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Pointwise Convergence of the Fractional Schrödinger Equation in R2

Chu-Hee Cho* and Hyerim Ko

Abstract. We investigate the pointwise convergence of the solution to the fractional

Schrödinger equation in R2. By establishing Hs(R2) − L3(R2) estimates for the as-

sociated maximal operator provided that s > 1/3, we improve the previous result

obtained by Miao, Yang, and Zheng [19]. Our estimates extend the refined Strichartz

estimates obtained by Du, Guth, and Li [10] to a general class of elliptic functions.

1. Introduction

For α > 1, we consider the fractional Schrödinger equation

(1.1) i∂tu+ (−∆)α/2 = 0, u(x, 0) = f(x)

for f ∈ Hs(R2). Here, Hs is the L2 Sobolev space of order s. Formally, the solution of

(1.1) can be written as

Uαf(x, t) = (2π)−2

∫
R2

ei(x·ξ+t|ξ|
α)f̂(ξ) dξ.

In this study, we investigate the order of s for which

(1.2) lim
t→0

Uαf(x, t) = f(x) a.e. x

holds whenever f ∈ Hs(R2).

The problem of determining the optimal regularity s for which (1.2) holds for the

Schrödinger equation was initially studied by Carleson [6]. When d = 1, he proved the

convergence of (1.2) with α = 2 for s ≥ 1/4, whereas it generally fails for s < 1/4 in any

dimension, as shown by Dahlberg and Kenig [9].

In higher dimensions, Sjölin [21] and Vega [24] independently showed that (1.2) with

α = 2 holds for s > 1/2. This result was improved to s > 1/2−1/(4d) by Lee [16] for d = 2

and by Bourgain [2] for d ≥ 3. Subsequently, Bourgain [3] showed that s ≥ d/(2d+ 2) is
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necessary for the almost everywhere convergence. The sufficiency part of the convergence

was shown by Du, Guth, and Li [10] when d = 2 and by Du and Zhang [12] when d ≥ 3

for a sharp range except for the endpoint (see [1, 5, 8, 11,17,18,20,23] for previous work).

For the fractional Schrödinger operator (α > 1), Sjölin [21] proved that (1.2) holds if

and only if s ≥ 1/4 when d = 1. He also obtained some positive results in higher dimen-

sions: (1.2) is valid for s ≥ 1/2 when d = 2 and for s > 1/2 when d ≥ 3. Subsequently,

this result was improved by Miao, Yang, and Zheng [19] to s > 3/8 when d = 2 and s > s0

for some s0 < 1/2 when d ≥ 3. We extend the result for d = 2.

Theorem 1.1. Let α > 1. Then, (1.2) holds for f ∈ Hs(R2) whenever s > 1/3.

The result in Theorem 1.1 extends to the solution of the linear dispersive equation

iut − Φ(D)u = 0, u(x, 0) = f(x).

Here, Φ(D) is a multiplier operator defined on R2, where Φ is a smooth function except

for the origin and satisfies the following property: for α > 1, there is a constant C ≥ 1

such that |∇Φ(ξ)| ≥ C−1|ξ|α−1 and |∂γξ Φ(ξ)| ≤ C|ξ|α−|γ| for any multi-indices γ. See

Remark 3.11.

We denote by Bd(x, r) a ball of radius r centered at x in Rd. Theorem 1.1 follows from

the maximal estimate.

Theorem 1.2. Let α > 1. Then, for s > 1/3, there exists a constant C > 0 such that

‖Uαf‖L3
xL
∞
t (B2(0,1)×[0,1]) ≤ C‖f‖Hs(R2).

The proof of Theorem 1.2 is motivated by the argument used in [10] and proceeds

by using polynomial partitioning to decompose Uαf into cells as well as transversal and

tangential parts of a wall. The first two parts are easy to handle by induction, whereas

the tangential term is much more complicated. To treat the tangential part, we need to

prove refined Strichartz estimate for Uα. We prove the estimate by using the decoupling

inequality for elliptic parabola and induction on scales via rescaling. In contrast to the

Schrödinger operator, Uαf (α 6= 2) does not preserve the form after parabolic rescaling. To

circumvent this issue, we consider a class of general elliptic functions as in [14]. Thus, we

obtain the refined Strichartz estimates for a general class of operators (see Proposition 3.6).

Structure of the paper. The remainder of this paper is organized as follows. By applying

polynomial partitioning, we reduce the problem to a problem of proving bilinear tangen-

tial estimate (Theorem 2.6). Section 3 establishes the linear refined Strichartz estimates

(Proposition 3.6) and bilinear refined Strichartz estimates (Proposition 3.10). Accordingly,

we prove Theorem 2.6.
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Notation. Throughout the paper, F(f) denotes the Fourier transform of f . Further,

A . B denotes A ≤ CB for some constant C > 0 and #D denotes the cardinality of a set

D.

2. Proof of Theorem 1.2

Let α > 1 and set Ar be the annulus given by

Ar := {ξ ∈ R2 : 2−1r ≤ |ξ| ≤ 2r}.

To prove Theorem 1.2, by the Littlewood–Paley decomposition and the triangle inequality,

it suffices to show that for any ε > 0, there is Cε > 0 such that∥∥∥∥ sup
0<t≤1

|Uαf |
∥∥∥∥
L3(B2(0,1))

≤ CεR1/3+ε‖f‖2,

provided that f̂ is supported on AR for R ≥ 1. By a parabolic rescaling ξ → Rξ and

(x, t)→ (R−1x,R−αt), the estimate is reduced to showing that

(2.1)

∥∥∥∥ sup
0<t≤Rα

|Uαf |
∥∥∥∥
L3(B2(0,R))

≤ CεRε‖f‖2,

whenever f̂ is supported on A1. Now we reduce the matter to showing (2.1) in which

the supremum is taken over a smaller interval [0, R] instead of [0, Rα]. More precisely, to

prove (2.1) it suffices to show that for any ε > 0, there exists a constant Cε > 0 such that∥∥∥∥ sup
0<t≤R

|Uαf |
∥∥∥∥
L3(B2(0,R))

≤ CεRε‖f‖2

whenever f̂ is supported on A1. This reduction can be obtained by applying the time local-

ization lemma in [19, Lemma 2.11] for the fractional Schrödinger operator (see also [16]).

Alternatively, one may verify the lemma by using TT ∗ argument as in [7, Lemma 2.1].

After finite decomposition, we may assume that f̂ is supported on a ball B2(ξ0, r) ⊂ A1.

Hence, Theorem 1.2 is a consequence of the following. For simplicity, let BR = B2(0, R)×
[0, R].

Theorem 2.1. Let p ≥ 3 and R ≥ 1. Then, for any ε > 0, q > ε−4, and r ≤ 1 such that

B(ξ0, r) ⊂ A1, there exists a constant Cε > 0 such that

(2.2) ‖Uαf‖LpxLqt (BR) ≤ Cεrε
2
Rε‖f‖2

whenever f̂ is supported on B(ξ0, r).
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Indeed, by the dominated convergence theorem, the estimate (2.2) implies that

‖Uαf‖LpxL∞t (BR) ≤ CεRε‖f‖2

for any p > 3. By interpolating this with a trivial estimate ‖Uαf‖L2
xL
∞
t (BR) . R1/2‖f‖2,

we have Theorem 1.2.

We begin by stating a wave packet decomposition of Uαf (see, for example, [10, 22]).

For later use, we state the following for a more general operator eitΦf defined by

eitΦf(x, t) =

∫
ei(x·ξ+tΦ(ξ))f̂(ξ) dξ

where Φ is smooth and the Hessian matrix of Φ is nondegenerate. Let ψ be a smooth

function such that ψ̂ is supported on B2(0, 3/2) and
∑

k∈Z2 |ψ̂( · − k)|2 = (2π)−2 on R2.

For δ > 0 and (y, ν) ∈ [R1/2Z2∩B2(0, R)]× [R−1/2Z2∩B2(0, 2)], we define a tube T = Ty,v

by

(2.3) T =
{

(x, t) ∈ R3 : |x− y + t∇Φ(v)| ≤ R1/2+δ, 0 ≤ t ≤ R
}
,

and denote the direction of tube by D(T ) = (−∇Φ(v), 1) and the set of all tubes T by T .

We define ψT = ψTy,v by

ψ̂T (ξ) = e−iy·ξR1/2ψ̂(R1/2(ξ − v))

so that
∑

T∈T ψT (x)F(ψT )(ξ) = (2π)−2eix·ξ by the Poisson summation formula (see for

example [13]).

Lemma 2.2. Let Φ, T and ψT be as above. Suppose f̂ is supported on the ball B2(0, 1).

By setting fT = 〈f, ψT 〉ψT , we have

f =
∑
T∈T

fT

such that ∑
T∈T
|〈f, ψT 〉|2 . ‖f‖22

and for sufficiently large N ≥ 1 and (x, t) ∈ B3(0, R),

|eitΦψT (x, t)| . R−1/2χT (x, t) +O(R−N )‖f‖2.

Let ε > 0 and 0 < r ≤ 1 ≤ R. Suppose that the support of f̂ is contained in B2(ξ0, r)

for some ξ0 ∈ A1. The proof proceeds by induction on the size of r and R. Note that

(2.2) holds trivially for R ∼ 1; hence, it suffices to consider R � 1. Furthermore, we

only need to consider r ≥ R−1/2. In fact, if r ≤ R−10, then (2.2) follows trivially since
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|Uαf(x, t)| ≤ r‖f‖2 by Hölder’s inequality. On the other hand, if R−10 ≤ r ≤ R−1/2, then

all the wave packets have the same direction. Therefore, we apply Hölder’s inequality and

obtain ∥∥∥∥∑
T

UαfT

∥∥∥∥
LpxL

q
t (BR)

. R−1/2+1/q

∥∥∥∥∑
T

〈f, ψT 〉χT
∥∥∥∥
LpxL

∞
t (BR)

. R−1/2+1/q
∑
T

|〈f, ψT 〉|
∥∥∥∥ sup

T
χT

∥∥∥∥
LpxL

∞
t (BR)

. R−1/2+1/qR(3/2+δ)/p‖f‖2.

(2.4)

For the last inequality, we use (2.3). Thus, (2.2) follows for p ≥ 3 and sufficiently large

q > ε−4 with small δ = δ(ε). Hereafter, we only consider r ≥ R−1/2. Now, we may assume

that (2.2) holds if the radius of balls in physical space is less than R/2 or the radius of

balls in physical space is less than R and that of balls in frequency space is less than r/2.

Then, it suffices to show (2.2) for R� 1 and r ≥ R−1/2.

Now, we reduce the matter to showing the bilinear tangential estimate (Theorem 2.6)

by a standard argument using polynomial partitioning. Let us denote by Z(P ) the zero

set of a polynomial P . We say that P is a nonsingular polynomial if ∇P (z) 6= 0 for all

z ∈ Z(P ). Throughout this paper, we may assume that the polynomial P is a product

of nonsingular polynomials by the density argument (see [14]). We recall the polynomial

partitioning in [10].

Theorem 2.3. Let g ∈ L1
xL

s
t (Rd+1) be a nonzero function, 1 ≤ s <∞, and D > 0. Then,

there exists a nonzero polynomial P defined on Rd+1 of degree ≤ D, which is a product of

distinct nonsingular polynomials, and there exists a collection of disjoint open sets {Oi}i∈I
such that #I ∼ Dd+1 and

(Rd × R) \ Z(P ) =
⋃
i∈I

Oi.

Moreover, there exists a constant C1 independent of i such that

‖g‖L1
xL

s
t (Rd+1) ≤ C1D

d+1‖χOig‖L1
xL

s
t (Rd+1)

for each i ∈ I.

By taking s = q/p, D = Rε
4
, and g = χBR |Uαf |p, and applying Theorem 2.3, we have

(2.5) ‖Uαf‖pLpxLqt (BR)
≤ C1D

3‖χOiUαf‖pLpxLqt (BR)
.

We denote by W a wall that is an R1/2+δ-neighborhood of Z(P ) and a cell Õi = Oi \W .

It is clear that

‖Uαf‖pLpxLqt (BR)
=
∑
i∈I
‖χ

Õi
Uαf‖pLpxLqt (BR)

+ ‖χWUαf‖pLpxLqt (BR)
.
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If the terms
∑

i∈I ‖χÕiUαf‖
p
LpxL

q
t (BR)

dominate the other in the above-mentioned equation,

the estimate is easy to handle. Hence, we consider this case first.

Cellular part. Let us consider a subcollection Ĩ of an index set I such that

Ĩ =
{
i ∈ I : ‖Uαf‖pLpxLqt (BR)

≤ 2C1D
3‖χ

Õi
Uαf‖pLpxLqt (BR)

}
where the constant C1 is given by (2.5). To treat the case in which the cellular part

dominates the walls, we may assume that Ĩ = I. For each i ∈ I, we set

fi =
∑

T : T∩Õi 6=∅

fT .

By Lemma 2.2, if (x, t) ∈ Õi, then |Uαf(x, t)| ≤ |Uαfi(x, t)|+O(R−N )‖f‖2 for sufficiently

large N . Since each tube T intersects at most (D + 1) cells Oi, we have∑
i∈I
‖fi‖22 =

∑
i∈I,T∈T :

T∩Õi 6=∅

‖fT ‖22 . D‖f‖22.

Since #I ∼ D3, by pigeonholing, there exists an index i◦ ∈ I such that ‖fi◦‖22 . D−2‖f‖22.

We cover BR by {B′R/2}, which are translations of BR/2, and obtain

‖Uαf‖pLpxLqt (BR)
≤ 2C1D

3
∑
B′
R/2

∥∥∥∥ ∑
T : T∩Õi◦ 6=∅

UαfT

∥∥∥∥p
LpxL

q
t (B
′
R/2

)

+O(R−N )‖f‖p2.

By applying the induction hypothesis, it follows that

‖Uαf‖pLpxLqt (BR)
≤ CD3

[
Cεr

ε2(R/2)ε‖fi◦‖2
]p

+O(R−N )‖f‖p2
≤ 2C2−pεD3

[
Cεr

ε2RεD−1‖f‖2
]p
.

Since p > 3 and D = Rε
4
, we see that 2C2−pεD3−p ≤ 2−p for sufficiently large R.

Therefore, we get (2.2) when the cell part dominates.

Now, we consider the opposite case in which the wall part dominates. To this end, we

present some definitions. We denote by Tz(Z(P )) the tangent plane of Z(P ) at a fixed

point z. Let us partition BR into balls Bj of radius R1−δ. We say that a tube T is tangent

to the wall W in Bj if T intersects Bj and W and satisfies

Angle
(
D(T ), Tz(Z(P ))

)
≤ R−1/2+2δ

for any nonsingular point z ∈ Z(P ) ∩ 10T ∩ 2Bj . Otherwise, we say that T is transversal

to the wall W in Bj . Let Tj,tang be the collection of all tubes T ∈ T such that T is tangent
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to the wall in Bj and let Tj,trans be the collection of tubes such that T is transversal. We

also set

fj,tang =
∑

T∈Tj,tang

fT and fj,trans =
∑

T∈Tj,trans

fT .

For a given δ′ > 0, we say that a tube T is R−1/2+δ′-tangent to Z if it satisfies

(2.6) T ⊂ NR1/2+δ′Z ∩BR, Angle
(
D(T ), TzZ(P )

)
≤ R−1/2+δ′

for all nonsingular points z ∈ N2R1/2+δ′ (T ) ∩ 2BR ∩ Z. The collection of tubes that are

R−1/2+δ′-tangent to Z is denoted by TZ(R−1/2+δ′). We say that f is concentrated on wave

packets from TZ(R−1/2+δ′) if ∑
T /∈TZ(R−1/2+δ′ )

‖fT ‖2 = O(R−N )‖f‖2

holds for sufficiently large N > 0.

Wall part. Now we consider the case I 6= Ĩ; hence, we can choose i◦ ∈ I \ Ĩ. From (2.5),

‖Uαf‖pLpxLqt (BR)
≤ C1D

3‖χ
Õi◦

Uαf‖pLpxLqt (BR)
+ C1D

3‖χOi◦∩WUαf‖
p
LpxL

q
t (BR)

.

Since i◦ ∈ I \ Ĩ, we have C1D
3‖χ

Õi◦
Uαf‖pLpxLqt (BR)

≤ 2−1‖Uαf‖pLpxLqt (BR)
. Therefore,

‖Uαf‖pLpxLqt (BR)
≤ 2C1D

3‖χWUαf‖pLpxLqt (BR)
.

Thus, it suffices to consider the wave packets concentrated on the wall.

Recalling that supp f̂ ⊂ B2(ξ0, r), for 1 � K � Rε, we cover B2(ξ0, r) by boundedly

overlapping collection of balls ω of radius K−1r and let f =
∑

ω fω, where f̂ω is supported

on ω. For each fixed Bj , we set

fω,j,tang = (fω)j,tang, fω,j,trans = (fω)j,trans.

We define a bilinear tangential operator by

Bil(Uαfj,tang)(x, t) =
∑

dist(ω1,ω2)≥K−1r

|Uαfω1,j,tang(x, t)|1/2|Uαfω2,j,tang(x, t)|1/2.

We set

(2.7) B =
{

(x, t) ∈ BR : Kε3 max
ω
|Uαfω(x, t)| ≤ |Uαf(x, t)|

}
and for (x, t) ∈W ∩B,

Ω =
{
ω : |Uαfω,j,tang(x, t)| ≤ K−4|Uαf(x, t)|

}
.
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By fixing Bj and (x, t) ∈ Bj ∩W ∩B, we first consider the case in which all balls ω in Ωc

are adjacent. Hence, #Ωc . 1, and it follows that
∑

ω∈Ωc |Uαfω(x, t)| ≤ 1
2 |Uαf(x, t)| by

(2.7). Thus, we have 1
2 |Uαf(x, t)| ≤

∣∣∑
ω∈Ω Uαfω(x, t)

∣∣. Then,

1

2
|Uαf(x, t)| ≤

∣∣∣∣∑
ω∈Ω

Uαfω,j,trans(x, t)

∣∣∣∣+

∣∣∣∣∑
ω∈Ω

Uαfω,j,tang(x, t)

∣∣∣∣+O(R−N )‖f‖2.

Since the total number of ω is ≤ 10K2, we get

1

2
|Uαf(x, t)| .

∣∣∣∣∑
ω∈Ω

Uαfω,j,trans(x, t)

∣∣∣∣+K−2|Uαf(x, t)|+O(R−N )‖f‖2.

Otherwise, for (x, t) ∈ Bj ∩W ∩ B, there are ω1, ω2 ∈ Ωc such that dist(ω1, ω2) & K−1r.

Then, by the definition of Ω, |Uαf(x, t)| ≤ K4 Bil(Uαfj,tang)(x, t). Therefore, we have the

following.

Lemma 2.4. For each point (x, t) ∈ W ∩ BR, there exists a collection Ω of balls ω of

radius K−1r such that

|χWUαf(x, t)|p . |χW∩BcUαf(x, t)|p +
∑
j

∣∣∣∣∑
ω∈Ω

χW∩BjUαfω,j,trans(x, t)

∣∣∣∣p
+
∑
j

K4p|χW∩Bj Bil(Uαfj,tang)(x, t)|p +O(R−N )‖f‖p2.

By Lemma 2.4, we have

‖Uαf‖pLpxLqt (W∩BR)
. ‖Uαf‖pLpxLqt (W∩Bc)

+
∑
j

∥∥∥∥∑
ω∈Ω

Uαfω,j,trans

∥∥∥∥p
LpxL

q
t (W∩Bj)

+
∑
j

‖K4 Bil(Uαfj,tang)‖p
LpxL

q
t (W∩Bj)

+O(R−N )‖f‖p2.
(2.8)

From (2.7), the first term on the right-hand side of (2.8) is bounded by

‖Uαf‖pLpxLqt (W∩Bc)
≤ Kε3p

∑
ω

‖Uαfω‖pLpxLqt (BR)
.

By applying the induction hypothesis (2.2) to the right-hand side, we have

‖Uαf‖pLpxLqt (W∩Bc)
≤ Kε3p

∑
ω

[
Cε(K

−1r)ε
2
Rε‖fω‖2

]p ≤ 10K(ε3−ε2)p
[
Cεr

ε2Rε‖f‖2
]p
.

Since K � Rε and R � 1, we have 10Kε3−ε2 ≤ 1/6. This completes the induction step

for the first term on the right-hand side of (2.8). In the remainder of this section, we treat

the second and third terms on the right-hand side of (2.8).
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Transversal case. Now, we deal with the transversal term in (2.8). In [14], it was shown

that for each tube T ∈ T ,

(2.9) #{j : T ∈ Tj,trans} ≤ RO(ε4).

Since #Ω ≤ 210K2
, the second term on the right-hand side of (2.8) is controlled by

(2.10)
∑
j

∥∥∥∥∥max
Ω

∣∣∣∣∑
ω∈Ω

Uαfω,j,trans

∣∣∣∣
∥∥∥∥∥
p

LpxL
q
t (W∩Bj)

≤
∑
j

210K2

∥∥∥∥∑
ω∈Ω

Uαfω,j,trans

∥∥∥∥p
LpxL

q
t (Bj)

.

By applying the induction hypothesis to a ball Bj of radius R1−δ, the right-hand side of

(2.10) is bounded by
∑

j 210K2[
Cεr

ε2R(1−δ)ε‖fj,trans‖2
]p

. Therefore, by applying (2.9), we

get

∑
j

∥∥∥∥∥max
Ω

∣∣∣∣∑
ω∈Ω

Uαfω,j,trans

∣∣∣∣
∥∥∥∥∥
p

LpxL
q
t (W∩Bj)

≤ RO(ε4)210K2
R−δεp

[
Cεr

ε2Rε‖f‖2
]p
.

Since K � Rε, we take δ = ε2 and obtain 210K2
RO(ε4)−ε3p ≤ 1/6 for sufficiently large

R > 0. Therefore, the induction closes for the transversal term.

Bilinear tangential case. To estimate the third term on the right-hand side of (2.8), it

remains to prove the following bilinear maximal estimates.

Theorem 2.5. For any ε > 0 and p > 3, there exists Cε > 0 such that(∫
BR

sup
t: (x,t)∈W∩Bj

|Bil(Uαfj,tang)(x, t)|p dx
)1/p

≤ CεRε/2‖f‖2.

Indeed, assuming Theorem 2.5, by Hölder’s inequality, it follows that for q > ε−4,∑
j

K4p‖Bil(Uαfj,tang)‖p
LpxL

q
t (W∩Bj)

≤
∑
j

K4pRε
4p‖Bil(Uαfj,tang)‖p

LpxL
∞
t (W∩Bj)

≤ R3δK4pRε
4p
[
CεR

ε/2‖f‖2
]p

since the number of j is . R3δ. Because δ = ε2, K � Rε and r ≥ R−1/2, we obtain

K4Rε
4+ε/2+3δ/p ≤ 1

6R
εrε

2
. This completes the proof of Theorem 2.1.

To prove Theorem 2.5, we show the following maximal estimate.

Theorem 2.6. Let 0 < r ≤ 1, ξ0 ∈ A1, and K = K(ε) be a sufficiently large constant.

Suppose that the supports of f̂ and ĝ are contained in B2(ξ0, r) and separated by K−1r. If

f , g are concentrated on the wave packets from TZ(R−1/2+δ′) with δ′ ≤ 100δ, then there

exist constants c and C such that

(2.11)
∥∥|Uαf |1/2|Uαg|1/2∥∥L3

xL
∞
t (BR)

≤ CRcδ′‖f‖1/22 ‖g‖
1/2
2 .
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In Theorem 2.5, we are concerned with the function fj,tang defined on a smaller ball

Bj of radius R1 = R1−δ. We can easily see that the wave packets of fj,tang on the ball Bj

are concentrated in TZ(R
−1/2+δ′

1 ) for some δ′ ≤ 100δ (see [15]), and we omit the details.

Since Rδ
′

1 ≤ Rcδ, we obtain the desired bound in Theorem 2.5 from the estimate (2.11).

3. Proof of Theorem 2.6

In this section, we prove Theorem 2.6 by considering linear and bilinear refined Strichartz

estimates (Propositions 3.6 and 3.10, respectively), which are variants of the estimates

presented in [10] for a class of elliptic functions. We begin by defining a class of elliptic

phase functions.

3.1. Class of elliptic functions

We consider the class of phase functions that are small perturbations of φ0(ξ) = |ξ|2/2.

Definition 3.1. Let 0 < ε0 � 1, ρ > 0, and n ≥ 103 be a positive integer. We define a

class of normalized phase functions by

P(ε0, n) = {φ ∈ Cn(B2(0, 2)) : ‖φ− φ0‖Cn(B2(0,2)) ≤ ε0}.

Let φ ∈ P(ε0, n), ξ0 ∈ A1, and Hφ(ξ0) be the Hessian matrix of φ at ξ = ξ0. Then, Hφ

is positive definite on B2(0, 2) and Hφ(ξ0) = T−1DT, where D is a diagonal matrix with

eigenvalues λ1 > 0 and λ2 > 0, and T is a symmetric matrix. If we set Hξ0 :=
√

Hφ(ξ0),

then Hξ0 = T−1D1/2T with D1/2 = (
√
λ1e1,

√
λ2e2). We denote the normalization of φ by

(3.1) φρξ0(ξ) = ρ−2
(
φ(ρH−1

ξ0
ξ + ξ0)− φ(ξ0)− ρ∇φ(ξ0) ·H−1

ξ0
ξ
)
.

Then, we observe the following, which plays an important role in the induction argu-

ment. We denote by intAr the interior of Ar.

Lemma 3.2. Let ε0 > 0 and ξ0 ∈ intA1. Suppose that φ ∈ Cn(A1) and the Hessian matrix

of φ is positive definite. Then, there exists a constant ρ0 > 0 such that φρξ0 ∈ P(ε0, n)

whenever ρ ≤ ρ0. Moreover, if φ ∈ P(ε0, n), then for sufficiently small ε0 > 0, there exists

a constant ρ1 such that φρξ0 ∈ P(ε0, n) whenever ρ ≤ ρ1.

Proof. By (3.1) and Taylor’s expansion, we may write

φρξ0(ξ) =
|ξ|2
2

+ E(ξ, ξ0, ρ)

where ‖E( ·, ξ0, ρ)‖Cn(A1) = O(ρ|H−1
ξ0
ξ|3). Thus, we can take ρ0 such that ‖φρξ0−φ0‖Cn(A1) ≤

Cρ ≤ ε0 holds for any ρ ≤ ρ0. Similarly, if φ ∈ P(ε0, n) and ξ0 ∈ B2(0, 1), then we can

take ρ1 > 0 such that φρξ0 ∈ P(ε0, n) whenever ρ ≤ ρ1.
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Suppose that φ ∈ Cn(A1) and the Hessian matrix of φ is positive definite. For a

given small ε0 > 0, by partitioning B2(0, 1) into smaller balls of radius ρ0 and applying

Lemma 3.2, φρξ0 ∈ P(ε0, n) for any ρ ≤ ρ0. Therefore, hereafter, we may fix n ≥ 103 and

simply denote P(ε0, n) by P(ε0). To prove Theorem 2.6, it suffices to consider φ ∈ P(ε0).

3.2. Parabolic rescaling

We define a linear map Aρξ0 : R3 → R3 by

(3.2) (Aρξ0)−1(x, t) = (ρ−1Ht
ξ0x− ρ−2t∇φ(ξ0), ρ−2t).

Lemma 3.3. Let ε0 > 0 be sufficiently small, ξ0 ∈ intA1, and φ ∈ P(ε0). Suppose that f̂

is supported on a ball B2(ξ0, ρ) for ρ ≤ ρ1, where ρ1 is given in Lemma 3.2. Then, there

exist f̃ , T̃ , and a constant C = C(ξ0, ρ) such that

(3.3) ‖eitφf‖Lq(T ) = Cρ1−4/q‖eitφ
ρ
ξ0 f̃‖

Lq(T̃ )
,

where F(f̃) is supported on B2(0, 1) such that ‖f̃‖2 = ‖f‖2, and

T̃ = {(x, t) : (Aρξ0)−1(x, t) ∈ T}.

Remark 3.4. Let φ ∈ P(ε0). Suppose that T is a tube of dimensions ρ−1M×ρ−1M×ρ−2M

centered at the origin with its long axis parallel to (−∇φ(ξ0), 1), i.e.,

T = {(x, t) : |x+ t∇φ(ξ0)| ≤ ρ−1M, |t| ≤ ρ−2M}.

Then, T̃ = {(x, t) : |ρ−1Hξ0x| ≤ ρ−1M, |ρ−2t| ≤ ρ−2M} and T̃ is contained a cube of side

length CM for some C = C(ε0).

Proof of Lemma 3.3. Let |H| denote the determinant of a matrix H. By change of variables

ξ → ρH−1
ξ0
ξ + ξ0, we have

∣∣eitφf(x)
∣∣ = ρ|H−1

ξ0
|1/2

∣∣∣∣∫ e
i(x,t)·(ρH−1

ξ0
ξ,φ(ρH−1

ξ0
ξ+ξ0))

ρ|H−1
ξ0
|1/2f̂(ρH−1

ξ0
ξ + ξ0) dξ

∣∣∣∣ .
We define f̃ by

(3.4) F f̃(ξ) = ρ|H−1
ξ0
|1/2f̂(ρH−1

ξ0
ξ + ξ0).

Then, f̃ has a Fourier support on B2(0, 1) and ‖f̃‖2 = ‖f‖2. By the definition of φρξ0 (see

(3.1)), we note that(
ρ−1Ht

ξ0x− ρ−2t∇φ(ξ0)
)
· ρH−1

ξ0
ξ + ρ−2t

(
φ(ρH−1

ξ0
ξ + ξ0)− φ(ξ0)

)
= x · ξ + tφρξ0(ξ).

Thus, by change of variables x → ρ−1Ht
ξ0
x − t∇φ(ξ0) and t → ρ−2t (i.e., (x, t) →

(Aρξ0)−1(x, t)), the desired bound (3.3) follows by taking C = |Hξ0 |1/q−1/2.
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Now, we observe that the condition (2.6) is preserved after parabolic rescaling.

Lemma 3.5. Let 0 < ρ ≤ ρ0 and ξ0 ∈ intA1. Suppose that f is concentrated on the wave

packets from TZ(R−1/2+δ′) associated with φ for some Z = Z(P ). If f̃ is given by (3.4),

then f̃ is concentrated on the wave packets from TZ′(ρ
−1R−1/2+δ′) associated with φρξ0 and

Z ′ = Z ′(P̃ ), where P̃ = P ◦ (Aρξ0)−1.

Proof. It suffices to show that

(3.5) |(−∇ξ′φρξ0(ξ′), 1) · ∇x′,t′P̃ |/|∇x′,t′P̃ | . ρ−1R−1/2+δ′ ,

where ξ′ = ρ−1Hξ0(ξ − ξ0) and (x′, t′) = Aρξ0(x, t). Since P̃ (x′, t′) = P (ρ−1Ht
ξ0
x′ −

ρ−2t′∇φ(ξ0), ρ−2t′), we have

(3.6) ∇x′P̃ = ρ−1Hξ0∇xP and ∂t′P̃ = ρ−2(∂tP −∇xP · ∇φ(ξ0)).

Combining this with ∇ξ′φρξ0(ξ′) = ρ−1H−tξ0 (∇φ(ξ)−∇φ(ξ0)), we get

(−∇ξ′φρξ0(ξ′), 1) · (∇x′P̃ , ∂t′P̃ ) = ρ−2(−∇φ(ξ), 1) · (∇xP, ∂tP ).

On the other hand, from (3.6), we can easily deduce that |∇x′,t′P̃ | & ρ−1|∇x,tP | by

considering the cases |∂tP | ≥ 2|∇xP · ∇φ(ξ0)| and |∂tP | ≤ 2|∇xP · ∇φ(ξ0)| separately.

By the assumption |(−∇φ, 1) · ∇x,tP |/|∇x,tP | . R−1/2+δ′ , the desired estimate (3.5)

follows.

3.3. Linear refined Strichartz estimates

Before proving Theorem 2.6, we consider the linear and bilinear refined Strichartz esti-

mates. We first prove the linear refined Strichartz estimates (Proposition 3.6) and then

prove the bilinear estimates (Proposition 3.10) by using Proposition 3.6.

Proposition 3.6. Let φ ∈ P(ε0). Suppose that f is concentrated on the wave packets from

TZ(R−1/2+δ′) and f̂ is supported on B2(0, 1). Let Q1, Q2, . . . be lattice cubes of side length

R1/2 in B3(0, R). Suppose that M cubes Qj are contained in B2(0, R)× [t0, t0 +R1/2] for

each t0 ∈ R1/2Z ∩ [0, R], and for each Qj,

(3.7) ‖eitφf‖L6(Qj) is essentially constant.

Then, for any ε > 0, there exist constants Cε, C ≥ 1 such that

(3.8) ‖eitφf‖L6(
⋃
j Qj)

≤ CεR−1/6+ε+Cδ′M−1/3‖f‖2.

We start by recalling the l2-decoupling inequality for an elliptic paraboloid, which was

obtained by Bourgain and Demeter [4].
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Theorem 3.7. Suppose that ĝ is supported in a σ-neighborhood of an elliptic paraboloid

S in R2. Let τ be rectangles of dimensions σ1/2 × σ, which cover a σ-neighborhood of S.

If ĝτ = ĝχτ , then for ε > 0 and 2 ≤ p ≤ 6, we have

‖g‖Lp(R2) ≤ Cεσ−ε
(∑

τ

‖gτ‖2Lp(R2)

)1/2

.

Let us consider the wave packet decomposition

(3.9) f =
∑
T

fT

such that the Fourier support of fT is contained in a ball of radius R−1/4 and fT is

essentially supported on a ball of radius R3/4. Then, eitφfT restricted to the ball B3(0, R)

is essentially supported on a tube T of dimensions R3/4×R3/4×R. Since f is concentrated

on the wave packets from TZ(R−1/2+δ′) for some Z, we can apply Theorem 3.7 and obtain

the following.

Proposition 3.8. Let φ ∈ P(ε0) for sufficiently small ε0 > 0. Let f =
∑

T fT be as stated

above. Suppose that f is concentrated on the wave packets from TZ(R−1/2+δ′) for some

Z = Z(P ) and suppose that Q is a cube of side length R1/2 contained in the 2R1/2+δ′-

neighborhood of Z. Then,

(3.10) ‖eitφf‖L6(Q) ≤ CεRε
(∑

T

‖eitφfT ‖2L6(ωQ)

)1/2

+O(R−N )‖f‖2.

Here, ωQ(z) = (1 +R−1/2|z − cQ|)−100, where cQ is the center of the cube Q.

Proof. Let ψ ∈ S(R3) such that ψ = 1 on B3(0, 1) and ψ̂ is supported on B3(0, 1). By

letting ψQ(z) = ψ(CR−1/2(z − cQ)) for some constant C > 0 such that ψ = 1 on Q, we

get

‖eitφf‖L6(Q) ≤ ‖ψQeitφf‖L6(R3).

Since f is concentrated on the wave packets from TZ(R−1/2+δ′), it suffices to consider the

wave packets that are contained in the R1/2+δ′-neighborhood of a plane W = TzZ(P ). We

claim that

(3.11) ‖ψQeitφf‖L6(W ) ≤ CεRε/2
(∑

T

‖ψQeitφfT ‖2L6(W )

)1/2

+O(R−N )‖f‖2.

By assuming (3.11), we prove (3.10). By integrating along the W⊥ axis and using

Minkowski’s inequality and Fubini’s theorem, we obtain

‖eitφf‖L6(Q) ≤ CεRε/2
(∑

T

‖ψQeitφfT ‖2L6(R3)

)1/2

+O(R−N )‖f‖2.
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Here, we use the fact that the number of tubes T intersecting Q is . Rε/100. Since ψQ

decays rapidly outside Q, we get the desired result (3.10).

Now, we prove (3.11). It suffices to show that the restriction of F(ψQe
itφf) to W is

contained in an R−1/4-neighborhood of an elliptic paraboloid. Since F(ψQ) is supported

on B3(0, R−1/2), it suffices to consider the restriction of F(eitφf) to W . Let n be the

unit normal vector of W . Since f̂ is supported on B2(0, 1), we have |n · e3| < 1/2. By

rotation and dilation, we may assume that n = n′/|n′|, where n′ = (0, 1, n3) for some

|n3| . 1. Since ∂2
ξ2
φ 6= 0 on B2(0, 1), by the implicit function theorem, there is a function

g ∈ C1
0((−1, 1)) such that

(3.12) (−∇φ(ξ1, g(ξ1)), 1) · n = 0,

and equivalently, n3 = ∂ξ2φ(ξ1, g(ξ1)).

Note that |(−∇φ(ξ), 1) · n| = | − ∂ξ2φ + n3| . R−1/4 on the support of supp f̂ . Since

∂2
ξ2
φ 6= 0, by the mean value theorem, we have

(3.13) |ξ2 − g(ξ1)| . R−1/4.

Therefore, we may write

(ξ, φ(ξ)) = (ξ1, 0, φ̃(ξ1)) + ξ2n
′ + E(ξ)e3,

where φ̃(ξ1) = φ(ξ1, g(ξ1)) − n3g(ξ1) and E(ξ) = φ(ξ) − φ(ξ1, g(ξ1)) − n3(ξ2 − g(ξ1)). By

(3.13) and the mean value theorem, it is easy to see that E(ξ) = O(R−1/2). Moreover, by

(3.12), ∂ξ1 φ̃(ξ1) = (∂ξ1φ)(ξ1, g(ξ1)); hence, ∂2
ξ1
φ̃(ξ1) = (∂2

ξ1
φ)(ξ1, g(ξ1)) + O(ε0) whenever

φ ∈ P(ε0) for sufficiently small ε0 > 0. Thus, the curve parameterized by ξ1 → φ̃(ξ1) is

contained in an R−1/2-neighborhood of the elliptic paraboloid. By Theorem 3.7, we obtain

the desired bound (3.11).

Using Proposition 3.8, we can prove Proposition 3.6 by induction.

Proof of Proposition 3.6. Let us set A0 := AR−1/4

ξ0
for simplicity. Recalling (3.9), for each

tube T , we choose a cube QT of side length R1/2 that is contained inA0(T ). We decompose

QT into horizontal strips S′ of height R1/4 in QT such that QT = ∪S′. Furthermore, each

strip S′ is decomposed into cubes Q′ of side length R1/4. We set T ′ := A−1
0 (Q′), which is

a tube of size ∼ R1/2×R1/2×R3/4 such that the union of all T ′ covers T (see Figure 3.1).

By dyadic pigeonholing on the size of ‖fT ‖2, we may assume that ‖fT ‖2 is essentially

constant for each tube T . In fact, the number of h is only C logR such that ‖fT ‖2 ∼ h

since it is negligible if ‖fT ‖2 ≤ R−N‖f‖2. Therefore, we choose one of h such that ‖fT ‖2
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is essentially constant for a fraction ∼ 1/(logR) of tubes T . For a fixed such tube T , we

again perform dyadic pigeonholing on the size of ‖eitφfT ‖L6(T ′) such that

(3.14) ‖eitφfT ‖L6(T ′) is essentially constant,

which is greater than R−N‖f‖2 since this part can be absorbed in the error term in (3.10)

if the constant is less than R−N‖f‖2. We sort T ′ further according to the number of T ′

arranged along the short axis of T . Precisely, we may assume that

#{T ′ : T ′ ⊂ A−1
0 (S′)} ∼M ′

for a dyadic number M ′. For simplicity, by abuse of notation, we denote such tubes by

T ′. Then, it follows that

(3.15) ‖eitφf‖L6(Qj) . (logR)3

∥∥∥∥∑
T

∑
T ′

χ∪T ′e
itφfT

∥∥∥∥
L6(Qj)

for a fraction ∼ 1/(logR)3 of all cubes Qj in
⋃
j Qj . Finally, we sort the cubes Qj

further such that Qj satisfies (3.15) and each Qj is contained in ∼ µ tubes T such that

Qj ⊂ T ′ ⊂ T . Let Q denote the set of such cubes Qj ; then, we see that #Q & (logR)−4M

by dyadic pigeonholing. By (3.7), we have ‖eitφf‖6L6(
⋃
j Qj)

. (logR)4‖eitφf‖6L6(
⋃
Qj∈Q

Qj)
.

Hence, it suffices to consider cubes Qj ∈ Q.

By (3.15), (3.10), and Hölder’s inequality, we get

(3.16) ‖eitφf‖L6(Qj) ≤ Cε(logR)4Rεµ1/3

(∑
T

‖χ∪T ′eitφfT ‖6L6(ωQj )

)1/6

+O(R−N )‖f‖2.

Since T ′ = A−1
0 (Q′) for some cube Q′ of side length R1/4, by (3.3), we have∑

Qj

‖χ∪T ′eitφfT ‖6L6(ωQj ) . R−1/2‖eitφ̃f̃T ‖6L6(∪Q′)
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where F(f̃T ) is given by (3.4) for fT in place of f . Then, F(f̃T ) is supported on B2(0, 1)

and ‖f̃T ‖2 = ‖fT ‖2. Combining this with (3.16), we have

(3.17) ‖eitφf‖L6(
⋃
j Qj)

≤ CεR−1/12+2εµ1/3

(∑
T

‖eitφ̃f̃T ‖6L6(∪Q′)

)1/6

+O(R−N )‖f‖2.

By the choice of (3.14) combined with (3.3) for f = fT , we observe that ‖eitφ̃f̃T ‖L6(Q′)

is essentially constant for each Q′. Since φ ∈ P(ε0), we have φ̃ ∈ P(ε0) by Lemma 3.2

provided that R−1/2 ≤ ρ1. Thus, by applying the induction hypothesis to the right-hand

side of (3.17) with R1/2 and M ′ instead of R and M , respectively, we have

(3.18) ‖eitφf‖L6(
⋃
j Qj)

≤ CεR−
1
6

+2ε+ 1
2
Cδ′µ1/3(M ′)−1/3

(∑
T

‖fT ‖62

)1/6

.

Since ‖fT ‖2 is essentially constant, it is easy to see that
(∑

T ‖fT ‖62
)1/6

. (#T )−1/3‖f‖2.

We claim that

(3.19) Mµ . (logR)4M ′#T.

Once we have (3.19), (3.18) is, in turn, bounded by

‖eitφf‖L6(
⋃
j Qj)

≤ CεR−
1
6

+3ε+ 1
2
Cδ′M−1/3‖f‖2.

Taking ε = ε/C for sufficiently large C > 0 gives the desired bound (3.8).

Now, we prove (3.19). Let S(t0) be the strip given by

S(t0) = R2 × [t0, t0 +R1/2]

for some t0 ∈ [0, R]∩R1/2Z. It suffices to consider cubes Qj arranged along the strip S(t0).

By the choice of Qj , T , and T ′, we note that

(3.20) (logR)−4Mµ . #{(Qj , T ) : Qj ⊂ T ′ ∩ S(t0) for some T ′ ⊂ T}.

Note that the angle between the long axis of T ′ and the vectors contained in the x-plane R2

is away from 0. Hence, each tube T ′ contains at most a finite number of cubes Qj in S(t0).

Similarly, since T ′ ⊂ A−1
0 (S′) for some S′, the number of S′ such that S(t0) ∩A−1

0 (S′) 6= ∅
is at most C. Hence, the number of Qj is smaller than C times that of T ′ such that

T ′ ⊂ A−1
0 (S′). Therefore, #Qj ≤ CM ′. Thus, the right-hand side of (3.20) is bounded

by M ′#T , which gives the desired bound (3.19).
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3.4. Bilinear refined Strichartz estimates

Now, we establish the bilinear refined Strichartz estimates using Proposition 3.6.

Proposition 3.9. Let φ ∈ P(ε0), R−1/2 ≤ r ≤ 1, and K be a sufficiently large constant.

Suppose that the Fourier supports of f , g are contained in B2(ξ0, r) and separated by

K−1r, and f , g are concentrated on the wave packets from TZ(R−1/2+δ′) for Z = Z(P )

with δ′ ≤ 100δ. Let Q1, . . . , QM be cubes of side length R1/2 contained in BR and

(3.21)
∥∥|eitφfeitφg|1/2∥∥

L6(Qj)
is essentially constant

for each Qj. Then, for any ε > 0, there exist Cε, C ≥ 1 such that

(3.22)
∥∥|eitφfeitφg|1/2∥∥

L6(
⋃M
j=1Qj)

≤ Cεr−1/6M−1/6R−1/6+ε+Cδ′‖f‖1/22 ‖g‖
1/2
2 .

Before proving Proposition 3.9, we first consider the special case r = 1 of Proposi-

tion 3.9 as follows, which is a direct consequence of Proposition 3.6.

Proposition 3.10. Let φ ∈ P(ε0). Suppose that the Fourier supports of f , g are contained

in B2(0, 1) and separated by K−1, and f and g are concentrated on the wave packets from

TZ(R−1/2+δ′) for δ′ ≤ 100δ. Suppose that Q1, . . . , QM are cubes of side length R1/2, and

‖eitφf‖L6(Qj) and ‖eitφg‖L6(Qj) are essentially constant for each Qj. Then, for any ε > 0,

there exist Cε, C ≥ 1 such that

(3.23)
∥∥|eitφfeitφg|1/2∥∥

L6(
⋃
j Qj)

≤ CεR−1/6+ε+Cδ′M−1/6‖f‖1/22 ‖g‖
1/2
2 .

Proof. Let us consider the wave packet decompositions f =
∑

T fT and g =
∑

T̃
g
T̃

(see

(3.9)). By repeating the pigeonholing arguments as in the proof of Proposition 3.6, we

can choose Tf , T ′f , M ′f , µf and Tg, T
′
g, M

′
g, µg, respectively, in place of T , T ′, M , µ.

Then, by pigeonholing, there are C(logR)−8M cubes Qj such that (3.18) holds for f and

g simultaneously. We claim that

(3.24) Mµfµg .M ′fM
′
g#Tf#Tg.

First, by assuming (3.24), we prove (3.23). By Hölder’s inequality,∥∥|eitφfeitφg|1/2∥∥
L6(

⋃
j Qj)

≤ ‖eitφf‖1/2
L6(

⋃
j Qj)
‖eitφg‖1/2

L6(
⋃
j Qj)

.

We apply (3.18) to the right-hand side and get∥∥|eitφfeitφg|1/2∥∥
L6(

⋃
j Qj)

≤ CεR−
1
6

+ε+ 1
2
Cδ′(µfµg)

1/6(#Tf#TgM
′
fM

′
g)
−1/6‖f‖1/22 ‖g‖

1/2
2 .

Substituting (3.24), we obtain the desired bound (3.23).
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Now, we prove (3.24). For each fixed Tf and Tg, we first consider the intersection of

T ′f ⊂ Tf and T ′g ⊂ Tg. Since the angle between T ′f and T ′g is about 1/K, the intersection of

T ′f and T ′g is essentially a cube of side length CKR
1/2. Therefore, if cubes Qj are contained

in (∪T ′f ) ∩ (∪T ′g), then the number of such Qj is at most CM ′fM
′
g.

Recall that µf is the number of Tf containing Qj such that Qj ⊂ T ′f and µg similarly.

Considering all pairs {Tf , Tg, Qj} such that Qj ⊂ T ′f ∩ T ′g for some T ′f ⊂ Tf and T ′g ⊂ Tg,
we obtain (3.24).

Now, we prove Proposition 3.9. If r ∼ 1, Proposition 3.9 is a direct consequence

of Proposition 3.10. Hence, we are only concerned with R−1/2 ≤ r � 1. In this case,

Proposition 3.9 follows from Proposition 3.10 via rescaling in Lemma 3.3.

Proof of Proposition 3.9. Let φ ∈ P(ε0). By (3.2), Arξ0(BR) is a tube of dimensions CrR×
CrR× r2R for a constant C ≥ 1. Let us set

Pj = Arξ0(Qj).

Since Qj is a cube of side length R1/2, Pj is a tube of dimensions CrR1/2×CrR1/2×r2R1/2

contained in a larger tube Arξ0(BR).

We define f̃ and g̃ by (3.4) for f and g, respectively, with r = ρ. Further, let φ̃ = φrξ0 .

By Lemma 3.2, we see that φ̃ ∈ P(ε0) by taking sufficiently small r ≤ ρ1. Moreover, by

Lemma 3.3, we have∥∥|eitφfeitφg|1/2∥∥
L6(

⋃M
j=1Qj)

. r1/3
∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥

L6(
⋃
j Pj)

such that ‖f̃‖2 = ‖f‖2, ‖g̃‖2 = ‖g‖2 and the Fourier supports of f̃ and g̃ are contained

in B2(0, 1) and separated by K−1. Moreover, by Lemma 3.5, f̃ and g̃ are r−1R−1/2+δ′-

concentrated in the wave packets from TZ(r−1R−1/2+δ′) associated with φ̃ for Z = Z(P̃ )

for some polynomial P̃ = P ◦ (Arξ0)−1. Thus, to prove (3.22), it suffices to show that

(3.25)
∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥

L6(
⋃
j Pj)
≤ Cεr−1/2M−1/6R−1/6+ε+Cδ′‖f̃‖1/22 ‖g̃‖

1/2
2 .

Now, we make couple of reductions by pigeonholing. For this purpose, let us set

(3.26) r1 = r2R and r2 = rR1/2.

Recall that Arξ0(BR) is a tube of dimensions Cr−1r1 × Cr−1r1 × r1. Now, we decompose

Arξ0(BR) into cubes Qr1 of side length r1. For each fixed cube Qr1 , we consider cubes

Q′r2 of side length r2 contained in Qr1 such that {Q′r2} covers (
⋃
j Pj) ∩ Qr1 . By dyadic

pigeonholing on the size of ‖eitφ̃f̃‖L2(Q′r2 ) and ‖eitφ̃g̃‖L2(Q′r2 ), we may sort Q′r2 , which

satisfy

(3.27) ‖eitφ̃f̃‖L2(Q′r2 ), ‖eitφ̃g̃‖L2(Q′r2 ) are essentially constant.
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Let Q′r2 be the collection of such cubes Q′r2 . We also choose a subcollection of {Qr1} that

satisfy

(3.28)
∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥

L6(
⋃
Q′r2∈Q

′
r2
Q′r2 )

is essentially constant

for Q′r2 ∈ Q′r2 such that Q′r2 ⊂ Qr1 , and also satisfy

(3.29) ‖eitφ̃f̃‖L2(R2aQr1 ), ‖eitφ̃g̃‖L2(R2aQr1 ) are essentially constant.

Here, R2aQr1 is a cube that has the same center as Qr1 and the side length is R2ar1 for

a sufficiently small constant a = a(ε), which will be determined later. We denote such a

collection of Qr1 by Qr1 . We also denote by P = P(r1, r2) the collection of tubes Pj that

intersect with Q′r2 ⊂ Qr1 for Q′r2 ∈ Q′r2 and Qr1 ∈ Qr1 . By dyadic pigeonholing, we have

(3.30) #P & (logR)−5M.

We put

M1 = #{Qr1 ∈ Qr1}, M2 = #{Q′r2 ∈ Q′r2}.
Since the number of Pj ∈ P contained in a cube Q′r2 is at most r−1, it is easy to see that

(3.31) (logR)−5M . r−1M1M2.

Thus, from (3.21) and (3.30), we get

(3.32)
∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥6

L6(
⋃
j Pj)

. (logR)5
∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥6

L6(
⋃
Pj∈P

Pj)
.

By (3.28), for any Qr1 ∈ Qr1 and ∪Q′r2 ⊂ Qr1 , we have

(3.33)
∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥

L6(
⋃
Pj∈P

Pj)
.M

1/6
1

∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥
L6(∪Q′r2 )

.

The right-hand side of (3.33) can be estimated by applying the induction hypothesis.

By Lemma 2.2, we have f̃ =
∑

T f̃T and g̃ =
∑

T ′ g̃T ′ . Here, the Fourier transforms of

f̃T and g̃T ′ are supported on balls of radius r
−1/2
1 , and eitφ̃f̃T and eitφ̃g̃T restricted to

B3(0, r1) are essentially supported on tubes T , T ′ of dimensions ∼ r1/2
1 × r1/2

1 × r1.

Note that it suffices to consider the wave packets that intersect with Qr1 . Indeed, let

us fix t0 such that (x0, t0) ∈ Qr1 for some x0 and denote the slice of Qr1 by

Q(t0)
r1 = Qr1 ∩ {t = t0}.

Since ∪Q′r2 ⊂ Qr1 , to estimate the right-hand side of (3.33), it suffices to consider the wave

packets T , T ′ intersecting with RaQ
(t0)
r1 , which is an Ra-neighborhood of Q

(t0)
r1 . Therefore,∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥

L6(∪Q′r2 )
.

∥∥∥∥∣∣∣ ∑
T∩RaQ(t0)

r1
6=∅,

T ′∩RaQ(t0)
r1
6=∅

eitφ̃f̃T e
itφ̃g̃T ′

∣∣∣1/2∥∥∥∥
L6(∪Q′r2 )

+ EN
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where EN = O(R−N )‖f‖1/22 ‖g‖
1/2
2 for sufficiently large N . Under the assumption (3.27),

we apply (3.23) for R = r1 to the above inequality and using Plancherel’s theorem, we

obtain∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥
L6(∪Q′r2 )

≤ Cεr−1/6+ε+Cδ′

1 M
−1/6
2

∥∥∥∥∑
T

eit0φ̃f̃T

∥∥∥∥1/2

L2
x

∥∥∥∥∑
T ′

eit0φ̃g̃T ′

∥∥∥∥1/2

L2
x

+ EN

where the summation is taken over T and T ′ satisfying T ∩RaQ(t0)
r1 6= ∅ and T ′∩RaQ(t0)

r1 6=
∅.

Note that the length Cr
1/2
1 of the short axis of a tube T is smaller than the side length

Rar1 of the cube RaQr1 . Hence, the intersection of the tube T and Q
(t0)
r1 is contained in

R2aQr1 ∩ {t = t0} for sufficiently large R > 0. Thus, we have∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥
L6(∪Q′r2 )

≤ Cεr−1/6+ε+Cδ′

1 M
−1/6
2 ‖eit0φ̃f̃‖1/2

L2
x(R2aQ

(t0)
r1

)
‖eit0φ̃g̃‖1/2

L2
x(R2aQ

(t0)
r1

)
+ EN .

(3.34)

By taking the average with respect to t, we have

(3.35) ‖eit0φ̃f̃‖
L2
x(R2aQ

(t0)
r1

)
≤ (r2R1+2a)−1/2‖eitφ̃f̃‖L2(R2aQr1 ).

Since ∪R2aQr1 ⊂ Arξ0(BR1+3a), by (3.29) and Lemma 3.3, we get

(3.36) ‖eitφ̃f̃‖L2(R2aQr1 ) .M
−1/2
1 ‖eitφ̃f̃‖L2(Arξ0

(BR1+3a )) .M
−1/2
1 r‖eitφf‖L2(BR1+3a ).

By combining (3.35) and (3.36) with the trivial estimate ‖eitφf‖L2(BR1+3a ) . R(1+3a)/2‖f‖2
via Plancherel’s theorem, we have∥∥eit0φ̃f̃∥∥

L2
x,t(R

2aQ
(t0)
r1

)
.M

−1/2
1 Ra/2‖f‖2.

Since r1 = r2R (see (3.26)), disregarding the error term EN , (3.34) is bounded by∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥
L6(∪Q′r2 )

≤ Cε(r2R)−1/6+ε+Cδ′M
−1/6
2 M

−1/2
1 Ra/2‖f‖1/22 ‖g‖

1/2
2 .

By combining this with (3.32) and (3.33), and taking sufficiently small a = a(ε) for

R−1/2 ≤ r, we obtain∥∥|eitφ̃f̃ eitφ̃g̃|1/2∥∥
L6(

⋃
j Pj)
≤ CεR−1/6+3ε+Cδ′r−1/3M

−1/3
1 M

−1/6
2 ‖f‖1/22 ‖g‖

1/2
2 .

Therefore, using (3.31), the above is bounded by CεR
−1/6+4ε+Cδ′r−1/2M−1/6M

−1/6
1 ‖f‖1/22

‖g‖1/22 . Since M1 ≥ 1, by taking ε ≤ ε/C1 for sufficiently large C1 ≥ 1, we obtain (3.25).

This completes the proof of (3.22).

We conclude this section by proving Theorem 2.6.
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3.5. Proof of Theorem 2.6

Let ε > 0. Assume that f̂ , ĝ are supported on B2(ξ0, r) for some 0 < r < 1 and ξ0 ∈ intA1.

From (2.4), we may assume that r ≥ R−1/2. For a dyadic number λ, we define a set Xλ

by

Xλ =

{
x ∈ B2(0, R) : sup

0<t<R
|Uαf(x)Uαg(x)| ∼ λ

}
.

It suffices to consider R−N ≤ λ ≤ Rc.
We cover NR1/2+δ′ (Z) with cubes Qj , j = 1, . . . ,M , of side length R1/2. Since F(Uαf)

is supported on a ball of radius r, we consider smaller cubes Q′ = Q′(Qj) of side length

r−1 ≤ R1/2 such that Q′ ⊂ Qj . We define Sλ by the union of Q′ contained in BR such

that

sup
(x,t)∈Q′

|Uαf(x)Uαg(x)| & λ

and all projections of Q′ onto the x-plane R2 are boundedly overlapping. Clearly, we have

(3.37) |Xλ| . r|Sλ|.

For each Qj , the number of Q′ contained in Qj is at most C(R1/2/r−1)2 = CRr2 since the

projections of Q′ onto x-space are finitely overlapping. Hence, by pigeonholing, we also

have

(3.38) |Sλ| . (logR)MRr−1.

Now, we prove Theorem 2.6. By construction, it suffices to show that

(3.39) λ1/2|Xλ|1/3 ≤ CRcδ
′‖f‖1/22 ‖g‖

1/2
2 .

After finite decomposition, we may assume that f̂ and ĝ are supported on a ball B2(η0, ε1r)

for some small ε1 and η0 ∈ intA1 since f and g have Fourier supports separated by K−1r

such that K−1 � ε1. By Lemmas 3.2 and 3.5 with ρ = ε1 > 0 and ξ0 = η0, we have

fε1 = f̃ , gε1 = g̃ (see (3.4)), and φε1 = φε1η0 for φ(ξ) = |ξ|α such that φε1 ∈ P(ε0) and fε1
and gε1 have Fourier supports on a ball B2(0, r) separated by ε−1

1 K−1r and concentrated

on the wave packets from TZ(ε−1
1 R−1/2+δ′).

By pigeonholing on the size of ‖|eitφε1fε1eitφε1gε1 |1/2‖L6(Qj), we sort the fraction ∼
1/(logR) of cubes Qj such that

(3.40)
∥∥|eitφε1fε1eitφε1gε1 |1/2∥∥L6(Qj)

is essentially constant.

We denote by Q the set of such cubes Qj . Thus, to prove (3.39), it suffices to show that

(3.41) λ3|Sλ| . Rc1δ
′∥∥|eitφε1fε1eitφε1gε1 |1/2∥∥6

L6(
⋃
Qj∈Q

Qj)
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for some constant c1. Indeed, by (3.37), we have |Xλ|1/3 . r1/3|Sλ|1/6|Sλ|1/6 and r1/3|Sλ|1/6
≤ (logR)1/6(rMR)1/6 by (3.38). Hence, we have

λ1/2|Xλ|1/3 ≤ (logR)1/6(rMR)1/6(λ3|Sλ|)1/6.

Combining this with (3.41), we obtain

λ1/2|Xλ|1/3 . r1/6M1/6R1/6+cδ′
∥∥|eitφε1fε1eitφε1gε1 |1/2∥∥L6(

⋃
Qj∈Q

Qj)
.

By applying Proposition 3.9 to the right-hand side, we get the desired bound (3.39) and

hence (2.11).

It remains to show (3.41). Let Q′ ⊂ Qj and let ψQ′ ∈ C∞0 (R3) such that F(ψQ′) is

supported on B3(0, 2r) and ψQ′ decreases rapidly outside Q′. Since f̂ , ĝ are supported on

B2(ξ0, r), we see that

F(UαfUαg)(ξ, ξ3) = F(UαfUαg)(ξ, ξ3)F(ψQ′)(ξ, ξ3).

Since ψQ′ decreases rapidly outside a ball of radius r−1,
∫
UαfUαg((x, t)− (y, s))ψQ′(y, s)

dyds is negligible when |(y, s)| ≥ Rar−1 for sufficiently small a. Hence, we have

sup
(x,t)∈Q′

|Uαf(x, t)Uαg(x, t)| . r3

∫
RaQ′

|Uαf(x, t)Uαg(x, t)| dxdt+ EN

where EN = O(R−N‖f‖2‖g‖2) for sufficiently large N . By applying Lemma 3.3 with

ρ = ε1 and ξ0 = η0, we get

(3.42) |Q′| sup
(x,t)∈Q′

|Uαf(x, t)Uαg(x, t)| .
∫
ÃQ′

|eitφε1fε1(x)eitφε1gε1(x)| dxdt+ EN

where ÃQ′ = Aε1η0(RaQ′). By applying Hölder’s inequality, we have

|Q′|1/3 sup
(x,t)∈Q′

|Uαf(x, t)Uαg(x, t)| . Rca

(∫
ÃQ′

|eitφε1fε1(x)eitφε1gε1(x)|3 dxdt
)1/3

+ EN

for some constant c > 1. If a is sufficiently small, then ÃQ′ is contained in a cube of side

length R1/2; hence, we may assume that ÃQ′ ⊂ Qj . Taking the third power and summing

over all Q′ such that ÃQ′ ⊂
⋃
j Qj and using (3.40), we have (3.41) with a minor error

term EN . This completes the proof.

Remark 3.11. Without difficulty, we can see that the result of Theorem 1.1 extends to the

solution of the general dispersive equation. Let α > 1 and Φ be a smooth function such

that |∇Φ(ξ)| ≥ C−1|ξ|α−1 and |∂γξ Φ(ξ)| ≤ C|ξ|α−|γ| for any γ for some constant C > 0.

The reduction to the bilinear estimate in Theorem 2.6 (see Section 2) via polynomial

partitioning is nearly identical. Since Φ is positive definite, by rescaling and Lemma 3.2,

we only need to consider eitφ for φ ∈ P(ε0) (see (3.42)). Then, by following the proof of

Theorem 2.6, we can obtain (2.11) for eitΦ in place of Uαf .
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Remark 3.12. A modification of the proof of Theorem 1.1 combined with the argument

in [12] provides (1.2) for d ≥ 3 whenever s > d/(2d+ 2).
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