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A Note on Embedding Inequalities for Weighted Sobolev and Besov Spaces

Hiroki Saito

Abstract. In this paper, we establish two embedding inequalities for the weighted

Sobolev space and the weighted homogeneous endpoint Besov space by using the

weighted Hausdorff capacity. To do this, we shall determine the dual spaces of

weighted Choquet and weighted homogeneous Besov spaces.

1. Introduction

The purpose of this paper is to establish embedding theorems on weighted Sobolev and

weighted Besov spaces. We first give a background to the problem. Let n be the spatial

dimension. Adams proved in [1] the following inequality: for any k ∈ N, 1 ≤ k < n,∫
Rn
|f |dHn−k ≤ C‖∇kf‖L1 , f ∈ C∞0 (Rn),

where Hd, 0 < d < n, is the Hausdorff capacity of dimension d and the integral is taken

in the Choquet sense; the quantity ∇kf denotes the vector of all kth order derivatives of

f , and |∇kf |, the Euclidean length of that vector, ‖∇kf‖L1 , the L1-norm of |∇kf |; and

C∞0 (Rn) is the class of all infinitely differentiable functions having compact support in the

Euclidean space Rn. In [11], Xiao extended Adams’ inequality to fractional derivatives by

using the homogeneous endpoint Besov spaces Ḃs
11: for any s ∈ R, 0 < s < n,∫

Rn
|f | dHn−s ≤ C‖f‖Ḃs11 , f ∈ C∞0 (Rn).

In this paper, we investigate some weighted analogues of these embedding inequalities. By

weights we will always mean non-negative, locally integrable functions on Rn which are

positive on a set of positive measure. Given a measurable set E and a weight w, we set

w(E) =
∫
E w(x) dx, and |E| denotes the Lebesgue measure of E.
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For a set E ⊂ Rn, the d-dimensional weighted Hausdorff capacity(content) Hd
w of E is

defined by

Hd
w(E) = inf


∞∑
j=1

rdj −
∫
B(xj ,rj)

w dy : E ⊂
∞⋃
j=1

B(xj , rj),

 ,

where the infimum is taken over all coverings of E by countable families of balls B(xj , rj),

centered at xj and radius rj , see [10]. When w ≡ 1, we simply denote by Hd, which is the

d-dimensional Hausdorff capacity. For a non-negative function f , the integral of f with

respect to Hd
w is taken in the Choquet sense,∫

Rn
f dHd

w =

∫ ∞
0

Hd
w({x ∈ Rn : f(x) > t}) dt.

A useful variant of weighted Hausdorff capacity is the dyadic version of Hd
w, denoted by

H̃d
w. Let D be the set of all dyadic cubes in Rn, that is,

D :=
{

2−k(m+ [0, 1)n) : k ∈ Z,m ∈ Zn
}
.

The weighted dyadic Hausdorff capacity is defined by

H̃d
w(E) = inf


∞∑
j=1

`(Qj)
d −
∫
Qj

w dy : E ⊂
∞⋃
j=1

Qj , Qj ∈ D

 ,

where the infimum is taken over all coverings of E by countable families of dyadic cubes

Qj . It can be shown that Hd
w and H̃d

w are equivalent when w is doubling, see [10, Proposi-

tion 3.4.2]. We say that w satisfies the doubling condition if w(B(x, 2r)) ≤ Cw(B(x, r)),

for any x ∈ Rn, r > 0. We summarize some elementary properties of H̃d
w in the next

section.

Let 1 ≤ p < ∞ and let w be an arbitrary weight. We define the weighted Lebesgue

space Lp(Rn, w) = Lpw to be a Banach space equipped with the norm

‖f‖Lpw =

(∫
Rn
|f(x)|pw(x) dx

)1/p

.

The weight w is in Muckenhoupt’s class of A1 if there exists a constant C such that

−
∫
B
w(z) dz ≤ C inf

y∈B
w(y)

for any balls B, where the barred integral −
∫
B w stands for the usual integral average of w

over B. The infimum of all such C is denoted by [w]A1 . Also, w is in the reverse Hölder

class RH∞ if there exists a constant C such that

w(x) ≤ C inf
x∈B
−
∫
B
w(z) dz

for almost every x, see [3]. The infimum of all such C is denoted by [w]RH∞ .

We can extend Adams’ inequality to the following.
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Theorem 1.1. Let k be an integer such that 1 ≤ k < n. Suppose that w is in A1 and w

satisfies that

(1.1) lim
r→∞

w(B(x, r))

rk
=∞

for every x ∈ Rn. Then∫
Rn
|f |dHn−k

w ≤ C‖∇kf‖L1
w
, f ∈ C∞0 (Rn).

Remark 1.2. To prove this theorem, we need the left continuity of the dyadic Hausdorff ca-

pacity. The condition (1.1) implies the left continuity of H̃n−k
w , see [10, Proposition 3.4.22].

Turesson gave an example of a weight which does not satisfy (1.1) and H̃d
w is not left con-

tinuous.

To extend Xiao’s result to the weighted Besov spaces, we shall introduce some notions.

Let S be the Schwartz class of rapidly decreasing functions and S ′, its dual, is the space

of tempered distributions. The Fourier transform and the inverse Fourier transform are

defined by

Ff(ξ) = f̂(ξ) =

∫
Rn
f(x)e−ix·ξ dx and F−1f(x) =

1

(2π)n

∫
Rn
f(ξ)eix·ξ dξ, f ∈ S.

We denote by Φ the set of all sequences (φj)j∈Z ⊂ S satisfying the following two properties:

(i) supp φ̂j ⊂ {x ∈ Rn : 2j−1 ≤ |x| ≤ 2j+1}, j ∈ Z;

(ii)
∑

j∈Z φ̂j = 1 for all x ∈ Rn \ {0}.

We also denote the space of all polynomials by P.

Definition 1.3. (cf. [6]) Let s ∈ R, 0 < p, q ≤ ∞ and (φj) ∈ Φ. The weighted homoge-

neous Besov spaces corresponding to these indices are defined by

‖f‖Ḃs,wpq :=

∑
j∈Z

2jsq‖φj ∗ f‖qLpw

1/q

and Ḃs,w
pq is the set of all f ∈ S ′/P for which the norm ‖f‖Ḃs,wpq is finite. Here

(∑
j∈Z(·)q

)1/q
is interpreted as supj∈Z(·) if q =∞.

Xiao’s inequality can be extended to the following.

Theorem 1.4. Let s ∈ (0, n). Suppose that w ∈ A1 ∩ RH∞ and w satisfies that

lim
r→∞

w(B(x, r))

rs
=∞

for every x ∈ Rn. Then ∫
Rn
|f |dHn−s

w . ‖f‖Ḃs,w11
, f ∈ C∞0 .
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Example 1.5. It is easily seen that w(x) = min(|x|a, 1) for s − n < a ≤ 0 satisfies the

condition w ∈ A1 ∩ RH∞ and (1.1) for k = s.

In what follows, the letter C will be used for unimportant constants that may change

from one occurrence to another. We write A . B, B & A if there is a independent

constant C such that A ≤ CB. If A . B and B . A, then we say that A and B are

equivalent each other and denote by A ≈ B.

This paper is organized as follows. In Section 2, we introduce the weighted Hausdorff

capacity and summarize its essential properties. The weighted Morrey space consisting

of signed Radon measures is also defined. In Section 3, it is shown that the dual space

of L1(H̃d
w) can be identified with the weighted Morrey space of signed Radon measures.

Using the duality, we extend Adams’ embedding theorem. In Section 4, we introduce the

weighted homogeneous Besov space and characterize the dual space of Ḃs,w
11 . To prove

Theorem 1.4, we establish the lifting property of the Riesz potential on the weighted

Morrey spaces. Finally, we show the equivalence between the weighted Morrey space and

a variant of weighted Besov space Ḃ−s,w∞∞ . To do this, we require the assumption that the

weight w is in the Muckenhoupt A1 and the Reverse Hölder class RH∞. Combining these

results, we prove the weighted version of Xiao’s theorem.

2. Weighted Hausdorff capacity

In this section, following [7, 8], we first summarize some important properties of the

weighted Hausdorff capacity and the dyadic Hausdorff capacity. These two types of

weighted Hausdorff capacity are equivalent each other.

Proposition 2.1. [10, Proposition 3.4.2] Let 0 < d ≤ n. If w is doubling, then for every

set E ⊂ Rn,

Hd
w(E) ≈ H̃d

w(E),

where the equivalence constants depend only on d, n and doubling constant of w.

We next emphasis that the set function H̃d
w is strong subadditive (cf. [7, 8]), that is,

H̃d
w(E ∪ F ) + H̃d

w(E ∩ F ) ≤ H̃d
w(E) + H̃d

w(F ), E, F ⊂ Rn.

Thanks to the strong subadditivity of the set function H̃d
w, its Choquet integral is sublinear,

that is, for nonnegative functions f and g we have∫
Rn

(f + g) dH̃d
w ≤

∫
Rn
f dH̃d

w +

∫
Rn
g dH̃d

w.

This implies that the quantity

‖f‖
Lp(H̃d

w)
:=

(∫
Rn
|f |p dH̃d

w

)1/p
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is the norm when 1 ≤ p <∞.

The next proposition gives a sufficient condition for H̃d
w to be left continuous.

Proposition 2.2. [10, Proposition 3.4.22] Let 0 ≤ α < n. Let w be a doubling weight.

Assume that

(2.1) lim
r→∞

w(B(x, r))

rα
=∞

for every x ∈ Rn. If E1 ⊂ E2 ⊂ · · · is an increasing sequence of subsets of Rn, then

H̃n−α
w

 ∞⋃
j=1

Ej

 = lim
j→∞

H̃n−α
w (Ej).

We define the Choquet space Lp(H̃d
w), 1 ≤ p <∞, by the completion of the set of all

continuous functions having compact support C0(Rn) with respect to the norm

‖f‖
Lp(H̃d

w)
=

(∫
Rn
|f |p dH̃d

w

)1/p

.

We next introduce the weighted maximal operator of order d of a (signed) Radon

measure µ is defined by

Md
wµ(x) = sup

r>0

|µ|(B(x, r))

rd −
∫
B(x,r)w(y) dy

.

If we let w ≡ 1, d|µ| = |f | dx for a locally integrable function f and the Lebesgue measure

dx, 0 < d < n, then this operator is just the fractional integral operator of f with the

order n−d. The precise definition of the fractional integral operator is given in Section 5.

We also define a variant of Morrey spaces denoted by L∞,dw the set of all Radon measures

µ satisfying

(2.2) |||µ|||d,w := sup
x∈Rn

Md
wµ(x) <∞.

Remark 2.3. When w ≡ 1, in [1], the set of all Radon measures µ satisfying (2.2) is

denoted by L1,d and is referred to as the Morrey space.

3. Proof of Theorem 1.1

The key ingredient of the proof of Theorem 1.1 is the dual of the Choquet space L1(H̃d
w).

Theorem 3.1. Let w ∈ A1. Then the dual space of L1(H̃d
w) is L∞,dw . More precisely, for

µ ∈ L∞,dw , there exists a unique linear functional Fµ on L1(H̃d
w) such that

Fµ(φ) =

∫
Rn
φ dµ, φ ∈ C0(Rn),

and conversely any continuous linear functional F on L1(H̃d
w) is realized as F = Fµ for

some µ ∈ L∞,dw . Moreover, ‖F‖ ≈ |||µ|||d,w holds.



368 Hiroki Saito

Proof. For any µ ∈ L∞,dw , we set

Fµ(φ) =

∫
Rn
φ dµ, φ ∈ C0(Rn).

The functional Fµ is obviously linear. We first observe that

|Fµ(φ)| ≤
∫
Rn
|φ|d|µ| =

∫ ∞
0
|µ|({|φ| > t}) dt.

Taking an arbitrary covering of {|φ| > t} by open balls {Bj}, we observe that

|µ|(|φ| > t) ≤
∞∑
j=1

|µ|(Bj) =
∞∑
j=1

|µ|(Bj)
rdj −
∫
Bj
w
· rdj −
∫
Bj

w ≤ sup
x∈Rn

Md
wµ(x)

∞∑
j=1

rdj −
∫
Bj

w.

Therefore,

(3.1) |µ|(|φ| > t) ≤ |||µ|||d,wH
d
w(|φ| > t) ≤ C|||µ|||d,wH̃

d
w(|φ| > t),

and hence

|Fµ(φ)| ≤ C|||µ|||d,w
∫ ∞
0

H̃d
w({|φ| > t}) dt = C|||µ|||d,w

∫
Rn
|φ|dH̃d

w.

By definition, for each f ∈ L1(H̃d
w), there is a sequence φj ∈ C0(Rn) such that

‖f − φj‖L1(H̃d
w)
→ 0, j →∞.

Since we can easily see that {Fµ(φj)}j forms Cauchy sequence of R,

Fµ(f) := lim
j→∞

Fµ(φj)

is well-defined. Moreover, since ‖ · ‖
L1(H̃d

w)
is a norm, we have

|Fµ(f)| ≤ C|||µ|||d,w‖f‖L1(H̃d
w)
.

This implies that Fµ can be extended to a functional on L1(H̃d
w) and ‖Fµ‖ ≤ C|||µ|||d,w.

Conversely, let F ∈ L1(H̃d
w)∗. Since C0(Rn) ⊂ L1(H̃d

w), by Riesz’s representation

theorem, there exists a Radon measure µ such that

F (φ) =

∫
Rn
φ dµ, φ ∈ C0(Rn).

For any ψ ∈ C0(Rn), we notice that∫
Rn
|ψ| d|µ| = sup

{∫
Rn
φ dµ : φ ∈ C0(Rn), |φ| ≤ |ψ|

}
≤ ‖F‖ sup

{
‖φ‖

L1(H̃d
w)

: φ ∈ C0(Rn), |φ| ≤ |ψ|
}

≤ ‖F‖‖ψ‖
L1(H̃d

w)
≤ C‖F‖‖ψ‖L1(Hd

w)
.
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Thus, if ψ = 1 on B(x, r) and ψ = 0 on B(x, r + ε)c, then

|µ|(B(x, r)) ≤ C‖F‖Hd
w(B(x, r + ε)) ≤ C‖F‖(r + ε)d −

∫
B(x,r+ε)

w.

Hence µ ∈ L∞,dw and |||µ|||d,w ≤ C‖F‖.

Corollary 3.2. Let 0 < d < n and let w ∈ A1. Suppose that w satisfies (2.1) for α = n−d.

If f is a nonnegative lower semi-continuous function on Rn, then∫
Rn
f dHd

w ≈ sup

{∫
Rn
f dµ : |||µ|||d,w ≤ 1, µ ∈ L∞,dw,+

}
,

where L∞,dw,+ is the non-negative elements in L∞,dw .

Proof. As mentioned above, ‖ · ‖
L1(H̃d

w)
becomes a norm and L1(H̃d

w) is a normed space.

By the previous theorem, the canonical map of L1(H̃d
w) into its second dual has norm∫

Rn
|f |dH̃d

w ≈ sup

{∣∣∣∣∫
Rn
f dµ

∣∣∣∣ : |||µ|||d,w ≤ 1

}
for f ∈ L1(H̃d

w). For a non-negative lower semi-continuous f , we approximate from below

by a non-negative sequence {φj} ⊂ C0(Rn). Then∫
Rn
φj dH̃d

w ≈ sup

{∫
Rn
φj dµ : |||µ|||d,w ≤ 1, µ ∈ L∞,dw,+

}
≤ sup

{∫
Rn
f dµ : |||µ|||d,w ≤ 1, µ ∈ L∞,dw,+

}
.

By the left continuity of H̃d
w provided by (2.1), we get

H̃d
w({x ∈ Rn : φj(x) ≥ λ})→ H̃d

w({x ∈ Rn : f(x) ≥ λ}),

and hence

(3.2)

∫
Rn
f dH̃d

w . sup

{∫
Rn
f dµ : |||µ|||d,w ≤ 1, µ ∈ L∞,dw,+

}
.

On the other hand, by (3.1) and again the left continuity of H̃d
w, we obtain

|µ|(f > t) ≤ C|||µ|||d,wH̃
d
w(f > t).

Integrating over t ∈ [0,∞], we have∫
Rn
f dµ ≤ C|||µ|||d,w

∫
Rn
f dH̃d

w

and taking supremum over |||µ|||d,w ≤ 1, we get

(3.3) sup

{∫
Rn
f dµ : |||µ|||d,w ≤ 1, µ ∈ L∞,dw,+

}
≤ C

∫
Rn
f dH̃d

w.

Thus, combining (3.2) and (3.3), the result follows from the equivalence H̃d
w ≈ Hd

w.
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The following estimate is a weighted version of [5, Theorem 1, p. 24].

Theorem 3.3. [10, Theorem 2.6.3] Let w ∈ A1, and let k be an integer such that 1 ≤
k < n. Suppose that µ is a positive Radon measure, satisfying

M := |||µ|||n−k,w <∞.

Then the inequality

(3.4)

∫
Rn
|u| dµ ≤ C

∫
Rn
|∇ku|w dx

holds for every u ∈ C∞0 (Rn) with C = C ′M , where C ′ only depends on k, n, and [w]A1.

Conversely, if there exists a constant C such that (3.4) holds for every u ∈ C∞0 (Rn), then

C ≥ C ′M , with C ′ as before. In particular, M is finite.

Proof of Theorem 1.1. By Corollary 3.2, we have∫
Rn
|f | dHn−k

w ≈ sup

{∫
Rn
|f |dµ : |||µ|||n−k,w ≤ 1, µ ∈ L∞,dw,+

}
for f ∈ C∞0 (Rn). On the other hand, by Theorem 3.3, we get

sup

{∫
Rn
|f |dµ : |||µ|||n−k,w ≤ 1, µ ∈ L∞,dw,+

}
≤ C‖∇kf‖L1

w
,

which completes the proof.

4. Weighted homogeneous Besov spaces

We introduce a variant of weighted homogeneous Besov spaces.

Definition 4.1. Let 1 ≤ p <∞, 1 ≤ q ≤ ∞, and let s ∈ R. We denote by lqs(L
p
w) the set

of sequence of measurable functions (fj) satisfying∑
j∈Z

2jsq‖fj‖qLpw <∞.

If p =∞, we also define lqs(L∞w ) the set of (fj) such that∑
j∈Z

2jsq‖fj/w‖qL∞ <∞.

As usual,
∑

j(·)q is interpreted as supj(·) if q =∞.
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Definition 4.2. [6] Let s ∈ R. We denote by Ḃs,w∞∞ the space of those tempered distri-

butions f ∈ S ′/P for which there exist (φj)j∈Z ∈ Φ and (fj)j∈Z ∈ l∞s (L∞w ) such that

f =
∑
j∈Z

φj ∗ fj in S ′(Rn).

We define

‖f‖Ḃs,w∞∞ := inf

{
sup
j∈Z

2js‖fj/w‖L∞
}

where the infimum is taken over all possible representations of f .

Again the key tool of our argument is also the dual space of Ḃs,w
11 . The following

theorem is the homogeneous analogue of Theorem 2.10 in [6]. For the reader’s convenience

we shall give a complete proof.

Theorem 4.3. The following identification holds

(Ḃs,w
11 )∗ = Ḃ−s,w∞∞ .

In order to prove this, we establish the following lemma.

Lemma 4.4. For any continuous linear functional Ψ ∈ (l1s(L
1
w))∗, there exists (gj) ∈

l∞−s(L
∞
w ) such that

Ψ(f) =
∑
j∈Z

∫
Rn
fj(x)gj(x) dx

for every f = (fj) ∈ l1s(L1
w), and ‖Ψ‖ = ‖(gj)‖l∞−s(L∞w ).

Proof. Let Ψ ∈ (l1s(L
1
w))∗. For any f = (fj) ∈ l1s(L1

w), we define

Fj(x) := 2jsfj(x)w(x),

then we easily see that

F = (Fj) ∈ l1(L1), ‖(Fj)‖l1(L1) = ‖(fj)‖l1s(L1
w)
.

Now, another functional

L(F ) := Ψ(f)

defines a continuous linear functional on l1(L1). Indeed, we observe

|L(F )| = |Ψ(f)| ≤ ‖Ψ‖‖(fj)j‖l1s(L1
w)

= ‖Ψ‖‖(Fj)j‖l1(L1)

and ‖L‖ ≤ ‖Ψ‖. By a well-known duality between l1(L1) and l∞(L∞) (e.g., [9, Proposi-

tion 2.11.1]), there exists G = (Gj)j ∈ l∞(L∞) such that

L(F ) =
∑
j∈Z

∫
Rn
Fj(x)Gj(x) dx, and ‖L‖ = ‖(Gj)j‖l∞(L∞).
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Again, we set gj(x) := 2jsGj(x)w(x), then it follows that g = (gj)j ∈ l∞−s(L∞w ) and

‖L‖ = ‖{Gj}‖l∞(L∞) = sup
j∈Z

2−js‖gj/w‖L∞ = ‖(gj)j‖l∞−s(L∞w ).

Therefore,

Ψ(f) = L(F ) =
∑
j∈Z

∫
Rn
Fj(x)Gj(x) dx =

∑
j∈Z

∫
Rn
fj(x)gj(x) dx.

Finally, we obtain

|Ψ(f)| ≤ sup
j∈Z

2−js‖gj/w‖L∞
∑
j∈Z

2js
∫
Rn
fj(x)w(x) dx = ‖L‖‖(fj)j‖l1s(L1

w)

and ‖Ψ‖ ≤ ‖L‖. Combining the previous estimate, we complete the proof.

We are now in a position to prove Theorem 4.3. The proof is due to H. Triebel

in [9, Theorem 2.11.2].

Proof of Theorem 4.3. We first prove that

Ḃ−s,w∞∞ ⊂ (Ḃs,w
11 )∗.

Let f ∈ Ḃ−s,w∞∞ . By definition, we find sequences (ϕj) ∈ Φ and (fj) ∈ l∞−s(L∞w ) such that

f =
∑
j∈Z

ϕj ∗ fj in S ′(Rn), and sup
j∈Z

2−js‖fj/w‖L∞ <∞.

If φ ∈ S then we have

〈f, φ〉 =
∑
j∈Z
〈ϕj ∗ fj , φ〉 =

∑
j∈Z
〈fj ,F [ϕ̂jF−1[φ]]〉

and hence

|〈f, φ〉| ≤
∑
j∈Z

2−sj‖fj/w‖L∞2sj‖F [ϕ̂jF−1[φ]]‖L1
w

≤ sup
j∈Z

2−sj‖fj/w‖L∞
∑
j∈Z

2sj‖F [ϕ̂jF−1[φ]]‖L1
w

≤ C sup
j∈Z

2−sj‖fj/w‖L∞‖φ‖Ḃs,w11
.

Taking infimum over all possible f on the right-hand side, we obtain

|〈f, φ〉| ≤ C‖f‖Ḃ−s,w∞∞
‖φ‖Ḃs,w11

and this implies f ∈ (Ḃs,w
11 )∗.
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We prove the converse. Let (ϕj)j∈Z ∈ Φ. Because

Ḃs,w
11 3 f 7→ (ϕj ∗ f)j∈Z

is a one-to-one mapping from Ḃs,w
11 onto a subspace of l1s(L

1
w), every functional Ψ ∈ (Bs,w

11 )∗

can be interpreted as a functional on that subspace. By the Hahn–Banach theorem, Ψ can

be extended to a continuous linear functional on l1s(L
1
w), where the norm of Ψ is preserved.

By Lemma 4.4, there exists (gj)j∈Z ∈ l∞−s(L∞w ) such that

(4.1) Ψ(f) =
∑
j∈Z

∫
Rn
gj(x)ϕj ∗ f(x) dx

and

sup
j∈Z

2−js‖gj/w‖L∞ = ‖Ψ‖.

So (4.1) can be written as

Ψ(f) =
∑
j∈Z

(ϕj(−·) ∗ gj)(f).

These are the desired results.

5. Proof of Theorem 1.4

In order to prove Theorem 1.4, we write

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy, x ∈ Rn,

which is referred to as the fractional integral operator or Riesz potential with order α ∈
(0, n) of a function f defined on Rn. The following theorem is due to [6, Theorem 2.8 and

Remark 2.9] which is known as the lifting property.

Theorem 5.1. [6] Suppose that α, s ∈ (0, n). Then we have

Ḃs,w
11 = Iα(Ḃs−α,w

11 ).

In other words, f ∈ Ḃs,w
11 if and only if there is a g ∈ Ḃs−α,w

11 such that f = Iαg and

‖f‖Ḃs,w11
≈ ‖g‖Ḃs−α,w11

.

To prove Theorem 1.4, we need more two lemmas.

Lemma 5.2. Let w ∈ A1. Suppose that d, α ∈ (0, n) with 0 < d + α < n. If µ ∈ L∞,dw,+,

then Iαµ ∈ L∞,d+αw,+ .
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Proof. We suppose that µ ∈ L∞,dw,+, that is,

|||µ|||d,w = sup
x∈Rn,r>0

µ(B(x, r))

rd −
∫
B(x,r)w

<∞.

Now we show that Iαµ ∈ L∞,d+αw,+ , and

|||Iαµ|||d+α,w . |||µ|||d,w.

For any open ball B(x, r) ⊂ Rn,

Iαµ(B(x, r)) =

∫
B(x,r)

Iαµ(z) dz =

∫
B(x,r)

∫
Rn

dµ(y)

|z − y|n−α
dz

=

∫
B(x,r)

(∫
B(z,2r)

+

∫
B(z,2r)c

)
1

|y − z|n−α
dµ(y)dz

.
∫
B(x,r)

(∫
B(x,3r)

dµ(y)

|y − z|n−α

)
dz

+

∫
B(x,r)

 ∞∑
j=1

∫
2jr≤|y−z|<2j+1r

dµ(y)

|y − z|n−α

 dz

= (I) + (II).

Since z ∈ (x, r) and y ∈ B(x, 3r) implies z ∈ B(y, 4r), we have

(I) ≤
∫
B(x,3r)

(∫
B(y,4r)

dz

|y − z|n−α

)
dµ(y) =

4ανn
α

rαµ(B(x, 3r)),

where νn is the volume of the unit ball. By the definition of |||µ|||d,w and the A1-condition,

it follows that

rαµ(B(x, 3r)) ≤ rα|||µ|||d,w(3r)d −
∫
B(x,3r)

w(z) dz

≤ 3d[w]A1 |||µ|||d,wr
d+α −

∫
B(x,r)

w(z) dz.

To estimate (II), we observe that

(II) =

∫
B(x,r)

 ∞∑
j=1

∫
2jr≤|y−z|<2j+1r

dµ(y)

|y − z|n−α

 dz

≤
∫
B(x,r)

 ∞∑
j=1

µ(B(z, 2j+1r))(2jr)α−n

 dz

≤ |||µ|||d,w
∫
B(x,r)

 ∞∑
j=1

(2j+1r)d(2jr)α−n −
∫
B(z,2j+1r)

w(y) dy

 dz.
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By the A1-condition, we get

≤ [w]A1 |||µ|||d,w
∞∑
j=1

(2j+1r)d(2jr)α−n
∫
B(x,r)

w(z) dz

= νn[w]A1 |||µ|||d,wr
d+α −

∫
B(x,r)

w(z) dz
∞∑
j=1

(2j+1)d(2j)α−n,

and the last series converges as d+ α < n.

Combining these estimates, we obtain

Iαµ(x) ≤ C[w]A1 |||µ|||d,wr
d+α −

∫
B(x,r)

w(z) dz

and this implies

|||Iαµ|||d+α,w . |||µ|||d,w
and hence Iαµ ∈ L∞,d+αw,+ .

The following theorem is the weighted homogeneous variation of [2, Remark 2, p. 90],

and also see [11, p. 834].

Lemma 5.3. Suppose that w ∈ A1 ∩ RH∞. Let s ∈ (0, n) be a real number. Then,

u ∈ L∞,n−sw if and only if u ∈ B−s,w∞∞ , and

|||u|||n−s,w ≈ ‖u‖Ḃ−s,w∞∞

for any positive u ∈ S ′/P.

Proof. We first assume u ∈ L∞,n−sw . By Theorem 4.3, it suffices to show that u ∈ (Ḃs,w
11 )∗,

in other words, we shall show |〈u, g〉| ≤ C‖g‖Ḃs,w11
for g ∈ S. To prove this, we take an

arbitrary g ∈ S. For (φj)j∈Z ∈ Φ and χj = φj−1 + φj + φj+1, we observe that

〈u, g〉 =
∑
j∈Z
〈φj ∗ u, g〉 ≈

∑
j∈Z
〈φj ∗ u, χj ∗ g〉

=
∑
j∈Z

∫
Rn

2−sj
φj ∗ u(x)

w(x)
· 2sjχj ∗ g(x)w(x) dx,

and hence

|〈u, g〉| . sup
j∈Z,x∈Rn

2−sj
∣∣∣∣φj ∗ u(x)

w(x)

∣∣∣∣ ‖g‖Ḃs,w11
.

If η is the characteristic function for the unit ball B(0, 1), then η̂(ξ) 6= 0 on a neighborhood

of 0 (see the proof of Corollary 4.1.6 in [2]). By Wiener’s theorem (see e.g. Lemma VIII.6.3

in [4] and also Theorem 4.1.5 in [2]), ηj(x) = 2jnη(2jx) divides φj in the sense that there

is ψ ∈ L1 and ψj(x) = 2jnψ(2jx) such that

φ̂j(ξ) = ψ̂j(ξ)η̂j(ξ), ξ ∈ supp φ̂j .
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Thus we have φj = ψj ∗ ηj and

ηj ∗ u(x) = 2jnu(B(x, 2−j)) ≈ u(B(x, r))

rn
, 2−j ≈ r > 0.

Therefore, for fixed j ∈ Z we observe that

2−sj
∣∣∣∣φj ∗ u(x)

w(x)

∣∣∣∣ . ∫
Rn
|ψj(x− y)| |u|(B(y, r))

rn−sw(x)
dy

=

∫
B(x,r)

+
∞∑
k=1

∫
B(x,2kr)\B(x,2k−1r)

=: (I) +
∞∑
k=1

(II)k.

Since y ∈ B(x, r),

(I) =

∫
B(x,r)

ψj(x− y)
u(B(y, r))

rn−sw(x)
dy

≤ [w]A1

∫
B(x,r)

ψj(x− y)
u(B(y, r))

rn−s −
∫
B(y,r)w(z) dz

dy

≤ [w]A1 |||u|||n−s,w
∫
B(x,r)

ψj(x− y) dy,

where we have used the fact that

−
∫
B(y,r)

w(z) dz ≤ [w]A1w(x), x ∈ B(y, r).

To estimate (II)k, combining the reverse Hölder condition, we have

−
∫
B(y,r)

w(z) dz ≤ [w]A1w(y) ≤ [w]A1 [w]RH∞ −
∫
B(y,2kr)

w(z) dz ≤ [w]2A1
[w]RH∞w(x),

and this implies

(II)k ≤ [w]2A1
[w]RH∞ |||u|||n−s,w

∫
B(x,2kr)\B(x,2k−1r)

ψj(x− y) dy.

Noticing ‖ψj‖L1 = ‖ψ‖L1 , we obtain

|〈u, g〉| ≤ C|||u|||n−s,w‖g‖Ḃs,w11
.

This means u ∈ (Ḃs,w
11 )∗ = Ḃ−s,w∞∞ and ‖u‖Ḃ−s,w∞∞

. |||u|||n−s,w.

We prove the converse. Assume that u ∈ Ḃ−s,w∞∞ and ζ ∈ Ḃs,w
11 . To estimate

sup
x∈Rn,r>0

u(B(x, r))

rn−s −
∫
B(x,r)w(z) dz

,

we set η = 1B(0,1) and ηr(x) := r−nη(x/r), then we have

sup
x∈Rn,r>0

u(B(x, r))

rn−s −
∫
B(x,r)w(z) dz

= sup
x∈Rn,r>0

rs
ηr ∗ u(x)

−
∫
B(x,r)w(z) dz

.



A Note on Embedding Inequalities for Weighted Sobolev and Besov Spaces 377

By the definition of u ∈ Ḃ−s,w∞∞ , there exist (ϕj)j∈Z ∈ Φ and (uj)j∈Z ∈ l∞−s(L∞w ) such that

u =
∑
j∈Z

ϕj ∗ uj .

Since we assume u is positive, we can approximate η by a smooth ζ with η ≤ ζ. Now it

suffices to estimate

r−s
∑
j∈Z

ζr ∗ ϕj ∗ uj(x)

−
∫
B(x,r)w(z) dz

for fixed x ∈ Rn and r > 0. To this end, we observe that

ζr ∗ ϕj ∗ uj(x)

−
∫
B(x,r)w(z) dz

=

∫
Rn
ζr ∗ ϕj(x− y)

uj(y)

−
∫
B(x,r)w(z) dz

dy

=

(∫
B(x,r)

+
∞∑
k=1

∫
B(x,2kr)\B(x,2k−1r)

)
.

For the fist integral, by using the RH∞ condition we can estimate

uj(y)

−
∫
B(x,r)w(z) dz

≤ [w]RH∞
uj(y)

w(y)
, y ∈ B(x, r).

For the latter integral, we notice that

w(y) ≤ [w]RH∞ −
∫
B(x,2kr)

w(z) dz ≤ [w]A1 [w]RH∞ −
∫
B(x,r)

w(z) dz

holds for k = 1, 2, . . . and y ∈ B(x, 2kr) \ B(x, 2k−1r). Combining these estimates, we

obtain
ζr ∗ ϕj ∗ uj(x)

−
∫
B(x,r)w(z) dz

≤ C‖ϕj ∗ ζr‖L1‖uj/w‖L∞

for any j ∈ Z and r > 0. Taking i ∈ Z with 2−i ≈ r, we can easily see that

‖ϕj ∗ ζr‖L1 ≈ ‖ϕj ∗ ζi‖L1 = ‖ϕj−i ∗ ζ‖L1 ,

and hence

r−s
∑
j∈Z

ζr ∗ ϕj ∗ uj(x)

−
∫
B(x,r)w(z) dz

.
∑
j∈Z

2−is‖ϕj−i ∗ ζ‖L1‖uj/w‖L∞

=
∑
j∈Z

2(j−i)s‖ϕj−i ∗ ζ‖L12−js‖uj/w‖L∞

≤ ‖ζ‖Ḃs11‖u‖Ḃ−s,w∞∞
,

where Ḃs
11 is the usual homogeneous Besov space. Taking supremum over r > 0 and

x ∈ Rn on the left-hand side, we get

|||u|||n−s,w . ‖u‖Ḃ−s,w∞∞
.

This completes the proof.
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Proof of Theorem 1.4. By Corollary 3.2, we have∫
Rn
|f |dHn−s

w ≈ sup

{∫
Rn
|f | dµ : |||µ|||n−s,w ≤ 1, µ ∈ L∞,n−sw,+

}
for f ∈ C∞0 (Rn). Together with this and Theorem 5.1, it suffices to show that

(5.1) sup

{∫
Rn
|Iαg|dµ : |||µ|||n−s,w ≤ 1, µ ∈ L∞,n−sw,+

}
. ‖g‖Ḃs−α,w11

, g ∈ C∞0 , s > α.

By Lemma 5.3, Iαµ and (Iαµ) sgn g belong to the dual space (Ḃs−α,w
11 )∗ = Ḃα−s,w∞∞ , and

it follows that

‖(Iαµ) sgn g‖Ḃα−s,w∞∞
. ‖Iαµ‖Ḃα−s,w∞∞

≈ |||Iαµ|||n−s+α,w . |||µ|||n−s,w,

where we have used Lemma 5.2 in the last inequality. Therefore, a further use of Fubini’s

theorem yields∫
Rn
|Iαg(y)|dµ(y) ≤

∫
Rn
Iαµ(x)|g(x)| dx

≤ ‖g‖Ḃs−α,w11
‖(Iαµ) sgn g‖Ḃα−s,w∞∞

. ‖g‖Ḃs−α,w11
|||µ|||n−s,w

and so (5.1). This proves the theorem.
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