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Convenient Tail Bounds for Sums of Random Tensors

Shih Yu Chang* and Wen-Wei Lin

Abstract. This work prepares new probability bounds for sums of random, inde-

pendent, Hermitian tensors. These probability bounds characterize large-deviation

behavior of the extreme eigenvalue of the sums of random tensors. We extend Laplace

transform method and Lieb’s concavity theorem from matrices to tensors, and apply

these tools to generalize the classical bounds associated with the names Chernoff, Ben-

nett, and Bernstein from the scalar to the tensor setting. Tail bounds for the norm

of a sum of random rectangular tensors are also derived from corollaries of random

Hermitian tensors cases. The proof mechanism can also be applied to tensor-valued

martingales and tensor-based Azuma, Hoeffding and McDiarmid inequalities are es-

tablished.

1. Introduction

1.1. From random matrices to random tensors

A random matrix is a matrix-valued random variable—that is, a matrix in which some

or all entries are random variables. Random matrices have played an important role

in computational mathematics [13], physics [4], neuroscience [38], wireless communication

[35], control [36], etc. Many important properties of scientific and engineering systems can

be modelled mathematically as matrix problems. In order to consider high-dimensional

system, it is often more convenient to consider tensors, or multidimensional data, instead

of matrices (two-dimensional data).

Tensor have various applications in science and engineering [21]. In numerical applica-

tions, tensors can be applied to solve multilinear system of equations [39], high-dimensional

data fitting/regression [10], tensor complementary problem [41], tensor eigenvalue prob-

lem [9], etc. In data processing applications, tensor theory applications include unsuper-

vised separation of unknown mixtures of data signals [25, 40], data filtering [26], MIMO

(multi-input multi-output) code-division [2, 8], radar, passive sensing, and communica-

tions [27, 32]. In other applications, tensors are also utilized to characterize data with

coupling effects, e.g., network signal processing [12, 30, 31] and image processing [17, 20].
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Tensor decomposition methods have been reported recently to establish the latent-variable

models, such as topic models in [3], and the connections between the orthogonal tensor

decomposition and the method of moments for undertaking the Latent Dirichlet Allocation

(LDA) in [33]. However, all these applications assumed that systems modelled by tensors

are fixed and such assumption is not true and practical in solving tensors associated is-

sues. In recent years, there are more works begin to target theory about random tensors,

see [14, 18,19, 22,37], and references therein. In this work, we will focus on establishing a

serious of tail bounds for sums of random tensors.

1.2. Technical results

Given a finite sequence of random Hermitian tensors {Xi} ∈ CI1×···×IM×I1×···×IM , the

main purpose of this work is to bound the following probability:

(1.1) P

(
λmax

(∑
i

Xi

)
≥ θ

)
,

where λmax represents the largest eigenvalue of a Hermitian tensor obtained from eigen-

value decomposition. We adopt the definition from [23] for the eigenvalue definition of a

Hermitian tensor, see Theorem 3.2 and Lemma 4.1 in [23]. We also adopt the definition

from [23] for the singular value definition of a tensor based on the Einstein product, see

Theorem 3.2 in [23]. The problem posted in (1.1) are associated to the following problems:

(1) the smallest and the largest singular value of a sum of random tensors with square or

rectangular shapes; (2) extension random variable probability bounds, e.g., Chernoff and

Bernstein bounds, to tensors settings; (3) tensor martingales and other adapted random

sequences of tensors.

There are two main technical tools required by this work to build those tensor proba-

bility bounds. The first is Laplace transform method, which provides a systematic way to

give tail bounds for the sum of scalar random variables. In [1], the authors apply Laplace

transform method to bound (1.1) with the matrix setting, i.e., the tail probability for the

maximum eigenvalue of the sum of Hermitian matrices is controlled by a matrix version

of the moment-generating function. They proved the following:

P

(
λmax

(∑
i

Xi

)
≥ θ

)
≤ inf

t>0

{
e−tθETr exp

(∑
i

tXi

)}
.

However, the bound to inft>0

{
e−tθETr exp

(∑
i tXi

)}
is far from optimal according to [34]

(see Sections 3.7 and 4.8 in [34]). In this work, we extend the Laplace transform method to

tensors. The other important technique utilized in this work is to extend Lieb’s concavity

theorem [24] to tensors. Tensor Lieb’s theorem is introduced in Section 3.2, and we
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illustrate how to combine this result with the tensor Laplace transform method as our main

technique to prove a serious of random tensors bounds. We utilize this mechanism as our

main approach to derive a large family of probability inequalities that are essentially tight

in a wide variety of scenarios. Most random matrix inequalities studied in [34] have same

origin as those random tensor inequalities discussed at this work, however, we enhance

main tools, i.e., Laplace transform method and Lieb’s concavity theorem, from matrices

to tensors, and obtain new random tensor inequalities with tensor orders and dimensions

as factors.

This work will derive various inequalities based on (1.1). We will provide basic nota-

tions first before listing main inequalities investigated at this paper. The symbols λmin

and λmax used to represent the minimum and maximum eigenvalues of a Hermitian tensor.

The notation � is used to indicate the semidefinite ordering of tensors. ‖A‖ is defined as

the largest singular value of the tensor A.

The first category of concentration is associated to a sum of real numbers multiplied by

independent random variables. If the independent random variables are drawn as normal

(Gaussian) distribution or Rademacher distribution, the sum of real numbers multiplied

by such random variables has sub-Gaussian tail behavior. In Section 4, we will provide

the proof and its application about the following theorem.

Theorem 1.1 (Tensor Gaussian and normal series). Given a finite sequence Ai of fixed

Hermitian tensors with dimensions as CI1×···×IM×I1×···×IM , and let {αi} be a finite se-

quence of independent normal variables. We define

σ2
def
=

∥∥∥∥∥
n∑
i=1

A2
i

∥∥∥∥∥ .
If we define IM1

def
=
∏M
m=1 Im and let θ > 0, we have

Pr

(
λmax

(
n∑
i=1

αiAi

)
≥ θ

)
≤ IM1 e

− θ2

2σ2 ,

and

Pr

(∥∥∥∥∥
n∑
i=1

αiAi

∥∥∥∥∥ ≥ θ
)
≤ 2IM1 e

− θ2

2σ2 .

This theorem is also valid for a finite sequence of independent Rademacher random vari-

ables {αi}.

Chernoff bound provides an estimate on the probability of the concentration results

related to the number of successes in a sequence of independent random trials. In the tensor

situation, a similar theorem concerns a sum of positive-semidefinite random tensors subject

to a uniform eigenvalue bound. The tensor Chernoff bound indicates that the largest (or

smallest) eigenvalues of the tensor series have similar binomial random variable behavior.
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Theorem 1.2 (Tensor Chernoff bound). Consider a sequence {Xi ∈ CI1×···×IM×I1×···×IM }
of independent, random, Hermitian tensors that satisfy

Xi � O and λmax(Xi) ≤ T almost surely.

Define the following two quantities:

µmax
def
= λmax

(
n∑
i=1

EXi

)
and µmin

def
= λmin

(
n∑
i=1

EXi

)
.

Then we have the following two inequalities:

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ (1 + θ)µmax

)
≤ IM1

(
eθ

(1 + θ)1+θ

)µmax/T

for θ ≥ 0;

and

Pr

(
λmin

(
n∑
i=1

Xi

)
≤ (1− θ)µmin

)
≤ IM1

(
e−θ

(1− θ)1−θ

)µmin/T

for θ ∈ [0, 1].

In Section 5, we will prove Chernoff inequality and discuss its applications.

Bernstein inequality is another inequality to bound the sum of independent, bounded

random tensors by restricting the range of the maximum eigenvalue of each random ten-

sors. Bernstein inequality can provide tighter bound compared to Hoeffding inequality.

In Section 6, following tensor Bernstein bound theorem and its applications are provided.

Theorem 1.3 (Bounded λmax tensor Bernstein bounds). Given a finite sequence of in-

dependent Hermitian tensors {Xi ∈ CI1×···×IM×I1×···×IM } that satisfy

EXi = 0 and λmax(Xi) ≤ T almost surely.

Then we have the following inequalities:

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−θ2/2

σ2 + Tθ/3

)
;

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−3θ2

8σ2

)
for θ ≤ σ2/T ;

and

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−3θ

8T

)
for θ ≥ σ2/T .

We define the total variance σ2 as σ2
def
=
∥∥∑n

i A2
i

∥∥.

We also applied techniques developed at this work to tensor martingales in Section 7.

In probability theory, the Azuma inequality gives a concentration result for the values of

martingales that have bounded differences. Tensor Azuma inequality is given below.
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Theorem 1.4 (Tensor Azuma inequality). Given a finite adapted sequence of Hermitian

tensors {Xi ∈ CI1×···×IM×I1×···×IM } and a fixed sequence of Hermitian tensors {Ai} that

satisfy

Ei−1Xi = 0 and X 2
i � A2

i almost surely,

where i = 1, 2, 3, . . .. Then we have the following inequality:

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 e

− θ2

8σ2 .

In probability theory, Hoeffding’s inequality builds an upper bound on the probability

that the sum of bounded independent random variables drifts away from its expected

value by more than a certain amount [16]. In this work, we generalize this result to the

tensor setting by considering random tensors that satisfy semidefinite upper bounds in

Section 7.2. In the tensor situation, the maximum eigenvalue for the sum of tensors also

have subgaussian behavior.

Theorem 1.5 (Tensor Hoeffding inequality). Given a finite sequence of independent Her-

mitian tensors {Xi ∈ CI1×···×IM×I1×···×IM } and a fixed sequence of Hermitian tensors {Ai}
that satisfy

EXi = 0 and X 2
i � A2

i almost surely,

where i = 1, 2, 3, . . .. Then we have the following inequality:

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 e

− θ2

8σ2 .

McDiarmid inequality is crucial in determining the stability of machine learning algo-

rithms by applying a simple concept: small change in training set will make small change

in hypothesis. In Section 7.2, we extend McDiarmid inequality from the scaler-valued

function to the tensor-valued function as shown below.

Theorem 1.6 (Tensor McDiarmid inequality). Given a set of n independent random

variables, i.e., {Xi : i = 1, 2, . . . , n}, let F be a Hermitian tensor-valued function that maps

these n random variables to a Hermitian tensor of dimension within CI1×···×IM×I1×···×IM .

Consider a sequence of Hermitian tensors {Ai} that satisfy(
F (x1, . . . , xi, . . . , xn)− F (x1, . . . , x

′
i, . . . , xn)

)2 � A2
i ,

where xi, x
′
i ∈ Xi and 1 ≤ i ≤ n. Define the total variance σ2 as σ2

def
=
∥∥∑n

i A2
i

∥∥. Then

we have the following inequality:

Pr
(
λmax

(
F (x1, . . . , xn)− EF (x1, . . . , xn)

)
≥ θ
)
≤ IM1 e

− θ2

8σ2 .
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1.3. Paper organization

The remaining part of this paper is organized as follows. Basic probability theory required

by our proofs and tensor notations are provided in Section 2. Main technical tools for

tensor tail bounds are discussed in Section 3. Section 4 utilizes Gaussian and Rademacher

series as cases study to explain tensor probability inequalities. Tensor Chernoff bound and

its applications are discussed in Section 5. In Section 6, tensor Bernstein bound and its

applications are provided. Several martingale results based on random tensor is presented

in Section 7. Concluding remarks are given in Section 8.

2. Preliminaries of tensor and probability

In this section, we will provide a brief introduction of tensors and probability required

for our future theory development. More detailed exposition about tensors can be found

in [28, 29]. In [5], the author introduced those basic concepts about probability and

moment-generating function.

2.1. Fundamental of tensor

2.1.1. Tensor notations

Throughout this work, scalars are represented by lower-case letters (e.g., d, e, f, . . .), vec-

tors by boldfaced lower-case letters (e.g., d, e, f , . . .), matrices by boldfaced capitalized

letters (e.g., D, E, F, . . .), and tensors by calligraphic letters (e.g., D, E , F , . . .), respec-

tively. Tensors are multiarrays of values which are higher-dimensional generalizations from

vectors and matrices. Given a positive integer N , let [N ]
def
= {1, 2, . . . , N}. An order-N

tensor (or N -th order tensor) denoted by X def
= (ai1,i2,...,iN ), where 1 ≤ ij = 1, 2, . . . , Ij for

j ∈ [N ], is a multidimensional array containing I1 × I2 × · · · × IN entries. Let CI1×···×IN

and RI1×···×IN be the sets of the order-N I1 × · · · × IN tensors over the complex field C
and the real field R, respectively. For example, X ∈ CI1×···×IN is an order-N multiarray,

where the first, second, . . ., and N -th dimensions have I1, I2, . . ., and IN entries, respec-

tively. Thus each entry of X can be represented by ai1,...,iN . For example, when N = 3,

X ∈ CI1×I2×I3 is a third-order tensor containing entries ai1,i2,i3 ’s.

Without loss of generality, one can partition the dimensions of a tensor into two

groups, say M and N dimensions, separately. Thus, for two order-(M +N) tensors: X def
=

(ai1,...,iM ,j1,...,jN ) ∈ CI1×···×IM×J1×···×JN and Y def
= (bi1,...,iM ,j1,...,jN ) ∈ CI1×···×IM×J1×···×JN ,

according to [23], the tensor addition X + Y ∈ CI1×···×IM×J1×···×JN is given by

(X + Y)i1,...,iM ,j1×···×jN
def
= ai1,...,iM ,j1×···×jN + bi1,...,iM ,j1×···×jN .
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On the other hand, for tensors X def
= (ai1,...,iM ,j1,...,jN ) ∈ CI1×···×IM×J1×···×JN and Y def

=

(bj1,...,jN ,k1,...,kL) ∈ CJ1×···×JN×K1×···×KL , according to [23], the Einstein product (or simply

referred to as tensor product in this work) X ?N Y ∈ CI1×···×IM×K1×···×KL is given by

(X ?N Y)i1,...,iM ,k1×···×kL
def
=

∑
j1,...,jN

ai1,...,iM ,j1,...,jN bj1,...,jN ,k1,...,kL .

Note that we will often abbreviate a tensor product X ?N Y to “XY” for notational

simplicity in the rest of the paper. This tensor product will be reduced to the standard

matrix multiplication as L = M = N = 1. Other simplified situations can also be

extended as tensor-vector product (M > 1, N = 1, and L = 0) and tensor-matrix product

(M > 1 and N = L = 1). In analogy to matrix analysis, we define some basic tensors and

elementary tensor operations as follows.

Definition 2.1. A tensor whose entries are all zero is called a zero tensor, denoted by O.

Definition 2.2. An identity tensor I ∈ CI1×···×IN×J1×···×JN is defined by

(I)i1×···×iN×j1×···×jN
def
=

N∏
k=1

δik,jk ,

where δik,jk
def
= 1 if ik = jk; otherwise δik,jk

def
= 0.

In order to define Hermitian tensor, the conjugate transpose operation (or Hermitian

adjoint) of a tensor is specified as follows.

Definition 2.3. Given a tensor X def
= (ai1,...,iM ,j1,...,jN ) ∈ CI1×···×IM×J1×···×JN , its conju-

gate transpose, denoted by XH , is defined by

(XH)j1,...,jN ,i1,...,iM
def
= ai1,...,iM ,j1,...,jN ,

where the overline notion indicates the complex conjugate of the number ai1,...,iM ,j1,...,jN .

If a tensor X satisfies XH = X , then X is a Hermitian tensor.

Definition 2.4. Given a tensor U def
= (ui1,...,iM ,i1,...,iM ) ∈ CI1×···×IM×I1×···×IM , if

UH ?M U = U ?M UH = I ∈ CI1×···×IM×I1×···×IM ,

then U is a unitary tensor.

In this work, the symbol U is reserved for a unitary tensor.

Definition 2.5. Given a square tensor X def
= (ai1,...,iM ,j1,...,jM ) ∈ CI1×···×IM×I1×···×IM , if

there exists X ∈ CI1×···×IM×I1×···×IM such that

X ?M X = X ?M X = I,

then X is the inverse of X . We usually write X def
= X−1 thereby.
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We also list other crucial tensor operations here. The trace of a square tensor is

equivalent to the summation of all diagonal entries such that

Tr(X )
def
=

∑
1≤ij≤Ij , j∈[M ]

Xi1,...,iM ,i1,...,iM .

The inner product of two tensors X ,Y ∈ CI1×···×IM×J1×···×JN is given by

(2.1) 〈X ,Y〉 def
= Tr

(
XH ?M Y

)
.

According to (2.1), the Frobenius norm of a tensor X is defined by

‖X‖ def
=
√
〈X ,X〉.

We use λmin and λmax to represent the minimum and the maximum eigenvalues of a

Hermitian tensor. The notation � is used to indicate the semidefinite ordering of tensors.

If we have X � Y, this means that the difference tensor X − Y is a positive semidefinite

tensor.

2.1.2. Tensor functions

Given a function g : R→ R, the mapping result of a diagonal tensor by the function g is to

obtain another same size diagonal tensor with diagonal entry mapped by the function g.

Then the function g can be extended to allow a Hermitian tensor X ∈ CI1×···×IM×I1×···×IM

as an input argument as

g(X )
def
= U ?M g(Λ) ?M UH , where X = U ?M Λ ?M UH .

The spectral mapping theorem asserts that each eigenvalue of g(X ) is equal to g(λ) for

some eigenvalue λ of X . From the semidefinite ordering of tensors, we also have

(2.2) f(x) ≥ g(x) for x ∈ [a, b] =⇒ f(X ) � g(X ) for eigenvalues of X ∈ [a, b];

where [a, b] is a real interval.

Definition 2.6. Given a square tensor X ∈ CI1×···×IM×I1×···×IM , the tensor exponential

of the tensor X is defined as

eX
def
=

∞∑
k=0

X k

k!
,

where X 0 is defined as the identity tensor I ∈ CI1×···×IM×I1×···×IM and

X k = X ?M X ?M · · · ?M X︸ ︷︷ ︸
k terms of X

.

Given a tensor Y, the tensor X is said to be a tensor logarithm of Y if eX = Y.
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Several facts are about tensor exponential. First, the exponential of a Hermitian

tensor is always positive-definite due to the spectral mapping theorem. Second, the trace

exponential function, X → Tr exp(X ), is convex. Third, the trace exponential function

follows monotone property with respect to semidefinite ordering as

(2.3) X � Y =⇒ Tr exp(X ) ≥ Tr exp(Y).

However, different from exponential rules for scalers, the tensor exponential does not

convert sums into products. The Golden–Thompson inequality for tensors [6] shows the

following relationship

Tr eX+Y ≤ Tr
(
eX?MY

)
,

where X ,Y ∈ CI1×···×IM×I1×···×IM are Hermitian tensors.

For the tensor logarithm, we have the following monotone relation

X � Y =⇒ log(X ) � log(Y).

Moreover, the tensor logarithm is also concave, i.e., we have

(2.4) t log(X1) + (1− t) log(X2) � log(tX1 + (1− t)X2),

where X1, X2 are positive-definite tensors and t ∈ [0, 1]. The concavity of tensor logarithm

can be derived from Hansen–Pedersen Characterizations, see [7].

If a given tensor Y ∈ CI1×···×IM×J1×···×JM is not square, we can perform Hermitian

dilation, represented as D, to the tensor Y as

(2.5) D(Y)
def
=

 O Y

YH O

 ,
where D(Y) ∈ C(I1+J1)×···×(IM+JM )×(I1+J1)×···×(IM+JM ) is a Hermitian tensor. Since we

have

D(Y)2 =

YYH O

O YHY

 ,
we have the following spectral norm relation

(2.6) λmax(D(Y)) = ‖D(Y)‖ = ‖Y‖,

where ‖ · ‖ is the spectral norm for a tensor and this will return the maximum singular

value of its argument tensor. Hermitian dilation operation enables us to extend results

from Hermitian tensors to other non-square tensors.
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2.2. Tensor moments and cumulants

Since the expectation of a random tensor can be treated as convex combination, expecta-

tion will preserve the semidefinite order as

X � Y almost surely =⇒ E(X ) � E(Y).

From operator Jensen’s inequality [15], we also have

E(X 2) � (E(X ))2.

Suppose a random Hermitian tensor X having tensor moments of all orders, i.e., E(X n)

existing for all n, we can define the tensor moment-generating function, denoted as MX (t),

and the tensor cumulant-generating function, denoted as KX (t), for the tensor X as

MX (t)
def
= EetX and KX (t)

def
= logEetX ,

where t ∈ R. Both the tensor moment-generating function and the tensor cumulant-

generating function can be expressed as power series expansions:

MX (t) = I +

∞∑
n=1

tn

n!
E(X n) and KX (t) =

∞∑
n=1

tn

n!
ψn,

where ψn is called tensor cumulant. The tensor cumulant ψn can be expressed as a

polynomial in terms of tensor moments up to the order n, for example, the first cumulant

is the mean and the second cumulant is the variance:

ψ1 = E(X ) and ψ2 = E(X 2)− (E(X ))2.

Finally, we also assume that all random variables are sufficiently regular for us to

compute their expectations, interchange limits, etc.

3. Trace concavity method

The main purpose of this section is to develop two important tools which will be applied

intensively in the proof of probability inequalities for the maximum eigenvalue of a sum

of independent random tensors. The first one is the Laplace transform method for tensors

discussed in Section 3.1, and the second one is the tensor trace concavity which will be

presented in Section 3.2.

3.1. Laplace transform method for tensors

We extend the Laplace transform bound from matrices to tensors based on [1]. The next

lemma is given to establish the Laplace transform bound for tensors.
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Lemma 3.1 (Laplace transform method for tensors). Let X be a random Hermitian

tensor. For θ ∈ R, we have

P(λmax(X ) ≥ θ) ≤ inf
t>0

{
e−θtETr etX

}
.

Proof. Given a fix value t, we have

(3.1) P(λmax(X ) ≥ θ) = P(λmax(tX ) ≥ tθ) = P(eλmax(tX ) ≥ etθ) ≤ e−tθEeλmax(tX ).

The first equality uses the homogeneity of the maximum eigenvalue map, the second

equality comes from the monotonicity of the scalar exponential function, and the last

relation is Markov’s inequality. Because we have

(3.2) eλmax(tY) = λmax(etY) ≤ Tr etY ,

where the first equality used the spectral mapping theorem, and the inequality holds

because the exponential of an Hermitian tensor is positive-definite and the maximum

eigenvalue of a positive-definite tensor is dominated by the trace [23]. From (3.1) and

(3.2), this lemma is established.

Lemma 3.1 helps us to control the tail probabilities for the maximum eigenvalue of

a random Hermitian tensor by utilizing a bound for the trace of the tensor moment-

generating function introduced in Section 2.2.

3.2. Tensor trace concavity

In this section, we will extended Lieb’s concavity theorem to tensors and we begin with

the definition about the relative entropy between two tensors.

Definition 3.2. Given two positive-definite tensors A ∈ CI1×···×IM×I1×···×IM and tensor

B ∈ CI1×···×IM×I1×···×IM . The relative entropy between tensors A and B is defined as

D(A ‖ B)
def
= TrA ?M (logA− logB).

Given a continuous function defined over a real interval as f : [a, b] → R, and T ∈
CI1×···×IM×I1×···×IM as a Hermitian tensor with spectrum in [a, b] and spectrum decom-

position as T =
∑

λn
λnUλn , where Uλn ∈ CI1×···×IM×I1×···×IM are mutually orthogonal

tensors, then the mapping for the tensor T by f can be defined as f(T ) =
∑

λn
f(λn)Uλn .

The function f is called as a tensor convex function if f(λn) is convex on the Hermitian

tenor with spectrum in [a, b]. We apply perspective function [11] notion for tensor convex

and introduce the following lemma about the convexity of a tensor convex function.
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Lemma 3.3. Given f as a tensor convex function, two commuting tensors X ,Y ∈
CI1×···×IM×I1×···×IM , i.e., X ?M Y = Y ?M X , and the existence of the Y−1, then the

map

(3.3) h(X ,Y) = f(X ?M Y−1) ?M Y

is jointly convex in the sense that, given t ∈ [0, 1], if X = tX1 + (1 − t)X2 and Y =

tY1 + (1− t)Y2 with X1 ?M Y1 = Y1 ?M X1 and X2 ?M Y2 = Y2 ?M X2, we should have

h(X ,Y) ≤ th(X1,Y1) + (1− t)h(X2,Y2).

Proof. Constructing tensors A = (tY1)1/2 ?M Y−1/2 and B = ((1− t)Y2)1/2 ?M Y−1/2, then

we have

(3.4) AH ?M A+ BH ?M B = I.

Since we have

h(X ,Y) = f(X ?M Y−1) ?M Y

= Y1/2 ?M f(Y−1/2 ?M X ?M Y−1/2) ?M Y1/2

= Y1/2 ?M f(AH ?M X1 ?M Y−11 ?M A+ BH ?M X2 ?M Y−12 ?M B) ?M Y1/2

≤1 Y1/2 ?M
(
AH ?M f(X1 ?M Y−11 ) ?M A+ BH ?M f(X2 ?M Y−12 ) ?M B

)
?M Y1/2

= (tY1)1/2f(X1 ?M Y−11 )(tY1)1/2 + ((1− t)Y2)1/2f(X2 ?M Y−12 )((1− t)Y2)1/2

= th(X1,Y1) + (1− t)h(X2,Y2),

where ≤1 is based on Hansen–Pedersen–Jensen inequality and the condition provided by

(3.4), see Theorem 2.1 in [11].

The next lemma is given to establish the joint convexity property of relative entropy

for tensors.

Lemma 3.4 (Joint convexity of relative entropy for tensors). The relative entropy function

of two positive-definite tensors is a jointly convex function. That is,

D(tA1 + (1− t)A2 ‖ tB1 + (1− t)B2) ≤ tD(A1 ‖ B1) + (1− t)D(A2 ‖ B2),

where t ∈ [0, 1] and all the following four tensors A1, B1, A2 and B2, are positive-definite.

Proof. From Definition 3.2, we wish to show the joint convexity of the function D(A ‖ B)

with respect to the tensors A,B ∈ CI1×···×IM×I1×···×IM . Let us define tensor operators

F(X )
def
= A ?M X and G(X )

def
= X ?M B for the variable tensor X ∈ CI1×···×IM×I1×···×IM .

Then we have F(X ) and G(X ) commuting on the inner product operation 〈F(X ),G(X )〉
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defined by (2.1), i.e., Tr(FH(X ) ?M G(X )) = Tr(GH(X ) ?M F(X )). Since the function

f(x) = x log x is tensor convex, we apply Lemma 3.3 to operators F(·), G(·) and the

function h definition provided by (3.3) to obtain the following relation:

〈I, h(F(I),G(I))〉 = 〈I,G(I) ?M (F(I) ?M G−1(I)) log(F(I) ?M G−1(I))〉

= 〈I,F(I)(logF(I)− log G(I))〉

= Tr(A logA−A logB) = D(A ‖ B)

is jointly convex with respect to tensors A and B.

Theorem 3.5 (Lieb’s concavity theorem for tensors). Let H be a Hermitian tensor. The

map

A → Tr eH+logA

is concave on the positive-definite cone.

Proof. From Klein’s inequality for the map t→ t log t (which is strictly concave for t > 0)

and Hermitian tensors X , Y, we have

TrY ≥ TrX − TrX logX + TrX logY.

If we replace Y by eH+logA, we then have

(3.5) Tr eH+logA = max
X�O

{
TrX ?H− D(X ‖ A) + TrX

}
,

where D(X ‖ A) is the quantum relative entropy between two tensor operators. For real

number t ∈ [0, 1] and two positive-definite tensors A1, A2, we have

Tr eH+log(tA1+(1−t)A2) = max
X�O

{
TrXH− D(X ‖ tA1 + (1− t)A2) + TrX

}
≥ tmax

X�O

{
TrXH− D(X ‖ tA1) + TrX

}
+ (1− t) max

X�O

{
TrXH− D(X ‖ (1− t)A2) + TrX

}
= tTr eH+logA1 + (1− t) Tr eH+logA2 ,

where the first and last equalities are obtained based on the variational formula provided

by (3.5), and the inequality is due to the joint convexity property of the relative entropy

from Lemma 3.4.

Based on Lieb’s concavity theorem for tensors, we have the following corollary.

Corollary 3.6. Let A be a fixed Hermitian tensor, and let X be a random Hermitian

tensor, then we have

ETr eA+X ≤ Tr eA+log
(
EeX
)
.
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Proof. Define the random tensor Y = eX , we have

ETr eA+X = ETr eA+logY ≤ Tr eA+log(EY) = Tr eA+log
(
EeX
)
,

where the inequality is based on Lieb’s concavity theorem for tensors (see Theorem 3.5)

and Jensen’s inequality.

3.3. Tail bounds for independent sums

This section will present the tail bound for the sum of independent random tensors and

several corollaries according to this tail bound for independent sums. We begin with

subadditivity lemma of tensor cumulant-generating functions.

Lemma 3.7. Given a finite sequence of independent Hermitian random tensors {Xi}, we

have

ETr exp

(
n∑
i=1

tXi

)
≤ Tr exp

(
n∑
i

logEetXi
)

for t ∈ R.

Proof. We first define the following term for the tensor cumulant-generating function for

Xi as

Ki(t)
def
= log(EetXi).

Then we define the Hermitian tensor Hk as

(3.6) Hk(t) =
k−1∑
i=1

tXk +
n∑

i=k+1

Ki(t).

By applying (3.6) to Theorem 3.5 repeatedly for k = 1, 2, . . . , n, we have

ETr exp

(
n∑
i=1

tXi

)
=1 E0 · · ·En−1 Tr exp

(
n−1∑
i=1

tXi + tXn

)

≤ E0 · · ·En−2 Tr exp

(
n−1∑
i=1

tXi + log
(
En−1etXn

))

= E0 · · ·En−2 Tr exp

(
n−2∑
i=1

tXi + tXn−1 + Kn(t)

)

≤ E0 · · ·En−3 Tr exp

(
n−2∑
i=1

tXi + Kn−1(t) + Kn(t)

)

≤ · · · ≤ Tr exp

(
n∑
i=1

Ki(t)

)
,

where the equality =1 is based on the law of total expectation by defining Ei as the

conditional expectation given X1, . . . ,Xi.
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We are ready to present the theorem for the tail bound of independent sums.

Theorem 3.8 (Master tail bound for independent sum of random tensors). Given a finite

sequence of independent Hermitian random tensors {Xi}, we have

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ inf

t>0

{
e−tθ Tr exp

(
n∑
i=1

logEetXi
)}

.

Proof. Substituting Lemma 3.7 into the Laplace transform bound provided by Lemma 3.1,

this theorem is established.

Several useful corollaries will be provided based on Theorem 3.8.

Corollary 3.9. Given a finite sequence of independent Hermitian random tensors {Xi}
with dimensions in CI1×···×IM×I1×···×IM . If there is a function f : (0,∞) → [0,∞] and a

sequence of non-random Hermitian tensors {Ai} with the following condition:

(3.7) f(t)Ai � logEetXi for t > 0.

Then, for all θ ∈ R, we have

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 inf

t>0

{
exp

[
−tθ + f(θ)λmax

(
n∑
i=1

Ai

)]}
.

Proof. From the condition provided by (3.7) and Theorem 3.8, we have

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ e−tθ Tr exp

(
f(θ)

n∑
i=1

Ai

)

≤ (I1 · · · IM )e−tθλmax

(
exp

(
f(θ)

n∑
i=1

Ai

))

= IM1 e−tθ exp

(
f(θ)λmax

(
n∑
i=1

Ai

))
,

where the second inequality holds since we bound the trace of a positive-definite tensor by

the dimension size I1 · · · IM (the multiplication of M positive integers) times the maximum

eigenvalue; the last equality is based on the spectral mapping theorem since the function

f is nonnegative. This theorem is proved by taking the infimum over positive t.

Corollary 3.10. Given a finite sequence of independent Hermitian random tensors {Xi}
with dimensions in CI1×···×IM×I1×···×IM . For all θ ∈ R, we have

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 inf

t>0

{
exp

[
−tθ + n log λmax

(∑n
i=1 EetXi
n

)]}
.
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Proof. From tensor logarithm given by (2.4), we have

n∑
i=1

logEetXi = n · 1

n

n∑
i=1

logEetXi � n log

(
1

n

n∑
i=1

EetXi
)
,

and from the trace exponential monotone property provided by (2.3), we have

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ e−tθ Tr exp

(
n log

(
1

n

n∑
i=1

EetXi
))

≤ (I1 · · · IM ) inf
t>0

{
exp

[
−tθ + n log λmax

(∑n
i=1 EetXi
n

)]}
,

where the last inequality holds since we bound the trace of a positive-definite tensor by the

dimension size I1 · · · IM (the multiplication of M positive integers) times the maximum

eigenvalue and apply spectral mapping theorem.

4. Tensor with random series

A tensor Gaussian series is one of the simplest cases of a sum of independent random

tensors. For scalers, a Gaussian series with real coefficients satisfies a normal-type tail

bound where the variance is controlled by the sum of squares coefficients. The main

purpose of Section 4.1 is to extend this scenario to tensors. In Section 4.2, we will apply

results from Section 4.1 to consider Gaussian tensor with nonuniform variances. Finally,

we will provide the lower and upper bounds of tensor expectation in Section 4.3.

4.1. Tensor with Gaussian and Rademacher random series

We begin with a lemma about moment-generating functions of Rademacher and Gaussian

normal random variables.

Lemma 4.1. Suppose that the tensor A is Hermitian. Given a Gaussian normal random

variable α and a Rademacher random variable β, then we have

EeαtA = et
2A2/2 and et

2A2/2 � EeβtA,

where t ∈ R.

Proof. For the Gaussian normal random variable, because we have

E(α2n) =
(2i)!

i!2i
and E(α2i+1) = 0,

where i = 0, 1, 2, . . .; then

EeαtA = I +

∞∑
i=1

E(α2i)(tA)2i

(2i)!
= I +

∞∑
i=1

(t2A2/2)i

i!
= et

2A2/2.
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For the Rademacher random variable, we have

EeβtA = cosh(tA) � et2A2/2.

Therefore, this lemma is proved.

We are ready to present the main Theorem of this section about Hermitian tensors

with Gaussian and Rademacher Series.

Theorem 4.2 (Hermitian tensor with Gaussian and Rademacher series). Given a finite

sequence Ai of fixed Hermitian tensors with dimensions as CI1×···×IM×I1×···×IM , and let

{αi} be a finite sequence of independent normal variables. We define

(4.1) σ2
def
=

∥∥∥∥∥
n∑
i

A2
i

∥∥∥∥∥ ,
then, for all θ ≥ 0, we have

(4.2) Pr

(
λmax

(
n∑
i=1

αiAi

)
≥ θ

)
≤ IM1 e

− θ2

2σ2 ,

and

(4.3) Pr

(∥∥∥∥∥
n∑
i=1

αiAi

∥∥∥∥∥ ≥ θ
)
≤ 2IM1 e

− θ2

2σ2 .

This theorem is also valid for a finite sequence of independent Rademacher random vari-

ables {αi}.

Proof. Given a finite sequence of independent Gaussian or Rademacher random variables

{αi}, from Lemma 4.1, we have

e
t2A2

i
2 � EeαitAi .

From the definition in (4.1) and Corollary 3.9, we have

Pr

(
λmax

(
n∑
i=1

αiAi

)
≥ θ

)
≤ IM1 inf

t>0

{
e−tθ+

t2σ2

2

}
= IM1 e

− θ2

2σ2 .

This establishes (4.2). For (4.3), we have to apply the following facts: ‖X‖ for any given

Hermitian tensor X . Because Gaussian and Rademacher random variables are symmetric,

we have

Pr

(
λmax

(
n∑
i=1

(−αi)Ai

)
≥ θ

)
= Pr

(
−λmin

(
n∑
i=1

αiAi

)
≥ θ

)
≤ IM1 e

− θ2

2σ2 .

Then we obtain (4.3) as follows:

Pr

(∥∥∥∥∥
n∑
i=1

αiAi

∥∥∥∥∥ ≥ θ
)

= 2Pr

(
λmax

(
n∑
i=1

αiAi

)
≥ θ

)
≤ 2IM1 e

− θ2

2σ2 .
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From the Hermitian dilation definition provided by (2.5), we can extend Theorem 4.2

from square Hermitian tensor to rectangular tensor by the following corollary.

Corollary 4.3 (Rectangular tensor with Gaussian and Rademacher series). Given a finite

sequence Ai of fixed Hermitian tensors with dimensions as CI1×···×IM×J1×···×JM , and let

{αi} be a finite sequence of independent normal variables. We define

σ2
def
= max

{∥∥∥∥∥
n∑
i=1

Ai ?M AHi

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

AHi ?M Ai

∥∥∥∥∥
}
.

Then, for all θ ≥ 0, we have

Pr

(∥∥∥∥∥
n∑
i=1

αiAi

∥∥∥∥∥ ≥ θ
)
≤

M∏
m=1

(Im + Jm)e−
θ2

2σ2 .

This corollary is also valid for a finite sequence of independent Rademacher random vari-

ables {αi}.

Proof. Let {αi} be a finite sequence of independent Gaussian or Rademacher random

variables. Consider a finite sequence of random Hermitian tensors {αiD(Ai)} with di-

mensions C(I1+J1)×···×(IM+JM )×(I1+J1)×···×(IM+JM ), from the spectral relation of a dilation

tensor provided by (2.6), we have

(4.4)

∥∥∥∥∥
n∑
i

αiAi

∥∥∥∥∥ = λmax

(
D

(
n∑
i=1

αiAi

))
= λmax

(
n∑
i=1

αiD(Ai)

)
.

Due to the following singular value relation:

σ2 =

∥∥∥∥∥∑
i

D(Ai)2
∥∥∥∥∥ =

∥∥∥∥∥∥
∑n

i=1Ai ?M AHi O

O
∑n

i=1AHi ?M Ai

∥∥∥∥∥∥
= max

{∥∥∥∥∥
n∑
i=1

Ai ?M AHi

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i

AHi ?M Ai

∥∥∥∥∥
}
.

(4.5)

From (4.4), (4.5) and Theorem 4.2, this corollary is proved.

4.2. A Gaussian tensor with nonuniform variances

In this section, we will apply results obtained from previous section to consider Gaussian

tensor with nonuniform variances.

Corollary 4.4. Given a tensor A ∈ CI1×···×IM×J1×···×JM and a random tensor X ∈
CI1×···×IM×J1×···×JM whose entries are independent standard Gaussian normal random
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variables. Let ◦ used to represent a Hadamard product (entrywise) between two tensors

with same dimensions. Then we have

Pr
(
‖X ◦ A‖ ≥ θ

)
≤

M∏
m=1

(Im + Jm)e−
θ2

2σ2 ,

where

σ2 = max

{
max
i1,...,iM

‖ai1,...,iM , :‖
2, max
j1,...,jM

‖a :,j1,...,jM ‖
2

}
,

where ai1,...,iM , : and a :,j1,...,jM represent the row-part of the tensor A and column-part of

the tensor A, respectively.

Proof. Since we can decompose the tensor X ◦ A as

X ◦ A =
∑

i1,...,iM ,j1,...,jM

xi1,...,iM ,j1,...,jMai1,...,iM ,j1,...,jMEi1,...,iM ,j1,...,jM ,

where Ei1,...,iM ,j1,...,jM ∈ CI1×···×IM×J1×···×JM is the tensor with all zero entries except unity

at the position i1, . . . , iM , j1, . . . , jM ; then we have∑
i1,...,iM ,j1,...,jM

(
ai1,...,iM ,j1,...,jMEi1,...,iM ,j1,...,jM

)(
ai1,...,iM ,j1,...,jMEi1,...,iM ,j1,...,jM

)

=
∑

i1,...,iM

 ∑
j1,...,jM

‖ai1,...,iM ,j1,...,jM ‖
2

 Ei1,...,iM ,i1,...,iM
= diag

(
‖a1,...,1:‖2, ‖a1,...,2:‖2, . . . , ‖aI1,...,IM :‖2

)
,

and, similarly,∑
i1,...,iM ,j1,...,jM

(
ai1,...,iM ,j1,...,jMEi1,...,iM ,j1,...,jM

)(
ai1,...,iM ,j1,...,jMEi1,...,iM ,j1,...,jM

)

=
∑

j1,...,jM

 ∑
i1,...,iM

∥∥ai1,...,iM ,j1,...,jM∥∥2
 Ej1,...,jM ,j1,...,jM

= diag
(
‖a :,1,...,1‖2, ‖a :,1,...,2‖2, . . . , ‖a :,J1,...,JM ‖

2
)
.

Therefore, we have

σ2 = max
{

diag
(
‖a1,...,1:‖2, ‖a1,...,2:‖2, . . . , ‖aI1,...,IM :‖2

)
,

diag
(
‖a:1,...,1‖2, ‖a :,1,...,2‖2, . . . , ‖a :,J1,...,JM ‖

2
)}

= max

{
max
i1,...,iM

‖ai1,...,iM , :‖
2, max
j1,...,jM

‖a :,j1,...,jM ‖
2

}
.

Finally, from Corollary 4.3, this corollary is proved.
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4.3. Lower and upper bounds of tensor expectation

Given a finite sequenceAi of fixed Hermitian tensors with dimensions as CI1×···×IM×I1×···×IM ,

and let {αi} be a finite sequence of independent normal variables. We define the following

random tensor

X =

n∑
i=1

αiAi.

From Theorem 4.2, we have

(4.6) E
(
‖X‖2

)
=

∫ ∞
0

Pr
(
‖X‖ >

√
t
)
dt ≤

∫ ∞
0

2IM1 e
− t

2σ2 dt = 4σ2IM1 .

On the other hand, from Jesen’s inequality, we have

(4.7) E
(
‖X‖2

)
= E‖X 2‖ ≥ ‖E(X 2)‖ =

∥∥∥∥∥
n∑
i=1

A2
i

∥∥∥∥∥ = σ2.

From both (4.6) and (4.7), we have the following relation:

cσ ≤ E‖X‖ ≤ 2σ
√
IM1 .

This shows that the tensor variance parameter σ2 controls the expected norm E‖X‖ with

square root of logarithmic function for the tensor dimensions.

5. Tensor Chernoff bounds

The traditional Chernoff bounds concern the sum of independent, nonnegative, and uni-

formly bounded random variables. In this work, we will try to extend such Chernoff

bounds under the scenario of random tensors.

5.1. Tensor Chernoff bounds derivations

We begin to present a lemma about the semidefinite relation for the tensor moment-

generating function of a random positive semidefinite contraction.

Lemma 5.1. Given a random positive semidefinite tensor with λmax(X ) ≤ 1, then, for

any t ∈ R, we have

I + (et − 1)EX � EetX .

Proof. Consider a convex function g(x) = etx, we have

1 + (et − 1)x ≥ g(x),
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where x ∈ [0, 1]. Since the eigenvalues of the random tensor X lie in the interval [0, 1],

from (2.2), we obtain

I + (et − 1)X � etX .

Then this lemma is proved by taking the expectation with respect to the random tensor

X .

Given two real values a, b ∈ [0, 1], we define binary information divergence of a and b,

expressed by D(a ‖ b), as

D(a ‖ b) def
= a log

a

b
+ (1− a)

1− a
1− b

.

We are ready to present tensor Chernoff inequality.

Theorem 5.2 (Tensor Chernoff bound I). Consider a sequence {Xi ∈ CI1×···×IM×I1×···×IM }
of independent, random, Hermitian tensors that satisfy

Xi � O and λmax(Xi) ≤ 1 almost surely.

Define the following two quantities:

µmax
def
= λmax

(
1

n

n∑
i=1

EXi

)
and µmin

def
= λmin

(
1

n

n∑
i=1

EXi

)
,

then we have the following two inequalities:

(5.1) Pr

(
λmax

(
1

n

n∑
i=1

Xi

)
≥ θ

)
≤ IM1 e−nD(θ‖µmax) for µmax ≤ θ ≤ 1;

and

(5.2) Pr

(
λmin

(
1

n

n∑
i=1

Xi

)
≤ θ

)
≤ IM1 e−nD(θ‖µmin) for 0 ≤ θ ≤ µmin.

Proof. From Lemma 5.1, we have

I + f(t)EXi � EetXi ,

where f(t)
def
= et − 1 for t > 0. By applying Corollary 3.10, we obtain

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ α

)
≤ IM1 exp

(
−tα+ n log λmax

(
1

n

n∑
i=1

(
I + f(t)EXi

)))

= IM1 exp

(
−tα+ n log λmax

(
I + f(t)

1

n

n∑
i=1

EXi

))
= IM1 exp

(
−tα+ n log

(
1 + f(t)µmax

))
.

(5.3)
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The last equality follows from the definition of µmax and the eigenvalue map properties.

When the value t on the right-hand side of (5.3) is

(5.4) t = log
α

1− α
− log

µmax

1− µmax

,

we can achieve the tightest upper bound in (5.3). By substituting the value t in (5.4) into

(5.3) and changing the variable α→ nθ, (5.1) is proved. The next goal is to prove (5.2).

If we apply Lemma 5.1 to the sequence {−Xi}, we have

I − g(t)EXi � Eet(−Xi),

where g(t)
def
= 1− et for t > 0. By applying Corollary 3.10 again, we obtain

Pr

(
λmin

(
n∑
i=1

Xi

)
≤ α

)
= Pr

(
λmax

(
n∑
i=1

(−Xi)

)
≥ α

)

≤ IM1 exp

(
tα+ n log λmax

(
1

n

n∑
i=1

(
I − g(t)EXi

)))

=1 IM1 exp

(
tα+ n log

(
1− f(t)λmin

(
1

n

n∑
i=1

EXi

)))
= IM1 exp

(
tα+ n log

(
1− g(t)µmin

))
,

(5.5)

where we apply the relation λmin

(
− 1

n

∑n
i=1 EXi

)
= −λmax

(
1
n

∑n
i=1 EXi

)
at the equality

=1. When the value t on the right-hand side of (5.5) is

(5.6) t = log
µmax

1− µmax

− log
α

1− α
,

we can achieve the tightest upper bound in (5.5). By substituting the value t in (5.6) into

(5.5) and changing the variable α→ nθ, (5.2) is proved also.

The tensor Chernoff bounds discussed in Theorem 5.2 is not related to µmax and µmin

directly. The next theorem is another version of tensor Chernoff bounds to associate the

probability range in terms of µmax and µmin directly and this format of tensor Chernoff

bounds are easier to be applied.

Theorem 5.3 (Tensor Chernoff bound II). Consider a sequence {Xi ∈ CI1×···×IM×I1×···×IM }
of independent, random, Hermitian tensors that satisfy

Xi � O and λmax(Xi) ≤ T almost surely.

Define the following two quantities:

µmax
def
= λmax

(
n∑
i=1

EXi

)
and µmin

def
= λmin

(
n∑
i=1

EXi

)
,
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then we have the following two inequalities:

(5.7) Pr

(
λmax

(
n∑
i=1

Xi

)
≥ (1 + θ)µmax

)
≤ IM1

(
eθ

(1 + θ)1+θ

)µmax/T

for θ ≥ 0;

and

(5.8) Pr

(
λmin

(
n∑
i=1

Xi

)
≤ (1− θ)µmin

)
≤ IM1

(
e−θ

(1− θ)1−θ

)µmin/T

for θ ∈ [0, 1].

Proof. Without loss of generality, we can assume T = 1 in our proof. From (5.3) and the

inequality log(1 + x) ≤ x for x > −1, we have

(5.9) Pr

(
λmax

(
n∑
i=1

Xi

)
≥ t

)
≤ IM1 exp(−δt+ f(δ)µmax).

By selecting δ = log(1 + θ) and t→ (1 + θ)µmax, we can establish (5.7).

From (5.5) and the inequality log(1 + x) ≤ x for x > −1, we have

Pr

(
λmin

(
n∑
i=1

Xi

)
≤ t

)
≤ IM1 exp(−δt− f(δ)µmin).

By selecting δ = − log(1− θ) and t→ (1− θ)µmin, we can establish (5.8). Therefore, this

theorem is proved.

5.2. Application of tensor Chernoff bounds

Consider a general random tensor X ∈ CI1×···×IM×J1×···×JN , we can express the X as

X = [x1, x2, . . . , xJ1···JN ],

where xi is a family of independent random tensors in CI1×···×IM (vector part in X ). The

squared norm of X can be expressed as

(5.10) ‖X‖2 = λmax(X ?N XH) = λmax

(
J1···JN∑
i=1

xi ?0 xi

)
.

Similarly, for the minimum singular value of the tensor X , we have

(5.11) Minimum singular value of X = λmin(X ?N XH) = λmin

(
J1···JN∑
i=1

xi ?0 x
H
i

)
.

From tensor Chernoff bounds provided by Theorem 5.3, we can bound both (5.10) and

(5.11).

Another application of tensor Chernoff bounds is to estimate the expectation of the

maximum eigenvalue of independent sum of random tensors.
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Corollary 5.4 (Upper and lower bounds for the maximum eigenvalue). Consider a se-

quence {Xi ∈ CI1×···×IM×I1×···×IM } of independent, random, Hermitian tensors that satisfy

Xi � O and λmax(Xi) ≤ T almost surely.

Then we have

(5.12) µmax ≤ Eλmax

(
n∑
i=1

Xi

)
≤ CIM1 e−µmax/T ,

where the constant value of C is about 10.28.

Proof. The lower bound in (5.12) is true from the convexity of the function A → λmax(A)

and the Jensen’s inequality.

For the upper bound, we have

Eλmax

(
n∑
i=1

Xi

)
=

∫ ∞
0

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ t

)
dt

≤1

∫ ∞
0

IM1 exp(−δt+ (eδ − 1)µmax/T ) dt

=
ee
δ

δ
IM1 e−µmax/T ≤ ee

δopt

δopt
IM1 e−µmax/T = CIM1 e−µmax/T ,

(5.13)

where the inequality ≤1 comes from (5.9) with the scaling factor T . If we select θ as the

solution of the following relation eδopt = 1
δopt

to minimize the right-hand side of (5.13), we

have the desired upper bound when δopt ≈ 0.56699. This corollary is proved.

6. Tensor Bernstein bounds

For random variables, Bernstein inequalities give the upper tail of a sum of independent,

zero-mean random variables that are either bounded or subexponential. In this section,

we wish to extend Bernstein bounds for a sum of zero-mean random tensors.

6.1. Tensor Bernstein bounds derivation

We will consider bounded Tensor Bernstein bounds first by considering the bounded Bern-

stein moment-generating function with the following lemma.

Lemma 6.1. Given a random Hermitian tensor X ∈ CI1×···×IM×I1×···×IM that satisfies

EX = 0 and λmax(X ) ≤ 1 almost surely.

Then we have

e(e
t−t−1)E(X 2) � EetX

where t > 0.
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Proof. If we define a real function g(x)
def
= etx−tx−1

x2
, it is easy to see that this function g(x)

is an increasing function for 0 < x ≤ 1. From (2.2), we have

(6.1) g(X ) � g(1)I.

Moreover, we also have

(6.2) etX = I + tX + g(X ) ?M X 2 � I + tX + g(1)X 2,

where � comes from (6.1). By taking the expectation to both sides of (6.2), we then

obtain

EetX � I + g(1)E(X 2) � eg(1)E(X 2) = e(e
t−t−1)E(X 2).

This lemma is established.

We are ready to present the tensor Bernstein bounds for random tensors with bounded

λmax.

Theorem 6.2 (Bounded λmax tensor Bernstein bounds). Given a finite sequence of in-

dependent Hermitian tensors {Xi ∈ CI1×···×IM×I1×···×IM } that satisfy

EXi = 0 and λmax(Xi) ≤ T almost surely.

Define the total variance σ2 as σ2
def
=
∥∥∑n

i E
(
X 2
i

)∥∥. Then we have the following inequali-

ties:

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−θ2/2

σ2 + Tθ/3

)
;(6.3)

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−3θ2

8σ2

)
for θ ≤ σ2/T ;(6.4)

and

(6.5) Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−3θ

8T

)
for θ ≥ σ2/T .

Proof. Without loss of generality, we can assume that T = 1 since the summands are

1-homogeneous and the variance is 2-homogeneous. From Lemma 6.1, we have

EetXi � e(et−t−1)E(X 2
i ) for t > 0.

By applying Corollary 3.9, we then have

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−tθ + (et − t− 1)λmax

(
n∑
i=1

E(X 2
i )

))
= IM1 exp

(
− tθ + σ2(et − t− 1)

)
.

(6.6)
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The right-hand side of (6.6) can be minimized by setting t = log(1 + θ/σ2). Substituting

such t and simplifying the right-hand side of (6.6), we obtain (6.3).

For θ ≤ σ2/T , we have

1

σ2 + Tθ/3
≥ 1

σ2 + T (σ2/T )/3
=

3

4σ2
,

then we obtain (6.4). Correspondingly, for θ ≥ σ2/T , we have

θ

σ2 + Tθ/3
≥ σ2/T

σ2 + T (σ2/T )/3
=

3

4T
,

then we obtain (6.5) also.

The following Theorem 6.4 is an extension of Theorem 6.2 by allowing the moments

of the random tensors to grow at a controlled rate. We have to prepare subexponential

Bernstein moment-generating function lemma first for later proof of Theorem 6.4.

Lemma 6.3. Suppose that X is a random Hermitian tensor that satisfies

EX = 0 and E(X p) � p!A2

2
for p = 2, 3, 4, . . ..

Then we have

exp

(
t2A2

2(1− t)

)
� EetX ,

where 0 < t < 1.

Proof. From Taylor series of the tensor exponential expansion, we have

EetX = I + tEX +
∞∑
p=2

tpE(X p)
p!

� I +
∞∑
p=2

tpA2

2
= I +

t2A2

2(1− t)
� exp

(
t2A2

2(1− t)

)
.

Therefore, this lemma is proved.

Theorem 6.4 (Subexponential tensor Bernstein bounds). Given a finite sequence of in-

dependent Hermitian tensors {Xi ∈ CI1×···×IM×I1×···×IM } that satisfy

EXi = 0 and E(X pi ) � p!T p−2

2
A2
i ,

where p = 2, 3, 4, . . .. Define the total variance σ2 as σ2
def
=
∥∥∑n

i A2
i

∥∥. Then we have the

following inequalities:

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−θ2/2
σ2 + Tθ

)
;(6.7)

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−θ2

4σ2

)
for θ ≤ σ2/T ;(6.8)
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and

(6.9) Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−θ
4T

)
for θ ≥ σ2/T .

Proof. Without loss of generality, we can assume that T = 1. From Lemma 6.3, we have

EetXi � e
t2A2

i
2(1−t) ,

where 0 < t < 1.

By applying Corollary 3.9, we then have

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 exp

(
−tθ +

t2

2(1− t)
λmax

(
n∑
i=1

A2
i

))

= IM1 exp

(
−tθ +

σ2t2

2(1− t)

)
.

(6.10)

The right-hand side of (6.10) can be minimized by setting t = θ
θ+σ2 . Substituting such t

and simplifying the right-hand side of (6.10), we obtain (6.7).

For θ ≤ σ2/T , we have

1

σ2 + Tθ
≥ 1

σ2 + T (σ2/T )
=

1

2σ2
,

then we obtain (6.8). Similarly, for θ ≥ σ2/T , we have

θ

σ2 + Tθ
≥ σ2/T

σ2 + T (σ2/T )
=

1

2T
.

Therefore, we also obtain (6.9).

6.2. Application of tensor Bernstein bounds

The tensor Bernstein bounds can also be extended to rectangular tensors by dilation.

Consider a sequence of tensors {Yi} ∈ CI1×···×IM×J1×···×JM satisfy the following:

EYi = O and ‖Yi‖ ≤ T almost surely.

If the variance σ2 is expressed as

σ2
def
= max

{∥∥∥∥∥
n∑
i=1

Yi ?M YHi

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

YHi ?M Yi

∥∥∥∥∥
}
,

we have

Pr

(∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥ ≥ θ
)
≤

M∏
m=1

(Im + Jm) exp

(
−θ2/2

σ2 + Tθ/3

)
;
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from Theorem 6.2.

Another application of tensor Bernstein bounds is to get upper and lower Bounds

for the maximum eigenvalue with subexponential tensors. This application can relax

Corollary 5.4 conditions by allowing the moments of the random tensors to grow at a

controlled rate.

Corollary 6.5 (Upper and lower bounds for the maximum eigenvalue for subexponen-

tial tensors). Consider a sequence {Xi ∈ CI1×···×IM×I1×···×IM } of independent, random,

Hermitian tensors that satisfy

Xi � O and E(X pi ) � p!T p−2

2
A2
i ,

and σ2
def
=
∥∥∑n

i=1A2
i

∥∥. Then we have

(6.11) µmax ≤ Eλmax

(
n∑
i=1

Xi

)
≤ 2IM1

(
σG
( σ

2T

)
+ 2Te−

σ2

4T2

)
,

where G
(
σ
2T

) def
=
∫ σ

2T
0 e−s

2
ds.

Proof. The lower bound in (6.11) is true from the convexity of the function A → λmax(A)

and the Jensen’s inequality.

For the upper bound, we have

Eλmax

(
n∑
i=1

Xi

)
=

∫ ∞
0

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ t

)
dt

≤1 IM1
∫ σ2

T

0
exp

(
− t2

4σ2

)
dt+ IM1

∫ ∞
σ2

T

exp

(
− t

4T

)
dt

= 2IM1
(
σG
( σ

2T

)
+ 2Te−

σ2

4T2

)
,

where the inequality≤1 comes from (6.8) and (6.9). This corollary is proved by introducing

Gaussian integral function G(x)
def
=
∫ x
0 e
−s2 ds.

7. Martingale deviation bounds

In this section, we introduce concepts about tensor martingales in Section 7.1, and extend

Hoeffding, Azuma, and McDiarmid inequalities to tensors context in Section 7.2.

7.1. Tensor martingales

Necessary definitions about tensor martingales will be provided here for later tensor mar-

tingale deviation bounds derivations. Let (Ω,F,P) be a master probability space. Consider
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a filtration {Fi} contained in the master sigma algebra as

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F∞ ⊂ F.

Given such a filtration, we define the conditional expectation Ei[ · ]
def
= Ei[ · | Fi]. A

sequence {Yi} of random tensors is called adapted to the filtration when each tensor Yi is

measurable with respect to Fi. We can think that an adapted sequence is one where the

present depends only on the past.

An adapted sequence {Xi} of Hermitian tensors is named as a tensor martingale when

Ei−1Xi = Xi−1 and E‖Xi‖ <∞,

where i = 1, 2, 3, . . .. We obtain a scalar martingale if we track any fixed entry of a tensor

martingale {Xi}. Given a tensor martingale {Xi}, we can construct the following new

sequence of tensors

Yi
def
= Xi −Xi−1 for i = 1, 2, 3, . . ..

We then have Ei−1Yi = O.

7.2. Tensor martingale deviation bounds

Two lemmas should be presented first before presenting tensor martingale deviation bounds

and their proofs.

Lemma 7.1 (Tensor symmetrization). Let A be a fixed Hermitian tensor, and let X be a

random Hermitian tensor with EE = O. Then

ETr eA+X ≤ ETr eA+2βX ,

where β is a Rademacher random variable.

Proof. Build an independent copy random tensor Y from X , and let EY denote the ex-

pectation with respect to the new random tensor Y. Then we have

ETr eA+X = ETr eA+X−EYY ≤ ETr eA+X−Y = ETr eA+β(X−Y),

where the first equality uses EYY = O; the inequality uses the convexity of the trace

exponential with Jensen’s inequality; finally, the last equality comes from that the random

tensor X −Y is a symmetric random tensor and Rademacher is also a symmetric random

variable.

This lemma is established by the following:

ETr eA+X ≤ ETr
(
eA/2+βX eA/2−βY

)
≤
(
ETr eA+2βX )1/2(ETr eA−2βY

)1/2
= ETr eA+2βX ,
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where the first inequality comes from tensor Golden–Thompson inequality [6], the second

inequality comes from the Cauchy–Schwarz inequality, and the last identity follows from

that the two factors are identically distributed.

The other lemma is to provide the tensor cumulant-generating function of a sym-

metrized random tensor.

Lemma 7.2 (Cumulant-generating function of symmetrized random tensor). Given that

X is a random Hermitian tensor and A is a fixed Hermitian tensor that satisfies X 2 � A2.

Then we have

logE
[
e2βtX

∣∣ X ] � 2t2A2.

Proof. From Lemma 4.1, we have

E
[
e2βtX

∣∣ X ] � e2t2X 2
.

And, from the monotone property of logarithm, we also have

logE
[
e2tθX

∣∣ X ] � 2t2X 2 � 2t2A2 for t ∈ R.

Therefore, this lemma is proved.

At this point, we are ready to present tensor martingale deviation bounds. In probabil-

ity theory, the Azuma inequality gives a concentration result for the values of martingales

that have bounded differences. Below is a tensor extension.

Theorem 7.3 (Tensor Azuma inequality). Given a finite adapted sequence of Hermitian

tensors {Xi ∈ CI1×···×IM×I1×···×IM } and a fixed sequence of Hermitian tensors {Ai} that

satisfy

Ei−1Xi = 0 and X 2
i � A2

i almost surely,

where i = 1, 2, 3, . . .. Define the total variance σ2 as σ2
def
=
∥∥∑n

i A2
i

∥∥. Then we have the

following inequality:

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)
≤ IM1 e

− θ2

8σ2 .

Proof. Define the filtration Fi
def
= F(X1, . . . ,Xi) for the process {Xi}. Then we have

ETr exp

(
n∑
i=1

tXi

)
= E

(
E

(
Tr exp

(
n−1∑
i=1

tXi + tXn

) ∣∣∣∣ Fn
) ∣∣∣∣ Fn−1

)

≤ E

(
E

(
Tr exp

(
n−1∑
i=1

tXi + 2βtXn

) ∣∣∣∣ Fn
) ∣∣∣∣ Fn

)
(7.1)
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≤ E

(
Tr exp

(
n−1∑
i=1

tXi + logE
(
e2βtXn

∣∣∣∣ Fn)
) ∣∣∣∣ Fn

)

≤ ETr exp

(
n−1∑
i=1

tXi + 2t2A2
n

)
,

where the first equality comes from the tower property of conditional expectation; the

first inequality comes from Lemma 7.1; the second inequality comes from Corollary 3.6

and the relaxation of the condition to the larger algebra set Fn; finally, the last inequality

requires Lemma 7.2.

If we continue the iteration procedure based on (7.1), we have

(7.2) ETr exp

(
n∑
i=1

tXi

)
≤ Tr exp

(
2t2

n∑
i=1

A2
i

)
.

Applying (7.2) into Lemma 3.1, we obtain

Pr

(
λmax

(
n∑
i=1

Xi

)
≥ θ

)

≤ inf
t>0

{
e−tθETr exp

(
n∑
i=1

tXi

)}
≤ inf

t>0

{
e−tθETr exp

(
2t2

n∑
i=1

A2
i

)}

≤ inf
t>0

{
e−tθIM1 λmax

(
exp

(
2t2

n∑
i=1

A2
i

))}
= inf

t>0

{
e−tθIM1 exp

(
2t2σ2

)}
≤ IM1 e

− θ2

8σ2 ,

where the third inequality utilizes λmax to bound trace, the equality applies the definition

of σ2 and spectral mapping theorem, finally, we select t = θ
4σ2 to minimize the upper

bound to obtain this theorem.

If we add extra assumption that the summands are independent, Theorem 7.3 gives

Hoeffding’s inequality for random tensors. If we apply Theorem 7.3 to a Hermitian tensor

martingale, we will have the following corollary.

Corollary 7.4. Let {Yi : i = 1, 2, . . . , n} ∈ CI1×···×IM×I1×···×IM be a Hermitian tensor

martingale, and let Xi be the difference sequence of {Yi}, i.e., Xi
def
= Yi − Yi−1 for i =

1, 2, 3, . . .. If the difference sequence satisfies

Ei−1Xi = 0 and X 2
i � Ai almost surely,

where i = 1, 2, 3, . . . and the total variance σ2 is defined as σ2
def
=
∥∥∑n

i A2
i

∥∥. Then we have

Pr
(
λmax

(
Yn − EYn

)
≥ θ
)
≤ IM1 e

− θ2

8σ2 .
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In the scalar setting, McDiarmid inequality can be treated as a corollary of Azuma’s

inequality. McDiarmid inequality states that a function of independent random variables

exhibits normal concentration about its mean, and the variance depends on the function

value sensitivity with respect to the input. A version of the bounded differences inequality

holds in the tensor context.

Theorem 7.5 (Tensor McDiarmid inequality). Given a set of n independent random

variables, i.e., {Xi : i = 1, 2, . . . , n}, and let F be a Hermitian tensor-valued func-

tion that maps these n random variables to a Hermitian tensor of dimension within

CI1×···×IM×I1×···×IM . Consider a sequence of Hermitian tensors {Ai} that satisfy

(7.3)
(
F (x1, . . . , xi, . . . , xn)− F (x1, . . . , x

′
i, . . . , xn)

)2 � A2
i ,

where xi, x
′
i ∈ Xi and 1 ≤ i ≤ n. Define the total variance σ2 as σ2

def
=
∥∥∑n

i A2
i

∥∥. Then

we have the following inequality:

Pr
(
λmax

(
F (x1, . . . , xn)− EF (x1, . . . , xn)

)
≥ θ
)
≤ IM1 e

− θ2

8σ2 .

Proof. We define the following random tensors Yi for 0 ≤ i ≤ n as

Yi
def
= E

(
F (x1, . . . , xn) | X1, . . . , Xi

)
= EXi+1EXi+2 · · ·EXnF (x1, . . . , xn),

where EXi+1 is the expectation with respect to the random variable Xi+1. The constructed

sequence Yi forms a martingale. The associated difference sequence with respect to Y,

denoted as {Zi}, can be stated as

Zi
def
= Yi − Yi−1 = EXi+1EXi+2 · · ·EXn

(
F (x1, . . . , xn)− EXiF (x1, . . . , xn)

)
.

Because (x1, . . . , xi) forms a filtration with respect to i, we have

EXi−1Yi = EXi−1

(
EXi+1EXi+2 · · ·EXnF (x1, . . . , xn) | Xi−1

)
= EXi−1

(
EXiEXi+1 · · ·EXnF (x1, . . . , xn) | Xi−1

)
= EXi−1Yi−1,

then

(7.4) EXi−1Zi = EXi−1Yi − EXi−1Yi−1 = O.

Let X ′i be an independent copy of Xi, and construct the random vector x′ = (X1, . . . ,

Xi−1, X
′
i, Xi+1, . . . , Xn) and the random vector x = (X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn).

Since EXiF (x) = EX′iF (x′), we have

Zi = EXi+1EXi+2 · · ·EXnEX′i(F (x)− F (x′)).
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Then (F (x) − F (x′))2 � A2
i from requirement provided by (7.3). We have the following

upper bound

(7.5) EXi+1EXi+2 · · ·EXnEX′i(F (x)− F (x′))2 � A2
i .

Therefore, from conditions provided by (7.4) and (7.5), this theorem is proved by applying

Corollary 7.4 to the martingale {Yi}.

8. Conclusion

In this paper, we generalize Laplace transform method and Lieb’s concavity theorem from

matrices to tensors, and apply these techniques to extend the following classical bounds

from the scaler to the tensor situation: Chernoff, Azuma, Hoeffding, Bennett, Bernstein,

and McDiarmid. The purpose of these probability inequalities tries to identify large-

deviation behavior of the extreme eigenvalue of the sums of random tensors. Tail bounds

for the norm of a sum of random rectangular tensors follow as an immediate corollary.

Finally, we also apply the proof techniques invented at this work to study tensor-valued

martingales.
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