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Stability Analysis of Periodic Solutions in Alternately Advanced and

Retarded Neural Network Models with Impulses

Kuo-Shou Chiu

Abstract. In this paper, the global exponential stability and periodicity are investi-

gated for impulsive neural network models with Lipschitz continuous activation func-

tions and piecewise alternately advanced and retarded argument of generalized argu-

ment (in short IDEPCAG). The sufficient conditions for the existence and uniqueness

of periodic solutions of the model are established by applying fixed point theorem

and the successive approximations method. By constructing suitable differential in-

equalities with piecewise alternately advanced and retarded argument, some sufficient

conditions for the global exponential stability of the model are obtained. Typical

numerical examples with simulations are utilized to illustrate the validity and im-

provement in less conservatism of the theoretical results.

1. Introduction

Multi-variable feedback systems can exert the retroactive effect on very different time

scales. Exemplifying by the extremes, according to the date of the information that is

used to feedback, this action can define: (a) a continuous process or (b) one discrete

process. In case (a), the growth rates of the variables are feed backed at each instant,

let’s say in real time. While, in case (b) there is a set of isolated dates, for example, a

succession of instants in which the information is taken, in order to feedback the period

between two consecutive sequence elements.

Normally and for mathematical modeling purposes, in case (a) differential equations

are used and in case (b), if there is no other dynamics effect between the feedback times, dif-

ference equations can be used to express the essence of the dynamics. There are processes

(real-world systems, such as some biotechnology-based ones) that can not be categorized

into types (a) or (b), as they combine characteristics of both types of scales among other

particular effects.

Lately, the new type of feedback systems shows a combination of characteristics from

both the continuous-time and the discrete-time systems, which is neither continuous time

Received March 9, 2021; Accepted September 8, 2021.

Communicated by Cheng-Hsiung Hsu.

2020 Mathematics Subject Classification. 92B20, 34A37, 34K13, 34K20, 34K34, 26D10.

Key words and phrases. impulsive neural networks, piecewise constant argument of generalized type,

periodic solutions, global exponential stability, Gronwall integral inequality.

This research was in part supported by PGI 03-2020 DIUMCE.

137



138 Kuo-Shou Chiu

nor purely discrete-time; among them are dynamical systems with impulses and systems

with piecewise constant arguments. This leads to the use of hybrid type equations, for

example, the impulsive differential equations with piecewise constant arguments (in abbre-

viation: IDEPCA) were first considered by Wiener and Lakshmikantham [38] in 2000 and

differential equations with piecewise constant argument without impulsive effect (in short,

DEPCA) were studied by Shah and Wiener [34] and Wiener [36] in 1984; and have been

investigated by many authors. Diverse applications of the DEPCA theory are discussed

in [16,20–24,30,33,39]. We highlight the book of J. Wiener [37], pioneer of DEPCA, that

recollects much of the research done in DEPCA. In the case, DEPCA of generalized type,

were discussed extensively in [1, 2, 11,12,14,15,17,32].

When scales are mixed these feedback systems can be visualized as control systems, in

that, one scale represents the intrinsic of the process and the other is external intervention.

However, based on internal parameters. As an example, mentioned in Busenberg and

Cooke [4], is the example of the stabilization of hybrid control systems with feedback

delay, in which a hybrid system is a dynamical system that presents both continuous

and discrete dynamic behavior. The hybrid control systems are very interesting, which

depend on the attributes and simplifications of modeling on the process, being the most

usual, to represent the intrinsic process with the continuous time scale and to reflect the

intervention from the external environment to the system with the discrete scale.

Note that, either as a feedback system or as a system under control, the questions of

interest usually refer to the behavior of the variables in the long term, in particular looking

for specific patterns according to values in the space of feasible parameters. For reasons

of practical necessity for the modeled processes, the most recurrently sought behavior is

stability, in some sense, for example, seen as convergence to a steady state or towards

dynamic cycles.

As far as the present work is concerned, we are interested in systems of n-variables

x(t) with hybrid type feedback, i.e., in which to the properly continuous retroaction, that

is, the differential system x′(t) = F(t, x(t)), is added another action G( · , γ(·), x(γ(·)))
of constant type during intervals of time Iκ = [tκ, tκ+1), κ ∈ N, whose edge points are

a predetermined sequence of times {tκ}, this from internal information obtained in said

sequence and Jκ, are impulsive effects at the moments tκ. Hence

x′(t) = F(t, x(t)) + G(t, γ(t), x(γ(t))), t 6= tκ,(1.1a)

∆x(tκ) = Jκ(x(t−κ )), κ ∈ N,(1.1b)

where the timer is given by γ(t) = γκ, tκ ≤ γκ < tκ+1, if t ∈ Iκ.

In 1988, Chua et al. [18] presented a new class of information-processing systems

referred to as cellular neural networks (CNNs). It is known that the study of the stability
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of CNNs, DCNNs (delayed CNNs) and ICNNs (CNNs with impulses) is an important

problem in theory and application. Many essential aspects of these networks, such as

qualitative features of stability, periodicity, oscillation, and convergence problems have

been examined by many other authors (see [3, 5, 7, 10, 19, 20, 25–29, 31, 35, 40–42] and the

references cited therein).

In 2000, J. Cao [5] proposed the problem of neural networks with transmission delays by

using the Lyapunov method. Afterwards, considering theory of M -matrices, some stability

criteria were established for delayed Hopfield neural networks [7] and the convergence

behavior of a unique equilibrium of ICNNs was derived from [19].

In 2003, in view of Halanay-type inequalities and the Lyapunov methods, Mohamad

and Gopalsamy [29] discussed the stability of DCNNs with continuous and discrete time;

Zhou and Hu [42] (2008) studied periodic and stability conditions for DCNNs with vari-

able and distributed delays. In 2004, by using Mawhin’s coincidence degree theory and

Gronwall’s inequality, Liu and Liao [27] investigated DCNNs with periodic coefficients.

J. H. Park [31] (2006), B. Wang et al. [35] (2008), Zhang [41] (2009), O. M. Kwona et

al. [25] and T. Li [26] (2012) acquired some delay-dependent stability criteria for interval

time-varying delays neural networks, by constructing a Lyapunov–Krasovskii functional

and linear matrix inequalities. In [28, 40], some criteria have been derived for high-order

neural networks without and with time-varying delays, which were analyzed using the

Lyapunov method and analytical technique by linear matrix inequality.

In 2006, Huang et al. [20] were the first in considering a cellular neural network defined

by (1.1a) with F( · , x(·)) = 0 and where the i-th component of G( · , γ(·), x(γ(·))) is given

by

x′i(t) = −ai([t]) +
m∑
j=1

bij([t])gj(xj([t])) + di([t]),

where i = 1, 2, . . . ,m and γ(t) = [t] is the greatest integer function. In this case, x′(t)

depends during all the interval [n, n+1), n an integer number, only of the value of functions

defined at instant n.

In 2007, Huang et al. [23] investigated the following hybrid neural network with piece-

wise constant delay

x′i(t) = −ai(t) +

m∑
j=1

bij(t)gj

(
xj

([
t

κ

]
κ

))
+ di(t),

where i = 1, 2, . . . ,m, γ(t) =
[
t
κ

]
κ and κ is a fixed positive real number. In this case,

x′(t) depends during all the interval [nκ, (n + 1)κ), n an integer number. So, equations

type (1.1a), with γ(·) a constant delay of generalized type, are named differential equation

with generalized piecewise constant delay (DEGPCD). The theory of the DEGPCD with

impulsive effect (IDEGPCD) has been investigated by few authors. See [1, 2, 9, 12].
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We say that a deviation argument is of piecewise alternately advanced and retarded

argument, and denote γ(t) = γκ, tκ ≤ γκ < tκ+1, if t ∈ Iκ, for all κ ∈ N. One can easily

see that, the deviation argument `(t) = t− γ(t) is assumed to be negative for tκ < t < γκ

and positive for γκ < t < tκ+1, κ ∈ N. Therefore, (1.1a) is of considerable interest: on

each interval [tκ, tκ+1) it is of alternately advanced and retarded type. Equation (1.1a)

is of advanced type on I+κ = [tκ, γκ] and retarded type on I−κ = (γκ, tκ+1). So, equations

type (1.1a), with γ(·) of alternately advanced and retarded type, are named differential

equation with piecewise alternately advanced and retarded argument of generalized type

(DEPCAG). The equations type can represent anticipatory models. Note that the scien-

tific mathematical community around the DEPCAG with impulsive effect (IDEPCAG) is

very limited. See [6, 13].

In the present work, we will consider a case of the IDEPCAG system (1.1a)–(1.1b) of

more linear nature, but also combining information of the instant with information of the

past, present, future and impulsive effect. This is, (1.1a)–(1.1b) with

x′(t) = −A(t)x(t) +B(t)f(x(t)) + C(t)g(x(γ(t))) +D(t), t 6= tκ,(1.2a)

∆x(tκ) = Jκ(x(t−κ )), κ ∈ N,(1.2b)

where A(t) = diag{ai(t)}, B = {bij(t)} and C = {cij(t)} are n× n real continuous matrix

functions, D(t) = {di(t)} is n × 1 real continuous matrix function and Jk is n × 1 real

continuous matrix function which represents the impulsive effects.

Notice that, to know information about the behavior of solutions of (1.2a)–(1.2b), as

a mathematical problem, has an historical evolution, we can point out that

(1) In [1] (2010), stability criterion for the equilibrium and the periodic solution of the

IDEGPCD system are presented with the linearization method.

(2) In [10] (2017), sufficient conditions for the periodic solution of the IDEPCA system

are established with the Green’s function and fixed point theorem.

(3) In [12] (2021), stability criterion for the equilibrium of the IDEGPCD system are

presented with the linear approximation method.

(4) In [14] (2021), sufficient conditions for the periodic solution of the IDEGPCD system

are established.

The novelty of our work is to present new and simple sufficient conditions ensuring

existence, uniqueness and global exponential stability of the periodic solutions for impul-

sive neural network models with piecewise alternately advanced and retarded argument

of generalized type (ICNN models with the IDEPCAG system). The proposed criteria
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extend the results of the previous literature. The method is given by the traditional and

tailored route of a: IDEPCAG’s Gronwall inequality and Banach contraction principle.

This paper is organized as follows. In Section 2, we focus on some preliminary results

which will be used in the existence and stability of a unique ω-periodic solution of the ICNN

models with the IDEPCAG system. In Section 3.1, we establish the sufficient conditions

for existence and uniqueness of the ω-periodic solutions of the ICNN models with the

IDEPCAG system (1.2a)–(1.2b). In Section 3.2, we derive some sufficient conditions

for the global exponential stability of a unique ω-periodic solution of the ICNN models

with the IDEPCAG system (1.2a)–(1.2b). In Section 4, two examples and the numerical

simulations are given to demonstrate the validity of our results. The conclusions are drawn

in Section 5.

2. Preliminaries

In this section, we will focus on presenting some preliminary concepts and propositions,

which will be used in the proofs about existence and stability of a unique ω-periodic

solution of the ICNN models with the IDEPCAG system.

The system under study is a ICNN model with piecewise alternately advanced and

retarded argument of generalized type. Where, the state of the i-th, 1 ≤ i ≤ n, neuron at

time t > 0 is given by

x′i(t) = −ai(t)xi(t) +
n∑
j=1

bij(t)fj(xj(t)) +
n∑
j=1

cij(t)gj(xj(γ(t))) + di(t), t 6= tk,(2.1a)

∆xi
∣∣
tk

= Jik(xi(t
−
k )), i = 1, 2, . . . , n, k ∈ N(2.1b)

with 1 ≤ i ≤ n, where

– The constant argument of generalized type is determined by a strictly increasing un-

bounded sequence of times {tκ} and the function γ(·) defined by γ(t) = γκ, tκ ≤ γκ <

tκ+1, if t ∈ Iκ = [tκ, tκ+1).

– The positive function ai(·) denotes the relative rate with which the i-th unit resets its

potential to the resting state when isolated from other units and inputs. So in (2.1a),

it represents an exponential decay.

– The measure of activation of continuous type (resp. piecewise constant type) of the

j-th neuron to its incoming potentials is given at any time by the function fj(xj(·))
(resp. gj(xj(β(·)))).

– The function bij(·) (resp. cij(·)) denotes the synaptic connection weight of continuous

type (resp. piecewise type) of the unit j on the unit i.
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– For each neuron, there is an activation flow from outside the system. It is represented

by the function di(·) for the i-th one.

– ∆xi(tk) denotes xi(tk) − xi(t
−
k ), where xi(t

−
k ) = limh→0− xi(tk + h). Moreover, the

numbers xi(t
−
k ) and xi(tk) are, respectively, the states of the i-th unit before and after

impulse perturbation at the moment tk, k ∈ N, and represents the abrupt change of

the state Jik(xi(t
−
k )) at the impulsive moment tk.

For reasons of convenience, certain assumptions are formulated below, which will be

convened when necessary.

Lipschitz condition.

(L1) The activation functions fj and gj with fj(0) = 0, gj(0) = 0, 0 ≤ j ≤ n, satisfy

|fj(u)− fj(v)| ≤ Lfj |u− v|, |gj(u)− gj(v)| ≤ Lgj |u− v|

for some positive constants Lfi , Lgi and for all u, v ∈ R+.

(L2) The impulsive operator Jiκ, 0 ≤ i ≤ n, κ ∈ N, satisfies

|Jiκ(u)− Jiκ(v)| ≤ LJiκ|u− v|

for the positive constant LJiκ and for all u, v ∈ R+.

Existence condition.

(E) For any τ > 0, it is satisfied κ̂(τ) := max{κ1, κ2} < 1, where

κ+ := max
1≤i≤n

max
i(τ)≤k

∫ γk

tk

exp

(∫ s

γk

ai(u) du

) n∑
j=1

Lfj |bij(s)|+ Lgj |cij(s)|

 ds
 ,

κ− := max
1≤i≤n

 max
1≤k≤i(τ)

∫ tk+1

γk

exp

(∫ s

γk

ai(u) du

) n∑
j=1

Lfj |bij(s)|+ Lgj |cij(s)|

 ds
 ,

here i(·) is an indexer defined by i(t) = k if t ∈ Ik = [tk, tk+1), k ∈ N.

(E′) For any τ > 0, it is satisfied κ(τ) < 1, where

κ := max
1≤i≤n

 max
1≤k≤i(τ)

∫ tk+1

tk

exp

(∫ s

tk

ai(u) du

) n∑
j=1

Lfj |bij(s)|+ Lgj |cij(s)|

 ds
 ,

here i(·) is an indexer defined by i(t) = k if t ∈ Ik = [tk, tk+1), k ∈ N.
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First, we prove the existence and uniqueness of solutions of the IDEPCAG system

(2.1a)–(2.1b). A natural extension of the original definition of a solution of the IDEPCA

[8,10,38] allows us to define a solution of the IDEPCAG system.

Definition 2.1. A function x is a solution of the IDEPCAG system (2.1a)–(2.1b) in

R+ = [0,∞) if

(i) x(t) is continuous for t ∈ R+ with the possible exception of the points t = tk, k ∈ N.

(ii) x(t) is right continuous and has left-hand limits at the points t = tk, k ∈ N.

(iii) x(t) is differentiable and satisfies (2.1a) for any t ∈ R+, with the possible exception

of the points t = tk, k ∈ N, where one-sided derivatives exist.

(iv) x(tk) satisfies (2.1b), k ∈ N.

To study the nonlinear IDEPCAG system, we will use the approach based on the

construction of an equivalent integral equation, which we give in the proposition that

follows

Proposition 2.2 (Integral representation). Given a pair (τ, x0) ∈ R+ × Rn, a function

x = (x1(·), . . . , xn(·)) : R+ → Rn such that x(τ) = x0 = (x1(τ), . . . , xn(τ))T is a solution

of the IDEPCAG system (2.1a)–(2.1b) in the sense of Definition 2.1 if and only if their

coordinates satisfy on R+ the following set of integral equations

xi(t) = e−
∫ t
τ ai(s) dsxi(τ)

+

∫ t

τ
e−

∫ t
s ai(u) du

 n∑
j=1

bij(s)fj(xj(s)) +

n∑
j=1

cij(s)gj(xj(γ(s))) + di(s)

 ds
+

i(t)∑
k=i(τ)+1

e
−

∫ t
tk
ai(s) dsJik(xi(t

−
k )), i ∈ {1, . . . , n},

(2.2)

or

x(t) = Φ(t, τ)x0 +

∫ t

τ
Φ(t, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds

+

i(t)∑
k=i(τ)+1

Φ(t, tk)Jk(x(t−k )), t ∈ R+,

where i(t) > i(τ), Φ(t) is a fundamental solution of u′(t) = −A(t)u(t) and Φ(t, s) =

Φ(t)Φ−1(s).
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Proof. Consider the interval In−1 = [tn−1, tn). If we integrate (2.1a) on this interval it

follows that

xi(t) = e
−

∫ t
tn−1

ai(s) ds
xi(tn−1)

+

∫ t

tn−1

e−
∫ t
s ai(u) du

 n∑
j=1

bij(s)fj(xj(s)) +
n∑
j=1

cij(s)gj(xj(γn−1)) + di(s)

 ds,
i ∈ {1, . . . , n},

(2.3)

where γ(t) = γn−1 for all t ∈ In−1 = [tn−1, tn). Then, evaluating in t = tn we obtain

xi(t
−
n ) = e

−
∫ tn
tn−1

ai(s) ds
xi(tn−1)

+

∫ tn

tn−1

e−
∫ tn
s ai(u) du

 n∑
j=1

bij(s)fj(xj(s)) +

n∑
j=1

cij(s)gj(xj(γn−1)) + di(s)

 ds,
i ∈ {1, . . . , n}.

Applying the impulsive condition ∆xi
∣∣
tn

= xi(tn)− xi(t−n ) = Jin(xi(t
−
n )) it follows that

xi(tn) = e
−

∫ tn
tn−1

ai(s) ds
xi(tn−1)

+

∫ tn

tn−1

e−
∫ tn
s ai(u) du

 n∑
j=1

bij(s)fj(xj(s)) +
n∑
j=1

cij(s)gj(xj(γn−1)) + di(s)

 ds
+ Jin(x(t−n )), i ∈ {1, . . . , n}.

Similarly,

xi(ti(τ)+1)

= e−
∫ ti(τ)+1
τ ai(s) dsxi(τ)

+

∫ ti(τ)+1

τ
e−

∫ ti(τ)+1
s ai(u) du

 n∑
j=1

bij(s)fj(xj(s)) +

n∑
j=1

cij(s)gj(xj(γi(τ))) + di(s)

 ds
+ Ji(τ)+1(x(t−i(τ)+1)), i ∈ {1, . . . , n}.

Then, solving the finite difference equation we obtain

xi(tn) = e−
∫ tn
τ ai(s) dsxi(τ)

+

∫ ti(τ)+1

τ
e−

∫ tn
s ai(u) du

 n∑
j=1

bij(s)fj(xj(s)) +
n∑
j=1

cij(s)gj(xj(γi(τ))) + di(s)

 ds
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+

n−1∑
k=i(τ)+1

∫ tk+1

tk

e−
∫ tn
s ai(u) du

×

 n∑
j=1

bij(s)fj(xj(s)) +

n∑
j=1

cij(s)gj(xj(γk)) + di(s)

 ds
+

n−1∑
k=i(τ)+1

e
−

∫ tn
tk

ai(u) duJik(x(t−k )) + Jin(x(t−n ))

= e−
∫ tn
τ ai(s) dsxi(τ) +

∫ tn

τ
e−

∫ tn
s ai(u) du

 n∑
j=1

bij(s)fj(xj(s)) + di(s)

 ds
+

∫ ti(τ)+1

τ

e− ∫ tn
s ai(u) du

n∑
j=1

cij(s)gj(xj(γi(τ)))

 ds
+

n−1∑
k=i(τ)+1

∫ tk+1

tk

e− ∫ tn
s ai(u) du

n∑
j=1

cij(s)gj(xj(γk))

 ds
+

n−1∑
k=i(τ)+1

e
−

∫ tn
tk

ai(u) duJik(x(t−k )) + Jin(x(t−n )), i ∈ {1, . . . , n}.

Next, applying last expression in (2.3) with t ∈ Ii(t) we obtain

xi(t) = e−
∫ t
τ ai(s) dsxi(τ) +

∫ t

τ
e−

∫ t
s ai(u) du

 n∑
j=1

bij(s)fj(xj(s)) + di(s)

 ds
+

∫ ti(τ)+1

τ

e− ∫ t
s ai(u) du

n∑
j=1

cij(s)gj(xj(γi(τ)))

 ds
+

i(t)−1∑
k=i(τ)+1

∫ tk+1

tk

e−
∫ t
s ai(u) du

 n∑
j=1

cij(s)gj(xj(γk))

 ds
+

∫ t

ti(t)

e− ∫ t
s ai(u) du

n∑
j=1

cij(s)gj(xj(γi(t)))

 ds
+

i(t)∑
k=i(τ)+1

e
−

∫ t
tk
ai(u) duJik(x(t−k )), i ∈ {1, . . . , n}.

Finally, defining∫ t

τ

n∑
j=1

cij(s)gj(xj(γ(s))) ds
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=

∫ ti(τ)+1

τ

n∑
j=1

cij(s)gj(xj(γi(τ))) ds+

i(t)−1∑
k=i(τ)+1

∫ tk+1

tk

n∑
j=1

cij(s)gj(xj(γk)) ds

+

∫ t

ti(t)

n∑
j=1

cij(s)gj(xj(γi(t))) ds

and replacing it in the last expression we obtain (2.2), so the proof is complete.

The following lemma, which is one of the most important tool will be used in the

proofs of our results.

Lemma 2.3 (IDEPCAG’s Gronwall inequality). Let v, αj : R+ → R+, j = 1, 2, be three

functions such that v is continuous with possible points of discontinuity of the first kind

at t = tκ, κ ∈ N and αj are locally integrable, for which the inequality satisfying

(2.4) v(t) ≤


v(τ) +

∫ t
τ [α1(s)v(s) + α2(s)v(γ(s))] ds+

∑i(t)
κ=i(τ)+1 %kv(t−κ ), i(t) > i(τ),

v(τ) +
∣∣ ∫ t
τ [α1v(s) + α2v(γ(s))] ds

∣∣, i(t) = i(τ),

v(τ) +
∫ τ
t [α1v(s) + α2v(γ(s))] ds+

∑i(τ)
κ=i(t)+1 %kv(t−κ ), i(t) < i(τ),

where %k are non-negative constants. Then

(1) For i(t) > i(τ),

(2.5) v(t) ≤ v(τ)


i(t)∏

κ=i(τ)+1

(1 + %κ)

 exp

(∫ t

τ

[
α1(s) +

α2(s)

1− η+

]
ds

)
.

(2) For i(t) = i(τ),

v(t) ≤ v(τ) exp

(∫ t

τ

[
α1(s) +

α2(s)

1− η+

]
ds

)
.

(3) For i(t) < i(τ),

(2.6) v(t) ≤ v(τ)


i(τ)∏

κ=i(t)+1

1

1− %k

 exp

(∫ τ

t

[
α1(s) +

α2(s)

1− η−

]
ds

)
,

where

η+ := sup
i(τ)≤κ

∫ γκ

tk

[α1(s) + α2(s)] ds ≤ η < 1,

η− := sup
1≤κ≤i(τ)

∫ tκ+1

γκ

[α1(s) + α2(s)] ds ≤ η < 1

(2.7)

and max1≤κ≤i(τ) %k < 1.
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Proof. First, consider τ ≤ t. Suppose that ψ(t) is the right side of the inequality (2.4).

Then ψ(τ) = v(τ), v ≤ ψ, ψ is a non-decreasing function and piecewise differentiable, and

from (2.4), we have

(2.8)

ψ′(t) ≤ α1(t)ψ(t) + α2(t)ψ(γ(t)), t 6= tκ,

ψ(tκ) ≤ (1 + %κ) · ψ(t−κ ), κ ∈ N.

If τ ≤ ` ≤ t with t, ` ∈ Ii, we obtain

(2.9) ψ(t)− ψ(r) ≤
∫ t

`
(α1(s)ψ(s) + α2(s)ψ(γi)) ds.

With t = γi, ` = ti in (2.9) for t ∈ Ii, as ψ is a non-decreasing function, we get

ψ(γi) ≤ ψ(ti) +

∫ γi

ti

(α1(s)ψ(s) + α2(s)ψ(γi)) ds

≤ ψ(ti) +

(∫ γi

ti

(α1(s) + α2(s)) ds

)
ψ(γi).

By (2.7), we have

ψ(γi) ≤
ψ(ti)

1− η+
.

Take now in (2.9) with t ∈ Ii and ` = ti, we give

ψ(t) ≤ ψ(ti) +

∫ t

ti

(α1(s)ψ(s) + α2(s)ψ(γi)) ds

≤ ψ(ti) +

∫ t

ti

(
α1(s)ψ(s) +

α2(s)

1− η+
ψ(ti)

)
ds

≤ ψ(ti) +

∫ t

ti

{(
α1(s) +

α2(s)

1− η+

)
ψ(s)

}
ds.

Then, applying the Gronwall’s lemma, we have

ψ(t) ≤ ψ(ti) exp

(∫ t

ti

(
α1(s) +

α2(s)

1− η+

)
ds

)
for t ∈ Ii.

By the impulsive condition (2.8), we obtain

(2.10) ψ(ti+1) ≤ (1 + %i+1)ψ(ti) exp

(∫ ti+1

ti

(
α1(s) +

α2(s)

1− η+

)
ds

)
.

From (2.10), recursively we have

v(t) ≤ ψ(t) ≤ ψ(τ)


i(t)∏

k=i(τ)+1

(1 + %k)

 exp

(∫ t

τ

(
α1(s) +

α2(s)

1− η+

)
ds

)
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by ψ(τ) = v(τ), we obtain (2.5).

Now, if 0 ≤ t ≤ τ . Suppose that w(t) is the right side of the inequality (2.4). So

w(τ) = v(τ), v ≤ w, w is a non-increasing function and piecewise differentiable and from

(2.4), we give

(2.11) w′(t) ≤ −[α1(t)w(t) + α2(t)w(γ(t))] and w(t−κ ) ≤ (1− %κ)−1 · w(tκ).

If τ ≥ ` ≥ t ≥ 0 with t, ` ∈ Ij , we obtain

(2.12) w(t)− w(`) ≤ −
∫ t

`
(α1(t)w(s) + α2(s)w(γj)) ds.

With t = γj , in (2.12) for t ∈ Ij and ` = t−j+1, since w is a non-increasing function, we

have

w(γj) ≤ w(t−j+1)−
∫ γj

tj+1

(α1(s)w(s) + α2(s)w(γj)) ds

≤ w(t−j+1) +

(∫ tj+1

γj

(α1(s) + α2(s)) ds

)
w(γj).

By (2.7), we have

(2.13) w(γj) ≤
w(t−j+1)

1− η−
.

Take now (2.13) in (2.12) with t ∈ Ij and ` = t−j+1, to get

w(t) ≤ w(t−j+1) +

∫ tj+1

t
(α1(s)w(s) + α2(s)w(γj)) ds

≤ w(t−j+1) +

∫ tj+1

t

(
α1(s)w(s) +

α2(s)

1− η−
w(t−j+1)

)
ds

≤ w(t−j+1) +

∫ tj+1

t

(
α1(s) +

α2(s)

1− η−

)
w(s) ds

because w is a non-increasing function. Then, applying the Gronwall’s lemma, we have

w(t) ≤ w(t−j+1) exp

(∫ tj+1

t

(
α1(s) +

α2(s)

1− η−

)
ds

)
for t ∈ Ij .

By (2.11) and t = tj we have

(2.14) w(tj) ≤ (1− %j+1)
−1w(tj+1) exp

(∫ tj+1

tj

(
α1(s) +

α2(s)

1− η−

)
ds

)
.
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From (2.14), recursively we obtain

v(t) ≤ w(t) ≤ (1− %j+1)
−1w(tj+1) exp

(∫ tj+1

t

(
α1(s) +

α2(s)

1− η−

)
ds

)
≤ (1− %j+1)

−1(1− %j+2)
−1w(tj+2) exp

(∫ tj+2

t

(
α1(s) +

α2(s)

1− η−

)
ds

)
≤ · · ·

≤ w(τ)


i(τ)∏

κ=j+1

(1− %κ)−1

 exp

(∫ τ

t

(
α1(s) +

α2(s)

1− η−

)
ds

)
by w(τ) = v(τ) we obtain (2.6). The proof is complete. The IDEPCAG’s Gronwall

inequality appears to be new.

Remark 2.4. If γ(t) = 2
[
t+1
2

]
, then the inequality (2.4) is an IDEPCA’s Gronwall inequal-

ity which has been studied in [10]. If γ(t) = m
[
t+l
m

]
with l < m, then the inequality (2.4)

with constant coefficients is an IDEPCA’s Gronwall inequality which has been studied

in [8]. If %κ ≡ 0, κ ∈ N, then we get the inequality (2.4) without impulsive effect in [17].

So our results also extend the conclusion in them.

We can see that the ICNN models with the IDEPCAG system (2.1a)–(2.1b) do not have

impulsive condition within the intervals [ti, ti+1), i ∈ N, which is just like the DEPCAG

system. Then applying the identical technique of Gronwall inequality with piecewise

constant argument (see [17,32]). We have the following proposition.

Proposition 2.5. Let the conditions (L1) and (E) be fulfilled. Then, given an initial

condition (τ, ζ) ∈ R+ × Rn, the ICNN model with the IDEPCAG system (2.1a)–(2.1b)

on [ti(τ), ti(τ)+1) has a unique solution x(·) = x( · , τ, ζ) = (x1(·), . . . , xn(·))T such that

x(τ) = (x01, . . . , x
0
n)T = ζ.

The previous proposition assures the existence and uniqueness of solutions in a local

sense. The following theorem provides the existence of a unique solution when the initial

moment is an arbitrary positive real number τ .

Theorem 2.6. Let the conditions (L1), (L2) and (E) be fulfilled. Then, given an initial

condition (τ, ζ) ∈ R+×Rn, the ICNN model with the IDEPCAG system (2.1a)–(2.1b) has a

unique solution x(·) = x( · , τ, ζ) = (x1(·), . . . , xn(·))T such that x(τ) = (x01, . . . , x
0
n)T = ζ.

Proof. Let τ ∈ R+. Then we can see that τ ∈ [ti(τ), ti(τ)+1). Using Proposition 2.5,

the ICNN model with the IDEPCAG system (2.1a)–(2.1b) has a unique solution x(·) =

x( · , τ, ζ) = (x1(·), . . . , xn(·))T on [ti(τ), ti(τ)+1) such that x(τ) = (x01, . . . , x
0
n)T = ζ.

Applying the condition (2.1b), we have

x(ti(τ)+1, τ, ζ) = x(t−i(τ)+1, τ, ζ) + Ji(τ)+1

(
x(t−i(τ)+1, τ, ζ)

)
.
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Now, in the following interval [ti(τ)+1, ti(τ)+2) the solution of the ICNN model with the

IDEPCAG system (2.1a)–(2.1b) satisfies

y′(t) = −A(t)y(t) +B(t)f(y(t)) + C(t)g(y(γ(t))) +D(t),

and the ICNN model with the IDEPCAG system (2.1a)–(2.1b) admits a unique solution

y(t, ti(τ)+1, y
0) with the initial condition y0 = x(ti(τ)+1, τ, ζ). By definition of the solution

of the ICNN model x(t, τ, ζ) = y(t, ti(τ)+1, y
0) on [ti(τ)+1, ti(τ)+2). As R+ =

⋃∞
i=1[ti, ti+1),

this completes the proof by the mathematical induction.

From Theorem 2.6, we can derive the following particular results.

Corollary 2.7. Let us assume the conditions (L1), (L2) and the following inequalities

κ+ = max
1≤i≤n

 sup
i(τ)≤κ

(
1− e−ai·ϑ

+
κ

ai

) n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |

 < 1,

κ− = max
1≤i≤n

 sup
1≤κ≤i(τ)

(
eai·ϑ

−
κ − 1

ai

) n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |

 < 1

(2.15)

hold, where ai = supt∈R+ ai(t), ai = inft∈R+ ai(t), bij = supt∈R+ |bij(t)|, cij = supt∈R+ |cij(t)|
and ϑ+κ = γκ − tκ, ϑ−κ = tκ+1 − γκ, κ ∈ N. Then, given (τ, x0) ∈ R+ × Rn, there exists

a unique solution x(·) = x( · , τ, x0) = (x1(·), . . . , xn(·))T of the IDEPCAG system (2.1a)–

(2.1b) in the sense of Definition 2.1 such that x(τ) = x0 = (x01, . . . , x
0
n)T .

Corollary 2.8. Let us assume the conditions (L1) and (L2) that ai(t) ≡ ai, bij(t) ≡ bij,

cij(t) ≡ cij, di(t) ≡ di and the following inequalities

κ+ = max
1≤i≤n

 sup
i(τ)≤κ

(
1− e−ai·ϑ

+
κ

ai

) n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |

 < 1,

κ− = max
1≤i≤n

 sup
1≤κ≤i(τ)

(
eai·ϑ

−
κ − 1

ai

) n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |

 < 1

(2.16)

hold. Then, given (τ, x0) ∈ R+ × Rn, there exists a unique solution x(·) = x( · , τ, x0) =

(x1(·), . . . , xn(·))T of the IDEPCAG system (2.1a)–(2.1b), but with the respective constant

coefficients, in the sense of Definition 2.1 such that x(τ) = x0 = (x01, . . . , x
0
n)T .

Remark 2.9. If we consider the deviation argument that is of the constant delay of gen-

eralized type, i.e., γ(t) = γk = tk, if t ∈ [tk, tk+1), k ∈ N. The ICNN models with the
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IDEPCAG system (2.1a)–(2.1b) can be reduced to the following IDEGPCD system

dxi(t)

dt
= −ai(t)xi(t) +

n∑
j=1

bij(t)fj(xj(t))

+
n∑
j=1

cij(t)gj(xj(β(t))) + di(t), t 6= tκ,

(2.17a)

∆xi(tκ) = Jiκ(xi(t
−
κ )), κ ∈ N(2.17b)

with 1 ≤ i ≤ n, where β(t) = tκ if t ∈ Iκ = [tκ, tκ+1). Then we have the following

observations.

(i) The ICNN models with the IDEGPCD system (the respective constant coefficients)

is neither more nor less than system (1.1) in [1]. Since those works not have a global

IDEGPCD’s Gronwall-type inequality, the results for this system have more stronger

conditions, see [12, Example 1 and Remark 4.1].

(ii) The IDEPCAG’s Gronwall inequality of this paper reduces to the result of the IDEG-

PCD’s Gronwall inequality in [12, Lemma 2.1].

(iii) The condition (E) with κ− < 1 and γk = tk, k ∈ N, reduces to the condition (E′)

which is the same condition (E) in [14].

From Theorem 2.6 and Remark 2.9, we can conclude the following results.

Corollary 2.10. Let the conditions (L1), (L2) and (E′) be fulfilled. Then, given an

initial condition (τ, ζ) ∈ R+ ×Rn, the ICNN models with the IDEGPCD system (2.17a)–

(2.17b) has a unique solution x(·) = x( · , τ, ζ) = (x1(·), . . . , xn(·))T such that x(τ) =

(x01, . . . , x
0
n)T = ζ.

When the impulsive jumps of ICNN models with the IDEPCAG system (2.1b) are

absent, ICNN models with IDEPCAG system (2.1a) reduces to the following non-impulsive

system

(2.18) x′i(t) = −ai(t)xi(t) +
n∑
j=1

bij(t)fj(xj(t)) +

n∑
j=1

cij(t)gj(xj(γ(t))) + di(t), t ∈ R

with 1 ≤ i ≤ n.

Applying our results to CNN models with the DEPCAG system (2.18) and with the

DEGPCD system (2.17a) without impulsive effects, we have

Corollary 2.11. Let the conditions (L1) and (E) be fulfilled. Then, given an initial condi-

tion (τ, ζ) ∈ R+ ×Rn, there exists a unique solution x(·) = x( · , τ, ζ) = (x1(·), . . . , xn(·))T

of the CNN models with the DEPCAG system (2.18), such that x(τ) = (x01, . . . , x
0
n)T = ζ.
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Corollary 2.12. Let the conditions (L1) and (E′) be fulfilled. Then, given an initial con-

dition (τ, ζ) ∈ R+×Rn, there exists a unique solution x(·) = x( · , τ, ζ) = (x1(·), . . . , xn(·))T

of the CNN models with the DEGPCD system (2.17a), such that x(τ) = (x01, . . . , x
0
n)T = ζ.

Remark 2.13. Theorem 2.6 reduces to the existence result of [10, Theorem 3.1] with the

classic piecewise alternately advanced and retarded argument γ(t) = 2
[
t+1
2

]
. Corollary 2.8

reduces to existence results of [8, Theorem 5] with γ(t) = m
[
t+l
m

]
, where 0 < l < m. Corol-

lary 2.10 reduces to the results of [14, Theorem 3.1] with generalized piecewise constant

delay.

With regard to non-impulsive effects, Corollary 2.11 reduces to the results of [17, The-

orem 1] with generalized piecewise alternately advanced and retarded argument. Corol-

lary 2.12 reduces to the results of [15, Theorem 3.1] with generalized piecewise constant

delay. Moreover Corollary 2.12 generalizes corresponding result obtained by [1, Theo-

rem 2.1] and [2, Theorems 7.1.2 and 8.2.2] under complicated and stronger conditions.

See [12, Example 1].

3. Existence and stability of periodic solutions

In this section, we will give the sufficient conditions for existence and global exponential

stability of the ω-periodic solution of the ICNN models with the IDEPCAG system (2.1a)–

(2.1b). Here we assume the periodicity condition.

Periodicity condition.

(P) There exists ω > 0 such that

(1) ai(·) > 0, bij(·), cij(·) and di(·) are continuously periodic functions in R+ with

a common period ω.

(2) There exists p ∈ N, for which the sequences {tk}k∈N, {γk}k∈N and {Jk}k∈N,

satisfies the (ω, p) condition, that is

tk+p = tk + ω, γk+p = γk + ω and Jk+p = Jk.

Remark 3.1. Note that (ω, p) condition is a discrete relation, which moves the interval Ik

into Ik+p. Then we have the following consequences.

(i) For any τ ∈ R+, the interval [τ, τ + ω] can be decomposed as follows:

[τ, ti(τ)+1] ∪
i(τ)+p−1⋃
j=i(τ)+1

Ij ∪ [ti(τ)+p, τ + ω].
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(ii) For t ∈ [tk, tk+1), we have (a) t + ω ∈ [tk+p, tk+p+1), (b) γ(t) + ω ∈ [tk+p, tk+p+1).

Then,

γ(t+ ω) = γi(t+ω) = γi(t)+p = γi(t) + ω = γ(t) + ω.

For ω > 0, let PCω be the set of all n-vector piecewise continuous function x(t) with

points of discontinuity of the first kind at t = ti, i ∈ N, periodic in t of period ω. Then

(PCω, ‖ · ‖) is a Banach space with the supremum norm

‖x‖ = max
1≤i≤n

‖xi‖ = max
1≤i≤n

[
sup
t∈R+

|xi(t)|
]

= max
1≤i≤n

[
sup

t∈[τ,τ+ω]
|xi(t)|

]
.

3.1. Existence of periodic solutions

In this subsection, we will establish the sufficient conditions for existence and uniqueness

of the ω-periodic solutions of the ICNN models with the IDEPCAG system (2.1a)–(2.1b).

Before giving our main result of this subsection, we need to establish some definitions

and elementary facts.

Definition 3.2. For each t, s ∈ [τ, τ + ω], the Green’s function for the ICNN models

with the IDEPCAG system (2.1a)–(2.1b) is given by G(t, s) = diag{Gi(t, s)}, i = 1, . . . , n,

where

Gi(t, s) =


(

exp
( ∫ τ+ω

τ ai(u) du
)

exp
( ∫ τ+ω

τ ai(u) du
)
−1

)
exp

(∫ s
t ai(κ) dκ

)
, τ ≤ s ≤ t ≤ τ + ω,(

1

exp
( ∫ τ+ω

τ ai(u) du
)
−1

)
exp

(∫ s
t ai(κ) dκ

)
, τ ≤ t < s ≤ τ + ω.

Note that G and Gi are bi ω-periodic, i.e., G(t+ω, s+ω) = G(t, s) and the denominator

in Gi(t, s) for i = 1, 2, . . . , n, is not zero since we have assumed that ai(c) > 0 for some

c ∈ [τ, τ + ω]. Observe that Gi(t, s) has maximum and minimum values:

1

exp
( ∫ τ+ω

τ ai(κ) dκ
)
− 1
≤ Gi(t, s) ≤

exp
( ∫ τ+ω

τ ai(κ) dκ
)

exp
( ∫ τ+ω

τ ai(κ) dκ
)
− 1

, t ≤ s ≤ t+ ω.

For the sake of convenience, we adopt the following notations

cG := max
t,s∈[τ,τ+ω]

|G(t, s)| = max
1≤i≤n

exp
( ∫ τ+ω

τ ai(κ) dκ
)

exp
( ∫ τ+ω

τ ai(κ) dκ
)
− 1

and a∗(t) = min
1≤i≤n

ai(t).

Using Definition 3.2, Remark 3.1 and bi ω-periodicity of the Green’s function, we have

the following lemma.
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Lemma 3.3. Suppose that the condition (P) holds and x(t) is a solution of the ICNN

models with the IDEPCAG system (2.1a)–(2.1b), then x(t) ∈ PCω if and only if

x(t) =

∫ τ+ω

τ
G(t, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds

+

i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(x(t−k )),

(3.1)

where G(t, s) is the Green’s function. In particular, we have

xi(t) =

∫ τ+ω

τ
Gi(t, s)

 n∑
j=1

bij(s)fj(xj(s)) +

n∑
j=1

cij(s)gj(xj(γ(s))) + di(s)

 ds
+

i(τ)+p∑
k=i(τ)+1

Gi(t, tk)Jik(xi(t
−
k )), 1 ≤ i ≤ n.

Proof. Necessity. Let x(t) ∈ PCω be a solution of the ICNN models with the IDE-

PCAG system (2.1a)–(2.1b), Φ(t) is a fundamental solution of u′(t) = −A(t)u(t) and

In = diag(1, 1, . . . , 1). By Proposition 2.2, we have

x(t) = Φ(t, τ)x0 +

∫ t

τ
Φ(t, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds

+

i(t)∑
k=i(τ)+1

Φ(t, tk)Jk(x(t−k )), i(t) > i(τ).

Since x(τ) = x0 = x(τ + ω), we get

x0 = (In − Φ(τ + ω, τ))−1
∫ τ+ω

τ
Φ(τ + ω, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds

+

i(τ)+p∑
k=i(τ)+1

Φ(τ + ω, tk)Jk(x(t−k )).

(3.2)

A substitution of (3.2) into (2.2) yields

x(t) = Φ(t, τ)

〈
(In − Φ(τ + ω, τ))−1

×
∫ τ+ω

τ
Φ(τ + ω, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds

+

i(τ)+p∑
k=i(τ)+1

Φ(τ + ω, tk)Jk(x(t−k ))

〉
(3.3)
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+

∫ t

τ
Φ(t, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds

+

i(t)∑
k=i(τ)+1

Φ(t, tk)Jk(x(t−k )).

Let E =
(
(Φ−1(τ)Φ(τ + ω))−1 − In

)−1
= diag

{(
e
∫ τ+ω
τ a1(s) ds − 1

)−1
, . . . ,

(
e
∫ τ+ω
τ an(s) ds −

1
)−1}

. Since (In +E) = (Φ−1(τ)Φ(τ +ω))−1E = (In−Φ−1(τ)Φ(τ +ω))−1, (3.3) becomes

x(t) = Φ(t, τ)(In − Φ(τ + ω, τ))−1

×
〈∫ t

τ
Φ(τ + ω, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds

+

i(τ)+p∑
k=i(τ)+1

Φ(τ + ω, tk)Jk(x(t−k ))

〉
+ Φ(t, τ)(In − Φ(τ + ω, τ))−1

×
∫ τ+ω

t
Φ(τ + ω, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds

+

∫ t

τ
Φ(t, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds+

i(t)∑
k=i(τ)+1

Φ(t, tk)Jk(x(t−k ))

=

∫ t

τ
Φ(t)(In + E)Φ(s)−1[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds

+

i(τ)+p∑
k=i(τ)+1

Φ(t)(In + E)Φ(tk)
−1Jk(x(t−k ))

+

∫ τ+ω

t
Φ(t)EΦ−1(s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds

+

i(τ)+p∑
k=i(τ)+1

Φ(t)EΦ(tk)
−1Jk(x(t−k ))

=

∫ τ+ω

τ
G(t, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds+

i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(x(t−k )).

This proves the Necessity.

Sufficiency. We will prove that if (3.1) has a unique solution, then x(t) ∈ PCω. Indeed,

by the condition (P) and bi ω-periodicity of the Green’s function, x(t+ω) is a solution of

(3.1):

x(t+ ω)

=

∫ τ+2ω

τ+ω
G(t+ ω, s)[B(s)f(x(s)) + C(s)g(x(γ(s))) +D(s)] ds
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+

i(τ)+2p∑
k=i(τ)+p+1

G(t+ ω, tk)Jk(x(t−k ))

=

∫ τ+ω

τ
G(t+ ω, s+ ω)[B(s+ ω)f(x(s+ ω)) + C(s+ ω)g(x(γ(s+ ω))) +D(s+ ω)] ds

+

i(τ)+p∑
k=i(τ)+1

G(t+ ω, tk+p)Jk+p(x(t−k+p))

=

∫ τ+ω

τ
G(t, s)[B(s)f(x(s+ ω)) + C(s)g(x(γ(s+ ω))) +D(s)] ds

+

i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(x(t−k )).

Then, x(t + ω) = x(t) and x(t) is an ω-periodic solution of the ICNN models with the

IDEPCAG system (2.1a)–(2.1b). This completes the proof of Lemma 3.3.

Now, define the operator T : PCω → PCω by

(T x)(t) = ((T x)1(t), (T x)2(t), . . . , (T x)n(t))T ,

where

(T x)i(t) =

∫ τ+ω

τ
Gi(t, s)

 n∑
j=1

bij(s)fj(xj(s)) +
n∑
j=1

cij(s)gj(xj(γ(s))) + di(s)

 ds
+

i(τ)+p∑
k=i(τ)+1

Gi(t, tk)Jik(xi(t
−
k ))

for i = 1, 2, . . . , n. By Lemma 3.3, it is easy to verify that x = x(t) is an ω-periodic

solution of the ICNN models with the IDEPCAG system (2.1a)–(2.1b) if and only if the

operator T has one fixed point in PCω.

The following theorem is our main result of this subsection.

Theorem 3.4. If (L1), (L2), (E) and (P) are satisfied and

(3.4) cG · max
1≤i≤n


∫ τ+ω

τ

 n∑
j=1

Lfj |bij(s)|+ Lgj |cij(s)|

 ds

+

i(τ)+p∑
k=i(τ)+1

LJik

 < 1.

Then the ICNN models with the IDEPCAG system (2.1a)–(2.1b) has a unique ω-periodic

solution.

Proof. Define the operator T in PCω by T : PCω → PCω such that if ϕ ∈ PCω, then

(T ϕ)i(t) =

∫ τ+ω

τ
Gi(t, s)

 n∑
j=1

bij(s)fj(ϕj(s)) +

n∑
j=1

cij(s)gj(ϕj(γ(s))) + di(s)

 ds
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+

i(τ)+p∑
k=i(τ)+1

Gi(t, tk)Jik(ϕi(t
−
k ))

for i = 1, 2, . . . , n. The theorem follows if we prove that T has a fixed point. Let ψ, ϕ be

two functions in PCω. By using (L1) and (L2), we can deduce

‖(T ψ)i(·)− (T ϕ)i(·)‖ = max
i∈[1,.,n]

{
max

t∈[τ,τ+ω]
|(T ψ)i(t)− (T ϕ)i(t)|

}
≤ max

i∈[1,.,n]

{∫ τ+ω

τ
max

t∈[τ,τ+ω]
|Gi(t, s)|

[ n∑
j=1

|bij(s)||fj(ψj(s))− fj(ϕj(s))|

+

n∑
j=1

|cij(s)||gj(ψj(γ(s)))− gj(ϕj(γ(s)))|
]
ds

+

i(τ)+p∑
k=i(τ)+1

max
t∈[τ,τ+ω]

|Gi(t, tk)||Jik(ψi(t−k ))− Jik(ϕi(t
−
k ))|

}

≤ max
i∈[1,.,n]

{∫ τ+ω

τ
max

t∈[τ,τ+ω]
|Gi(t, s)|

[ n∑
j=1

|bij(s)|Lfj |ψj(s)− ϕj(s)|

+
n∑
j=1

|cij(s)|Lgj |ψj(γ(s))− ϕj(γ(s))|
]
ds

+

i(τ)+p∑
k=i(τ)+1

max
t∈[τ,τ+ω]

|Gi(t, s)|LJik|ψi(t−k )− ϕi(t−k )|
}

≤ cG max
i∈[1,.,n]

{∫ τ+ω

τ

[ n∑
j=1

Lfj |bij(s)|+
n∑
j=1

Lgj |cij(s)|
]
ds+

i(τ)+p∑
k=i(τ)+1

LJik

}
‖ψ − ϕ‖.

(3.5)

Finally, (3.5) implies

‖T ψ − T ϕ‖

≤ cG · max
1≤i≤n


∫ τ+ω

τ

 n∑
j=1

Lfj |bij(s)|+ Lgj |cij(s)|

 ds

+

i(τ)+p∑
k=i(τ)+1

LJik

 ‖ψ − ϕ‖.
From (3.4), the mapping T is a contraction. Hence, the mapping T possesses a unique

fixed point ϕ∗ ∈ PCω, T ϕ∗ = ϕ∗. By Lemma 3.3, ϕ∗ is the unique ω-periodic solution

of the ICNN models with the IDEPCAG system (2.1a)–(2.1b) in PCω. The proof of

Theorem 3.4 is completed.

Remark 3.5. In our main results, the condition (3.4) is very important which guaran-

tees the operator T mapping PCω into PCω. Moreover, in the case of the DEPCAG
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system (2.18) without impulsive effects, the impulsive condition can be omitted and The-

orem 3.4 is always valid.

The obtained results are different from and less restrictive than those given in [1,

Lemma 4.1] and [1, Theorem 4.1], and the assumptions (C3), (C4) and (C7) in [1] are

relaxed. See Example 4.2.

When considering CNN models (2.18) without impulsive effects, our results lead to the

ones in [17]. Moreover, our results can be extend to CNN models with piecewise constant

argument [15,17].

From Theorem 3.4, we can derive the following results.

Corollary 3.6. If (L1), (L2), (P) and (2.15) are satisfied and

(3.6) max
1≤i≤n

 exp(aiω)

exp(aiω)− 1

 n∑
j=1

(Lfj |bij |+ Lgj |cij |)ω +

i(τ)+p∑
k=i(τ)+1

LJik

 < 1,

where, ai = supt∈R+ ai(t), ai = inft∈R+ ai(t) > 0, bij = supt∈R+ |bij(t)| and cij =

supt∈R+ |cij(t)|. Then the ICNN models with the IDEPCAG system (2.1a)–(2.1b) has

a unique ω-periodic solution.

Corollary 3.7. For ai(t) ≡ ai > 0, bij(t) ≡ bij and cij(t) ≡ cij constants, if (L1), (L2),

(P) and (2.16) are satisfied and

(3.7) max
1≤i≤n

 exp(aiω)

exp(aiω)− 1

 n∑
j=1

(Lfj |bij |+ Lgj |cij |)ω +

i(τ)+p∑
k=i(τ)+1

LJik

 < 1.

Then the ICNN models with the IDEPCAG system (2.1a)–(2.1b), but with the respective

constant coefficients, has a unique ω-periodic solution.

Applying our results to ICNN models with the IDEGPCD system (2.17a)–(2.17b), we

can reduce the following results.

Corollary 3.8. If (L1), (L2), (E′), (P) and (3.4) are satisfied. Then the ICNN models

with the IDEGPCD system (2.17a)–(2.17b) has a unique ω-periodic solution.

Corollary 3.9. If (L1), (L2), (E′), (P) and (3.7) are satisfied. Then the ICNN models

with the IDEGPCD system (2.17a)–(2.17b), but with the respective constant coefficients,

has a unique ω-periodic solution.

Applying our results to CNN models with DEGPCD system (2.18) without impulsive

effects, we have
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Corollary 3.10. If (L1), (P), (2.15) and

(3.8) max
1≤i≤n

 exp(aiω)

exp(aiω)− 1

 n∑
j=1

(Lfj |bij |+ Lgj |cij |)ω

 < 1

are satisfied, where ai = supt∈R+ ai(t), ai = inft∈R+ ai(t) > 0, bij = supt∈R+ |bij(t)| and

cij = supt∈R+ |cij(t)|. Then the CNN models with the DEPCAG system (2.18) has a

unique ω-periodic solution.

Corollary 3.11. For ai(t) ≡ ai > 0, bij(t) ≡ bij and cij(t) ≡ cij constants, if (L1), (P),

(2.16) and

(3.9) max
1≤i≤n

 exp(aiω)

exp(aiω)− 1

 n∑
j=1

(Lfj |bij |+ Lgj |cij |)ω

 < 1

are satisfied. Then the CNN models with the DEPCAG system (2.18), but with the respec-

tive constant coefficients, has a unique ω-periodic solution.

Corollary 3.12. If (L1), (E′), (P) and (3.8) are satisfied. Then the CNN models with

the DEGPCD system (2.17a) has a unique ω-periodic solution.

Corollary 3.13. If (L1), (E′), (P) and (3.9) are satisfied. Then the CNN models with the

DEGPCD system (2.17a), with the respective constant coefficients, has a unique ω-periodic

solution.

Remark 3.14. Theorem 3.4 reduces to the results of [10, Theorem 4.1] with γ(t) = 2
[
t+1
2

]
,

Corollary 3.10 reduces to the results of [17, Corollary 1] without impulsive effects and

Corollary 3.12 reduces to the results of [15, Corollary 3] with generalized piecewise constant

delay. It is shown that our results are general and they complement the previously known

results.

3.2. Global exponential stability of the periodic solution

The following result will obtain sufficient conditions for the global exponential stability of

the ω-periodic solution of the ICNN models with IDEGPCD system (2.1a)–(2.1b).

The following notations are required in the section:

a∗(t) = min
1≤i≤n

ai(t), a∗ = inf
t∈R+

a∗(t), bij = sup
t∈R+

|bij(t)|, cij = sup
t∈R+

|cij(t)|,

ϑ− = sup
κ∈N

(tκ+1 − γκ), ϑ+ = sup
κ∈N

(γκ − tκ), ϑκ = tκ+1 − tκ, ϑ = sup
κ∈N

ϑκ,

LJκ = max
1≤i≤n

LJiκ, Li(t) = max
i(τ)+1≤κ≤i(t)

ln(1 + LJκ)

ϑκ
, µ∗(t) = max

1≤i≤n
µi(t),
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and

µi(t) =
n∑
j=1

Lfj |bij(t)|+
1

1− ν̂

n∑
j=1

Lgj |cij(t)| exp

(∫ t

γ(t)
a∗(s) ds

)
,

where

max
1≤i≤n

sup
k∈N

∫ γk

tk

 n∑
j=1

Lfj |bij(s)|+
n∑
j=1

Lgj |cij(s)| exp

(∫ s

γk

a∗(s) ds

) ≤ ν̂ < 1.

Here we assume the stability condition.

(S) Stability condition. There exists ρ ∈ R+, such that

(3.10) a∗(t)− µ∗(t)− Li(t) ≥ ρ > 0, t ∈ R+.

Theorem 3.15. If (L1), (L2), (E), (P), (S) and (3.4) are satisfied. Then the ω-periodic

solution of the ICNN models with the IDEPCAG system (2.1a)–(2.1b) is globally expo-

nentially stable.

To prove Theorem 3.15, we need the following lemma.

Lemma 3.16. If (L1), (L2) and (E) are satisfied, then the solutions ϕ and ψ of the the

IDEPCAG system (2.1a)–(2.1b) satisfy for all t ≥ τ the inequality

(3.11) |ϕ(t)− ψ(t)| ≤ |ϕ(τ)− ψ(τ)| exp

(
−
∫ t

τ
λ(s) ds

)
,

where λ(t) = a∗(t)− µ∗(t)− Li(t).

Proof. Suppose that ϕ(t) = (ϕ1, . . . , ϕn)T and ψ(t) = (ψ1, . . . , ψn)T are arbitrary solutions

of the IDEPCAG system (2.1a)–(2.1b). Let y(t) = ϕ(t) − ψ(t) and by (2.1a)–(2.1b) it

follows that y(t) satisfies

ẏ(t) = −A(t)y(t) +B(t)[f(y(t) + ψ(t))− f(ψ(t))]

+ C(t)[g(y(γ(t)) + ψ(γ(t)))− g(ψ(γ(t)))],

∆y
∣∣
t=tk

= Jk(y(t−k ) + ψ(t−k ))− Jk(ψ(t−k )), k ∈ N.

By Proposition 2.2, it can be proved that

y(t) = Φ(t, τ)y(τ) +

∫ t

τ
Φ(t, s)R(s, y(s)) ds

+

i(t)∑
k=i(τ)+1

Φ(t, tk)Jk(y(t−k )), i(t) > i(τ),

(3.12)
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where

R(s, y(s)) := B(s)[f(y(s) + ψ(s))− f(ψ(s))] + C(s)[g(y(β(s)) + ψ(γ(s)))− g(ψ(γ(s)))],

and

Jk(y(t−k )) := Jk(y(t−k ) + ψ(t−k ))− Jk(ψ(t−k )).

Notice that (L1) and (L2) imply that

|Ri(s, y(s))| ≤

 n∑
j=1

Lfj |bij(s)||yj(s)|+
n∑
j=1

Lgj |cij(s)||yj(γ(s))|

 ,

|R(s, y(s))| ≤ max
1≤i≤n

 n∑
j=1

Lfj |bij(s)||y(s)|+
n∑
j=1

Lgj |cij(s)||y(γ(s))|


and

|Jk(y(t−k ))| ≤ LJk |y(t−k )|.

By (3.12), we can deduce that vi(t) = exp
( ∫ t

τ a∗(s) ds
)
|yi(t)| satisfies

|vi(t)| ≤ |ϕi(τ)− ψi(τ)|

+

∫ t

τ

 n∑
j=1

Lfj |bij(s)||vj(s)|+
n∑
j=1

Lgj |cij(s)||vj(γ(s))| exp

(∫ s

γ(s)
a∗(κ) dκ

) ds
+

i(t)∑
k=i(τ)+1

LJk |vi(t−k )|,

or

|v(t)| ≤ |ϕ(τ)− ψ(τ)|

+ max
1≤i≤n

∫ t

τ

 n∑
j=1

Lfj |bij(s)||v(s)|+
n∑
j=1

Lgj |cij(s)||v(γ(s))| exp

(∫ s

γ(s)
a∗(κ) dκ

) ds
+

i(t)∑
k=i(τ)+1

LJk |v(t−k )|

for i(t) > i(τ).

Hence, by Lemma 2.3 of the IDEPCAG’s Gronwall inequality implies

|v(t)| ≤ |ϕ(τ)− ψ(τ)|
i(t)∏

k=i(τ)+1

(1 + LJk )

× exp

max
1≤i≤n

∫ t

τ

n∑
j=1

Lfj |bij(s)|+
1

1− v̂

n∑
j=1

Lgj |cij(s)| exp

(∫ s

γ(s)
a∗(κ) dκ

) .
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Then, we obtain

|ϕ(t)− ψ(t)| ≤ |ϕ(τ)− ψ(τ)|
i(t)∏

k=i(τ)+1

(1 + LJk ) exp

(
−
∫ t

τ
a∗(s) ds+ max

1≤i≤n

∫ t

τ
µi(s) ds

)
,

or

|ϕ(t)− ψ(t)|

≤ |ϕ(τ)− ψ(τ)| exp

{∫ t

τ

(
−a∗(s) + max

1≤i≤n
µi(s) + max

i(τ)+1≤k≤i(t)

ln(1 + LJk )

ϑk

)
ds

}
,

and the statement (3.11) follows.

Proof of Theorem 3.15. According to Theorem 3.4, we know that the ICNN models with

the IDEPCAG system (2.1a)–(2.1b) has an ω-periodic solution x∗(t) = (x∗1(t), . . . , x
∗
n(t))T

with initial value x∗(τ) = (x∗1(τ), . . . , x∗n(τ))T .

Suppose that x(t) = (x1(t), . . . , xn(t))T is an arbitrary solution of the ICNN models

with the IDEPCAG system (2.1a)–(2.1b) with initial value x(τ) = (x1(τ), . . . , xn(τ))T .

Consider the change of variables

z(t) = x(t)− x∗(t) = (x1(t)− x∗1(t), . . . , xn(t)− x∗n(t))T .

Then it follows from system (2.1a)–(2.1b) that

z′i(t) = −ai(t)zi(t) +

n∑
j=1

bij(t)f̃j(zj(t)) +

n∑
j=1

cij(t)g̃j(zj(γ(s))), t 6= tk,

∆zi
∣∣
t=tk

= J̃ik(zi(t
−
k )), i = 1, 2, . . . , n, k ∈ N,

where

f̃j(zj(t)) = fj(zj(t) + x∗j (t))− fj(x∗j (t)),

g̃j(zj(γ(t))) = gj(zj(γ(t)) + x∗j (γ(t)))− gj(x∗j (γ(t))),

J̃ik(zi(t
−
k )) = Jk(zi(t

−
k ) + x∗i (t

−
k ))− Jk(x

∗
i (t
−
k )).

Now, by Proposition 2.2, it can be proved that

zi(t) = e−
∫ t
τ ai(s) dszi(τ)

+

∫ t

τ
e−

∫ t
s ai(u) du

 n∑
j=1

bij(s)f̃j(zj(s)) +

n∑
j=1

cij(s)g̃j(zj(γ(s)))

 ds
+

i(t)∑
k=i(τ)+1

e
−

∫ t
tk
a(s) ds

J̃ik(zi(t
−
k )), i(t) > i(τ),
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and similar to the proof of Lemma 3.16, we obtain

max
1≤i≤n

|zi(t)| ≤ max
1≤i≤n

|zi(τ)| exp

(
−
∫ t

τ
[a∗(s)− µ∗(s)− Li(s)] ds

)
.

Thus, from the assumption of (3.10), we can conclude that the ω-periodic solution of the

ICNN models with the IDEPCAG system (2.1a)–(2.1b) is globally exponentially stable

and this completes the proof of Theorem 3.15.

Remark 3.17. Different from the methods used in [1,2], the relationship that ‖y(β(t))‖ ≤
B‖y(t)‖, where B =

{
1 − θ

[
α2 + α3(1 + θα2)e

θα3
]}−1

> 0 in [1, Lemma 3.1] and B ={
1−

[
k2θ + (k1θ + lp)(1 + k2θ)(1 + l)pek1θ

]}−1
in [2, Lemma 5.2.5] is not required in the

present paper. Because this relationship is not necessary for the proposed technique of

IDEPCAG’s Gronwall inequality here.

Remark 3.18. The stability criteria in [1] are depended on the upper and lower bounds θ

and θ. It requires that γ−α1−Bα2− ln(1+l)
θ > 0 in [1, Theorem 3.1]. Thus, those results

cannot be used to obtain the stability of neural networks for any θ
[
α2+α3(1+θα2)e

θα3
]
>

1. Then, we can choose proper parameter which the stability criteria in [1] are not satisfied.

Hence, our results can be applied more convenient than the results in [1].

Remark 3.19. The existence criterion (E) and the stability criterion (S) can be easily

solved by using some existing software, for example, the MATLAB.

Remark 3.20. Theorem 3.15 reduces to the stability result of [10, Theorem 4.2] with the

classic piecewise alternately advanced and retarded argument, [14, Theorem 4.4] and [1,

Theorem 4.2] with generalized piecewise constant delay.

It should be pointed that, because of the complexity of the results, the problem of

finding appropriate parameters is a difficult task. Therefore, in order to easily check the

applicability of the results, we will give corollaries as follows.

Corollary 3.21. If the assumptions (L1), (L2), (2.15) are satisfied and

(3.13) a∗ > max
1≤i≤n

 n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |
ea∗·ϑ

−

1− ν̂

+ sup
κ∈N

ln(1 + LJκ)

ϑκ

where

(3.14) sup
k∈N

max
1≤i≤n

 n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |

(
1− e−a∗·ϑ

+
k

a∗

) · ϑ+k
 ≤ ν̂ < 1.

Then the ICNN models with the IDEPCAG system (2.1a)–(2.1b) is globally exponentially

stable.
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Corollary 3.22. If the assumptions of Corollary 3.6, (3.13) and (3.14) are satisfied. Then

the ω-periodic solution of the ICNN models with the IDEPCAG system (2.1a)–(2.1b) is

globally exponentially stable.

Corollary 3.23. If the assumptions of Corollary 3.7 are satisfied and

(3.15) a∗ > max
1≤i≤n

 n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |
ea∗·ϑ

−

1− ν

+ sup
κ∈N

ln(1 + LJκ)

ϑκ

where a∗ = inf1≤i≤n ai and

(3.16) sup
k∈N

max
1≤i≤n

 n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |
1− e−a∗·ϑ

+
k

a∗

 · ϑ+k
 ≤ ν < 1.

Then the ω-periodic solution of the ICNN models with the IDEPCAG system (2.1a)–(2.1b)

(the respective constant coefficients) is globally exponentially stable.

Note that if we consider the deviation argument that is of the constant delay of gen-

eralized type, i.e., γ(t) = γi = ti, if t ∈ [ti, ti+1), i ∈ N. We can easily to see that ϑ+ = 0

and ϑ− = ϑ. Then we have the following corollary.

Corollary 3.24. If the assumptions of Corollary 3.8 are satisfied and

a∗ > max
1≤i≤n

n∑
j=1

(
Lfj |bij |+ Lgj |cij | exp(a∗ · ϑ)

)
+ sup
κ∈N

ln(1 + LJκ)

ϑκ
.

Then the ω-periodic solution of the ICNN models with the IDEGPCD system (2.17a)–

(2.17b) is globally exponentially stable.

Remark 3.25. Corollary 3.24 reduces to the results of [14, Theorem 4.4].

Corollary 3.26. If the assumptions of Corollary 3.9 are satisfied and

a∗ > max
1≤i≤n

n∑
j=1

(Lfj |bij |+ Lgj |cij | exp(a∗ · ϑ)) + sup
κ∈N

ln(1 + LJκ)

ϑκ
.

Then the ω-periodic solution of the IDEGPCD system (2.17a)–(2.17b) (the respective con-

stant coefficients) is globally exponentially stable.

Remark 3.27. Corollary 3.26 generalizes corresponding result obtained by [1, Theorem 4.2]

and [2, Theorem 7.2.1] under complicated and stronger conditions.

As a direct consequence of the method, we have the following result without impulsive

effects.
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Corollary 3.28. If the assumptions of Corollary 3.10 and (3.14) are satisfied and

a∗ > max
1≤i≤n

 n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |
ea∗·ϑ

−

1− ν̂

 .

Then the ω-periodic solution of the CNN models with the DEPCAG system (2.18) is

globally exponentially stable.

Corollary 3.29. If the assumptions of Corollary 3.11 and (3.16) are satisfied and

a∗ > max
1≤i≤n

 n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |
ea∗·ϑ

−

1− ν

 .

Then the ω-periodic solution of the CNN models with the DEPCAG system (2.18), but

with the respective constant coefficients, is globally exponentially stable.

Corollary 3.30. If the assumptions of Corollary 3.12 are satisfied and

a∗ > max
1≤i≤n

n∑
j=1

(Lfj |bij |+ Lgj |cij | exp(a∗ · ϑ)).

Then the ω-periodic solution of the CNN models with the DEGPCD system (2.17a) is

globally exponentially stable.

Corollary 3.31. If the assumptions of Corollary 3.13 are satisfied and

a∗ > max
1≤i≤n

n∑
j=1

(Lfj |bij |+ Lgj |cij | exp(a∗ · ϑ)).

Then the ω-periodic solution of the CNN models with the DEGPCD system (2.17a), with

the respective constant coefficients, is globally exponentially stable.

Remark 3.32. When the the impulsive effects are absent, the stability result of Corol-

lary 3.28 reduces to the stability result of [17, Theorem 3] with generalized piecewise

alternately advanced and retarded argument and Corollary 3.30 reduces to the results

of [15, Theorem 5.1] with generalized piecewise constant delay. We are able to see that

the results obtained in this article extend and improve the results given in [1,2,10,14,15,17].

Remark 3.33. Recently, the existence and stability of the periodic solution to the ICNN

models with piecewise constant argument have been studied extensively. However, we

do not find related works concerning the periodic solution for impulsive cellular neural

network models with piecewise alternately advanced and retarded argument of generalized

type.

From this point, the model considered in this paper is more general than the existing

the ICNN models and the CNN models with piecewise constant argument such as those

in References [1, 2, 10,14,15,17].
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4. Illustrative examples with simulations

In this section we should present two illustrative examples with simulations for our pro-

posed results.

Example 4.1. Consider the following ICNN models with the IDEPCAG system

x′1 = −a1(·)x1 + b11(·)f1(x1) + b12(·)f2(x2)

+ c12(·)g2(x2(γ(·))) + c13(·)g3(x3(γ(·))) + d1(·),

x′2 = −a2(·)x2 + b21(·)f1(x1) + b23(·)f3(x3)

+ c21(·)g1(x1(γ(·))) + c22(·)g2(x2(γ(·))) + d2(·),

x′3 = −a3(·)x2 + b31(·)f1(x1) + b32(·)f2(x2)

+ c31(·)g1(x1(γ(·))) + c33(·)g3(x3(γ(·))) + d3(·),

(4.1a)


∆x1(tκ) = J1κ(x1(t

−
κ )),

∆x2(tκ) = J2κ(x2(t
−
κ )),

∆x3(tκ) = J3κ(x3(t
−
κ )),

(4.1b)

where

a1(t) = 1.1 + 0.1 cos

(
16

3
t

)
, a2(t) = 0.7 + 0.1 sin

(
16

3
t

)
, a3(t) = 0.85− 0.05 sin

(
16

3
t

)
,

b11(t) = 0.15 + 0.1 sin

(
16

3
t

)
, b12(t) = 0.1 + 0.05 cos

(
16

3
t

)
, b21(t) = 0.1 + 0.05 sin

(
16

3
t

)
,

b23(t) = 0.25 + 0.1 cos

(
16

3
t

)
, b31(t) = 0.25 + 0.1 sin

(
16

3
t

)
, b32(t) = 0.15 + 0.1 cos

(
16

3
t

)
,

c12(t) = 0.1 + 0.05 sin

(
16

3
t

)
, c13(t) = 0.25 + 0.1 cos

(
16

3
t

)
, c21(t) = 0.15 + 0.1 sin

(
16

3
t

)
,

c22(t) = 0.25 + 0.1 cos

(
16

3
t

)
, c31(t) = 0.1 + 0.05 sin

(
16

3
t

)
, c33(t) = 0.15 + 0.1 cos

(
16

3
t

)
,

d1(t) = 0.8 + 0.1 sin

(
16

3
t

)
, d2(t) = 0.5 + 0.1 cos

(
16

3
t

)
, d3(t) = 0.6 + 0.1 cos

(
16

3
t

)
,

and γ(t) = 3π
8 κ−

π
4 , if 3π

8 (κ− 1) ≤ t < 3π
8 κ, κ ∈ N.

The output functions are

f1(x1(t)) = − cos

(
x1(t)

10

)
+
x1(t)

15
+ 1, f2(x2(t)) = sin

(
x2(t)

6

)
+
x2(t)

12
,

f3(x3(t)) = cos

(
x3(t)

12

)
+
x3(t)

24
− 1, g1(x1(γ(t))) = sin

(
x1(γ(t))

4

)
,

g2(x2(γ(t))) = − cos

(
x2(γ(t))

8

)
+ 1, g3(x3(γ(t))) = sin

(
x3(γ(t))

3

)
.
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The impulsive functions are

J1κ(x1(t
−
κ )) = J1κ

(
x1

(
3π

8
(κ− 1)−

))
=
x1
(
3π
8 (κ− 1)−

)
5

− 0.5,

J2κ(x2(t
−
κ )) = J2κ

(
x2

(
3π

8
(κ− 1)−

))
=
x2
(
3π
8 (κ− 1)−

)
8

+ 0.3,

J3κ(x3(t
−
κ )) = J3κ

(
x3

(
3π

8
(κ− 1)−

))
=
x3
(
3π
8 (κ− 1)−

)
6

− 0.4.

We can easily obtain that the maximal distance ϑ+k = γk − tk = π
8 , ϑ−k = tk+1 − γk = π

4 ,

ϑ = ϑk = 3π
8 , Lf1 = LJ3κ = 1

6 , Lf2 = Lg1 = 1
4 , Lf3 = Lg2 = LJ2κ = 1

8 , Lg3 = 1
3 , LJ1κ = 1

5 , LJκ = 1
5 ,

supκ∈N
ln(1+LJκ)

ϑκ
≈ 0.15476, a∗ = 0.8, a∗ = 0.6 and {ti}i∈N, {γi}i∈N, {Jk}k∈N satisfy the(

3π
8 , 1

)
condition. Moreover,

a1(·) a2(·) a3(·) b11(·) b12(·) b21(·) b23(·) b31(·) b32(·)

maxt∈R+ 1.2 0.8 0.9 0.25 0.15 0.15 0.35 0.35 0.25

mint∈R+ 1.0 0.6 0.8 0.05 0.05 0.05 0.15 0.15 0.05

c12(·) c13(·) c21(·) c22(·) c31(·) c33(·) d1(·) d2(·) d3(·)

maxt∈R+ 0.15 0.35 0.25 0.35 0.15 0.25 0.9 0.6 0.7

mint∈R+ 0.05 0.15 0.05 0.15 0.05 0.05 0.7 0.4 0.5

It follows that

(a)

κ+ = max
1≤i≤3

 sup
i(τ)≤κ

(
1− e−ai·ϑ

+
κ

ai

) n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |

 ≈ 0.28009 < 1,

κ− = max
1≤i≤3

 sup
1≤κ≤i(τ)

(
eai·ϑ

−
κ − 1

ai

) n∑
j=1

Lfj |bij |+
n∑
j=1

Lgj |cij |

 ≈ 0.08144 < 1.

(b)

exp(a1ω)

exp(a1ω)− 1

[(
Lf1 |b11|+ Lf2 |b12|+ Lg2|c12|+ Lg3|c13|

)
ω + LJ1

]
≈ 0.92827 < 1,

exp(a2ω)

exp(a2ω)− 1

[(
Lf1 |b21|+ Lf3 |b23|+ Lg1|c21|+ Lg2|c22|

)
ω + LJ2

]
≈ 0.89702 < 1,

exp(a3ω)

exp(a3ω)− 1

[(
Lf1 |b31|+ Lf2 |b32|+ Lg1|c31|+ Lg3|c33|

)
ω + LJ3

]
≈ 0.89348 < 1.
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(c)

µ1 =
3∑
j=1

Lfj |b1j |+
3∑
j=1

Lgj |c1j |
ea∗·ϑ

−

1− ν̂
≈ 0.43111 < 0.44524 ≈ a∗ − sup

κ∈N

ln(1 + LJκ)

ϑκ
,

µ2 =
3∑
j=1

Lfj |b2j |+
3∑
j=1

Lgj |c2j |
ea∗·ϑ

−

1− ν̂
≈ 0.27316 < 0.44524 ≈ a∗ − sup

κ∈N

ln(1 + LJκ)

ϑκ

and

µ3 =
3∑
j=1

Lfj |b3j |+
3∑
j=1

Lgj |c3j |
ea∗·ϑ

−

1− ν̂
≈ 0.36267 < 0.44524 ≈ a∗ − sup

κ∈N

ln(1 + LJκ)

ϑκ
,

where

ν̂ = sup
k∈N

max
1≤i≤3

 3∑
j=1

Lfj |bij |+
3∑
j=1

Lgj |cij |

(
1− e−a∗·ϑ

+
k

a∗

) · ϑ+k
 ≈ 0.06344 < 1.

Then we have

a∗ − max
1≤i≤3

µi − sup
κ∈N

ln(1 + LJκ)

ϑκ
≈ 0.08256 > 0.

One can see that all conditions (L1), (L2), (P), (2.15), (3.6), (3.13) and (3.14) in Corol-

lary 3.22 are satisfied. Therefore, the ICNN models with the IDEPCAG system (4.1a)–

(4.1b) has a unique globally exponentially stable 3π
8 -periodic solution. The simulation

of the unique 3π
8 -periodic solution of the ICNN models (4.1a)–(4.1b) with and without

impulses, are shown in Figures 4.1–4.8.

For the simulation, the initial states (x1(0), x2(0), x3(0))T are given by the random

function. Figures 4.1–4.6 show that the conditions obtained in this article are valid for

the ICNN models with the IDEPCAG system (4.1a)–(4.1b).
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t
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x 1

0 2 4 6 8 10 12 14
t

0.5
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x 2

0 2 4 6 8 10 12 14
t

0.5

1

1.5

2

x 3

Figure 4.1: Some trajectories uni-

formly convergent to the unique expo-

nentially stable 3π
8 -periodic solution of

the ICNN models with the IDEPCAG

system (4.1a)–(4.1b).

Figure 4.2: Phase plots of state variable

(x1, x2, x3) in the ICNN models with the

IDEPCAG system (4.1a)–(4.1b) with

the initial condition (0.2, 0.2, 0.2)T .
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Figure 4.3: Phase plots of state vari-

able (x1, x2, x3) in the ICNN models

with the IDEPCAG system (4.1a)–

(4.1b) with the initial condition

(0.29529, 1.5702, 0.37765)T .

Figure 4.4: Phase plots of state variable

(t, x1, x2) in the ICNN models with the

IDEPCAG system (4.1a)–(4.1b).

Figure 4.5: Phase plots of state variable

(t, x1, x3) in the ICNN models with the

IDEPCAG system (4.1a)–(4.1b).

Figure 4.6: Phase plots of state variable

(t, x2, x3) in the ICNN models with the

IDEPCAG system (4.1a)–(4.1b).
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0.86

0.88

x 3

Figure 4.7: 3π
8 -periodic solution of the

CNN models with the DEPCAG sys-

tem (4.1a) for t ∈ [0, 14] with the initial

value (0.7979, 0.7895, 0.8238)T .

Figure 4.8: Trajectories uniformly con-

vergent to the unique exponentially sta-

ble 3π
8 -periodic solution of the CNN

models with the DEPCAG system (4.1a)

with the initial value (0.9, 0.9, 0.9)T .
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Numerical simulations confirm that the proposed conditions in our results are effective

for the ICNN models with the IDEPCAG system (4.1a)–(4.1b).

Example 4.2. Let a1(t) ≡ 1.2, a2(t) ≡ 0.7, b11(t) = c12(t) ≡ 0.14, b12(t) ≡ 0.11, b21(t) ≡
0.125, b22(t) = c22(t) ≡ 0.12, c11(t) ≡ 0.15, c21(t) ≡ 0.13, and d1(t) ≡ 3, d2(t) ≡ 2.

Then the ICNN models with the IDEPCAG system (2.1a)–(2.1b) reduces to the following

system

dx(t)

dt
= −

1.2 0

0 0.7

x1(t)
x2(t)

+

 0.14 0.11

0.125 0.12

tanh
(x1(t)

8

)
tanh

(x2(t)
5

)


+

0.15 0.14

0.13 0.12



∣∣x1(4[ t+3

4

])
+1
∣∣−∣∣x1(4[ t+3

4

])
−1
∣∣

14∣∣x2(4[ t+3
4

])
+1
∣∣−∣∣x2(4[ t+3

4

])
−1
∣∣

16

+

3

2

 ,

(4.2a)

∆x
∣∣
t=k

=

J1k(x1(k−))

J2k(x2(k
−))

 =

(−1)k x1(k
−)

6 + 2.5

(−1)k x2(k
−)

5 + 3.5

 , k ∈ N.(4.2b)

We can easily obtain that t1 = γ1 = 0, ti = 4(i − 2) + 1, γi = 4(i − 1), i ≥ 2,

ϑ+ = ϑ+k = γk − tk = 3, ϑ− = ϑ−k = tk+1 − γk = 1, ϑ = ϑk = 4, k ∈ N, Lf1 = 1
8 , Lf2 = 1

5 ,

Lg1 = 1
7 , Lg2 = 1

8 , LJ1κ = 1
6 , LJ2κ = 1

5 , LJκ = 1
5 , supκ∈N

ln(1+LJκ)
ϑκ

≈ 0.04558, a∗ = 0.7 and

{ti}i∈N, {γi}i∈N, {Jk}k∈N satisfy the (8, 2) condition.

It follows that

(a)

κ+ = max
1≤i≤2

 sup
i(τ)≤κ

(
1− e−ai·ϑ

+
κ

ai

) 2∑
j=1

Lfj |bij |+
2∑
j=1

Lgj |cij |

 ≈ 0.151636 < 1

and

κ− = max
1≤i≤2

 sup
1≤κ≤i(τ)

(
eai·ϑ

−
κ − 1

ai

) 2∑
j=1

Lfj |bij |+
2∑
j=1

Lgj |cij |

 ≈ 0.091761 < 1.

(b)

exp(a1ω)

exp(a1ω)− 1

 2∑
j=1

(
Lfj |b1j |+ L

g
j |c1j |

)
ω + 2 · LJ1

 ≈ 0.96082 < 1

and

exp(a2ω)

exp(a2ω)− 1

 2∑
j=1

(
Lfj |b2j |+ L

g
j |c2j |

)
ω + 2 · LJ2

 ≈ 0.98922 < 1.
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(c)

µ1 =

2∑
j=1

Lfj |b1j |+
2∑
j=1

Lgj |c1j |
ea∗·ϑ

−

1− ν̂
≈ 0.143349 < 0.654419 ≈ a∗ − sup

κ∈N

ln(1 + LJκ)

ϑκ

and

µ2 =
3∑
j=1

Lfj |b2j |+
3∑
j=1

Lgj |c2j |
ea∗·ϑ

−

1− ν̂
≈ 0.129183 < 0.654419 ≈ a∗ − sup

κ∈N

ln(1 + LJκ)

ϑκ
,

where

ν̂ = sup
k∈N

max
1≤i≤2

 2∑
j=1

Lfj |bij |+
2∑
j=1

Lgj |cij |

(
1− e−a∗·ϑ

+
k

a∗

) · ϑ+k
 ≈ 0.245133 < 1.

Then

a∗ − max
1≤i≤2

µi − sup
κ∈N

ln(1 + LJκ)

ϑκ
≈ 0.51107 > 0.

In this case, we can easily verify that all conditions (L1), (L2), (P), (2.16), (3.7), (3.15)

and (3.16) of Corollary 3.23 are satisfied. Thus, according to Corollary 3.23, the ICNN

models with the IDEPCAG system with constant coefficients (4.2a)–(4.2b) has a unique

8-periodic solution and all other solution of system converge exponentially to it as t→∞.

The numerical simulations, showing the convergence of the 8-periodic solution of the

ICNN models with the IDEPCAG system with constant coefficients (4.2a)–(4.2b), are

given in Figures 4.9–4.12.
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Figure 4.9: 8-periodic solution of the

ICNN models with the IDEPCAG sys-

tem (4.2a)–(4.2b) with the initial condi-

tion (2.6315, 3.0302)T .
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Figure 4.10: Exponential convergence of

five trajectories towards an 8-periodic

solution of the ICNN models with the

IDEPCAG system (4.2a)–(4.2b).
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Figure 4.11: Phase plane behavior of

the state variables x1 and x2 for the

ICNN models with the IDEPCAG sys-

tem (4.2a)–(4.2b) with the initial condi-

tion (2.6315, 3.0302)T .

Figure 4.12: Phase plots of state variable

(t, x1, x2) in the ICNN models with the

IDEPCAG system (4.2a)–(4.2b).

Remark 4.3. When considering system (4.2a)–(4.2b) with generalized piecewise constant

delay, the parameters of the system (4.2a)–(4.2b) do not satisfy Theorem 4.2 in [1]. This

implies that the results in the present paper are less conservative than the results in [1].

5. Conclusions

In this paper, the unique globally exponentially stable periodic solution for the impul-

sive cellular neural network models with piecewise alternately advanced and retarded

argument of generalized type have been investigated. By using the equivalent integral

equation, a new IDEPCAG’s Gronwall inequality and Banach fixed-point theorem, some

new sufficient conditions have been developed to ensure the existence, uniqueness and

global exponential stability of the periodic solution for general non-autonomous ICNN

models with the IDEPCAG system. The proposed criteria for the existence and stabil-

ity theorems are easily tested by analyzing multiple relationships between neural network

parameters and Lipschitz constants without asking for the conditions of differentiability,

monotonicity or boundedness. Based on the proposed approach, it is unnecessary to uti-

lize Razumikhin-type technique or construct a Lyapunov function that is applied from the

previous literature. Moreover, illustrative simulation examples show that the approach

used is more efficient and extend the results of the previous literature [1, 10,14,17].
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