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Global Existence and Blow-up of Solutions for a System of Fractional Wave

Equations

Bashir Ahmad*, Ahmed Alsaedi, Mohamed Berbiche and Mokhtar Kirane

Abstract. We investigate the Cauchy problem for a 2 x 2-system of weakly coupled
semi-linear fractional wave equations with polynomial nonlinearities posed in Rt xR¥.
Under appropriate conditions on the exponents and the fractional orders of the time
derivatives, it is shown that there exists a threshold value of the dimension N, for
which, small data-global solutions as well as finite time blowing-up solutions exist.
Furthermore, we investigate the L°°-decay estimates of global solutions.

1. Introduction

We consider the following Cauchy problem

(1.1) “Dijyu—Au= f(u(t,-)), t>0, z€R",
CDgftv —Av=g(u(t,-)), t>0, xeR",

subject to the initial conditions

(1.2) u(0,z) = up(x), w(0,z) =uy(x), =R,

1
—~
=

8
~—

Il

vo(x), v(0,2) =vi(x), =R,

where 1 < 1,72 < 2, CD(‘JX‘ ,u denotes the Caputo derivative, defined for a function u of

class C2, as (see, e.g., [31])

1 Eoug(s, )
Cna tt 9
D t) := ds, 1l<a<?2,
( 0|tu)( ) I—\(2 — Oé) /0 (t — S)a_l S a
A is the Laplacian, f(v) = %[v[P~ v or £|v|P, g(u) = £|u|? u or %|ul?, p,q > 1, and ug,
Vg, U1, V1 are given initial data.

Observe that system (1.1]) interpolates reaction-diffusion system (y; = 72 = 1) and
hyperbolic system (71 = 2 = 2).
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Before we present our results and comment on them, let us dwell on some related
existing results.
Escobedo and Herrero [13] studied the global existence and blowing-up solutions of

the system

w—Au=0vP, t>0, zcRY,
(1.3)
v —Av=ud, t>0, xRV,

In particular, for

pg > 1, g < maX};{fi]i 1
they have shown that every nontrivial solution of blows-up in a finite time T* =
T*(u,v), and

)

lim sup [[u(t)]| oo = limsup [[v(t)]|cc = +00.
t—=T* t—=T*

Some related results concerning global existence or blowing-up solutions can be found in
[14,27-30], etc. In particular, see the review papers [4,11] and the authoritative paper [26].

Blowing-up solutions and global solutions for time-fractional differential systems have
been studied, for example, in [1H3}/12,16-18, 20,22, 34].

Concerning the system of wave equations

ug — Au=[v|P, 0<t<T, zeRY,

(1.4)
v — Av=|uld, 0<t<T, zeRY,

subject to initial data

u(O,x) = f(x)a Ut(oax) = g(:c), T € RNv

(1.5)
v(0,2) = h(z), v(0,z) =k(z), xRN,

where f,g,h,k € C°(RY), we may mention the works [810]. For N = 3 in [8], the
following optimal results were obtained:
> If p,g > 1 and

{p+2+q]q+2+p1}

max , > 1,

pg—1 pg—1

then the classical solution to (1.4))—(1.5)) blows-up in a finite time.
> If p,g > 1 and

{p+2+q4q+2+p4}
max , <1,
pg—1 pg—1

then there exists a global classical solution to (|1.4)—(1.5) for sufficiently “small” initial
data.
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Our interest in stems from the fact that it interpolates different situations; for
example, reaction-diffusion systems with fractional derivatives can model chemical reac-
tions taking place in porous media. In this case, fractional (nonlocal) terms with order in
(0,1) account for the anomalous diffusion [23,25]. Experimental results show that several
complex systems have a non-local dynamics.

On the other hand, equations/systems of fractional differential equations with order
in (1,2) have been studied in [7,[24,33], etc. Examples include mechanical, acoustical,
biological phenomena, marine sediments, etc. [19,32].

In the present paper, we consider the problem f and present conditions,
relating the space dimension N with the parameters v1, 2, p, and ¢, for which the solution
of f exists globally in time and satisfies L°°-decay estimates. We also investigate
blowing-up in finite time solutions with initial data having positive average. Our study of
global existence employs the mild formulation of the solution via Mittag—LefHler’s function,
while we use the test function approach due to Mitidieri and Pohozaev [26] for the case of
blowing-up solutions. The test function approach has been used by several authors, (for
instance, see [5},6,(15,122,27,134]). To the best of our knowledge, there do not exist global
existence and large time behavior results for the time-fractional diffusion system with two
different fractional powers. Thus our results are new and contribute significantly to the
existing literature on the topic.

The rest of this paper is organized as follows. In next section, we present some pre-
liminary lemmas, basic facts and useful tools such as time fractional derivative, LP-L9-
estimates of the fundamental solution of the linear time fractional wave equation. Section 3]
contains the main results of the paper. Finally, Section [ is devoted to the proof of small
data global existence and blow-up in finite time of the solution of problem f.

In the sequel, C will be a positive constant which may have different values from line
to line. The space LP(RY) (1 < p < 00) will be equipped with the norm:

p _ p
Jall ey = [t )P da

2. Preliminaries

The Riemann-Liouville fractional integral of order 0 < a < 1 of f(t) € L'(0,T) is defined

as
1

D0 = e /0 (t — 1)L f(r) dr,

where I' stands for the usual Euler gamma function.

The left-sided Riemann-Liouville derivative D, f (see [31]), for f € C™1(0,T), of
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order «v is defined as follows:

am

(D)) = =

(Jgﬁ “Ht), t>0,m—1<a<m, meN.
The Caputo fractional derivative of a function f € C™(0,T) is defined as
DG = Ty f (), >0, m—1<a<m, meN.

oft

For 0 < o < 1 and f of class C!, we have

1= [+ 5]

and

L[ T F)
(Diir ) = ru—m[a>wa‘[ @—wa“}

The Caputo derivative is related to the Riemann-Liouville derivative for f € AC[0,T]
(the space of absolutely continuous functions defined on [0, 7T]) by

(DG, f)(8) = Dgi,(£(t) — 1(0)):

Assume that 0 < a < 1, f € C'([a,b]) and g € C(a,b). Then the formula of integration
by parts is

b =
‘/f (Dae)dt = [ a0} D)t + )T 0) ()

t=a

The Mittag—Leffler function is defined (see [31]) b

kzorak+ﬁ a,BeC, Rla) >0, z€C;

its Riemann—Liouville fractional integral satisfies

Jol‘ta(t"‘ 'Baa(M?) = E,1(AMt%) for A€ C,0< a < 1.

For later use, let

then

T(l+1) £\

C «

DS =—"T 1—— t<T
HTe olt) [il+1-«) ( ) ’ ’

(see, for example, [22]).
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2.1. Linear estimates

In this section, we present fundamental estimates which will be used to prove Theorem [3.3

For 1 < a < 2, we define the operators Eaﬁl(t, x) and Ema(t, x) as follows:

Eoa(t,x) = (2m) NP F N (Ean(—47°t1E) (), 2 € RN, ¢ >0,
Ea,Z(t7$) = (27T)_N/2]:_1(Ea 2(_47r2ta|£|2))($)¢ WS RNa t> 07

Eool(t,z) = (210) N2 F Y By o(—|€2%)) (), zeRY, t>0.

)

Consider the following linear inhomogeneous time fractional equation with initial data:

2.1) CD(O]“tu—Au:f(t,m), t>0,zeRY, 1<a<?2,
. u(0,2) = up(z), w(0,z)=wui(x), =€ RV,

If ug € S(RN) (the Schwartz space), u; € S(RV) and f € L'((0,4+00), S(RY)), then
by [18] (see also [1]) problem admits a solution u € C%([0, +00); S(RY)), which

satisfies

u(t, ) = Eoi(t, 2)ug(z) + tEao(t, )ur (z) + /0 (t — 5)* ' Epult —s)f(s,z) ds,

where Eaﬁ(t, h, (B=1,2,a) is defined for h € S’"(RN) by

Ea,ﬁ(tv : )h = Ea,ﬂ(tv : ) * h(LU) = RN E&,B(t’ T — y)h(y) dy
The following lemmas contain the so called smoothing effect of the Mittag—Leffler operators
family {Ea,l(t)}tzo and {Ea,a(t)}tzo in Lebesgue spaces and play an important role in
obtaining the first result of this paper; they appear in |18 Lemma 5.1] and [3, Lemma 5.1].
Their proofs are based on the Fourier multiplier theorem combined with a scaling argument

(see |2, Lemma 3.1-(i)] or [3, Propositions 4.2 and 4.3]).

Lemma 2.1. [3, Lemma 5.1] Let 1 < p; <py <oo, l <a<2and A = pﬂl — p%. Then
there is a constant C' > 0 such that

[Baa () f]| 1oy < CE 22| fl|1m ifA<2,
~ o 2
HtEmQ(t)fHLpg < Ctl_a)\"f“ﬂol lf a <AL 27

~ « 92
[tEa2®)f|l oo SC2MFI .2 if=<A<2,
Ty oY
o~ a 2
1Baa® ]|, < OOl 0 (2 _ a> “N<2

2

ar

.2
for all f € S'(RY), where Hp,® is the homogeneous Sobolev spaces of negative order —
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Lemma 2.2. The family of operators {Ea,l(t)}t>0; {Ea,l(t)}t>0 and {Ea7a(t)}t>0 enjoy
the following LP*-LP' estimates property:

(i) If h e LP'(RN) (1 < p1 < 400), then Eqg(t)h € LP*(RN) and
|Ea,s(] 1oy gry < Cllkllzoery, t>0 for =1,2,a
for some positive constant C' > 0.
(ii) Let py > N/2. If h € LP*(RY), then Eaﬁ(t)h € L®(RY) and we have
~ _a N
HEaﬂ(t)hHLOO(RN) < Ct 2 ||hppgyy, t>0 for f=1,2,a.
Proof. We use the following pointwise estimates that are shown in |21, Theorem 5.1]:
‘E’ma(t,a})‘ < ]a:|7N exp {—c(t*a|x]2)ﬁ} if R:= |x]2t7a > 1,

and if R := |z|?t~ < 1, then we have

alN
=%, N <2,
| Eaa(t,2)] < 470027V 42 (1 4+ [In(|2272)]), N =2,
|| ~N+2 e N > 2.

Concerning the operator tE‘ayg(t), we have the pointwise estimates
~ 1
|tBas(t)| < Cla|Ntexp {—c(t—a|x|2)m} if R = |zt > 1,

and if R := |z|*t~% < 1, then

= N < 2,
|tEaa(t, )] < < o[ ~N2170 (1 4 |In(|2272)]), N =2,
||~ N+2¢1-e N >2.

Arguing as in Zacher et al. [20], Eml(t, ), Eag(t, -) and Ea,a (t,-) are Lebesgue integrable.

In fact, we have

/ | Bt 2)] de = / | Buvalt, 2)| da + / |Baalt, )| d.
RN {R>1} {R<1}

Using the first pointwise estimate, we get

/ ‘E’ma(t,a})‘ dzx < / lz| NV exp {—c(tfa\x|2)ﬁ} dz
{R>1} {R>1}

~+o0 1
= /a 1N exp {—c(t*ar2)ﬂ } TNl dr
t

2

+o0 1 o
= / r~Lexp {—c(t_O‘TQ)ﬁ} dr, setz=t 2r
¢

[e3
2

+oo
= / 2z texp {—c(z%ﬁ} dz < C.
1
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On the other hand, if N < 2, we have

alN
2

+2
~ a a aN T
/ |Eaa(t,z)|de < / 7 da:—t2N/ PV ldr =% =C.
{RrR<1} {rR<1} 0 N

For N = 2, we have

/ \Ea,a(t,x)\dxg/ o[~ N 4201 In(|o[24-%)) da
{R<1) {r<1)

t2 1
= t—a/ (14 |In(r2=))rdr = t—atS‘N/ (1 —In(22))zdz = C.
0 0

When N > 2, we have

/ ‘Ea,a(t, )| dx < / 2| N2 dg
{R<1} {R<1}
7 t3
=t / N2 N g — e / rdr,
0 0

/ |Ea,a(t,x)} dzr < }
(R<1} 2

The first result (i) follows from Young’s convolution inequality, that is,

SO

1Eaat, DAl oy vy = 1 Baalts )  A@)| oy ey
HEaa HLl (RN) HhHLPI (RN) < CHhHLPl (RN)-
In a s similar manner, it can be shown that the operators E,1(t,-) and Eq(t,-) are

bounded.
In order to show statement (ii), we need to prove that E%a(t, -), belongs to LP?(RY)

/ ‘Ea’a(t,m)‘m dr < / || VP2 exp{ c(t™%|z|?)z== } dx
(R>1} {R>1}

+o0 1
= /a NP2 exp {—c(t_arz)ﬁ } N1 ap
t

2

+oo o
/ p NN exp{ c(t™r?)z=a } dr, setz=t z2r
t

%
+oo
= th(le)/ Z~Np2tN=1 exp{—c(z%ﬁ} dz
1

< Ot 2 Np2-1)

On the other hand, if N =1, we have

e

I @ o t2
/ }Ema(tvx)‘m dx < / t*TNm dr = t*TNW / N1 g
{R<1} (R<1} 0

it—7p2+a — Ct—* (P2—1)'
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For N = 2, we have

/ | Boa(t, )| do < / 17072 (1 — In(|224=2))?? da
{R<1} {R<1}

5
=t P2 / (1+ ]ln(r2t7°‘)|)p2TN71 dr
0
1
= ¢—opz=1) / (1 —In(z2))P2zdz = Ct=P2=1),
0

When N > 2, we have

/ }Eogog(t,{]}‘)‘za dx S / |IL”7(N72)p2t*ap2 daj
{RrR<1} (R<1)

(-3 (3
2

t2 t
— t—ong/ T—(N—Q)pQTN—l d'l" — t—ocpz/ T—(N—Q)p2+N—1 d?",
0 0
provided N > (N — 2)ps. So

/ ‘Ea a(t’@‘p? de < Ct—op2—5(N=2)p2+5N _ y—5N(p2—1)
{R<1y

Hence HJETTO(ya(t,-)Hp2 < C’t_%N(l_é)7 for po < N/(N — 2).

Now (ii) follows by Young’s convolution inequality and the last estimate

~ ~ _a N N
1ot ) * o < [ Eaat: ] g I Fllo < CE 200 fllzm - for pr >

where p) is the conjugate of p; (1/p1 + 1/p] = 1). Arguing in a similar way, we obtain
LP1-[°° estimates to the operators Eaﬁ(t) for 5 =1,2. O

Lemma 2.3. Let | > 1, and let the function f(t,x) satisfy
[f@ I <C 0<t <1, [[f{t,- )i < Cat™, t>0
for some positive constants C1, Cy and . Then

1£(t, )|l < max{C1,Co}(1+t)? forall0 < <a andt>0.

3. Main results

In this section, we state our main results. Let us begin with the definition of a mild

solution of problem (|1.1))—(1.2).
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Definition 3.1. Let ug,vp,u1,v1 € X, (X := L'RY)n L®RY)), 1 < y,7%2 < 2,
f,g € LY(0,7),S(RY)) and T > 0. We call (u,v) € C([0,7];X) x C(]0,T];X) a mild
solution of system (|1.1))—(L.2)) if (u,v) satisfies the following integrals
u(t, ) = By, 1(t, 2)uo(@) + tEy, o(t x)us (x)
t
4 [ =B (e = ) flo(r, ) dr,

0

v(t,@) = Eny (8, @)vo(x) + tEoy ot @)vr ()

t ~
+ /0 (t— T)Vl_lem (t —7,2)g(u(r,x))dr.

(3.1)

(3.2)

The existence and uniqueness of a local solution of ([1.1) can be established by using

the Banach fixed point theorem and Gronwall’s inequality.

Proposition 3.2 (Local existence of a mild solution). Let ug,vo,ui,v; € X, 1 < y1,72 <
2, p,q > 1 such that pq > 1. Then there exist a maximal time Tiax > 0 and a unique mild

solution to problem (L.1))—(1.2)), such that either
(i) Tmax = 00 (the solution is global), or

(i) Tmax < 00 and limy—7,.,. ([[u(t)]lsc +[[v(t)[loc) = 00 (the solution blows up in a finite

time).
Moreover, for any s1,s2 € (1,+00), (u,v) € C([0,T]; L**(RY) x L*2(RN)).

Now, we are in a position to state the first main result of this section concerning global
existence and large time behavior of solutions of (|1.1)—(1.2]).

Theorem 3.3 (Global existence of a mild solution). Let N > 2, ¢ > p > 1, pg > 1,
l<m <m<2 If

=

1 1 1
(3.3) Zmax{ L4+l +m+%}7

Y opg—1 v mlpg—1)

the initial data satisfy
l[uollx + llutllx + [lvollx + [lorllx < €0
for some g9 > 0, then problem (1.1))—(1.2)) admits a global mild solution and that

u € L®([0,00), L®(RN)) N L*=([0, 00), L*1 (RY)),
v e L2([0,00), L(RN)) N L>([0, 00), L2 (RV)),

where s1 > q and sy > p.
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Furthermore, for any § satisfying 1 — (pifﬁ]w < § < min {1, 240 +1)) },
(1=8)(v1+p72)
Ju@)lls < CE+1)™ ot 20,
(A=6)(va+am1)
lo@®lls, < CE+1)™ w1, t20.

If, in addition,

N N
Py <1 and g <1,
289 251
or N N
N>2 PY g and >y,
259 281
or
N N 1
N >2, q7217 L>1 and q>p>1 with M<71§72<27
251 259 (g+1)p
then

u,v € L([0,00), L®(RY)),
|u)|loo < CE+1)7%, [[o(t)]|oc <CE+1)"7 forallt>0
for some positive constants o and o.

Definition 3.4 (Weak solution). Let ug,vg € L{ (RY), u1,v1 € LS (RY), T > 0. We say

that (u,v) € L9((0,T), L2 (RM)) x LP((0,T), L2 (RY)) is a weak solution of (I.1)—(T.2) if

loc loc

for all nonnegative test functions ¢ € C’t{f([o, T] x RN) with compact support, such that
o(T,-) =0, the system of integral equalities

/ / th|Tcp (t,x dxdt—/ / ulA(t, ) dedt
]RN
—/ uo(m)(DZfT L)(0 dm—i—/ / ulDz‘lTl (t,x) dxdt
]RN
/ fo(r,x))e(t, ) dzdt,
R

N
/ / UDt‘Tcp (t,z) dzdt — / / vAp(t, x) dxdt
RN RN

~ [ w@ 0 de—i'//mDZlegotx)dxdt

/ / u(T, x))e(t, z) dedt
]RN

holds.
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Similar to the proof in |15, we can obtain the following lemma asserting that the mild

solution is the weak solution.

Lemma 3.5. Assume that (ug,vo), (u1,v1) € S(RY) x S(RY) and let (u,v) € C7([0,T],
S(RM)) x C2([0,T], S(RY)) be a mild solution of (LI)~(1.2). Then (u,v) is also a weak

solution of (|1.1)—(1.2).

Proof. As (u,v) is a mild solution, we have

_ _ t
u(t,x) = Ey 1t @)uo() + 1By, 2(t, 2)ua (x) + / (t =) By oy (8= 5) f(0(s, 7)) ds.
0
Differentiating with respect to ¢ and noting that 1 < v; < 2, we get
ur(t,0) = wr(x) = OBy (1 w)uo (@) + 0ty o(t, @)ur () — wa (x)

3.4) ¢ N
| +/O (t =) 2By 5y (t = ) f(u(s, @) ds,

where we have used the following formula

(m)
(ddz> [Zﬁ—lEa,,B(zO‘)] = zﬂ—m—lEa,ﬁ—m(zo‘)’ R(B—-—m)>0, m=0,1,....

Applying J0|t

" to both sides of ., we obtain
o (e —wn) = g OnEn 1 (8 @))uo(@) + o (O (tEy, 2(f, - )ur (@) — wi (x))
T ( / (1= 2Byt — 5 )£ (0, x>>) ds.
On the other hand, we have
3 ([ =972 Bupea (- I = 1) sy s

- ml%) / (t=s) /Os<s — )R Ey ua (— [€R (s = 7)) F(r,€) drds

)€ ! e [° T
_ZF2 ") F(fnk+fyl—1)/0(t_s) V/O(S—T)7 TEf(r,€) drds
)

+oo
_ (~1)4ef Cp
kz r@2- vl)F(wkm—l)/o/T(t_S)l T(s =T ds f(r,) dr

400
_ (1) g c
= 2@ )Tk 4y — 1) P2 T R 1)/0 (t—s)"* f(s,€) ds

(3.5)

~

k=
- /O oy (— [6P(s — 7)) F(s,€) ds
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Here B denotes to the beta function.

Applying the Fourier inverse transform to both sides of (3.5)) yields

5 ([ =9 By st =)0t ) ds = [ Byt s.) lolss) ds

Then, for every test function ¢ € C’g:tl(]RN x [0,T]), suppp CC RN x [0,7T] and
o(T,z) = 0, we have

/ J§|t71(ut—u1)g0dm:/ J§|t71(3t Eya(t, ) uo(z)e do

+/ gﬁ YO (tEy, o(t, - )ur(z) — wi(2)) p da
/ / Ewl ) f(v(s,z))ds pdx.
RN

I :—/ Jg‘;%(ut — uy)pdx,
RN

Setting

we get

+ /R o [ @t )i () — ()] da

/RN ot (/ Epalt = 5)dr f(s, ) ds <p> da.

On the other hand, using the relations

D Byt Juo(x) = AEy, 1t - Juo(x),
Dy (8B 2(t, - ))ua (w) = A(EEy, 2(t, - ) Jua (@),

we obtain

[ 5 3 OBt @) — 1) o]
RN
= RNDSﬁt(tEw,( ui(z)p(t, ) dv
+/ Jg\?l (0e(tEy, o(t, ))ui(z) — ui(x))pi(t, x) da
RN
_ /R By ot (n) Ag(t, @) da

+ [T OBt ) — )t )
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and
4 JQ_A,/1 15) E dx = E A d
o a[ o (O (@) )uo ()] do = o (b z)ug(z)Ap(t, ) do
27
+/RN JO\t 1(81? 1,1 (s x))UO( Jpi(t, ) d.

Using the Leibniz formula, we get

5 || Bt =) (0(5,2)) ds = By a(0)w(t. ) /at ot = ) f(v(s, 7)) ds

So

gtf = /R B a(toyu(x)Apdz + /R N tEq o(t, - Juy (z) A da
+/RN f(v(t,x))goda:%—/RN /Ot(t—s)“1571771(75—s)f(v(s,:z‘))Agpdsdx
+ /R N Jg‘;“ (BB, 1 (t, ) )uo () gy da
+ / Toi Oty 28, ))ua (@) — wi () o1 d

/R/ Ea(t = 5)f (v(s, @) ds o da.

Using the fact that « is a mild solution, we obtain

0 B ~
81%12/ uAgod:E+/ f(v(t,:n))«pdx—l—/ Jé{“ (0vEq, 1 (t, ) )uo(z) iy da
RN N RN

+/ 0|t T (tEy o(t, - ))ur (2) — i (2)) pr da

/RN/ Eyy1(t—9)f(v(s,2)) ds gy d

—/ uAgodaH—/ f(v(t,x))cpda:—i—/ Jé;%(ut—ul)cptdm.
RN RN RN

(3.6)

On the other hand, we have

9 92— 1 2—m1
(3.7) atI /RN E[Jmﬂ (e — w1)]pdz + /RN JO‘ﬂ (up — uq )t da.

Integrating both sides of (3.6) and (3.7]) on [0,77], and then identifying the terms, we get

T T
/ / &ngz Yug — ul)wdxdt:/ / uAcpdxdt—i—/ f(u(t,x))pdxdt.
RN 0o JRN o JrN
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The formula of integration by parts allows to write

T T
/ / D;?lfgodacdt:/ / uAgpdazdt+/ f(v(t, z))pdzdt.
RN 0 JRN 0o JRN

By an analogous calculation, we can show that

T T
/ / D;yngoda:dt:/ / vAcpdxdt—i—/ / g(u(t,x))p dzdt.
RN 0o JRN o JrN

This completes the proof. ]
Our next result concerns the blow-up of solutions of ([1.1)).

Theorem 3.6 (Blow-up of mild solution). Let N > 1, p > 1, ¢ > 1, ug,vp,u1,v1 €
LY (RN), 1 < y1,72 <2, be such that [pn ug(z)dz >0, [pn vo(z)dz >0, [pnwi(z)de >

loc

0 and IRN vi(z)dx > 0. If

N . { 1 ywp+m 1 p+1 }
— <min<q — + y —
2 1 mlpg—1)"m pg—1
or 1 1 1
<mm{ —7, etmle 1-m , + )q}
2 T mlpg—1)" m pg—1
or N 1 1 1
<min{( —’Y1)+(’71Q+’Y2)P7 —’Yl+(Q+ )p},
V2 Y2(pg—1) " 72 pg—1
or

N : {1 qn+y 1 q—l—l}
— <minq — , —
V2 (pg—1y2 2 pg—1
then the mild solution (u,v) of (L.1)~(1.2) blows up in a finite time.

4. Global existence and decay estimates

Proof of Theorem [3.3] The proof proceeds in three steps. Without loss of generality, we
assume that 1 <~v; <2 < 2 and ¢ > p > 1 such that pg > 1.

First step: Global existence for (u,v) in L' (RY) x Ls2(RY).

Since pg > 1, from ({3.3) we have for N > 2 that

N {1 q+1 1  pr+m }
— > max<{ — —_— .
2 1 pg—1"v  mpg—1)

1 qg+1 1 py2+Y _ 1 q+1 N 1 q+1 . :
Ifmax{ + e 1,7—1+M}—%+m—_1,the > -+ =, which gives
pg—1 pg—1 _pa—l+an+m _ Npg—1)

11— — <1- :
qp+ 1) 2q(p+1) yglp+1)  ~ 2q¢(p+1)
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g+l 1 Py2t+m 1 py2+1 e Lo gt 1 Py2t+m :
Ifmax{2+pq 1’71 +'y1 (pg— 1)} o +71 (pg—1)" That is T +pq— - T 71 (pg—1)’ LR
case
Nobt o petm 1, atl
2 " m mpe—-1)"m pg—1
which gives again ];q(g]ﬂl)) >1-— (gil)lv , and since 1 — q(zfl)lw < 1, we can choose § > 0
such that
-1 N -1
__pl <5<mm{1,<pq>}.
q(p+ 1)y 2q(p+1)
We set
- Nnlpg—1) ry — Na(pg — 1)
2[y1(1+0p) +y2p(1 = 9)]’ 2[72(1 + dq) +71q(1 = 0)]’
1 26 1 1 26 1
(4.1) —-orr —_ar
s1 Npg—1" s Npg—1
o — (1 —36)(v +72p) _ (1=0)(r2+m49)
pg—1 ’ pg—1
Clearly, we have
12 0=0)Mn+mnp)  20(p+1)
1 Nm pg—1 Nopg—1’
12 A-900e+me  26(qg+1)
r2 Ny pg—1 Nopg—1
The choice of § gives
-1 1-6
s>1- P~ pog:( )(72+71Q)p<1,
(72 +mq)p pg—1
and 5
s>1- P qo’lz( )(’71+’72p)q<1.
(71 +72p)q pg—1
It is easy to check that
S1>q, S2>p, PSSy >S2, QqS2 >S1, S1>T1> 1, So > To > 1,
N 1 1 N 1 1
Sl )e<b ol )r<l
r 8 2 ) 2
and
N (p 1y 5— N [ q 1
2 \ss s1/) 2 \s1 s/

One can easily verify that

pg(m — 1) +1+4+py

6>
[v1q + 12lp
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Let (ug,vo) € L™ (RN) x L™ (RN). Let u € C([0, Tinax); L (RY)) and v € C([0, Tinax);
L52(RN)). For t € [0, Tinax), from (L)), we have

lults o < ([ By (@uoll,, + [[tE 2(8 ),
t ~
+/0 (t = 1) By (¢ — Plo(r, )P, dr,
lo(t, sy < [[ B (B)vol|,, + [[tEs 2t )],

t
o [ Bt e

(4.2)

(4.3)

Applying Lemmas and we get

[u(t, sy <t luollr, +¢Hua _2
4.4
( ) ’Yl 1 —%’Yl(i—i) D

+C —7) 2= (T, - )[[E, dr,
[o(t, s St“’QHvon +1 ‘“Hleﬂ_l

(4.5) 2l
v [a-rpteon D e

Using (4.5)) into (4.4)), we obtain

[[u(t, - )lls:
1

= (HuOHTl + fluall - )t . +C/ t—r)" "t —1)" 271(*_*) dr
7'1

q 1

p
~ (<uvour2+uv1\ Jroae [ -me-n e W, dT> ,

provided that 1 — 711 < %(— - —) <land1-— = < %(— — —) < 1 which are indeed
satisfied.
Hence
lu(t, s

< (lluolly + el )=

7‘1

4.6 t 1N (p_1
( ) + C/ (t — T)Wl 1 2 71(:2 31)7—_])02 dT(HUOHT2 + HUlH .7l>p
0 Ho 2

2
1 1

e /Ot<t— oSG a) b (G -m) e oy, ), )M ar
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Tt : : _ (1=8)(n1+72p)
Multiplying both sides of (4.6)) by ¢! with o7 = i we get
g
7 [ult, ) lls

<
>~ HUOH7‘1 + HUIHH;%

4.7 t 1N (p_1 p
( ) + C'to1 / (t _ T)Wl 1-35 ’Yl(sz; sl)T*pUQ dT(HUOHW + Hle 7%>
0 Hr

Since 71 — 1 — %71 (2 - i) > -1, (y2 — %’}Q(i - i) — qo1)p > —1, we have

S92 S1 S1 52

N 1
e, Y < Dol + e+ e En () e
Hy 1

leol, + lloill” )
L 702

T2
1 q

+Ctmﬂl—%vl(%_H)JF(W_%W(H_é)_WI)p < sup 7'01||U(Ta')||31>pq'

ST

Note that

o1+ 7 =70+ (72 =726 — go1)p = 0.
Define f(t) = supg<,<; 77 u(7, - )||s;, t € [0, Timax). So we deduce from (4.7)) that
(4.8) F(&) < C | Nuollr, + lluall 2+ llooll7, + lloall” _ 2 + F()™
Hrl’“ wa

for all t € (0, Tynax). Setting

A= ol + lluall -2 +llvoll?, + llorl” 2 -
Hey Ty 2

Now if we take A small enough such that A < (20)1373”1, then it follows by continuity
argument that (4.8)) implies

(4.9) f(t) <2CA for allt € [0, Tinax)-

Indeed, if (4.9) is not true. That is to say f(to) > 2C' A holds true for some ¢y € (0, Tmax)-
By the intermediate value theorem since f is continuous, non-decreasing and f(0) = 0,
there exists t1 € (0,tg) such that f(t1) = 2CA. From (4.8)), we get

2CA = f(t1) < C(A+ f(t1)P?),
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from which, it yields
20A < C(A + (204)P7),

which is equivalent to
A> (20)Tm.

This is a contradiction. Therefore, it follows that

f(t) <2CA for any t € [0, Tiyax)-
Thus
(4.10) t7 |u(t, )|ls, < C  for any t € [0, Tinax)-

Similarly, we obtain

(4.11) t72||v(t, )|ls, < C  for any t € [0, Tiax)-
Now, from (4.2), (4.3) and Lemma we can easily see that
(4.12) lu(t, ) loos |lv(t,-)]|eo < C  for any t € [0, 1].

On the other hand, since s; and so satisfy

(1-6)(p+1)s: (1—=6)(g+1)s2
(pq —1)s2 (pq —1)s1

it follows from ([4.2), (4.3), Lemmas and that

lu(t, sy < || By a(uo|,, + t]|Brpa(tua |,

t
+ / (t = 7)Y By (¢ = o, )P, dr

< 1, ’}/2<1,

) < Clluol + sl + € [ ¢ =77t Il dr
p,sl t 1 S2
< Clluolls, + llurlls; +C sup |[v(7)]lec ™ /(t ) () sy dr
7€(0,t)
< Cllugllsy + llusllsy +C sup [Jo(r)lloe ™ / [l o ||§§ dr
7€(0,t)

for all t € [0,1]. Hence |lu(t,- )]s, < C for any ¢ € [0,1]. Analogously,

(4.14) lo(t,-)|ls, < C foralltel0,1].

From (4.10), (4.11)), (4.13), (4.14) and Lemma 2.3} we conclude that

(=8 (v1+pr2)
Hu(t")Hsl < C(t+ 1) pa—1 )
(4.15) _(=8)(atan)
Ju(t, )[ls, < C{E+1)  rat
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for all t € [0, Trnax)-
Second step: L>-global existence estimates of (u,v) in L>(RY) x L>®(RY).
Let s1, s2 be as in (4.1]). Since p < ¢, we have

Np _ Ng
289 T 281

We further assume, for some ¢ > ¢ and w > p, that u(t) € L¥(RY), v(t) € L*(RY), and

||u(ta : )H’w S C(l + tkl)a te [OaTmax)a

(4.16)
H’U(tv : )”E < C(l + th)a te [OaTmax)

holds true for some positive constants k; and ka. Then, by (4.2)), (4.3) and Lemma

we have

_ t
(4.17) Jlu(t, - )lloo < || B )UOHOO+tHEvz,2(t)U1Hoo+/o(t P o, g dr,

~ t _1_N'ygq
(4.18) o, )loo < || Exo( )UOHOO+tHEvz,z(t)U1Hoo+/o(t—T)” 2o [lu(r, - )||%, d7

for all t € [0, Tiax)- If one can find £ and w such that

Np Nq
4.19 <1 <1
( ) 26 < or o <1,

then the L*-estimates of (u,v) is obtained. In fact, 1f P <1, in view of ( -, it yields

from (4.17)) that

_Np
Ju(t, e < [ B >uouoo+0:2[%?a“vwzt@ )

<C (1 +t(112vf)71+?’k2> ,

and by taking w = oo in , we get

(4.20)

lo(t, - Yloo < [| B )UOHOO+tHEw,2(t)U1||oo+/o(t—T)'“1HU(T7-)HZodT

< [ Brea®vo]l o+t Braa(teal

4.21
2 + /t(t — )t (1 +t(1‘§5)71+”’“2>q dr
0

These estimates show that Ti,.x = 00, and

(4.22) u,v € L5 ([0, 00); LOO(]RN)).
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In a similar manner, we can establish the case JQVTE < 1. To find appropriate £ and w, we
note that (£20) and (£:2I) hold by taking £ = s1 or w = s if 2.4 < 1 or 2 < 1; this is
certainly the case when N < 2 with s; > ¢ and s2 > p.

Thus it remains to deal with the case N > 2, é\% > 1 and % > 1. We do this via
an iterative process. Define s| = s1, s| = s2, since s| > ¢ and s] > p, using the Hélder
inequality and Lemmas and we get from , that

t Nyvi(p 1
n-l-=\r—7
A G hotr, g1 ar,

t _1_Nv (g _ 1
/ﬁﬁ/@—TW = #NMn»de
s4 0 51

lut, sy < By @uolly, + t]| By, 2(2)

lo(t, ey < [[Eran(B)vo

812/ + tHE’YQvZ (t)U1

where s, and s are such that

N (p 1 N [ q 1
z(g,ff‘s/)“v z<5/‘s~><1'
1 2 1 2

This can be shown by taking

I p 2+ 1 q 2+
3’2_8’1' N " 5’2’_3’1 N K
where 0 < 7 < ( )Wlth5>1—— Namely

N [(p 1 N [ q 1 N 1
s\ow—w)=5\g—~w)=1-—5n>1-—.
2 \s7 5y 2 \s7 s 2 0G|

pg—1

1
Observe that, since 6 > 1 — W > 1— =, we have
1 N (p 1 1 N ([ q 1
1l—— < — -~ T <1, 1l—— < — - — <1,
(4.23) gi! 2 \s1 5y V2 2 \sp S
' L 2y ys0, 2l 2550
% N TR W TGN =

and hence s}, > s] > ¢ and s > s} > p.

Next, define the sequences {s}};>1 and {s };>1, iteratively, as follows

1 P 2 1 q 2 .
4.24 —_-r 2, - L _ 2., i>3
( ) si s, N t st s, N Tz
Then
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Since pg > 1, in view of (4.23]), we get
1 1 1 1

4.25 —> "0 — > , 1 >1,
(4:29) s Ay E
and

1 1 1 1

i——+00 S; Si—l-l 1—>+00 S; 8i+1
Now, we ensure that there exists ig such that
p 2 q 2

427 _— < — or —_ < —.
(4:27) si, N si, N

On the contrary, that is, %, > & 2 and sl 2 for all ¢ > 1. Then, by (4.24]), we see that

S

s;>0,s?>0foralli>1 and hence by (4.25),

g<s)<--<si<oo o p<s<ooo<s <

which contradicts (4.26]).
Let ig be the smallest number satisfying (4.27). Notice that iy > 2. Without loss of

generality, we assume that

p _2 p_2 ¢ 2
(4.28) %<N’ S—;,_N for any 1 <i <ig—1, —; N for any 1 < i <.

It then follows from that
s;>0 for any 1 <17 < i, s;'>0 forany 1 <i<ig+1,
which together with leads to
q<--<Sj_1 <S8, p<--<sp <spoig

Now, from (4.24)), we have, for all i > 2,

N/p 1 N N
2\s, Tw) T T2y
i—1 74

K3

Now, let us deal with the boundedness of (u(t,-),v(t,-)) in L% (RY) x L% (RV). Using
the Holder inequality, Lemmas and it follows from ([3.1)—(3.2)), inductively, that

lut s, < B (Buolly + ] B 2 (],
1N _p 1
(4.29) +C/ (t_T)vl 1 271(s£1 S;)HU(T")HZ_’ICZT

< Clfuoll; + turll; +C / Pyt n (5 o, e, e
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for any 2 < i <'ig, t € (0, Tiax) and

[o(t, )lsr < [[ By (t)vo S;/thHEvz,z(t)
=1+ (=)
(430 o[-0 o, ar
< Clunlly +Cllnlg +€ [ =m0 il ar

for any t € (0, Tnax) and for any 2 <7 < ig + 1.
It clearly follows from ([#.29) and (&.30) that u(t) € L% (RN), v(t) € L% (RN):

!

u(t, ) € LA(RY), Ju(t,-)lly, < CA+1t%), 1<Vi<ig, t € (0,Tax),

(4.31)
v(t,-) € L (RY), Jot, )| < CA+1), 1<Vi<ig+1, t € (0, Tmax)

for some positive constants a;, b;. Since %5/ < 1, taking sy = s;, (4.19) holds. In

0
consequence, we get Tiax = +00 and that (4.22)) holds.
Third step: L*°-decay estimates.
Let

A=0)prt+mn) _ _ (A=0)(an+7)
(pg—1) (pg—1)

If % < 1, by taking & = s5 in (4.18) and using (4.15)), we get

g1 =

_ Ny 1—-8m
lult oo = C 21 fluollr, + C2m IIule

(4.32) ¢
0

From with pqg > 2q + 3, we get < 1 and for any m depending on N such that
Nem< N“ , N > 2, we infer that

N N
11— 0 and — <1.
2m 2m

On the other hand, since

)

Ny p A mpd + (1= 6)pye]
poe <1, 7 ——F———poy=—
2 s9 pqg—1
and
N+ npd+pr(l—90) Nn
pqg—1 2rq

(4.33)

)

it follows from (4.32)) and (4.33)) that

[v1+71p8+(1—-8)pv2]

_%’Yl 1- 2y - -
(4.34) lu(t, Yoo < CEF M 4 O3 4 Ct
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Therefore, we have from (4.31)), (4.34) and Lemma that
ind NN
u(t, )]l < C(1+ t)_mm{z’“lmﬂm71 1} for any t > 0.

Similarly, for Z 2 < 1 we find that
. N N
(4.35) 1ot Yoo < C(1+ 1)~ AFFA=8002) a5 g

Also, holds as pN/(2s2) < gN/(2s1).

In particular, if pg > v2(¢+1) + 1, we can choose § > 1 — W and 6 =~ 1— (51771;72
such that ¢/N/(2s1) < 1. Therefore, the estimates (4.34) and (4.35) hold. It is useful to
note that NV < 2 implies ¢N/(2s1) < 1 and ¢/N/(2s1) < 1 implies pg > v2(¢+ 1) + 1.

It remains to consider the following two cases:

>N >2, 82 < 1and 514> 1.

Let

oot 71pd + (1 — 5)1?’72'
pg—1
For positive p such that g < min{o’,01} and qu < 1; Since N > 2 and ¢ > 1, we can
choose k > 0 such that k > q2 and qu + qN72 > 9. Since s1 < ¢N/2, we have k > s1.

By the interpolation inequality,

lu®)ll < NN u(@) |31/ < Ct= Emen/kmows/k for any ¢ > 0.

Therefore, by (4.10), , we have

lu(t)||l < Ct™"  for all t > 0.

Consequently, for any ¢ > 0,

0Ol < [ BonsOuol + 1 Brsatmll,+ € [ (6= 5l ar

(4.36) <&2@Wmm+0t%ﬂwwm+c/ e

<ot =+ a2y ey
<Ct™,

—qu)

where a:min{%’m -1, -y + qu +qu} >0,

Nqvye

Ngve
0 -2 0.

2k

k>517 Q,u<17 k>Qa Y2 —

From (4.12)) and (4.36)), we infer that

[o()]loe < C(1+ 1)~ for all t > 0.
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In case p = 1 and ¢ > 1 + 4q, we can choose § > (1+3q)/(p + 1)gy2 = (1 + 3q)/(2729)
and ¢ =~ (1 + 3¢)/(27v2q) such that N/(2s2) < 1. Thus we obtain the estimate (4.34)).
>N >2,qN/(2s1) > 1, pN/(2s2) > 1, ¢ >p>1and v < 7.

This case needs a careful handling and we need to restrict further the choice of §. As

(ptDam i __pg=l g _(pg=D)
hp <M <72<2,pg>1it follows that 1 07 ey R We can select
0 such that

1 N(pg —1 —1
1—pq<5<min{ (pg—1) y  pa 2}.
q(p+ 1)y 2(p+1)q plg+ 1)

Then we get immediately that pog > 1/v1 > 1/qv1 and qop > 1/ > 1/pys.
Further, we notice that there exist € € (0,1) and 8 < 1 close to 1 such that

1 1 1 1 1
(4.37) pog—e>—>—, qop—e>—>—, and — <f—c.
719 Y2 P2 ga!
Letting n = 2¢(1—9)/N, we find the integer iy as in Step 2, and, without loss of generality,

assume that (4.28]) holds. We choose 8 in addition to (4.37)) satisfying

71<712]>{—|—6, sincel—i<p]>,[.
Y1 2si0
A N(pg—1) _ N(pg—1)
0 < < , and (<1,
2(p+1)g ~ 2(¢g+1)p
we have
(4.38) B+M<1+Z, 5+((q+1)1)5<1+];f.

For 2 <i <ig — 1, define r; _; and 77, ;, inductively, as follows:

1 2 1 1 2
72: N(p02—5(1—5))> 75/:87/2/+N(q0—1_6(1_5))1
2 1 1 2
= + (B —e(1-9)), = —— + = (B-c(1-9)).
7’§+1 Sz+1 N r§,+1 8;/+1 N

It is clear that },7/ > 0 and r, < s, v} < s for all 2 <4 <. A simple calculation
shows that r/,r!/ > 1.

e

As sl- and 31' are increasing in ¢ for 1 < ¢ < ig, we have

1 2
T—H<72 N(ﬁ_g(l_é))
P 2 2 2
=3 & T e =0+ (8 -e(1-19)
_ 2 (plg+1)
N( pg—1 +h- )
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from ([£.38), i.e., 7i, 4 > 1.

Slmﬂarly, we can find that 7, | > 1.

From (£.22) and (4.31)), we infer that there exists a positive constant C' such that, for
any 0 <t <1,

[u®lloos I0(B)lloos u®)llirs 0@k, < C, 81 < ki <5, 87 <k < s

Further, since 1 —nN/2 = 1—¢(1—J) and poa < 1, using (4.29)), (4.30), (4.10) and (4.11]),

we arrive at the estimate

lut, sy < | B a@)uolly, +tl| By 2(t)

+C/ O (| dr
s1 ’

from which, we get

N (21 N (21
[u(t, )l < Ct i SQ)HUOHT'H i Sé)H“lH 2
2 2 H 71

/
T2

t
+ C’/ (t— 7')71_1_71(1_5(1_‘5))7'_79‘72 dr.
0

Therefore
u(t, )|y, < Ct1 @22 jyyq |, 4 ¢ Fo2=2 Q0D gy ||
75
+C/ )N =71 (1-&(1-9)) . —po2 g
< Ot nwo2=e(1=90) {51 any ¢ > 0.
Similarly,

[v(t, )l < Ct72007 =070 for any ¢ > 0.
In view of and 8 < 1, thanks to Lemma for any t > 0, we conclude that
(4.39) lut, ), < Ct™P9 and  o(t, )|y < CE2P.
An iterative argument leads to
||u(t’.)||s;0 < ot nB—e0-9) < cy=hla, Hv(t’.)n% < Ot 2B-e(=0) < oy=B/p
for any t > 1. Therefore, by and , we have

N N t 7 1—1-m S]X
[t Yoo < CE 2 uglry + O~ 307 [l [y + C/ (t—7) o [[o(r, )15, dr
0 0

N
Y1—1-m ‘2’;//

N ¢
< Ct 21wl +C’t1_2jyn71||u1|]m+0/ (t—r7) w1 Pdr.
0
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So

_N Y- 2B _
Jut, e < C (t R > <Ct™°,

where o = min{%%, %71 — 1,712%]\,[ -M +5} > 0 from (4.39).

In view of the fact that > 1, we can make use of the arguments similar to the ones
employed for the case % < 1 and é\;? > 1 to obtain |[v(t,-)|lee < Ct7 for some & > 0

and for every ¢ > 0. This completes the proof. O

Remark 4.1. In the particular case: N > 2, ¢N/(2s1) > 1, pN/(2s2) > 1, ¢ >p =1 and

g < 3, using the above method, we obtain
|u(t, )|loo < Ct™% for any t >0,

where o = min{%’yl,%’yl — 1,27;—,]\,[71 — 71 + 728 —e(1 —9) } Here, ¢ > 0 can be
arbitrarily small, and 8 can be arb1trar11y close to 1. However, since s/ , depends on € and
3;’0 is decreasing in €, it is not clear that o positive.

Proof of Theorem [3.6] The proof proceeds by contradiction. Suppose that (u,v) is a mild
solution of (1.1) which exists globally in time. Set

o(t,z) = p1(z)pa(t),

z|

where @1 (z) = @l(ﬁ) with @ € C§°(R), 0 < ®(z) < 1, that satisfies

1 if 2] < 1, (1-2) ift<T,
P(z) = and a(t) =
0 if 2] >2 0 itt>T,

where [ > max {1 lfyl -1, = Loy — 1} and A > 0 to be determined later.
We set Qr := x [0, T]. From Definition we have

/ thngp(t, x) d:z:dt/ ulA(t, z) dedt
T T

_ /R L@ O 0. ) ot [ une) D el dode+ [ ol o) Polt ) dode,

T

/thTw(t,x)dxdt—/ vAp(t, x) drdt
T T

_ /R wo(@)(DJ )0, ) do + / (@)D ol ) ot + / lult, )9 (t, o) dadt.

T
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On the other hand, we have from the definition of ¢ that

/ ugol(x)DZ‘ngoQ(t) dxdt —/ wpo(t) Apy (z) dedt

T T

(4.40) = /R N uo (@)1 () (D 92)(0, ) d + / w1 (@) D]y pa(t) dadt

T

T / fo(t, 2)Pepn (2) pa(t) ddt,
T
and

| ver@Dpalt dude — | vpnt) g (o) duds

T T

= [ w@er@DF e2) 0o+ [ un@hior @)D oalt) dade

T

+/QT lu(t, x)|%p1(x)pa(t) dadt.

Applying Holder’s inequality with exponents ¢ and ¢ = q% to the right-hand side of

(4.40), we get
| @ Deattdrit = | el @' a0 D) dec
<TiA
where we have set

7= / ulton () g ded,
Qr

=

q

A= (/Q IDFrea(0]” a0 a(o)| 37 dnar) "

/ ulAp1(x)pa(t) dedt

QT
1
!

<z (/ IAmx)\q’mm)r2’|m<t>|(13)"'d$dt>q

QT
1

1 .y , _7/ T I P
<ot ( [ @a@r d @ e [ et a)
supp(Aep1)

0

Collecting the above estimates, we obtain

or-m) / uo(@)ei(w)de+ CTH / LJu@)ei(e)de +J
(4.41) - ) 1

1 ~ ’ q/ T 1 / ?
<THA+T (/ A1 (@) o1 ()] F da / pa()) (77 dt) |
RN 0

Q=
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where we have set

J = / [v|Pp1(x)pa(t) dadt.
Qr
Similarly, we obtain

7+ 17=2) /

vop1(x) dx + CTQ_W/ vi(z)p1(z) dz
RN

RN
1
I

iy =3[ Dl a0 @) asar)

73 ([ 3@ @l o [ a1 )

where pp’ = p + p’. Consequently,

J+ C’Tl_“/ uo(x)p1(z) dr + CT2_71/ ui(x)pi(z) de < .AI%,
RN RN
and
1
74Tt / vo(2) 1 (x) do + CT? 2 / vi(z)pi(x)de < BJ»
RN RN
with
, 1
’ _a _1)y d
A= (/ DYpa 817 LoD i ()| (1 3)1 dxdt)
, 1
/ _a _1) q
' </ A1 (@)1 ()] ()] (731 d””“)
Qr
< TCIMHIENN G oSN 5
and

‘S\‘ —

B = </ |Dt|TQD2( )|p,’902(t)|_%|¢1(x)|(1—%)p/ dxdt>

'U\‘ =

+ (/QT |A901(33)|p/|Sol1(x)|_%‘so2(t)|(1_%)1)/ dmdt)

1
7

< CT(*’YQP'+1+N)\)% n CT( 2Ap'+14+N )

Using inequalities (4.41]) and -, we can write

T+ T / wi(@)pr (2) dz < ABE Tri,
RN

and

T+CT2 / v (z)p1 (z) de < BAP L.
RN
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Now, applying Young’s inequality to the right hand side of the above estimates, we get

(pg — 1)T + CpgT? / uy (z)1 () dz < (pg — 1)(ABa)wi 1
RN

and

(pg — 1T + CpqT* 7 /N vi(x)p1(z)dr < (pg — 1)(B A%)pfql
R

At this stage, we set x = T*y, # = Tr, with A > 0 to be chosen later. Then we have
ABi < C <T( Y1q +1+N>\) +T( QMUFHNA);/)

X (T( Y2p +1+NA)1% + T( 29 H*N)‘)pl)

and

BA% < C(T( wp’+1+NA)i/ JrT( 20p +1+NA)1,>

=

y (T(Q”YlJrlJrN/\)ql, +T(2Aq’+1+N)\)ql,>

We choose A = % so that (— ¢y + 1 +N)\)% =(—2X\+1 +N)\)%) Therefore, we
have
(4.43) / uy ()1 (x) dz < CT?,
RN
and
(4.44) / v1(z) 1 () de < CT,
RN
where
1 1
max{[(—Q’Yl—i—l—l— N>,+<—p’72+1+Nle ,} L -
q 2)p'qlpg—1
1 1
[<Q’Y1+1+%N>,+<p"y1+1+]\771>/} P +712}
2 q 2 ) ap' | pq
and
1 1
max{[( ’sz+1+N%>,+(—q’”y1+1+N%>,] PL_ 1 -2
2)p 2)pq | pg—1

1 1
K—%p’+1+N’”>,+<—q71+1+N71> ] = +72—2}.
2 )p 2 Jpq pg—1

The condition ({3.3]) leads to either ; < 0 or d2 < 0. Then, as T' — oo, the right-hand side
of (4.43) (resp. (4.44)) tends to zero and the left-hand side converges to f]RN uy(x)dz >0
(resp. [pn v1(x)dx > 0), which is contradiction.

We repeat the same argument with A\ = % to conclude the proof of Theorem O
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Remark 4.2. In the single equation case, when ;3 = v2 = 7, we recover the case studied
by [3]. In the system case, when ~1,v2 — 1 with (u3,v1) = (0,0), we recover the classical
Fujita exponent that studied by [13]. Moreover, letting 1,72 — 2, we have shown in
particular for ¢ > p > 1 and N = 3 blow-up in finite time result holds for % < pqqi_ll, which
is subcritical exponent for the classical system of wave equations (see [8,9]).
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