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On the Metric Dimension of the Reduced Power Graph of a Finite Group

Xuanlong Ma* and Lan Li

Abstract. Let G be a finite group. The reduced power graph of G is the undirected

graph whose vertex set is G, and two distinct vertices x and y are adjacent if 〈x〉 ⊂ 〈y〉
or 〈y〉 ⊂ 〈x〉. In this paper, we give tight upper and lower bounds for the metric

dimension of the reduced power graph of a finite group. As applications, we compute

the metric dimension of the reduced power graph of a P-group, a cyclic group, a

dihedral group, a generalized quaternion group, and a group of odd order.

1. Introduction

All graphs considered in this paper are finite, undirected, with no loops and no multiple

edges. Let Γ be a graph. The vertex set of Γ is denoted by V (Γ). Let x, y ∈ V (Γ). The

distance between x and y in Γ is the length of a shortest path from x to y and is denoted

by dΓ(x, y). If the situation is unambiguous, we denote dΓ(x, y) simply by d(x, y). If there

exists z ∈ V (Γ) such that d(x, z) 6= d(y, z), then we say that z resolves vertices x and

y. A subset S of V (Γ) is called a resolving set of Γ if every pair of distinct vertices of Γ

is resolved by some vertex of S. The metric dimension of Γ, denoted by dim(Γ), is the

minimum cardinality of a resolving set of Γ. In the 1970s, the metric dimension of a graph

was introduced independently by Harary and Melter [12] and Slater [26]. It was noted

in [10] that determining the metric dimension of a graph is an NP-complete problem.

Graphs associated with groups and other algebraic structures have been actively in-

vestigated, since they have valuable applications (cf. [15,19]) and are related to automata

theory (cf. [16, 17]). The undirected power graph P(G) of a finite group G has vertex set

G and two distinct elements are adjacent if one is a power of the other. The concepts of

power graph and undirected power graph were first introduced by Kelarev and Quinn [18]

and Chakrabarty et al. [6], respectively. In recent years, the study of power graphs has

been growing, see, for example, [4, 5, 21, 22]. Also, see [1] for a survey of results and open

problems on power graphs.

With an aim to avoid the complexity of edges in power graphs, Rajkumar and Anitha

[23] introduced the reduced power graph PR(G) of a group G, which is an undirected
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graph with vertex set G, and two distinct vertices x, y are adjacent if 〈x〉 ⊂ 〈y〉 or

〈y〉 ⊂ 〈x〉. In other words, PR(G) is the subgraph of P(G) obtained by deleting all edges

{x, y} with 〈x〉 = 〈y〉, where x and y are distinct elements of G. In [23], the authors

studied the interplay between the algebraic properties of a group and the graph theoretic

properties of its reduced power graph. Recently, Anitha and Rajkumar [3] characterized

the groups with planar, toroidal and projective planar reduced power graphs, and they also

determined the Laplacian spectrum of the reduced power graph of some finite groups [24].

Ma [20] characterized the proper connection number of a reduced power graph. Moreover,

see [2, 25] for some more properties of this graph.

The metric dimension of a power graph was studied in [9]. Here, we study the metric

dimension of a reduced power graph. Specifically speaking, we give tight upper and

lower bounds for the metric dimension of the reduced power graph of a finite group (see

Theorem 3.2). As applications, we compute the metric dimension of the reduced power

graph of a P-group, a cyclic group, a dihedral group and a generalized quaternion group.

2. Preliminaries

This section introduces some basic definitions and notations that are used throughout the

paper, and proves some technical lemmas required for the proofs of our main results.

All groups considered in this paper are finite. We always use G to denote a finite group,

and use e denote the identity element of G. The order of an element x of G, denoted by

o(x), is defined as the cardinality of the cyclic subgroup 〈x〉. An element of order 2 is

called an involution. A maximal cyclic subgroup of G is a cyclic subgroup, which is not a

proper subgroup of some cyclic subgroup of G. The set of all maximal cyclic subgroups

of G is denoted by MG. Note that |MG| = 1 if and only if G is cyclic. Denote by Zn the

cyclic group of order n. Let Γ be a graph and x ∈ V (Γ). The open neighborhood of x in

Γ is

NΓ(x) = {y ∈ V (Γ) : d(y, x) = 1}

and the closed neighborhood of x in Γ is

NΓ[x] = {y ∈ V (Γ) : d(y, x) ≤ 1}.

If the situation is unambiguous, we denote NΓ(x) and NΓ[x] simply by N(x) and N [x],

respectively.

Now we define a binary relation x ≈ y on G by the rule that N(x) = N(y) in PR(G).

It is readily seen that the relation is an equivalence relation over G. Let x̂ denote the

equivalence ≈-class containing x. For x ∈ G, denote by [x] the set of all generators of the

cyclic subgroup 〈x〉, that is,

[x] := {g ∈ G : 〈g〉 = 〈x〉}.
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Clearly, {[x] : x ∈ G} is a partition of G.

Lemma 2.1. Let x be an element of G. Then

(i) [x] ⊆ x̂. In particular, x−1 ∈ x̂.

(ii) x̂ is an independent set of PR(G). In particular, ê = {e}.

(iii) If there exists y ∈ x̂ such that 〈y〉 /∈ MG, then for any M ∈ MG with y ∈ M , we

have x̂ ⊆M .

Proof. (i) The proof is straightforward by the definition of a reduced power graph.

(ii) Suppose to the contrary that there exist distinct a, b ∈ x̂ such that a and b are

adjacent in PR(G). Without loss of generality, assume that 〈a〉 ⊂ 〈b〉. Then a ∈ N(b) =

N(a), a contradiction.

(iii) For any x′ ∈ x̂, we have that N(y) = N(x′). Let M = 〈g〉. Since y ∈ M and

〈y〉 /∈ MG, we deduce that g ∈ N(y), and so g ∈ N(x′). This means x′ ∈ M , and so

x̂ ⊆M .

Recall now the following elementary result.

Theorem 2.2. [11, Theorem 5.4.10(ii)] Let p be a prime. Then a p-group having a unique

subgroup of order p is either cyclic or generalized quaternion.

For x, y ∈ G, define x ≡ y if N [x] = N [y] or N(x) = N(y) in PR(G). Hernando et

al. [13] studied this relation and it follows from [13, Lemma 2.6] that ≡ is an equivalence

relation over G. Denote by x the ≡-class containing the element x ∈ G. Let G = {x : x ∈
G}.

For n ≥ 2, Johnson [14] defined the generalized quaternion group Q4n of order 4n by

the following presentation

(2.1) Q4n = 〈x, y : xn = y2, x2n = y4 = e, y−1xy = x−1〉.

For n = 2, the group Q8 is the usual quaternion group of order 8, its another presentation

is Q8 = {±1,±i,±j,±k} with the operation i2 = j2 = k2 = ijk = −1. Remark that Q4n

has a unique involution xn. Also,

(2.2) Q4n = 〈x〉 ∪ {xiy : 1 ≤ i ≤ 2n}, o(xiy) = 4 for each 1 ≤ i ≤ 2n

and

(2.3) MQ4n = {〈x〉, 〈xy〉, . . . , 〈xny〉}, xn ∈
⋂

M∈MQ4n

M.
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Lemma 2.3. Let x and y be two distinct elements of G. Then N [x] = N [y] if and only if

G is isomorphic to either Z2m or Q4·2m where m is a positive integer, and {x, y} = {e, a}
where a is the unique involution of G.

Proof. If G ∼= Z2m , clearly, N [e] = N [a] = G where a is the unique involution of G, as

desired. If G ∼= Q4·2m , it follows from (2.3) that N [e] = N [a] = G, where a is the unique

involution of G, as desired. Thus, the sufficiency follows.

We next prove the necessity. Suppose that N [x] = N [y]. Since x 6= y, we have

x ∈ N(y) = N(y−1). It follows that y−1 ∈ N [x], and so y−1 ∈ N [y]. Now the fact that

y−1 and y are non-adjacent in PR(G) would imply y−1 = y and then o(y) ≤ 2. Similarly, we

can also deduce o(x) ≤ 2. Note that x is adjacent to y in PR(G). We have {x, y} = {e, a}
where a is an involution. It follows that N [a] = N [e] = G. Now [2, Lemma 2.1] implies

the desired result.

Corollary 2.4. |e| ≤ 2 with equality if and only if G is isomorphic to either Z2m or Q4·2m,

where m is a positive integer.

A group is called a P-group [8] if every nontrivial element of the group has prime

order. For example, the elementary abelian p-group Znp is a P-group where p is a prime

and n ≥ 1, and the symmetric group S3 on 3 letters is also a P-group.

Lemma 2.5. Let x ∈ G \ {e}. Then

(i) If |x| = 1, then o(x) = 2. The converse is not true.

(ii) |G| = 1 if and only if G ∼= Z2, which in turn is true if and only if PR(G) is complete.

(iii) |G| = 2 if and only if G is isomorphic to Z4, Q8, or a P-group.

Proof. (i) By Lemma 2.1(i), we have x−1 ∈ x̂ ⊆ x. So x−1 = x, which implies o(x) = 2.

For the converse, considering S3, we have (12) = S3 \ {(1)}.
(ii) Clearly, G ∼= Z2 if and only if PR(G) is complete. Now suppose that |G| = 1.

Then x ∈ e. Since x and e are adjacent in PR(G), we deduce N [x] = N [e]. It follows from

Lemma 2.3 that G ∼= Z2, as desired. Also, it is clear that |Z2| = 1.

(iii) Let Z4 = 〈g〉 and let H be a P-group. Note that PR(H) is a star. It is easy

to check that Z4 = {{e, g2}, {g, g3}}, Q8 = {{e, x}, Q8 \ {e, x}} where x is the unique

involution of Q8, and H = {{e}, H \ {e}}.
Now suppose that |G| = 2. Assume that |e| = 1. Then x = G \ {e}. Suppose for

a contradiction that there exists y ∈ G such that o(y) = p2 for some prime p. Then

o(yp) = p and yp ∈ x = y. Note that Lemma 2.3 implies N [y] 6= N [yp]. It follows that
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N(y) = N(yp). As a result, we have y−1 ∈ N(yp) = N(y). However, y−1 and y are non-

adjacent in PR(G), a contradiction. Thus, in this case we deduce that G is a P-group, as

desired.

Assume now that |e| ≥ 2. Corollary 2.4 implies that |e| = 2, and G is isomorphic to

either Z2m or Q4·2m , where m is a positive integer. Now Lemmas 2.1(ii) and 2.3 imply

that G \ e is an independent set of PR(G). Note that e = {e, a} where a is the unique

involution of G. Thus, G can not have an element z of order 8, for otherwise G\e contains

the adjacent vertices z and z2, a contradiction. It follows that G is isomorphic to either

Z4 or Q8, as desired.

Lemma 2.6. Let |G| ≥ 3. Then there exist distinct a, b ∈ G such that |a| ≥ 2 and |b| ≥ 2.

Proof. By Lemma 2.5(iii), we have that G is not a P-group. Hence we may assume that

G has an element a of order p2, where p is a prime. If p ≥ 3, then |a| ≥ 2 and |ap| ≥ 2,

and the desired result follows since a 6= ap. In the following we may assume that p = 2.

Note that G � Z4.

Assume that there exists c ∈ G \ 〈a〉 such that o(c) 6= 2m for any positive integer

m. Then |c| ≥ 2. We next prove a 6= c. Suppose for a contradiction that a = c. Then

Lemma 2.3 implies N(a) = N(c). Since o(a) = 4, we have 〈a2〉 ⊂ 〈a〉, and so 〈a2〉 ⊂ 〈c〉.
Thus, we may assume that o(c) = 2lk for some positive integer l and odd integer k at least

3. Note that o(c2l) = k is odd and c2l ∈ N(c) = N(a). It follows that either 〈c2l〉 ⊂ 〈a〉
or 〈a〉 ⊂ 〈c2l〉, a contradiction as o(a) = 4. Hence, in this case, a and c are the desired

equivalence classes. As a consequence, in the following we assume that G is a 2-group.

Suppose that G has a unique subgroup of order 2. By Theorem 2.2, we have that G is

either cyclic or generalized quaternion. Also, note that G � Z4 or Q8 by Lemma 2.5(iii).

It follows that G has an element b of order 8 such that a ∈ 〈b〉. As a result, |b| ≥ 2 and

a 6= b, as desired.

Now suppose that G has at least two elements of order 2. Since the number of in-

volutions of a finite group of even order is odd, we may assume that there exist distinct

u, v ∈ G \ {a2} such that o(u) = o(v) = 2. If 〈u〉, 〈v〉 ∈ MG, then v ∈ u and so |u| ≥ 2, as

desired. So we may assume that there exists 〈b〉 ∈ MG such that one of u and v belongs

to 〈b〉. Since o(b) ≥ 4, we have that |b| ≥ 2 and a 6= b.

For a positive integer n, let D(n) denote the set of all divisors of n and let σn be the

cardinality of D(n), that is, σn = |D(n)|. Denote by φ the Euler’s totient function. Recall

that if n is a positive integer and n = pλ11 pλ22 · · · pλvv is its canonical factorization (that is,

p1, p2, . . . , pv are distinct primes and λi ≥ 1 for each 1 ≤ i ≤ v), then σn =
∏v
i=1(λi + 1).

The next lemma determines the number of all ≡-classes of a cyclic group.
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Lemma 2.7. Let n be a positive integer at least 2. Then

|Zn| =


3 if n = pq for two distinct primes p and q,

m if n = 2m for some m ≥ 1,

σn otherwise.

Proof. For two distinct primes p and q, it is easy to check that Zpq = {{e}, A,B}, where

A and B are the set of all elements of prime order and the set of all generators of Zpq,
respectively. Now for Z2m , let Ai = {x ∈ Z2m : o(x) = 2i} for each 0 ≤ i ≤ m, then by

Lemmas 2.3 and 2.1(ii), we deduce that Z2m = {A0 ∪A1, A2, A3, . . . , Am}, as desired.

In the following, suppose that n is neither a power of 2 nor a product of two distinct

primes. Let x, y ∈ Zn with x ≡ y. Then Lemma 2.3 implies N(x) = N(y). It follows

from [2, Lemma 2.2] that either 〈x〉 = 〈y〉, or o(x) and o(y) are distinct primes.

Suppose, for a contradiction, that o(x) = p and o(y) = q, where p, q are two distinct

primes. Since n 6= pq, there exists w ∈ Zn such that o(w) = p2 or pr (respectively q2

or qr) where r is a prime distinct from p and q. It follows that w ∈ N(x) (respectively

w ∈ N(y)), and so w ∈ N(y) = N(x) (respectively w ∈ N(x) = N(y)), a contradiction.

Thus, by Lemma 2.1(i), we conclude that x ≡ y if and only if 〈x〉 = 〈y〉. Let D(n) =

{d1, d2, . . . , dσn}. We deduce that Zn = {x1, x2, . . . , xσn}, where xi = {x ∈ Zn : o(x) = di}
for each 1 ≤ i ≤ σn.

By the proof of Lemma 2.7, we have the following remark.

Remark 2.8. (i) Let m be a positive integer. Then Z2m = {A0 ∪ A1, A2, A3, . . . , Am},
where Ai = {x ∈ Z2m : o(x) = 2i} for each 0 ≤ i ≤ m.

(ii) Let p, q be distinct primes. Then Zpq = {{e}, A,B}, where A = {x ∈ Zpq : o(x) =

p or q} and B = {x ∈ Zpq : o(x) = pq}.
(iii) Suppose that n is neither a power of 2 nor a product of two distinct primes. Let

D(n) = {d1, d2, . . . , dσn} and Si = {x ∈ Zn : o(x) = di} for each 1 ≤ i ≤ σn. Then

Zn = {S1, S2, . . . , Sσn}.

Let G be a group. Define

LG := {g ∈ G : o(g) = 2 and g = {g}}.

For example, LQ12 = {x3} by (2.4), and if H = 〈h〉 ∼= Z12, then LH = {h6} by Re-

mark 2.8(iii). Also, for a, b ∈ G, define

R{a, b} := {x ∈ G : d(a, x) 6= d(b, x)}

which is the set of vertices resolving a and b in PR(G). From Lemma 2.5(ii), it follows

that PR(G) is complete if and only if G ∼= Z2. If G � Z2, then in PR(G), for distinct
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x, y ∈ G with d(x, y) 6= 1, we have d(x, y) = 2, because e is adjacent to every vertex in

G\{e}. Notice that in a group G, if x ∈ G and |x| ≥ 2, then every pair of distinct vertices

of x is resolved by some element of x \ {x}. According to this, it suffices to determine the

resolvability between ≡-classes of G if the resolving set consists all x \ {x} with |x| ≥ 2.

Proposition 2.9. Let p be an odd prime and {x1, x2, . . . , x6} be a system of representatives

for the ≡-classes of Z2p2. Then S = (Z2p2 \ {x1, x2, . . . , x6}) ∪ LZ2p2
is a resolving set of

PR(Z2p2).

Proof. By Remark 2.8(iii), we may assume that x1 = e, x2 = {g ∈ Z2p2 : o(g) = 2} = {x2},
x3 = {g ∈ Z2p2 : o(g) = p}, x4 = {g ∈ Z2p2 : o(g) = 2p}, x5 = {g ∈ Z2p2 : o(g) = p2}
and x6 = {g ∈ Z2p2 : o(g) = 2p2}. So, LZ2p2

= {x2}. Now it is easy to check that

x−1
3 ∈ S ∩R{x1, x3}, x−1

4 ∈ S ∩R{x1, x4} ∩R{x3, x5} ∩R{x5, x6}, x−1
5 ∈ S ∩R{x1, x5} ∩

R{x3, x4} ∩ R{x4, x6}, x−1
6 ∈ S ∩ R{x1, x6} ∩ R{x3, x6}, and x2 ∈ S ∩ R{x4, x5}, as

desired.

Proposition 2.10. Let n be a positive integer at least 3 and {x1, x2, . . . , xt} be a system

of representatives for the ≡-classes of Zn. If n 6= 2p2 for some odd prime p, then S =

Zn \ {x1, x2, . . . , xt} is a resolving set of PR(Zn).

Proof. We divide our proof into three cases.

Case 1: n = pq for two distinct primes p, q.

By Remark 2.8(ii), we may assume that {e, x2, x3} is a system of representatives for

the ≡-classes of Zn, where x2 is an element of order p or q, and x3 is an element of order pq.

Let x ∈ Zn be an element of prime order such that o(x) 6= o(x2). Clearly, d(x, x2) = 2 and

d(x, x3) = 1, and so x ∈ R{e, x2}∩S∩R{x2, x3}. Also, from o(x3) ≥ 6 and d(x−1
3 , x3) = 2,

it follows that x−1
3 ∈ R{e, x3} ∩ S. This means that Zn \ {e, x2, x3} is a resolving set of

PR(Zn), as desired.

Case 2: n = 2m for some positive integer m ≥ 2.

Let Ai = {x ∈ Z2m : o(x) = 2i} for each 1 ≤ i ≤ m. In view of Remark 2.8(i), we may

assume that {x1, x2, . . . , xm} is a system of representatives for the ≡-classes of Zn, where

xi ∈ Ai for each 1 ≤ i ≤ m. Now let a and b be two distinct elements of {x1, x2, . . . , xm}, it

suffices to prove that there exists s ∈ S such that s ∈ R{a, b}. Without loss of generality,

we may assume that o(a) < o(b). Then d(a, b) = 1 and o(b) ≥ 4. It follows that b−1 ∈ S
and d(b, b−1) = 2, and so b−1 ∈ R{a, b}, as desired.

Case 3: n is neither a power of 2 nor a product of two distinct primes.

Let D(n) = {d1, d2, . . . , dσn} and Si = {x ∈ Zn : o(x) = di} for each 1 ≤ i ≤ σn,

where d1 = 1. Then Remark 2.8(iii) implies that we may assume that {x1, x2, . . . , xσn}
is a system of representatives for the ≡-classes of Zn, where xi ∈ Si for each 1 ≤ i ≤ σn.

Since Zn is not a 2-group, we may choose y ∈ S such that o(y) is an odd prime by
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Lemma 2.1(i). Let x be an element of {x2, . . . , xσn}. Note that x1 = e. If o(x) = 2, then

y ∈ S ∩R{x1, x}. If o(x) ≥ 3, then x−1 ∈ S ∩R{x1, x}. Thus, let a and b be two distinct

elements of {x2, . . . , xσn}, it suffices to prove that there exists s ∈ S such that s ∈ R{a, b}.
If a and b are adjacent in PR(Zn), then |a| or |b| ≥ 2, and so a−1 or b−1 ∈ R{a, b}∩S,

as desired. Thus, in the following we may assume that a and b are non-adjacent. Note that

n 6= 2m, pq, 2p2 where p, q are distinct primes and m is a positive integer. We conclude

that there exists an integer l > 2 such that l | n and one of the following holds:

(i) l | o(a), l 6= o(a) and l - o(b);
(ii) l | o(b), l 6= o(b) and l - o(a);

(iii) o(a) | l, l 6= o(a) and o(b) - l;
(iv) o(b) | l, l 6= o(b) and o(a) - l.

Now let z ∈ Zn with o(z) = l. Note that a and b are non-adjacent. It follows that one

of z and z−1 must belong to S ∩R{a, b}, as desired.

Proposition 2.11. Let Q4n be the generalized quaternion group as presented in (2.1) and

{x1, x2, . . . , xt} be a system of representatives for the ≡-classes of Q4n. If n 6= p2 for some

odd prime p, then S = Q4n \ {x1, x2, . . . , xt} is a resolving set of PR(Q4n).

Proof. Suppose that n = 2. By Lemma 2.5(iii), Q8 = {{e, x2}, Q8 \ {e, x2}}. Let {x1, x2}
be a system of representatives for the ≡-classes of Q8, where x1 = e or x2, x2 ∈ Q8\{e, x2}.
Then x−1

2 ∈ S ∩R{x1, x2}, as desired.

Suppose that n = 3. It is easy to check that

(2.4) Q12 =
{
{e}, {x3}, {x2, x4}, {x, x5}, Q12 \ 〈x〉

}
.

Let {x1, x2, x3, x4, x5} be a system of representatives for the ≡-classes of Q8, where x1 = e,

x2 = x3, x3 ∈ {x2, x4}, x4 ∈ {x, x5} and x5 ∈ Q12 \ 〈x〉. Then x−1
5 ∈ S ∩ R{x1, x5} ∩

R{x2, x5} ∩ R{x2, x3}, x−1
4 ∈ S ∩ R{x3, x5} ∩ R{x1, x4} ∩ R{x2, x4} ∩ R{x3, x4}, and

x−1
3 ∈ S ∩R{x4, x5} ∩R{x1, x2} ∩R{x1, x3}, as desired.

Now suppose that n ≥ 4. Note that 〈x〉 ∼= Z2n. By Remark 2.8, (2.2) and (2.3), we

deduce that

Q4n = 〈x〉 ∪ {Q4n \ 〈x〉}.

So we may assume that {x1, x2, . . . , xt−1, g} is a system of representatives for the ≡-

classes of Q4n, where g = xt ∈ {Q4n \ 〈x〉} and {x1, x2, . . . , xt−1} is a system of repre-

sentatives for the ≡-classes of 〈x〉. Note that g has order 4 and N(g) = {e, xn}. Let

h ∈ {x1, x2, . . . , xt−1}. If h /∈ [x], then x, x−1 ∈ R{g, h}, which implies that either x or

x−1 belongs to S ∩R{g, h} since x−1 ∈ x. Suppose that h ∈ [x]. Since n 6= 2, there exists

an element f ∈ 〈x〉 \ [x] such that o(f) ≥ 3. It follows that one of f and f−1 must belong

to S ∩ R{g, h}. Now in order to complete the proof, it suffices to show that there exists

an element in S such that it resolves every pair of distinct vertices of {x1, x2, . . . , xt−1}.
The desired result follows from Proposition 2.10.
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3. The metric dimension of a reduced power graph

In this section, we give tight upper and lower bounds for dim(PR(G)) (see Theorem 3.2).

As applications, we compute the exact value of dim(PR(G)) if G is a P-group, a cyclic

group, a dihedral group and a generalized quaternion group.

Proposition 3.1. Let G be a group with |G| ≥ 2, and let {x1, x2, . . . , xr} be a system of

representatives for the ≡-classes of G. Then

S = (G \ {x1, x2, . . . , xr}) ∪ LG

is a resolving set of PR(G).

Proof. By Propositions 2.10 and 2.11, it is easy to see that the desired result follows for

Z2m and Q4·k where m ≥ 2 and k is a power of 2. In the following, we assume that G is

neither Z2m nor Q4·k. Since |G| ≥ 2, we have G 6= Z2 by Lemma 2.5(ii). Also, it follows

from Lemma 2.3 that for two distinct x, y ∈ G, x ≡ y if and only if x ≈ y in PR(G). So

Lemma 2.1(ii) implies that every ≡-class is an independent set of PR(G) and e = {e}.
Now, let a and b be two distinct elements of {x1, x2, . . . , xr} with a, b /∈ LG, it suffices to

prove that there exists s ∈ S such that s ∈ R{a, b}. Observe that a 6= b.

Suppose that one of a and b is e, without loss of generality, say a = e. Since b /∈ LG,

we have |b| ≥ 2. Taking b′ ∈ b \ {b}, we have that d(b, b′) = 2 since b is an independent

set of PR(G). It follows that b′ ∈ S ∩R{a, b}.
Thus, in the following we always assume that a 6= e and b 6= e. We divide our proof

into two cases.

Case 1: For any M ∈MG, {a, b} *M .

Let M1,M2 ∈ MG with a ∈ M1 and b ∈ M2. Clearly, M1 6= M2. Suppose that

〈a〉 6= M1. Let M1 = 〈m1〉. Then d(m1, a) = 1. If d(m1, b) = 1, then b ∈ M1, and so

a, b ∈ M1, a contradiction. It follows that d(m1, b) = 2 and so m1,m
−1
1 ∈ R{a, b}. Also,

note that o(m1) ≥ 4, we have that |m1| ≥ 2 by Lemma 2.1(i). As a result, one of m1

and m−1
1 must belong to S, as desired. Similarly, if 〈b〉 6= M2, we also can obtain the

desired result. Hence, in the following, we assume that 〈a〉 = M1 and 〈b〉 = M2. Note that

N(a) 6= N(b). Suppose that there exists x ∈ N(a) such that x /∈ N(b). Then x ∈ R{a, b}.
Clearly, x 6= e. If |x| = 1, then x ∈ LG, and so x ∈ S, as desired. Thus, we may assume

that |x| ≥ 2. Taking y ∈ x \ {x}, we have b /∈ N(y), otherwise b ∈ N(y) = N(x), contrary

to x /∈ N(b). Since y ∈ N(a), we have y ∈ R{a, b}. Now by the definition of S, we deduce

that x ∈ S or y ∈ S, as desired.

Case 2: There exists M ∈MG such that {a, b} ⊆M .

If M = 〈a〉, clearly o(a) ≥ 4, and so a−1 ∈ S ∩ R{a, b} as M 6= 〈b〉. Similarly,

if M = 〈b〉, the desired result also follows. Thus, we may assume that 〈a〉 ⊂ M and

〈b〉 ⊂M . Now Lemma 2.1(iii) implies that a, b ⊆M .



10 Xuanlong Ma and Lan Li

Suppose that |M | = pq for two distinct primes p, q. Then {o(a), o(b)} = {p, q}. Since

N(a) 6= N(b), there exists 〈g〉 ∈ MG \ {M} such that a ∈ 〈g〉 or b ∈ 〈g〉. If a ∈ 〈g〉 and

b /∈ 〈g〉, then it is easy to see that one of g and g−1 must belong to S ∩R{a, b}, as desired.

Similarly, if a /∈ 〈g〉 and b ∈ 〈g〉, we also can obtain the desired result. So, we may assume

that a ∈ 〈g〉 and b ∈ 〈g〉, which implies M ⊆ 〈g〉 and hence M = 〈g〉, a contradiction.

Now we may assume that |M | is not a product of two distinct primes. Note that if |M | is
a power of 2, then the involution of M belongs to LG. It follows from Remark 2.8(i) and

(iii) that a and b are two distinct ≡-class of M . Now Propositions 2.9 and 2.10 imply the

desired result.

Theorem 3.2. Let G be a group of order n. Then

(3.1) n− |G| ≤ dim(PR(G)) ≤ n− |G|+ |LG|.

Proof. If |G| = 1, then PR(G) is complete by Lemma 2.5(ii), and it follows from [7,

Theorem 3] that dim(PR(G)) = n − 1, as desired. Now suppose that |G| ≥ 2. If G

is a P-group, then |G| = 2 and PR(G) is a star, and so dim(PR(G)) = n − 2 by [7,

Theorem 4], as desired. Thus, we may assume that G is not a P-group. Combining

Lemmas 2.5(iii) and 2.6, we have that G has two distinct ≡-classes having size at least

2, and so n − |G| ≥ 2. Let S be a resolving set of PR(G) with size dim(PR(G)). If

there exist distinct elements x, y ∈ G such that x = y and x, y /∈ S, then no element of

S resolves x and y, a contradiction. Therefore, it follows that for each g ∈ G, we have

that g has at most one element that does not belong to S. As a consequence, we deduce

|S| ≥ n − |G|. Namely, dim(PR(G)) ≥ n − |G|, as desired. Also, Proposition 3.1 implies

that dim(PR(G)) ≤ n− |G|+ |LG|. Now the proof is complete.

The following result is immediate by Theorem 3.2.

Corollary 3.3. Let G be a group of order n. If n is odd, then dim(PR(G)) = n− |G|.

In the following, as applications of Theorem 3.2, we give some examples to illustrate

that the bounds of (3.1) are tight.

Example 3.4. Let G be a P-group of order n. Then dim(PR(G)) = n− |G| = n− 2.

Example 3.5. Let n be a positive integer at least 2. Then

dim(PR(Zn)) =



n− 3 if n = pq for two distinct primes p and q,

n−m if n = 2m for some m ≥ 1,

n− 5 if n = 2p2 for some odd prime p,

n− σn otherwise.
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Proof. Suppose that n = 2p2 for some odd prime p. Then |Zn| = 6 and |LZn | = 1 by

Proposition 2.9. Let S be a resolving set of PR(Zn) with size dim(PR(Zn)). Assume, by

contradiction that |S| = n − 6. Since it is impossible that there exist distinct elements

x, y ∈ G such that x = y and x, y /∈ S, we deduce that LZn * S and there exist distinct

a, b /∈ S such that a ∈ {g ∈ Zn : o(g) = p2} and b ∈ {g ∈ Zn : o(g) = 2p}. This contradicts

the fact R{a, b} = {a, b}∪LZn . We conclude that dim(PR(Zn)) ≥ n−5. Now Theorem 3.2

implies that dim(PR(Zn)) = n− 5.

Clearly, dim(PR(Z2)) = 1. In the following, suppose that n ≥ 3 and n 6= 2p2 for some

odd prime p. By Proposition 2.10, we have dim(PR(Zn)) ≤ n − Zn. Now Theorem 3.2

implies dim(PR(Zn)) = n− Zn. Thus, the desired result follows from Lemma 2.7.

For n ≥ 3, denote by D2n the dihedral group of order 2n. Recall that a presentation

of D2n is given by

(3.2) D2n = 〈a, b : an = b2 = e, bab = a−1〉.

Remark that D2n = 〈a〉 ∪ {b, ab, a2b, . . . , an−1b}, where o(aib) = 2 and N(aib) = {e}
in PR(D2n) for each 1 ≤ i ≤ n. Thus, it is easy to see that D2n = 〈a〉 ∪ b, where

b = {D2n \ 〈a〉}.

Remark 3.6. Observe that PR(D2n) is a union of PR(Zn) = PR(〈a〉) and a star K1,n (a

complete bipartite graph with partite sets {e} and {aib : 0 ≤ i ≤ n−1}) with the common

vertex e (see [25, Fig. 2]). The union of resolving sets of two graphs still resolves vertices

between two graphs. When n is not a prime, every ≡-class of D2n entirely lies either

PR(〈a〉) or the star. Thus, the metric dimension of PR(D2n) is the sum of the metric

dimensions of the two graphs. Since dim(K1,n) = n − 1, it follows that dim(PR(D2n)) =

dim(PR(Zn)) + (n− 1). Notice that PR(Q4n) is a union of PR(Z2n) and two copies of star

K1,2n with common vertices e and an involution (see [25, Fig. 3]). Similarly, if n 6= 2, we

can deduce that dim(PR(Q4n)) = dim(PR(Z2n)) + (2n− 1).

The following example follows from Examples 3.4 and 3.5, and Remark 3.6.

Example 3.7. Let D2n be the dihedral group as presented in (3.2). Then

dim(PR(D2n)) =



5 if n = 4,

2n− 2 if n is an odd prime,

2n− 4 if n = pq for two distinct primes p and q,

2n− 6 if n = 2p2 for some odd prime p,

2n− σn − 1 otherwise.

It is clear that dim(PR(Q8)) = 6 by Lemma 2.5(iii), Proposition 2.11 and Theorem 3.2.

Now the following example follows from Example 3.5 and Remark 3.6.



12 Xuanlong Ma and Lan Li

Example 3.8. Let Q4n be the generalized quaternion group as presented in (2.1). Then

dim(PR(Q4n)) =



6 if n = 2,

4n−m− 2 if n = 2m for m ≥ 2,

4n− 6 if n = p2 for some odd prime p,

4n− σ2n − 1 otherwise.

We conclude the paper by the following remark to illustrate Theorem 3.2.

Remark 3.9. Let p be an odd prime. Then every of dim(PR(Z2p2)), dim(PR(D2·2p2))

and dim(PR(Q4p2)) can attain the upper bound of (3.1). We remark that the metric

dimension of a reduced power graph can lie in between the upper bound and lower bound.

Let G = Z4 × Z4. The graph PR(G) is displayed in Figure 3.1.

(0,0)

(0,2)

(0,1)

(0,3)

(2,1)

(2,3)

(2,2)

(1,1)

(3,3)
(1,3)

(3,1)

(2,0)

(1,0)
(3,0)

(1,2) (3,2)

Figure 3.1: PR(Z4 × Z4).

Then it is easy to see that G = {{(0, 0)}, {(0, 2)}, {(2, 2)}, {(2, 0)}, (0, 1), (1, 0), (1, 1)},
where (0, 1) = {(0, 1), (0, 3), (2, 1), (2, 3)}, (1, 0) = {(1, 0), (3, 0), (1, 2), (3, 2)}, and (1, 1) =

{(1, 1), (3, 3), (1, 3), (3, 1)}. Thus, |G| = 7 and |LG| = 3. Also, we have dim(PR(G)) ≥ 9

by Theorem 3.2. Now let S be a resolving set of PR(G). Without loss of generality, we

may assume that (1, 0) \ {(1, 0)} ⊆ S, (0, 1) \ {(0, 1)} ⊆ S, and (1, 1) \ {(1, 1)} ⊆ S. If

S = ((1, 0) \ {(1, 0)}) ∪ ((0, 1) \ {(0, 1)}) ∪ ((1, 1) \ {(1, 1)}), then no element of S resolves

(1, 0) and (0, 1), a contradiction. It follows that |S| > 9. On the other hand, it is easy to

see that ((1, 0)\{(1, 0)})∪((0, 1)\{(0, 1)})∪((1, 1)\{(1, 1)})∪{(0, 2), (2, 0)} is a resolving

set of PR(G). Thus, we have that

|G| − |G| < dim(PR(G)) < |G| − |G|+ |LG|.

In fact, one can prove dim(PR(G)) = 11.
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