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A Generalization of Piatetski–Shapiro Sequences

Victor Zhenyu Guo and Jinyun Qi*

Abstract. We consider a generalization of Piatetski–Shapiro sequences in the sense

of Beatty sequences, which is of the form (bαnc + βc)∞n=1 with real numbers α ≥ 1,

c > 1 and β. We show there are infinitely many primes in the generalized Piatetski–

Shapiro sequence with c ∈ (1, 14/13). Moreover, we prove there are infinitely many

Carmichael numbers composed entirely of the primes from the generalized Piatetski–

Shapiro sequences with c ∈ (1, 64/63).

1. Introduction

The Piatetski–Shapiro sequences are sequences of the form

N (c) := (bncc)∞n=1, c > 1, c /∈ N.

Such sequences have been named in honor of Piatetski–Shapiro, who proved [30] that N (c)

contains infinitely many primes if c ∈ (1, 12/11). More precisely, for such c he showed that

the counting function

π(c)(x) := #
{

prime p ≤ x : p ∈ N (c)
}

satisfies the asymptotic relation

π(c)(x) ∼ x1/c

log x
as x→∞.

The range for c in which it is known that N (c) contains infinitely many primes has been

extended many times over the years [9,18–23,26] and the above formula is currently known

to hold for all c ∈ (1, 2817/2426) thanks to Rivat and Sargos [31]. Rivat and Wu [32] also

showed that there are infinitely many Piatetski–Shapiro primes for c ∈ (1, 243/205). The

same result is expected to hold for all larger values of c. We remark that if c ∈ (0, 1) then

N (c) contains all natural numbers, hence all primes in particular. More recent research

related to Piatetski–Shapiro sequences can be found in [1, 4–7, 15, 24, 25, 27–29, 33] and

references therein.
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For fixed real numbers α, β the associated non-homogeneous Beatty sequence is the

sequence of integers defined by

Bα,β := (bαn+ βc)∞n=1,

where btc denotes the integer part of any t ∈ R. Such sequences are also called generalized

arithmetic progressions. If α is irrational, it follows from a classical exponential sum

estimate of Vinogradov [35] that Bα,β contains infinitely many prime numbers; in fact,

one has the asymptotic relation

#{prime p ≤ x : p ∈ Bα,β} ∼ α−1π(x), x→∞,

where π(x) is the prime counting function. More recent literatures related to prime num-

bers and Beatty sequences can be found in [10–12,15–17].

It is interesting to generalize the Piatetski–Shapiro sequences in the sense of Beatty

sequences, since both Piatetski–Shapiro sequences and Beatty sequences produce infinitely

many primes. Let α ≥ 1 and β be real numbers. We investigate the following generalized

Piatetski–Shapiro sequences

N (c)
α,β = (bαnc + βc)∞n=1.

Note that the special case N (c)
1,0 is the normal Piatetski–Shapiro sequences. Let

π(x; d, a) := #{p ≤ x : p ≡ a mod d}

and

πα,β,c(x; d, a) := #{p ≤ x : p ∈ N (c)
α,β and p ≡ a mod d}.

We prove the following theorem.

Theorem 1.1. Let α ≥ 1 and β be real numbers. Let c ∈ (1, 14/13).

πα,β,c(x; d, a) = α−1/cc−1x1/c−1π(x; d, a)

+ α−1/cc−1(1− c−1)
∫ x

2
u1/c−2π(u; d, a) du+O

(
x3/(5c)+13/35+ε

)
.

Note that

π(x) =
x

log x
+O

(
x

log2 x

)
.

We conclude that

Corollary 1.2. Let α ≥ 1 and β be real numbers. Let c ∈ (1, 14/13). Let

πα,β,c(x) := #{p ≤ x : p ∈ N (c)
α,β}.

Then

(1.1) πα,β,c(x) =
x1/c

α1/c log x
+O

(
x1/c

log2 x

)
.
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We clarify that (1.1) can be proved by a similar argument to the proof of Piatetski–

Shapiro prime number theorem. The key point is to estimate

∑
1≤h≤H

∣∣∣∣∣∣
∑

N≤n≤N1

Λ(n)e(θhnγ)

∣∣∣∣∣∣ ,
where H, N , N1, θ, γ are positive numbers such that H ≥ 1, N1 ≤ 2N , θ < 1, γ < 1.

Since the function θhnγ is smooth enough to apply the method of exponent pairs, the

constant θ does not play a big role in the estimation of exponential sums. We expect that

all the methods for Piatetski–Shapiro prime number theorem should work for estimating

πα,β,c(x). However, in this paper, we mean to give a first result. For the sake of simplicity,

we do not give more discussion to the prime counting function πα,β,c(x).

In the end, we prove a theorem related to Carmichael numbers, which are the composite

natural numbers N with the property that N | (aN−a) for every integer a. In 1994, Alford,

Granville and Pomerance [2] proved there exist infinitely many Carmichael numbers. Their

proof relies on the arithmetic properties of primes. Since we show the arithmetic properties

of the primes in N (c)
α,β, we are able to prove the following result by a similar method of [2].

Theorem 1.3. For every c ∈ (1, 64/63), there are infinitely many Carmichael numbers

composed entirely of the primes from the set N (c)
α,β.

2. Preliminaries

2.1. Notation

We denote by btc and {t} the integer part and the fractional part of t, respectively. As is

customary, we put

e(t) := e2πit.

We make considerable use of the sawtooth function defined by

ψ(t) := t− btc − 1

2
= {t} − 1

2
, t ∈ R.

The letter p always denotes a prime. For the generalized Piatetski–Shapiro sequence

(bαnc + βc)∞n=1, we denote γ := c−1 and θ := α−γ . We use notation of the form m ∼ M

as an abbreviation for M < m ≤ 2M .

Throughout the paper, implied constants in symbols O,� and� may depend (where

obvious) on the parameters α, c, ε but are absolute otherwise. For given functions F and

G, the notations F � G, G� F and F = O(G) are all equivalent to the statement that

the inequality |F | ≤ C|G| holds with some constant C > 0.



36 Victor Zhenyu Guo and Jinyun Qi

2.2. Technical lemmas

We need the following well-known approximation of Vaaler [34].

Lemma 2.1. For any H ≥ 1 there are numbers ah, bh such that∣∣∣∣∣∣ψ(t)−
∑

0<|h|≤H

ah e(th)

∣∣∣∣∣∣ ≤
∑
|h|≤H

bh e(th), ah �
1

|h|
, bh �

1

H
.

Next, we recall the following identity for the von Mangoldt function Λ, which is due

to Vaughan.

Lemma 2.2. Let U, V ≥ 1 be real parameters. For any n > U we have

Λ(n) = −
∑
k|n

a(k) +
∑
cd=n
d≤V

(log c)µ(d)−
∑
kc=n
k>1
c>U

Λ(c)b(k),

where

a(k) =
∑
cd=k
c≤U
d≤V

Λ(c)µ(d) and b(k) =
∑
d|k
d≤V

µ(d).

Proof. See Davenport [13, p. 139].

The Vaughan’s identity gives a decomposition for sums of the form

S(f) :=
∑

X<n≤X′

Λ(n)f(n)

where f is any complex-valued function, and X ′ ∼ X. Let N1 ≤ 2N . A Type I sum is a

sum of the form

SI(K,L) :=
∑
k∼K

∑
l∼L

N<kl≤N1

akf(kl)

where |ak| � kε for every ε > 0. A Type II sum is a sum of the form

SII(K,L) :=
∑
k∼K

∑
l∼L

N<kl≤N1

akblf(kl)

where |ak| � kε and |bl| � lε for every ε > 0.

Lemma 2.3. Suppose that every Type I sum with K � X3/7 satisfies the bound

SI � B(X)



A Generalization of Piatetski–Shapiro Sequences 37

and every Type II sum with X3/7 � K � X1/2 satisfies the bound

SII � B(X).

Then

S(f)� B(X)Xε.

Proof. The lemma can be deduced by the Vaughan’s identity (Lemma 2.2) since S(f) can

be written as a linear decomposition of Type I and Type II sums. A detailed proof of a

similar lemma can be found in [3, Lemma 2].

Lemma 2.4. For a bounded function g and N ′ ∼ N we have

∑
N<p≤N ′

g(p)� 1

logN
max
N1≤2N

∣∣∣∣∣∣
∑

N<n≤N1

Λ(n)g(n)

∣∣∣∣∣∣+N1/2.

Proof. See [14, p. 48].

Lemma 2.5. Let

L(Q) :=
J∑
j=1

CjQ
cj +

K∑
k=1

DkQ
−dk ,

where Cj , cj , Dk, dk > 0. Then

(1) For any Q ≥ Q′ > 0 there exists Q1 ∈ [Q′, Q] such that

L(Q1)�
J∑
j=1

K∑
k=1

(Cdkj D
cj
k )1/(cj+dk) +

J∑
j=1

Cj(Q
′)cj +

K∑
k=1

DkQ
−dk .

(2) For any Q > 0 there exists Q1 ∈ (0, Q] such that

L(Q1)�
J∑
j=1

K∑
k=1

(Cdkj D
cj
k )1/(cj+dk) +

K∑
k=1

DkQ
−dk .

Proof. The proof of the first assertion is in [14, Lemma 2.4]. The proof of the second

assertion is similar.

Lemma 2.6. Let f be twice continuously differentiable on a subinterval I of (N, 2N ].

Suppose that for some λ > 0, the inequalities

λ� |f ′′(t)| � λ, t ∈ I

hold, where the implied constants are independent of f and λ. Then∑
n∈I

e(f(n))� Nλ1/2 + λ−1/2.
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Proof. See [14, Theorem 2.2].

Lemma 2.7. Suppose |ak| ≤ 1 for all k ∼ K. Fix γ ∈ (0, 1), µ, ρ ∈ R, µ 6= 0 and m ∈ N.

Then for any K � N3/7 the Type I sum

SI =
∑
k∼K

∑
l∼L

N<kl≤N1

ak e(µmkγlγ + ρkl)

satisfies the bound

SI � m1/2N3/7+γ/2 +m−1/2N1−γ/2.

Proof. Writing f(l) = µmkγlγ + ρkl we see that

|f ′′(l)| = |µmγ(γ − 1)kγlγ−2| � mKγLγ−2.

Using Lemma 2.6 it follows that∑
l∼L

N<kl≤N1

ak e(µmkγlγ + ρkl)� m1/2Kγ/2Lγ/2 +m−1/2K−γ/2L1−γ/2.

Since |ak| ≤ 1 for all k ∼ K we see that

SI =
∑
k∼K

∑
l∼L

N<kl≤N1

ak e(µmkγlγ + ρkl)

� m1/2K1+γ/2Lγ/2 +m−1/2K1−γ/2L1−γ/2

� m1/2N3/7+γ/2 +m−1/2N1−γ/2.

We need the following lemma to bound the Type II sum.

Lemma 2.8. Let 1 < Q < L. If f is a function of the form f(n) = e(g(n)), then any

Type II sum satisfies

|SII |2 � N2Q−1 +NQ−1
∑

0<|q|<Q

∑
l∼L
|S(q, l)|,

where

S(q, l) =
∑

k∈I(q,l)

e(g(kl)− g(k(l + q)))

for a certain subinterval I(q, l) of (K, 2K].

Proof. See the proof of [14, Lemma 4.13].
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Lemma 2.9. Suppose |ak| ≤ 1 and |bl| ≤ 1 for (k, l) ∼ (K,L). Fix γ ∈ (0, 1), µ, ρ ∈ R,

µ 6= 0 and m ∈ N. For any K in the range N3/7 � K � N1/2, the Type II sum

SII =
∑
k∼K

∑
l∼L

N<kl≤N1

akbl e(µmkγlγ + ρkl)

satisfies the bound

SII � m1/6N16/21+γ/6 +N25/28 +m−1/4N1−γ/4.

Proof. We assume that KL � N . By Lemma 2.8 we have

|SII |2 � K2L2Q−1 +KLQ−1
∑
l∼L

∑
0<|q|≤Q

|S(q; l)|,

where

S(q; l) =
∑

k∈I(q;l)

e(f(k)) and f(k) = µkγ(lγ − (l + q)γ)− ρkq,

and each I(q;n) is a certain subinterval in the set of numbers k ∼ K. Since

|f ′′(k)| = |µmγ(1− γ)kγ−2(lγ − (l + q)γ)|

� mKγ−2Lγ−1|q|,

it follows from Lemma 2.6 that

S(q; l)� (mKγ−2Lγ−1|q|)1/2K + (mKγ−2Lγ−1|q|)−1/2.

Inserting the bound to |SII |2 and summing over l and q, we derive that

|SII |2 � K2L2Q−1 +m1/2K1+γ/2L3/2+γ/2Q1/2 +m−1/2K2−γ/2L5/2−γ/2Q−1/2.

By Lemma 2.5 we have

|SII |2 � m1/3K4/3+γ/3L5/3+γ/3 +K3/2L2 +K2L+m−1/2N2−γ/2

� m1/3K−1/3N5/3+γ/3 +K−1/2N2 +KN +m−1/2N2−γ/2.

We have N3/7 � K � N1/2, the proof is done.

We use the following lemma, which provides a characterization of the numbers that

occur in the Piatetski–Shapiro sequence N (c).

Lemma 2.10. A natural number m has the form bncc if and only if X (c)(m) = 1, where

X (c)(m) := b−mγc − b−(m+ 1)γc. Moreover,

X (c)(m) = γmγ−1 + ψ(−(m+ 1)γ)− ψ(−mγ) +O(mγ−2).

In particular, for any c ∈ (1, 2817/2426) the results of [31] yield the estimate

π(c)(x) =
∑
p≤x
X (c)(p) =

xγ

c log x
+O

(
xγ

log2 x

)
.
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3. Proof of Theorem 1.1

Recall that γ = c−1 and θ = α−γ . A prime p equals bαnc + βc if and only if

p ≤ αnc + β < p+ 1,

which is equivalent to

θ(p− β)γ ≤ n < θ(p+ 1− β)γ ,

except for the case that p = bβc. Then

πα,β,c(x; d, a) =
∑
p≤x

p≡a mod d

(
b−θ(p− β)γc − b−θ(p+ 1− β)γc

)
=
∑

1 +
∑

2 +O(1),

where ∑
1 := θγ

∑
p≤x

p≡a mod d

(p− β)γ−1,

and ∑
2 :=

∑
p≤x

p≡a mod d

(
ψ(−θ(p− β + 1)γ)− ψ(−θ(p− β)γ)

)
.

A partial summation gives∑
1 = θγxγ−1π(x; d, a) + θγ(1− γ)

∫ x

2
uγ−2π(u; d, a) du+O(xγ−1 + 1),

which is the main term. Let N ≤ x and N1 ≤ 2N . We estimate
∑

2 by considering

S :=
∑

N<n≤N1
n≡a mod d

Λ(n)
(
ψ(−θ(n− β + 1)γ)− ψ(−θ(n− β)γ)

)
= S1 +O(S2)

by Lemmas 2.1 and 2.4, where

S1 :=
∑

N<n≤N1
n≡a mod d

Λ(n)
∑

0<|h|≤H

ah
(
e(θh(n− β + 1)γ)− e(θh(n− β)γ)

)
and

S2 :=
∑

N<n≤N1
n≡a mod d

Λ(n)
∑
|h|≤H

bh
(
e(θh(n− β + 1)γ) + e(θh(n− β)γ)

)
for some H ≥ 1. We consider the upper bound of S1 firstly. By partial summation

(see [14, p. 48]), we have

(3.1) S1 � Nγ−1 max
N1≤2N

∑
1≤h≤H

∣∣∣∣ ∑
N<n≤N1
n≡a mod d

Λ(n)e(θhnγ)

∣∣∣∣.



A Generalization of Piatetski–Shapiro Sequences 41

Note that ∑
N<n≤N1
n≡a mod d

Λ(n)e(θhnγ) =
1

d

d∑
m=1

∑
N<n≤N1

Λ(n)e

(
θhnγ +

(n− a)m

d

)
.

Hence we need to bound

T :=
∑

N<n≤N1

Λ(n)e
(
θhnγ +

nm

d

)
.

We apply Lemmas 2.3, 2.7 and 2.9 with

(µ,m, ρ)→
(
θ, h,

m

d

)
and obtain

(3.2) TN−ε � h1/2N3/7+γ/2 + h1/6N16/21+γ/6 +N25/28 + h−1/4N1−γ/4,

for ε being a small positive number.

Now we work on the upper bound of S2. The contribution from h = 0 is

(3.3) 2b0
∑

N<n≤N1
n≡a mod d

Λ(n)� b0N

ϕ(d)
� H−1N,

where the function ϕ(d) is the Euler’s totient function and bh � H−1. Taking into account

that

(n− β + 1)γ = nγ +O(nγ−1)

and γ − 1 < 0, the contribution from h 6= 0 is

(3.4) � H−1 max
N1≤2N

∑
0<h≤H

∣∣∣∣ ∑
N<n≤N1
n≡a mod d

Λ(n)e(θhnγ)

∣∣∣∣.
The right-hand side of (3.4) can be estimated by the same method of (3.2). Therefore,

inserting (3.2) into (3.1) and (3.4), and combining with (3.3), it follows that

SN−ε � S1 + S2

� H3/2N3γ/2−4/7 +H7/6N7γ/6−5/21 +HNγ−3/28 +H3/4N3γ/4

+H1/2N3/7+γ/2 +H1/6N16/21+γ/6 +N25/28 +H−1/4N1−γ/4 +H−1N

holds for any H ≥ 1. By Lemma 2.5, we get that

SN−ε � N3γ/5+13/35 +N7γ/13+3/7 +Nγ/2+25/56 +Nγ/3+13/21 +Nγ/7+13/14 +N25/28.

Note that
∑

1 � xγ , so we need that S � xγ−ε. Hence

γ > max

(
13

14
,
25

28

)
=

13

14
,

and

S � x3γ/5+13/35+ε.
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4. Sketch of proof of Theorem 1.3

We sketch the proof of Theorem 1.3 because the idea of the proof is close to the proof

in [2], the proof of [6, Theorem 7] or the proof of Theorem 1.1. We only give the changes

that are necessary for our Theorem 1.3.

We set

ϑ(x; d, a) :=
∑
p≤x

p≡a mod d

log p

and consider a weighted counting function

ϑα,β,c(x; d, a) :=
∑
p≤x

p∈N (c)
α,β

p≡a mod d

log p

=
∑
p≤x

p≡a mod d

(
b−θ(p− β)γc − b−θ(p+ 1− β)γc

)
log p.

By a similar argument as in the proof of Theorem 1.1, we conclude that

Theorem 4.1. Let α ≥ 1 and β be real numbers. Let c ∈ (1, 14/13). Then

ϑα,β,c(x; d, a) = α−1/cγxγ−1ϑ(x; d, a)

+ α−1/cγ(1− γ)

∫ x

2
uγ−2ϑ(u; d, a) du+O(x3γ/5+13/35+ε).

The Brun–Titchmarsh theorem states that for d < x1−ε, there is some C > 0 such

that

π(x; d, a) ≤ Cx

ϕ(d) log x
.

We also give a Brun–Titchmarsh bound for the primes in the generalized Piatetski–Shapiro

sequences.

Corollary 4.2. Let α ≥ 1 and β be real numbers. Let c ∈ (1, 14/13) and A ∈ (0,−13/35+

2γ/5). There is a number C = C(α, c, A) > 0 such that

πα,β,c(x; d, a) ≤ Cxγ

ϕ(d) log x

if (a, d) = 1 and 1 ≤ d ≤ xA.

Proof. Let ε > 0 be chosen so that

max

(
2Aγ,

3

5
γ +

13

35
+ ε

)
≤ γ −A− ε.
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Then by Theorem 1.1 we have

πα,β,c(x; d, a)� α−1/cγxγ−1π(x; d, a)

+ α−1/cγ(1− γ)

∫ x

2
uγ−2π(u; d, a) du+ xγ−A−ε

where the implied constant depends on c, α, A. If 1 ≤ d ≤ xA, then

xγ−A−ε � xγ−A

log x
≤ xγ

ϕ(d) log x
.

Applying the Brun–Titchmarsh theorem, we prove Corollary 4.2.

The following statement analogous to [2, Theorem 2.1] and [6, Lemma 28] is important

in the construction of Carmichael numbers.

Lemma 4.3. Let α ≥ 1 and β be real numbers. Let c ∈ (1, 14/13) and B ∈ (0,−13/35 +

3γ/5). There exist numbers η > 0, x0 and D such that for all x ≥ x0 there is a set D(x)

consisting of at most D integers such that∣∣∣∣ϑα,β,c(x; d, a)− θxγ

ϕ(d)

∣∣∣∣ ≤ θxγ

2ϕ(d)

provided that

(1) d is not divisible by any element of D(x);

(2) 1 ≤ d ≤ xB;

(3) gcd(a, d) = 1.

Every number in D(x) exceeds log x, and all, but at most one, exceeds xη.

Sketch of proof. We set

ϑc(x; d, a) :=
∑
p≤x

p∈N (c)

p≡a mod d

log p.

By Theorem 26 in [6], we conclude that

ϑα,β,c(x; d, a) ∼ θϑc(x; d, a).

Replacing the factor 17/39+7γ/13+ε in the proof of Lemma 28 in [6] by 13/35+3γ/5+ε

in this case, the proof of Lemma 4.3 in this paper is a straightforward reworking of the

proof of Lemma 28 in [6].

By Lemma 4.3, we extend [2, Theorem 3.1] to the setting of the primes in the gener-

alized Piatetski–Shapiro sequence.
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Lemma 4.4. Let α ≥ 1 and β be real numbers. Let c ∈ (1, 14/13) and let A, B, B1

be positive real numbers such that B1 < B < A < −13/35 + 2γ/5. Let C > 0 have the

property described in Corollary 4.2. There exists a number x2 such that if x ≥ x2 and L

is a squarefree integer not divisible by any prime q exceeding x(A−B)/2 and for which∑
prime q|L

1

q
≤ 1−A

16C
,

then there is a positive integer k ≤ x1−B with gcd(k, L) = 1 such that

#
{
d|L : dk + 1 ≤ x and p = dk + 1 is a prime in N (c)

α,β

}
≥ 2−D−2(x1−B+B1)γ−1

log x
#{d|L : xB1 ≤ d ≤ xB},

where D is chosen as in Lemma 4.3.

Sketch of proof. We follow the proof of [6, Lemma 29] and use the notation of [2, Theo-

rem 3.1]. By the same argument we have

πα,β,c(dx
1−B; d, 1) ≥ θ

2

(dx1−B)γ

φ(d) log x
, d|L′, 1 ≤ d ≤ xB

and

πα,β,c(dx
1−B; dq, 1) ≤ 4θC

q(1−A)

(dx1−B)γ

φ(d) log x
, 1 ≤ d ≤ xB

for every prime q dividing L′. The rest of the proof stays the same as the proof of [6,

Lemma 29] by considering primes in N (c)
α,β instead of primes in N (c).

Let π(x, y) be the number of those primes for which p − 1 is free of prime factors

exceeding y. Let E be the set of numbers E in the range 0 < E < 1 for which

π(x, x1−E) ≥ x1+o(1), x→∞,

where the function implied by o(1) depends only on E. By a similar argument as in [6,

pp. 64–66], we conclude the following statement.

Lemma 4.5. Let α ≥ 1 and β be real numbers. Let c ∈ (1, 49/48). Let B, B1 be

positive real numbers such that B1 < B < −13/35 + 2γ/5. For any E ∈ E there is a

number x3 depending on c, B, B1, E and ε, such that for any x ≥ x1 there are at least

xEB+(1−B+B1)(γ−1)−ε Carmichael numbers up to x composed solely of primes from N (c)
α,β.

Taking B and B1 arbitrarily close to −13/35 + 2γ/5, Lemma 4.5 implies that there

are infinitely many Carmichael numbers composed entirely of the primes from N (c)
α,β with(

−13

35
+

2

5
γ

)
E + γ − 1 > 0.

Taking E = 0.7039 from [8], we eventually have γ > 63/64.
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[18] D. R. Heath-Brown, The Pjateckĭi–Šapiro prime number theorem, J. Number Theory

16 (1983), no. 2, 242–266.
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[30] I. I. Pyateckĭı–Šapiro, On the distribution of prime numbers in sequences of the form

[f(n)], Mat. Sbornik N.S. 33 (1953), 559–566.

[31] J. Rivat and P. Sargos, Nombres premiers de la forme bncc, Canad. J. Math. 53

(2001), no. 2, 414–433.

[32] J. Rivat and J. Wu, Prime numbers of the form [nc], Glasg. Math. J. 43 (2001), no. 2,

237–254.

[33] L. Spiegelhofer, Piatetski–Shapiro sequences via Beatty sequences, Acta Arith. 166

(2014), no. 3, 201–229.

[34] J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc.

(N.S.) 12 (1985), no. 2, 183–216.

[35] I. M. Vinogradov, A new estimate of a certain sum containing primes, Rec. Math.

Moscou, n. Ser. 2 (44) (1937), no. 5, 783–792. English translation: New estimations

of trigonometrical sums containing primes, C. R. (Dokl.) Acad. Sci. URSS, n. Ser.

17 (1937), 165–166.

Victor Zhenyu Guo

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi, China

E-mail address: guozyv@xjtu.edu.cn

Jinyun Qi

Department of Mathematics, Northwest University, Xi’an Shaanxi, China

E-mail address: xjqi@stumail.nwu.edu.cn


	Introduction
	Preliminaries
	Notation
	Technical lemmas

	Proof of Theorem 1.1
	Sketch of proof of Theorem 1.3

