Kα. We prove

that every G(Kα) is convex and is axisymmetric on the inside of E as mentioned before.

Let lE be the diagonal line of the square E which connects points (0, 1) and (1, 0). Clearly

G(Kα) ⊂ E for any α ∈ R.

Proposition 2.1. (1) If G(Kα) 6= ∅, then (0, 1) ∈ G(Kα); if (1, 0) ∈ G(Kα), then

G(Kα) = E.

(2) For any α ∈ R, the type diagram G(Kα) is convex and is axisymmetric about lE on

the inside of E.

Proof. (1) This comes from the the continuity of embeddings of L-integrable spaces, i.e.,

the embedding Lp ⊂ Lq is continuous whenever p ≥ q ≥ 1.

(2) To show that G(Kα) is convex, it suffices to show that if (1/p1, 1/q1), (1/p2, 1/q2) ∈
G(Kα), then θ(1/p1, 1/q1) + (1 − θ)(1/p2, 1/q2) ∈ G(Kα) for any 0 ≤ θ ≤ 1. Indeed, it

is a direct corollary of the following Lemma 2.2 which is a classical complex interpolation

result. We now turn to the symmetry. By Fubini’s theorem, this implies that Kα is

adjoint. Then, for 1 < p, q < ∞, the boundedness of Kα : Lp → Lq is equivalent to the

boundedness of Kα : Lq
′ → Lp

′
, where p′, q′ are the conjugate numbers of p, q, respectively.

This means that (1/p, 1/q) ∈ G(Kα) if and only if (1/q′, 1/p′) ∈ G(Kα). It is easy to check

that (1/p, 1/q) and (1/q′, 1/p′) are symmetric about lE by the conjugate relationship.

Lemma 2.2. [24] Suppose 1 ≤ p1, p2, q1, q2 ≤ ∞. Let T be a linear operator such that

T : Lp1 → Lq1 is bounded with norm M1 and T : Lp2 → Lq2 is bounded with norm M2.

Then T : Lp → Lq is bounded with norm no more than M θ
1M

1−θ
2 , where θ ∈ (0, 1) satisfying

1

p
=

θ

p1
+

1− θ
p2

,
1

q
=

θ

q1
+

1− θ
q2

.

Remark 2.3. Proposition 2.1 shows that the type diagram G(Kα) is a bounded convex set

in the plane R2, then it suffices to find out all extreme points or the boundary points of

G(Kα). The symmetry of G(Kα) shows that is only need to find out a half. On the other

hand, Proposition 2.1 holds for more general domains and adjoint operators.

Corollary 2.4. (1) If G(K+
α ) 6= ∅, then (0, 1) ∈ G(K+

α ); if (1, 0) ∈ G(K+
α ), then

G(K+
α ) = E.
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(2) For any α ∈ R, the type diagram G(K+
α ) is convex and is axisymmetric about lE on

the inside of E.

Corollary 2.5. If α ≤ 0, then G(Kα) = G(K+
α ) = E.

Corollary 2.5 indicates that Kα,K
+
α : Lp → Lq are bounded for any 1 ≤ p, q ≤ ∞ if

α ≤ 0. For any β > −1, denote dvβ(z) = cβ(1−|z|2)β dv(z), where cβ = Γ(d+β+1)
Γ(d+1)Γ(β+1) . For

1 ≤ p ≤ ∞, let Apβ = H(Bd)∩Lp(dvβ) be the weighted Bergman space on Bd, where H(Bd)
is the holomorphic function space on Bd; in particular, A∞β = H∞ is just the bounded

holomorphic function space. Recall that Kd+1 is the Bergman projection from Lp onto

Ap0, a well known result is that Kd+1(Lp) = Ap0 for 1 < p <∞. We now establish a general

result for α ≥ d+ 1.

Proposition 2.6. Suppose that α ≥ d+ 1 and 1 < p <∞, then

Kα(Lp) = Kα(Ap0) = App(α−d−1).

To prove Proposition 2.6, we need some lemmas. The following Lemma 2.7 was proved

[3] in the case d = 1, by the same method, it can be proved in the general case, see [3,

Lemma 11] for more details.

Lemma 2.7. If α > 0 and 1 < p <∞, then

KαKd+1 = Kα on Lp.

Lemma 2.7 shows that for 1 < p, q < ∞, Kα : Lp → Lq is bounded if and only if

Kα : Ap0 → Aq0 is bounded. We now turn to the behavior of Kα on holomorphic function

spaces. Recall first the definition of fractional radial differential operator Rs,t on H(Bd).
For any two real parameters s and t with the property that neither d+ s nor d+ s+ t is

a negative integer, the invertible operator Rs,t is given by

Rs,tf(z) =
∞∑
n=0

Γ(d+ 1 + s)Γ(d+ 1 + n+ s+ t)

Γ(d+ 1 + s+ t)Γ(d+ 1 + n+ s)
fn(z)

for any f =
∑∞

n=0 fn ∈ H(Bd) with homogeneous expansion. In fact, it can be checked by

the direct calculation that the invertible operator of Rs,t is just Rs+t,−t. Be careful that

the invertible operator here merely means it is linear. We refer the reader to [24] for more

details.

Lemma 2.8. For α > 0 and 1 < p <∞, the following holds on Ap0,

Kα = R0,α−d−1.
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Proof. Suppose f =
∑∞

n=0 fn ∈ A
p
0 with the homogeneous expansion. By direct calcula-

tion, this implies that

(2.1) Kαf =
∞∑
n=0

Γ(d+ 1)Γ(α+ n)

Γ(α)Γ(d+ 1 + n)
fn.

This leads to the desired result.

Proof of Proposition 2.6. Lemma 2.7 implies that Kα(Lp) = Kα(Ap0). We now prove

Kα(Ap0) = App(α−d−1). By [23, Theorem 14], which is a characterization of Bergman space,

we infer that f ∈ Ap0 if and only if R0,α−d−1f ∈ Lp(dvp(α−d−1)), namely f ∈ Ap0 if and only

if R0,α−d−1f ∈ App(α−d−1). Note that Kα = R0,α−d−1 by Lemma 2.8, it follows that f ∈ Ap0
if and only if Kαf ∈ App(α−d−1). This shows that Kα(Ap0) ⊂ App(α−d−1). To prove another

direction, suppose that g ∈ App(α−d−1). Since Kα = R0,α−d−1 is invertible on H(Bd), i.e.,

there exists f ∈ H(Bd) such that Kαf = R0,α−d−1f = g. From [24, Theorem 2.19], there

exists a positive constant c which only depends on α, d, p such that

‖f‖Lp ≤ c‖g‖Ap
p(α−d−1)

.

This means that f ∈ Ap0. Thus App(α−d−1) ⊂ Kα(Ap0). This completes the proof.

Corollary 2.9. Suppose that α ≥ d + 1 and 1 < p < ∞, then for any γ > −1, the

following holds,

Kα(Lp(dvγ)) = Kα(Apγ) = Apγ+p(α−d−1).

The following Proposition 2.10 gives the image of Kα in case of p =∞. Let Bβ denote

the weighted Bloch space on Bd for β > 0, see the definition in [24, Section 7.1].

Proposition 2.10. For α ≥ d+ 1, then Kα(H∞) ( Kα(L∞) = Bα−d.

Proof. Observe thatKα(L∞) = Bα−d by [24, Theorem 7.1]. If α = d+1, thenKd+1(H∞) =

H∞, thus Kd+1(H∞) ( Bα−d. Now, we turn to the case α > d + 1. Note that

Kα(H∞) ⊂ Kα(Ap0) for any 1 < p <∞, this implies by Proposition 2.6 that

(2.2) Kα(H∞) ⊂
⋂

1<p<∞
App(α−d−1).

On the other hand, from [24, Theorem 2.1], which is a pointwise estimates of functions in

the weighted Bergman spaces, we know that

(2.3) Apγ ⊂ B(d+1+γ)/p.

Combining (2.2) with (2.3), this implies that

Kα(H∞) ⊂
⋂

1<p<∞
B(α−d)+(d+1)/p−1.
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Together with the fact that the weighted Bloch space is strictly increased, namely Bβ ( Bβ′
whenever 0 < β < β′, this implies that Kα(H∞) ( Bα−d.

Remark 2.11. The monotonicity of the weighted Bloch space can be obtained as follows.

It is easy to see that the weighted Bloch space is increased, so it suffices to show that is

strict. For any 0 < β < β′, there exist p > 1 and ε > 0 such that

β < β − 1 +
d+ ε

p
< β′.

Combining (2.3) and the following Lemma 3.2, this implies that

Bβ ( App(β−1)−1+ε ⊂ Bβ′ .

The reader can also consult [10].

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Although Lp-Lq bounded results have been proved

in [11], for the self-contained purpose, we still give the different proofs here whose methods

shall be further applied to the compactness and norm estimates in the following sections.

We need several embedding theorems of holomorphic function spaces on the unit ball Bd.
For convenience, we state them without proof as follows.

Lemma 3.1. [23] Let 0 < q < p <∞. Then Apβ ⊂ A
q
γ if and only if (β+1)/p < (γ+1)/q.

And in this case the inclusions are strict.

Lemma 3.2. [22, 23] Suppose that β > 0, γ > −1, p ≥ 1, then Bβ ⊂ Apγ if and only if

β − 1 < (1 + γ)/p. And in this case the inclusions are strict.

We also need the following lemmas.

Lemma 3.3. If d + 1 < α < d + 2, then Kα : L∞ → Lq is bounded if and only if

q < 1/(α− (d+ 1)).

Proof. We first show that Kα : L∞ → Lq is bounded if q < 1/(α − (d + 1)). Then, for

f ∈ L∞, by [19, Proposition 1.4.10] and Hölder’s inequality, this implies that

(3.1) |Kαf(z)| ≤ ‖f‖∞
∫
Bd

1

|1− 〈z, w〉|α
dv(w) ≤ Cd,α‖f‖∞(1− |z|2)d+1−α, |z| → 1−,

where Cd,α is a constant. The condition q < 1/(α−(d+1)) means that q((d+1)−α) > −1.

Then (3.1) follows that Kαf(z) ∈ Lq and Kα : L∞ → Lq is bounded. We now turn to

prove that Kα : L∞ → Lq is unbounded if q ≥ 1/(α − (d + 1)). By Hölder’s inequality,

it is enough to prove that Kα : L∞ → L1/(α−(d+1)) is unbounded. It suffices to show

that Kα(L∞) 6⊂ L1/(α−(d+1)). Since Kα(L∞) = Bα−d, it suffices to show that Bα−d 6⊂
A

1/(α−(d+1))
0 . Indeed, it is a fact from Lemma 3.2.
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Corollary 3.4. If d + 1 < α < d + 2, then Kα : Lp → L1 is bounded if and only if

p > 1/((d+ 2)− α).

Proof. First, suppose p > 1/((d+2)−α). From Lemma 3.3 and Kα is an adjoint operator,

we know that Kα : Lp → (L∞)∗ is bounded if p > 1/((d+ 2)−α). Proposition 2.6 implies

that Kα(Lp) = App(α−d−1). Since (p(α− d− 1) + 1)/p < (α− d− 1) + (d+ 2)− α = 1, it

follows by Lemma 3.1 that App(α−d−1) ⊂ A1
0. Thus Kα(Lp) ⊂ L1. Note that L1 ⊂ (L∞)∗,

this implies that Kα : Lp → L1 is bounded.

Conversely, suppose that Kα : Lp → L1, p 6= ∞ is bounded. Then Kα : L∞ → Lp
′

is bounded, where p′ = p/(p − 1). From Lemma 3.3, this implies that p/(p − 1) = p′ <

1/(α− (d+ 1)), this means that p > 1/((d+ 2)− α). Clearly the case of p =∞ is trivial

by Lemma 3.3.

Corollary 3.5. If d+ 1 < α < d+ 2, then

(1) K+
α : L∞ → Lq is bounded if and only if q < 1/(α− (d+ 1));

(2) K+
α : Lp → L1 is bounded if and only if p > 1/((d+ 2)− α).

Proof. (1) For f ∈ L∞, by [19, Proposition 1.4.10] and Hölder’s inequality, this implies

that

(3.2) |K+
α f(z)| ≤ ‖f‖∞

∫
Bd

1

|1− 〈z, w〉|α
dv(w) ≤ Cd,α‖f‖∞(1− |z|2)d+1−α, |z| → 1−,

where Cd,α is a constant. So, if q < 1/(α − (d+ 1)), i.e., q((d+ 1)− α) > −1, then (3.2)

implies that Kαf(z) ∈ Lq and K+
α : L∞ → Lq is bounded. This means that{

(0, 1/q) : 1/q > α− (d+ 1)
}
⊂ G(K+

α ).

On the other hand, Lemma 3.3 implies that the point (0, 1/q) ∈ G(Kα) if and only if

1/q > α− (d+ 1). Note that |Kα(f)| ≤ K+
α (|f |), this implies immediately that G(K+

α ) ⊂
G(Kα). Hence, it follows that (0, 1/q) ∈ G(Kα) if and only if 1/q > α − (d + 1). This

leads the desired result.

(2) The proof is similar to (1).

Lemma 3.6. Suppose that d+1 < α < d+2 and 1/q ≤ 1/p+α−(d+1), then Kα : Lp → Lq

is unbounded.

Proof. By the continuity of the embeddings of L-integrable spaces, it suffices to show that

Kα : Lp → Lq is unbounded if d + 1 < α < d + 2, 1/q = 1/p + α − (d + 1). The cases

of p = ∞ or q = 1 have been proved in Lemma 3.3 and Corollary 3.4. For the case of

1 < p, q < ∞, it suffices to show that Kα(Lp) 6⊂ Lq. On the other hand, Proposition 2.6



The Lp-Lq Boundedness and Compactness of Bergman Type Operators 723

shows that Kα(Lp) = App(α−d−1), which is a holomorphic function space. Thus, it suffices

to show that

(3.3) Kα(Lp) = App(α−d−1) 6⊂ A
q
0.

Since (p(α−d−1)+1)/p = 1/q, it follows that (3.3) holds by Lemma 3.1. This completes

the proof.

Proof of Theorem 1.1. Step 1. Proof of the equivalence that (1) ⇔ (2) ⇔ (4).

First, we prove that (1) is equivalent to (4). As mentioned before, it is equivalent

to proving that G(Kα) is exactly the triangle region D1 ⊂ E which determined by the

equations in Theorem 1.1(4), namely G(Kα) = D1. Lemma 3.3, Corollary 3.4 and the

convexity of G(Kα) imply that D1 ⊂ G(Kα). On the other hand, Lemma 3.6 and the

convexity of G(Kα) imply that E −D1 ⊂ E −G(Kα), it follows that G(Kα) ⊂ D1. Thus

G(Kα) = D1. We now turn to prove that (2) is equivalent to (4), it is equivalent to proving

that G(K+
α ) = D1. Corollary 3.5 and the convexity of G(K+

α ) implies that D1 ⊂ G(K+
α ).

Combining the fact that G(K+
α ) ⊂ G(Kα) = D1, then G(K+

α ) = D1. This completes the

proof.

Step 2. We prove that (1) ⇔ (3).

Since compact operators must be bounded, it suffices to prove that

Kα : Lp → Lq is compact, if (1/p, 1/q) ∈ G(Kα).

We first prove the following claim.

Claim. Kα : L∞ → Lq is compact if and only if q < 1/(α− (d+ 1)).

If Kα : L∞ → Lq is compact, is immediate from Corollary 3.4 that q < 1/(α− (d+ 1)).

We now prove the reverse, that is, to prove that Kα : L∞ → Lq is compact if q < 1/(α−
(d+ 1)). We need to show that for any bounded sequence in L∞, there is a subsequence

such that whose image under Kα converges in Lq. Suppose that {fn} ∈ L∞ is an arbitrary

bounded sequence and K is an arbitrary compact subset of Bd. Moreover, we assume that

‖fn‖∞ ≤ C for any n ≥ 1, where C is a positive constant. Then we obtain

sup
z∈K
|Kαfn(z)| ≤ ‖fn‖∞ sup

z∈K

∫
Bd

1

|1− 〈z, w〉|α
dv(w) ≤ ‖fn‖∞ sup

z∈K

1

(1− |z|)α
<∞.

Combining with that the image of Kα is holomorphic, this implies that {Kαfn} is a normal

family. Hence {fn} has a subsequence {fnj} such that Kαfnj converges uniformly on

compact subsets of Bd to a holomorphic function g. By Fatou’s Lemma and boundedness

of Kα, it follows that

(3.4)

∫
Bd
|g|q dv ≤ lim

j→∞

∫
Bd
|Kαfnj |q dv ≤ ‖Kα‖qL∞→Lq lim

j→∞
‖fnj‖q∞ <∞.
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This means that g ∈ Lq. We now prove that there exists positive function g1 ∈ Lq

such that |Kαfnj | ≤ g1. We first observe that [19, Proposition 1.4.10] and the condition

q < 1/(α− (d+ 1)) imply that(∫
Bd

1

|1− 〈z, w〉|α
dv(w)

)q
∈ L1.

Then by easy estimate, this implies that

(3.5) |Kαfnj (z)| ≤ ‖fnj‖∞
∫
Bd

1

|1− 〈z, w〉|α
dv(w) ≤ C

∫
Bd

1

|1− 〈z, w〉|α
dv(w).

Thus (3.5) shows that it is enough to take g1 = C
∫
Bd

1
|1−〈z,w〉|α dv(w). Combining (3.4)

with (3.5), this implies that

|Kαfnj − g|q ≤ (g1 + |g|)q ∈ L1, ∀ j ≥ 1.

By dominated convergence theorem, it gives that

lim
j→∞

‖Kαfnj − g‖q = lim
j→∞

(∫
Bd
|Kαfnj − g|q dv

)1/q

=

(∫
Bd

lim
j→∞

|Kαfnj − g|q dv
)1/q

= 0,

and the claim follows.

Combining the last claim with the basic fact that an operator is compact if and only if

its adjoint operator is still compact, thus we get that Kα : Lp → L1 is compact if and only if

p < 1/(d+2−α). Then by the following Lemma 3.7, which is an interpolation result of the

compact operators, this implies that Kα : Lp → Lq is compact if (1/p, 1/q) ∈ G(Kα).

Lemma 3.7. [5,12] Suppose that 1 ≤ p1, p2, q1, q2 ≤ ∞ and q1 6=∞. If a linear operator

T such that T : Lp1 → Lq1 is bounded and T : Lp2 → Lq2 is compact, then T : Lp → Lq is

compact, where θ ∈ (0, 1) satisfying

1

p
=

θ

p1
+

1− θ
p2

,
1

q
=

θ

q1
+

1− θ
q2

.

Remark 3.8. The compactness of Kα : Lp → Lq for 1 < p, q <∞ can be also proved by the

Carleson type measure theory on Bergman spaces, see definition in [23,24]. This strategy

will be adopted as we shall see in Section 4.

4. Proofs of Theorems 1.5 and 1.6

Theorem 1.3 characterizes the Lp-Lq boundedness of Kα, K+
α when 0 < α ≤ d + 1. We

will completely characterize the Lp-Lq compactness of Kα when 0 < α ≤ d + 1. It is

equivalent to solving the set F (Kα), where F (Kα) is defined by

F (Kα) =
{

(1/p, 1/q) ∈ E : Kα : Lp → Lq is compact
}
.
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It is easy to see that F (Kα) is a subset of G(Kα). Theorem 1.5 in fact shows that F (Kα)

and G(Kα) differ only by a segment on the boundary of G(Kα). Thus we always show

first that Kα is compact on the other part of the boundary of G(Kα). In the end of this

section, we give the proof of Theorem 1.6.

Proposition 4.1. Kd+1 : Lp → Lq is compact if and only if 1 ≤ q < p ≤ ∞.

Proof. From Theorem 1.3, we know that Kd+1 : Lp → Lq is bounded if and only if q ≤ p.
Since Kd+1 is the standard Bergman projection, it is easy to see Kd+1 : Lp → Lp is not

compact for any 1 < p < ∞. Thus it suffices to show that Kα : Lp → Lq is compact if

q < p. Indeed, this can be proved by the similar method we used in Step 2 of proof of

Theorem 1.1, thus we omit it.

Now, we recall some results on the hypergeometric function theory which we shall

use later on. For complex numbers α, β, γ and complex variable z, we use the classical

notation 2F1(α, β; γ; z) to denote

(4.1) 2F1(α, β; γ; z) =

∞∑
j=0

(α)j(β)j
j!(γ)j

zj

with γ 6= 0,−1,−2, . . ., where (α)j = Πj−1
k=0(α + k) is the Pochhammer symbol for any

complex number α. The following lemma is in fact a restatement of [19, Proposition 1.4.10].

Lemma 4.2. [19] Suppose β ∈ R and γ > −1, then∫
Bd

(1− |w|2)γ

|1− 〈z, w〉|2β
dv(w) =

Γ(1 + d)Γ(1 + γ)

Γ(1 + d+ γ)
2F1(β, β; 1 + d+ γ; |z|2).

We also need the following lemma.

Lemma 4.3. [7, Chapter 2] The following three identities hold.

(1) 2F1(α, β; γ; z) = (1− z)γ−α−β 2F1(γ − α, γ − β; γ; z);

(2) 2F1(α, β; γ; 1) = Γ(γ)Γ(γ−α−β)
Γ(γ−α)Γ(γ−β) if Re(γ − α− β) > 0;

(3) d
dz 2F1(α, β; γ; z) = αβ

γ 2F1(α+ 1, β + 1; γ + 1; z).

Now, we introduce the following auxiliary function Iα for any α < d+ 1. The function

Iα(r, z) on [0, 1)× Bd is denoted by

Iα(r, z) =

∫
r≤|w|<1

1

|1− 〈z, w〉|α
dv(w).



726 Lijia Ding and Kai Wang

Since α < d+ 1, it follows by (4.1) and Lemma 4.2 that

Iα(r, z) ≤
∫
Bd

1

|1− 〈z, w〉|α
dv(w)

=
∞∑
j=0

(
Γ(j + α/2)

Γ(α/2)

)2 Γ(d+ 1)

Γ(j + 1)Γ(j + d+ 1)

=
Γ(d+ 1)Γ(d+ 1− α)

Γ2(d+ 1− α/2)

(4.2)

for any (r, z) ∈ [0, 1) × Bd, which means that Iα is finite on [0, 1) × Bd. Moreover, Iα is

increasing on [0, 1)× Bd in the following sense.

Lemma 4.4. Suppose r ∈ [0, 1), then

Iα(r, z1) ≤ Iα(r, z2),

whenever z1, z2 ∈ Bd and |z1| ≤ |z2|.

Proof. From (4.2), we know that Iα is finite on [0, 1) × Bd. We now calculate its exact

value. It follows from [24, Lemma 1.8, 1.11] and the unitary invariance of the Lebesgue

measure that

Iα(r, z) =

∫
r≤|w|<1

1∣∣1− |z|w1

∣∣α dv(w)

=

∫
r≤|w|<1

∞∑
j=0

(
Γ(j + α/2)

Γ(α/2)Γ(j + 1)

)2

|z|2j |wj1|
2 dv(w)

=
∞∑
j=0

(
Γ(j + α/2)

Γ(α/2)Γ(j + 1)

)2

|z|2j · 2d
∫ 1

r
t2d+2j−1 dt

∫
Sd
|ξj1|

2 dσ(ξ)

=
∞∑
j=0

(
Γ(j + α/2)

Γ(α/2)

)2 Γ(d+ 1)(1− r2(j+d))

Γ(j + 1)Γ(j + d+ 1)
|z|2j

(4.3)

for any z ∈ Bd. This leads to the desired result since all coefficients of the power series

expansion about |z| in (4.3) are positive.

Lemma 4.5. If 0 < α < d+ 1, then Kα : L∞ → Lq is compact for any 1 ≤ q ≤ ∞.

Proof. Since the continuity of the embeddings of L-integrable spaces, it suffices to prove

that Kα : L∞ → L∞ is compact. We first prove that, for any f ∈ L∞, then Kαf ∈ A(Bd),
where A(Bd) = H(Bd) ∩ C(Bd) is the ball algebra. For f ∈ L∞, it is clear that Kαf is

holomorphic on the ball, i.e., Kαf ∈ H(Bd). From Lemma 4.2 and Lemma 4.3(2), this

implies that Kαf(η) exists for any η ∈ ∂Bd and

|Kαf(η)| ≤ ‖f‖∞
Γ(d+ 1)Γ(d+ 1− α)

Γ2(d+ 1− α/2)
.
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We now prove that Kαf is actually continuous on the closed ball Bd. It suffices to prove

that Kαf is continuous on ∂Bd, namely we need to prove that, for any η ∈ ∂Bd and for

any point sequence {zn} in Bd satisfying zn → η, we have Kαf(zn)→ Kαf(η) as n→∞.

By Lemma 4.2 and Lemma 4.3(2) again, we have

|Kαf(z)| ≤ ‖f‖∞
∫
Bd

1

|1− 〈z, w〉|α
dv(w) ≤ ‖f‖∞

∫
Bd

1

|1− 〈η, w〉|α
dv(w)

= ‖f‖∞
Γ(d+ 1)Γ(d+ 1− α)

Γ2(d+ 1− α/2)

(4.4)

for any z ∈ Bd. Due to the absolute continuity of the integral, this implies that, for any

ε > 0, there exists 0 < δ < 1 satisfying

(4.5)

∫
F

dv(w)

|1− 〈η, w〉|α
≤ ε

4

whenever v(F ) < δ. Denote Fδ =
{
z ∈ Bd : d

√
1− δ/2 < |z| < 1

}
. Note that v(Fδ) =

δ/2 < δ and

1

(1− 〈zn, w〉)α
→ 1

(1− 〈η, w〉)α
uniformly on Bd \ Fδ as n→∞.

Then there exists N > 0 such that, for any n > N ,∫
Bd\Fδ

∣∣∣∣ 1

(1− 〈zn, w〉)α
− 1

(1− 〈η, w〉)α

∣∣∣∣ dv(w) ≤ ε

2
.

Combining this with (4.2), (4.4), (4.5) and Lemma 4.4, this implies that, for any n > N ,

|Kαf(zn)−Kαf(η)| ≤ ‖f‖∞
∫
Bd\Fδ

∣∣∣∣ 1

(1− 〈zn, w〉)α
− 1

(1− 〈η, w〉)α

∣∣∣∣ dv(w)

+ ‖f‖∞
∫
Fδ

∣∣∣∣ 1

(1− 〈zn, w〉)α
− 1

(1− 〈η, w〉)α

∣∣∣∣ dv(w)

≤ ‖f‖∞
∫
Bd\Fδ

∣∣∣∣ 1

(1− 〈zn, w〉)α
− 1

(1− 〈η, w〉)α

∣∣∣∣ dv(w)

+ 2‖f‖∞
∫
Fδ

1

|1− 〈η, w〉|α
dv(w)

≤ ‖f‖∞
ε

2
+ 2‖f‖∞

ε

4

= ε‖f‖∞.

(4.6)

This completes the proof of what Kαf is continuous on the closed ball Bd. We turn to

prove that, for any bounded sequence in L∞, there exists a subsequence satisfying its

image under Kα is convergent in L∞. Suppose that {fn} is a bounded sequence in L∞,
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then we have {Kαfn} is in C(Bd) and {Kαfn} is uniformly bounded by (4.4). We are in

a position to prove that {Kαfn} is also equicontinuous. From (4.6), we know that

(4.7) lim
Bd3z→η

∫
Bd

∣∣∣∣ 1

(1− 〈z, w〉)α
− 1

(1− 〈η, w〉)α

∣∣∣∣ dv(w) = 0

for arbitrary fixed η ∈ ∂Bd. Combining (4.7) with the unitary invariance of Lebsgue

measure and the symmetry of the unit ball, this implies that, for any ε > 0, there exists

0 < δ′ < 1 satisfying

(4.8)

∫
Bd

∣∣∣∣ 1

(1− 〈z, w〉)α
− 1

(1− 〈η, w〉)α

∣∣∣∣ dv(w) ≤ ε

2

whenever z ∈ Bd, η ∈ ∂Bd and |z − η| < δ′. Denote B1−δ′/2 = {z ∈ Cd : |z| ≤ 1 − δ′/2}
and Cδ′/2 = {z ∈ Cd : 1 − δ′/2 < |z| ≤ 1}. Then the closed ball Bd has the following

decomposition

Bd = B1−δ′/2 ∪ Cδ′/2 and B1−δ′/2 ∩ Cδ′/2 = ∅.

Since the function 1
(1−〈z,w〉)α is uniformly continuous on compact set B1−δ′/2 × Bd, then

there exists 0 < δ′′ < 1 such that

(4.9)

∣∣∣∣ 1

(1− 〈z1, w〉)α
− 1

(1− 〈z2, w〉)α

∣∣∣∣ ≤ ε
whenever (z1, w), (z2, w) ∈ B1−δ′/2 × Bd and |z1 − z2| < δ′′. Set δ′′′ = min{δ′/2, δ′′}. We

now prove that, for any z1, z2 ∈ Bd such that |z1 − z2| < δ′′′, then we have

(4.10)

∫
Bd

∣∣∣∣ 1

(1− 〈z1, w〉)α
− 1

(1− 〈z2, w〉)α

∣∣∣∣ dv(w) ≤ ε.

In fact, there are two cases need to be considered. The first case is z1 ∈ Cδ′/2 or z2 ∈ Cδ′/2.

Without loss of generality, we can assume that z1 ∈ Cδ′/2, then there exists an η ∈ ∂Bd

satisfying |z1 − η| < δ′′′ ≤ δ′/2. By triangle inequality, this implies that |z2 − η| ≤
|z2 − z1|+ |z1 − η| < δ′. Together with (4.8), this implies that∫

Bd

∣∣∣∣ 1

(1− 〈z1, w〉)α
− 1

(1− 〈z2, w〉)α

∣∣∣∣ dv(w)

≤
∫
Bd

∣∣∣∣ 1

(1− 〈z1, w〉)α
− 1

(1− 〈η, w〉)α

∣∣∣∣ dv(w)

+

∫
Bd

∣∣∣∣ 1

(1− 〈η, w〉)α
− 1

(1− 〈z2, w〉)α

∣∣∣∣ dv(w)

≤ ε.

The second case is z1, z2 ∈ B1−δ′/2. By (4.9), this implies that∫
Bd

∣∣∣∣ 1

(1− 〈z1, w〉)α
− 1

(1− 〈z2, w〉)α

∣∣∣∣ dv(w) ≤ ε
∫
Bd
dv = ε.
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This proves (4.10). Combining with

|Kαfn(z1)−Kαfn(z2)| ≤ ‖fn‖∞
∫
Bd

∣∣∣∣ 1

(1− 〈z1, w〉)α
− 1

(1− 〈z2, w〉)α

∣∣∣∣ dv(w),

this implies that {Kαfn} is equicontinuous. Thus by Arzelà–Ascoli theorem, this implies

that {Kαfn} has a convergency subsequence in the supremum norm.

Corollary 4.6. If 0 < α < d+ 1, then the following holds:

(1) Kα : Lp → L1 is compact for any 1 ≤ p ≤ ∞.

(2) Kα : L1 → Lq is compact if and only if q < (d+ 1)/α.

(3) Kα : Lp → L∞ is compact if and only if p > (d+ 1)/(d+ 1− α).

Proof. This comes from Lemmas 3.7, 4.5 and the fact that Kα is adjoint.

It remains to deal with the case 1 < p, q < ∞, we need the following result about

Carleson type measures for Bergman spaces on the unit ball.

Lemma 4.7. [23] Suppose 1 ≤ p ≤ q < ∞ and µ is a positive Borel measure on Bd.
Then the following conditions are equivalent:

(1) If {fn} is a bounded sequence in Ap0 and fn(z)→ 0 for every z ∈ Bd, then

lim
n→∞

∫
Bd
|fn|q dµ = 0.

(2) For every (or some) s > 0, we have

lim
|z|→1−

∫
Bd

(1− |z|2)s

|1− 〈z, w〉|s+q(d+1)/p
dµ(w) = 0.

The Borel measure in Lemma 4.7 is in fact the so-called vanishing Carleson measure.

If denote Aq(dµ) by the weighted Bergman space Aq(dµ) = H(Bd) ∩ Lq(Bd, dµ), then

Lemma 4.7(1) guarantees (or is equivalent to) that the embedding Id: Ap0 → Aq(dµ) is

compact.

Proposition 4.8. If 0 < α < d+ 1 and 1 < p ≤ q <∞, then the following are equivalent.

(1) Kα : Lp → Lq is compact.

(2) Kα : Ap0 → Aq0 is compact.

(3) The embedding Id : Ap0 → Aqq(d+1−α) is compact.



730 Lijia Ding and Kai Wang

(4) 1/q > 1/p+ α/(d+ 1)− 1.

Proof. We first prove that (1) is equivalent to (2). Clearly (1) implies (2). To prove

the reverse, note that 0 < α < d + 1, then Theorem 1.3 gives us that Kd+1 : Lp → Ap0
is bounded. Suppose that {fn} is an arbitrary bounded sequence in Lp, thus we have

{Kd+1fn} is a bounded sequence in Ap0. Then the compactness of operator Kα : Ap0 → Aq0
implies that, there exists a subsequence {fnj} such that {Kα(Kd+1fnj )} is convergent in

Aq0. Combining this with Lemma 2.7, we infer that {Kαfnj} is convergent in Aq0. This

proves that (2) implies (1).

We now prove that (2) is equivalent to (3). Similar to the proof of Proposition 2.6,

by [23, Theorem 14] and [24, Theorem 2.19], it can be proved that

Rα−d−1,d+1−α : Aq0 → Aqq(d+1−α)

and its inverse operator are bounded. Note that Kα = R0,α−d−1 on Ap0 and

Rα−d−1,d+1−αR0,α−d−1f = f, ∀ f ∈ Ap0.

Then we have the following decomposition for the embedding Id,

(4.11) Id: Ap0
Kα=R0,α−d−1

−−−−−−−−−→ Aq0
Rα−d−1,d+1−α
−−−−−−−−−→ Aqq(d+1−α), Id = Rα−d−1,d+1−αKα.

Combining (4.11) with the fact that Rα−d−1,d+1−α has bounded inverse, this implies that

Kα : Ap0 → Aq0 is compact if and only if the embedding Id: Ap0 → Aqq(d+1−α) is compact.

In the next, we prove that (3) is equivalent to (4). Suppose that {fn} is an arbitrary

bounded sequence in Ap0, then by [23, Theorem 20], the locally estimate for functions

in Ap0, this implies that {fn} is a normal family. Hence, by Fatou’s lemma, similar to

the proof of Theorem 1.1, there exists a subsequence {fnj} and g ∈ Ap0 such that fnj
converges uniformly to g on any compact subset of Bd. Then {fnj − g} is in Ap0 and

fnj −g → 0 pointwise as j →∞. Together with Lemma 4.7, it follows that the embedding

Id: Ap0 → Aqq(d+1−α) is compact if and only if

(4.12) lim
|z|→1−

∫
Bd

(1− |z|2)s

|1− 〈z, w〉|s+q(d+1)/p
dvq(d+1−α)(w) = 0

for any s > 0. On the other hand, by [19, Proposition 1.4.10], this implies that (4.12) is

equivalent to 1/q > 1/p+ α/(d+ 1)− 1. This completes the proof.

Proof of Theorem 1.5. When α = d+ 1. Theorem 1.5 degenerates into Proposition 4.1.

Now, we turn to the case 0 < α < d + 1. We first prove that (2) implies (1). In fact,

it is an immediate corollary from Lemmas 3.7, 4.5 and Corollary 4.6. To see the reverse,

note that Theorem 1.3 and Proposition 4.8 give that (1) is not held if (2) is not held, this

implies that (1) implies (2), completing the proof.
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Proof of Theorem 1.6. By Theorems 1.1, 1.3 and 1.5, it is easy to see that (1) ⇒ (4) ⇒
(2) ⇔ (3). Thus we only need to show that (2) ⇒ (1). It is equivalent to proving that

(2) is not true if neither is (1). It suffices to show that Kα : L∞ → L1 is not bounded if

α ≥ d + 2. Suppose α ≥ d + 2. In view to Proposition 2.10 or [24, Theorem 7.1], this

implies that Kα(L∞) = Bα−d. From Lemma 3.2, we know that Bα−d 6⊂ L1, this means

that Kα : L∞ → L1 is not bounded. This completes the proof.

5. Norm estimates

In the previous sections, we have completely characterized the Lp-Lq boundedness of

Kα, K+
α and compactness of Kα. In the present section, we will state and prove some

sharp norm estimates of Kα, K+
α , which give essentially the upper bounds of the optimal

constants in the HLS type inequalities.

Proposition 5.1. If d+ 1 < α < d+ 2 and Kα : Lp → Lq is bounded, then

‖Kα‖Lp→Lq ≤
Γ(d+ 1)1+1/q−1/pΓ(α− (d+ 1))Γ

(
1

q−1−p−1 (d+ 1− α) + 1
)1/q−1/p

Γ(α/2)2Γ
(

1
q−1−p−1 (d+ 1− α) + d+ 1

)1/q−1/p
.

To prove Proposition 5.1 we first establish the following lemma.

Lemma 5.2. Suppose that d + 1 < α < d + 2 and (0, 1/q) ∈ G(Kα) = G(K+
α ), then the

following holds.

(1) ‖Kα‖L∞→Lq ≤ ‖K+
α ‖L∞→Lq =

∥∥ ∫
Bd k

+
α ( · , w) dv(w)

∥∥
Lq

.

(2) In particular, when d = 1,

(5.1) ‖Kα‖L∞→L1 ≤ ‖K+
α ‖L∞→L1 =

4

(α− 2)2

(
Γ(3− α)

Γ2(2− α/2)
− 1

)
.

(3) For any general (0, 1/q) ∈ G(Kα) = G(K+
α ),

‖Kα‖L∞→Lq ≤ ‖K+
α ‖L∞→Lq

≤ Γ(d+ 1)1+1/qΓ(α− (d+ 1))Γ(q(d+ 1− α) + 1)1/q

Γ(α/2)2Γ(q(d+ 1− α) + d+ 1)1/q
.

(5.2)

Proof. (1) Since |Kα(f)| ≤ K+
α (|f |), this implies that ‖Kα‖L∞→Lq ≤ ‖K+

α ‖L∞→Lq if Kα

and K+
α are bounded. Note that |K+

α f |(z) ≤ ‖f‖∞
∫
Bd

1
|1−〈z,w〉|α dv(w) for any f ∈ L∞,

hence

‖Kα‖L∞→Lq ≤ ‖K+
α ‖L∞→Lq ≤

∥∥∥∥∫
Bd
k+
α ( · , w) dv(w)

∥∥∥∥
Lq
.
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To see the reverse, we note that

‖K+
α ‖L∞→Lq ≥ ‖K+

α 1‖Lq =

∥∥∥∥∫
Bd
k+
α ( · , w) dv(w)

∥∥∥∥
Lq
.

This leads to the desired result.

(2) We now turn to calculate the norm in the case of d = 1. It follows, by Lemma 4.3(2)

and what we have proven, that

‖Kα‖L∞→L1 ≤ ‖K+
α ‖L∞→L1 =

∫
Bd

2F1(α/2, α/2; d+ 1; |z|2) dv(z)

= d

∫ 1

0
2F1(α/2, α/2; d+ 1; r)rd−1 dr,

in the last equality we apply the integration in polar coordinates, see [24, Lemma 1.8],

and the unitary invariance of hypergeometric function 2F1(α/2, α/2; d+ 1; |z|2). We now

use the differential properties listed in Lemma 4.3 to calculate the integral in the case of

d = 1. We observe Lemma 4.3(3), it gives that

d

dr

(
2F1(α/2− 1, α/2− 1; 1; r)

)
=
(α

2
− 1
)2

2F1(α/2, α/2; 2; r).

Integrating the two sides of the above equality, we get∫ 1

0
2F1(α/2, α/2; 2; r) dr =

4

(α− 2)2

(
2F1(α/2− 1, α/2− 1; 1; 1)− 1

)
.

Together with Lemma 4.3(2) yields the desired result.

(3) Combining (1) with Lemma 4.2 and Lemma 4.3(1)(2), it follows that

‖K+
α ‖L∞→Lq

=

(∫
Bd

(∫
Bd

1

|1− 〈z, w〉|α
dv(w)

)q
dv(z)

)1/q

=

(∫
Bd

2F1(α/2, α/2; d+ 1; |z|2)q dv(z)

)1/q

=

(∫
Bd

(1− |z|2)q(d+1−α)
2F1(d+ 1− α/2, d+ 1− α/2; d+ 1; |z|2)q dv(z)

)1/q

≤ 2F1(d+ 1− α/2, d+ 1− α/2; d+ 1; 1)

(∫
Bd

(1− |z|2)q(d+1−α) dv(z)

)1/q

=
Γ(d+ 1)1+1/qΓ(α− (d+ 1))Γ(q(d+ 1− α) + 1)1/q

Γ(α/2)2Γ(q(d+ 1− α) + d+ 1)1/q
.

This leads to (5.2).
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Proof of Proposition 5.1. Suppose K+
α : Lp → Lq is bounded, it is equivalent to (1/p, 1/q)

∈ G(K+
α ). Then Theorem 1.1(3) guarantees 1/q−1/p > α−(d+1). Using Theorem 1.1(3)

again, we see that

(5.3) (0, 1/q − 1/p), (1− (1/q − 1/p), 1) ∈ G(K+
α )

and there exists 0 ≤ θ ≤ 1 satisfying

(5.4) (1/p, 1/q) = θ · (0, 1/q − 1/p) + (1− θ) · (1− (1/q − 1/p), 1).

Combining (5.3), (5.4) with Lemma 2.2, it follows that

(5.5) ‖K+
α ‖Lp→Lq ≤ ‖K+

α ‖θ
L∞→L

1
q−1−p−1

‖K+
α ‖1−θ

L
1

1−(q−1−p−1)→L1

.

We observe that the adjoint operator of K+
α : L∞ → L

1
q−1−p−1 is exactly the operator

K+
α : L

1
1−(q−1−p−1) → L1, which means that

‖K+
α ‖

L∞→L
1

q−1−p−1
= ‖K+

α ‖
L

1
1−(q−1−p−1)→L1

.

Applying this to (5.5), yields

(5.6) ‖K+
α ‖Lp→Lq ≤ ‖K+

α ‖
L∞→L

1
q−1−p−1

.

Combining (5.6) with (5.3) and applying Lemma 5.2, this leads to the desired conclusion.

Corollary 5.3. Suppose C1 is the optimal constant in HLS 1.2, then

C1 ≤
Γ(d+ 1)2−1/s−1/pΓ(α− (d+ 1))Γ

(
1

1−s−1−p−1 (d+ 1− α) + 1
)1−1/s−1/p

Γ
(
α
2

)2
Γ
(

1
1−s−1−p−1 (d+ 1− α) + d+ 1

)1−1/s−1/p
.

We now turn to handle the case of 0 < α < d+ 1. Let k+
α (z, w) = 1

|1−〈z,w〉|α , z, w ∈ Bd.
Obviously k+

α is the integral kernel function of the integral operator K+
α .

Proposition 5.4. If 0 < α < d+ 1 and 1/p− (1− α/(d+ 1)) < 1/q ≤ 1/p, then

(5.7) ‖Kα‖Lp→Lq ≤ ‖K+
α ‖Lp→Lq ≤

(
Γ(d+ 1)Γ

(
d+ 1− α

1−(p−1−q−1)

)
Γ2
(
d+ 1− α

2(1−(p−1−q−1))

) )1−(1/p−1/q)

.

In particular, when q =∞, the inequality (5.7) is an equality.
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Proof. We first prove that (5.7) is in fact equality in the case of q = ∞. From [21,

Proposition 5.4], we know that

(5.8) ‖Kα‖Lp→L∞ = ‖K+
α ‖Lp→L∞ = sup

z∈Bd

(∫
dv(w)

|1− 〈z, w〉|
pα
p−1

) p−1
p

.

On the other hand, Lemma 4.2 and Lemma 4.3(2) yield∫
Bd

dv(w)

|1− 〈z, w〉|
pα
p−1

= 2F1

(
pα

2(p− 1)
,

pα

2(p− 1)
; d+ 1; |z|2

)
≤ 2F1

(
pα

2(p− 1)
,

pα

2(p− 1)
; d+ 1; 1

)
=

Γ(d+ 1)Γ
(
d+ 1− pα

p−1

)
Γ2
(
d+ 1− pα

2(p−1)

) .

(5.9)

Combining (5.8) and (5.9), this implies that

(5.10) ‖Kα‖Lp→L∞ = ‖K+
α ‖Lp→L∞ =

(
Γ(d+ 1)Γ

(
d+ 1− pα

p−1

)
Γ2
(
d+ 1− pα

2(p−1)

) ) p−1
p

.

We now turn to prove (5.7) in the general case. Note first that |Kα(f)| ≤ K+
α (|f |), this

implies that ‖Kα‖Lp→Lq ≤ ‖K+
α ‖Lp→Lq if Kα and K+

α are bounded. Since 1/p − (1 −
α/(d+ 1)) < 1/q ≤ 1/p, Theorem 1.3 implies that

(5.11) (1/p, 1/q), (1/p− 1/q, 0), (1, 1− (1/p− 1/q)) ∈ G(K+
α )

and there exists 0 ≤ θ ≤ 1 satisfying

(5.12) (1/p, 1/q) = θ · (1/p− 1/q, 0) + (1− θ) · (1, 1− (1/p− 1/q)).

Combining (5.11), (5.12) with Lemma 2.2, it follows that

(5.13) ‖K+
α ‖Lp→Lq ≤ ‖K+

α ‖θ
L

1
p−1−q−1→L∞

‖K+
α ‖1−θ

L1→L
1

1−(p−1−q−1)

.

Observe that the adjoint operator of K+
α : L

1
p−1−q−1 → L∞ is exactly the operator K+

α : L1

→ L
1

1−(p−1−q−1) , hence

(5.14) ‖K+
α ‖

L
1

p−1−q−1→L∞
= ‖K+

α ‖
L1→L

1
1−(p−1−q−1)

.

Thus by (5.13) and (5.14), it follows that

‖K+
α ‖Lp→Lq ≤ ‖K+

α ‖
L

1
p−1−q−1→L∞

.

Together with (5.10), this completes the proof.



The Lp-Lq Boundedness and Compactness of Bergman Type Operators 735

Corollary 5.5. Suppose that C2 is the optimal constant in HLS 1.4, then the following

holds.

(1) If 1/p < 1− 1/s, then

C2 ≤
Γ(d+ 1)Γ(d+ 1− α)

Γ2(d+ 1− α/2)
.

(2) If 1/p− (1− α/(d+ 1)) < 1− 1/s ≤ 1/p, then

C2 ≤

(
Γ(d+ 1)Γ

(
d+ 1− α

2−p−1−s−1

)
Γ2
(
d+ 1− α

2(2−p−1−s−1)

) )2−(1/p−1/s)

.

Proof of Theorem 1.7. When α < (d+ 2)/2, by [19, Proposition 1.4.10], this implies that

the kernel function k+
α ∈ L2(Bd×Bd, dv×dv), thus Kα,K

+
α : L2 → L2 are Hilbert–Schmidt.

Note that

(5.15) Tr(K∗αKα) =

∫
Bd

∫
Bd

1

|1− 〈z, w〉|2α
dv(w)dv(z).

When α 6= 1, similar to (5.1), yields the trace formula. We now deal with the spacial case

α = 1. Combining Lemma 4.2 with (5.15), this implies that

Tr(K∗1K1) =

∫ 1

0
2F1(1, 1; 2; r) dr =

∞∑
j=1

1

j2
=
π2

6
.

Remark 5.6. By Proposition 4.3(3) and inductive method, we can get explicit trace for-

mulas for any dimension d ≥ 1.

As a consequence of Theorem 1.7 we obtain the following generalized Euler–Jacobi

identity.

Corollary 5.7. Suppose 0 < α < 3/2, then

(5.16)

∞∑
j=0

(
Γ(α+ j)

Γ(α)Γ(2 + j)

)2

=
1

(α− 1)2

(
Γ(3− 2α)

Γ2(2− α)
− 1

)
.

When α = 1, the identity (5.16) is the well known Euler–Jacobi identity

∞∑
j=1

1

j2
=
π2

6
.

When d = 1, 0 < α < 3/2, we know that Kα : L2 → L2 is compact by Theorem 1.1 or

Theorem 1.7. It is trivial to see that the spectrum σ(Kα) of the operator Kα is exactly

the point spectrum. Note that every Kα is adjoint, then combining (2.1) with (5.16), we

have the following.



736 Lijia Ding and Kai Wang

Corollary 5.8. Suppose that d = 1 and 0 < α < 3/2, then Kα : L2 → L2 is compact and

σ(Kα) =
∞⋃
j=0

{
Γ(α+ j)

Γ(α)Γ(2 + j)

}
.

Moreover, in this case,

‖Kα‖L2→L2 = max
0≤j≤∞

Γ(α+ j)

Γ(α)Γ(2 + j)
.

6. The weak type boundedness result

In the last section we shall establish the weak type boundedness result for Bergman type

operators as mentioned above. Recall that kα, k+
α are the integral kernel functions of the

integral operators Kα, K+
α respectively. For p ≥ 1, the Lorentz space Lp,∞ on Bd is defined

by

Lp,∞ =

{
f : sup

λ>0
λd

1/p
f (λ) <∞

}
,

where df (λ) = v{z ∈ Bd : |f(z)| > λ}. Note that Lp,∞ ⊂ Lq,∞ if p > q, and the inclusion

is continuous.

Proposition 6.1. If 0 < α ≤ d+ 1, then Kα,K
+
α : L1 → L(d+1)/α,∞ are bounded.

Before proving the proposition, we first establish the following lemma.

Lemma 6.2. There exists a constant C that only depends on α and d such that

‖kα(z, · )‖L(d+1)/α,∞ = ‖kα( · , z)‖L(d+1)/α,∞ < C

for any z ∈ Bd.

Proof. By the unitary invariance of Lebesgue measure, we need only to consider the case

z = (|z|, 0, . . . , 0). Observe that

(6.1) dkα( · ,z)(λ) = v

{
w ∈ Bd :

1

|1− 〈w, z〉|α
> λ

}
= v

{
w :

∣∣∣∣ 1

|z|
− w1

∣∣∣∣ < 1

|z|
λ−

1
α

}
.

Hence 1
|1−〈w,z〉|α < 2α, when |z| < 1/2. It follows that dkα( · ,z)(λ) = 0 if λ ≥ 2α. Thus

‖kα( · , z)‖L(d+1)/α,∞ ≤ 2α

when |z| < 1/2. We now turn to the case 1/2 ≤ |z| < 1. The conclusion comes immediately

from the following estimate

(6.2) λd
α/(d+1)
kα( · ,z) (λ) ≤


1, λ ≤ 1,

(d · 23d−1)α/(d+1), 1 < λ < 1
(1−|z|)α ,

0, λ ≥ 1
(1−|z|)α .
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We now prove (6.2). Let dV (w) =
(
i
2

)d∏d
n=1 dwn ∧ dwn be the volume form. Then

dV = πd

Γ(d+1) dv. Observe that λd
α/(d+1)
kα( · ,z) (λ) < 1 if λ ≤ 1. We denote I by the subset in

the unit disk such that

I =

{
w1 ∈ D :

∣∣∣∣ 1

|z|
− w1

∣∣∣∣ < 1

|z|
λ−

1
α

}
.

When 1 < λ < 1
(1−|z|)α , by (6.1) and Fubini’s theorem, we see that

dkα( · ,z)(λ) = v

{
w :

∣∣∣∣ 1

|z|
− w1

∣∣∣∣ < 1

|z|
λ−

1
α

}
≤ Γ(d+ 1)

πd

(
i

2

)d ∫
I
dw1 ∧ dw1

∫
|w2|2+···+|wd|2<1−|w1|2

d∏
n=2

dwn ∧ dwn

= d

∫
I
(1− |w1|2)d−1 dv(w1)

< d

(
1− 1

|z|2
+ 2

1

|z|2
1

λ1/α
− 1

|z|2λ2/α

)d−1 ∫
I
dv(w1)

< d · 23d−3 1

λ(d−1)/α

4

λ2/α

=
d · 23d−1

λ(d+1)/α
.

(6.3)

Then (6.3) implies that λd
α/(d+1)
kα( · ,z) (λ) < (d · 23d−1)α/(d+1) if 1 < λ < 1

(1−|z|)α . When

λ ≥ 1
(1−|z|)α , it is easy to see that dkα( · ,z)(λ) = 0. So λd

α/(d+1)
kα( · ,z) (λ) = 0 if λ ≥ 1

(1−|z|)α .

Corollary 6.3. There exists a constant C that only depends on α and d such that, for

any z ∈ Bd,
‖k+

α (z, · )‖L(d+1)/α,∞ = ‖k+
α ( · , z)‖L(d+1)/α,∞ < C.

We now modify [21, Proposition 6.1] to suit our setting.

Lemma 6.4. [21] Suppose that k : Bd × Bd → C is measurable such that

‖k(z, · )‖Lr,∞ ≤ C, z ∈ Bd, a.e.

and

‖k( · , w)‖Lr,∞ ≤ C, w ∈ Bd, a.e.

for some 1 < r <∞ and C > 0. Then the operator T defined as

Tf(z) =

∫
Bd
k(z, w)f(w) dv(w)

is bounded from L1 to Lr,∞. Moreover, if 1 < p < q <∞ such that 1/p+ 1/r = 1/q + 1,

then T is bounded from Lp to Lq.
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Proof of Proposition 6.1. α = d + 1, Kd+1 is the Bergman projection, then Kd+1 : L1 →
L1,∞ is bounded by the proof of [15, Theorem 6]. Indeed, similar to the proof of [15,

Theorem 6], by the Calderón–Zygmund decomposition, it can be proved that K+
d+1 : L1 →

L1,∞ is bounded. When 0 < α < d + 1, by Lemmas 6.2 and 6.4, this implies that

Kα,K
+
α : L1 → L(d+1)/α,∞ are bounded. This completes the proof.

Remark 6.5. The sufficiency part of Theorem 1.3 can be also proved with the help of

Lemmas 6.2 and 6.4. On the other hand, the necessity part of Theorem 1.3 can be

reduced to the case of unit disk D by the natural isometric embedding from Apd−1(D) into

Ap0(Bd). It in fact provides an alternative approach to prove Theorem 1.3.
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