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Maximal Density of Integral Sets with Missing Differences and the Kappa

Values

Ram Krishna Pandey and Anshika Srivastava*

Abstract. Let M be a given set of positive integers. A set S of nonnegative integers is

said to be an M -set if a, b ∈ S implies a−b /∈M . In an unpublished problem collection,

Motzkin asked to find maximal upper asymptotic density, denoted by µ(M), of M -

sets. The first published work on µ(M) is due to Cantor and Gordon in 1973, in

which, they found the exact value of µ(M) when |M | ≤ 2. In fact, this is the only

general case, in which, we have a closed formulae for µ(M). If |M | ≥ 3, then the

exact value of µ(M) is not known for the general set M . In the past six decades or

so, several attempts have been given to study µ(M) but µ(M) has been found exactly

or estimated only in very few cases. In this paper, we study µ(M) for the families

M = {a, a+ 1, x} and M = {a, a+ 1, x, y}, where y − x ≤ 2 and y > x > a+ 1. Our

results in the case of M = {a, a + 1, x} also give counterexamples to a conjecture of

Carraher. Although, different counterexamples to this conjecture, were already given

by Liu and Robinson in 2020. We also relate our results with the already know results

for the families M = {1, 2, x, x+ 2} and M = {2, 3, x, x+ 2}.

1. Introduction

Let S be a set of nonnegative integers and let S(x) denote the number of elements n ∈ S
such that 1 ≤ n ≤ x, x ∈ R. The upper and lower asymptotic densities of S, denoted

respectively by δ(S) and δ(S), are defined by

δ(S) := lim sup
x→∞

S(x)

x
and δ(S) := lim inf

x→∞

S(x)

x
.

If δ(S) = δ(S) = δ(S), then we say that the density of the set S is δ(S). Now let M be a

given set of positive integers. Then S is said to be an M -set if a, b ∈ S implies a− b /∈M .

In an unpublished problem collection, Motzkin asked how dense can an M -set be? More

precisely, Motzkin asked to determine the maximal density of M -sets, defined by

µ(M) := sup
S
δ(S),
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where the supremum is taken over all M -sets S.

Since we have µ(M) = µ(tM) for any positive integer t [1, Theorem 2], it is sufficient

to consider the case gcd(M) = 1. Cantor and Gordon [1] found µ(M) in the case |M | ≤ 2.

They also proved that if M is a finite set then there is a periodic M -set whose density is

equal to µ(M).

For a real number x, let ‖x‖ denote the distance of x from the nearest integer, i.e.,

‖x‖ = min{x − bxc, dxe − x}. The following remark due to Haralambis [14] gives some

equivalent definitions for the kappa value of M , denoted by, κ(M).

Remark 1.1. Let M = {m1,m2, . . . ,mn} and

d1(M) = sup
x∈(0,1)

min
i
‖xmi‖, d2(M) = sup

(k,m)=1
(1/m) min

i
|kmi|m,

d3(M) = max
m=mr+ms
1≤k≤m/2

(1/m) min
i
|kmi|m.

Then d1(M) = d2(M) = d3(M) = κ(M).

We also define for a real number t and a set M of real numbers, ‖tM‖ := inf{‖tm‖ :

m ∈M}.
The parameter κ(M) which serves as a lower bound for µ(M) [1, Theorem 1], is related

to the “lonely runner conjecture”. The lonely runner conjecture is a long standing open

conjecture on the diophantine approximations, which was first posed by Wills [26] and

then independently by Cusick [11]. The conjecture, in our context, may simply be read

as: if M is a finite set of positive integers with |M | = m, then κ(M) ≥ 1/(m + 1). Our

focus is not on the conjecture in the present article. For the current developments and all

related references on the conjecture, one can see the recent paper by Tao [25]. Some old

and important results on κ(M) may be found in [3–9].

Cantor and Gordon [1] proved that if M = {a}, then µ(M) = κ(M) = 1/2; and if

M = {a, b} with gcd(a, b) = 1, then µ(M) = κ(M) = b(a+b)/2c
a+b . However, if |M | > 3,

then there exist sets M (see [1, 16]) such that µ(M) > κ(M). In case |M | = 3, it is still

unknown that whether or not µ(M) = κ(M)? For |M | ≥ 3, the problem was studied

extensively by several authors in different contexts. Most of the important and relevant

results may be found in [1, 12–14, 16–21, 23, 24]. Haralambis [14] gave expressions for

µ(M) for most members of the families {1, x, y} and {1, 2, x, y}. For the general 3-element

set M , Gupta [12] gave a lower bound for µ(M) and proved that in some specific cases

these bounds are the exact values. Rabinowitz and Proulx [22] gave a lower bound for

µ(M) when M = {x, y, x + y} and conjectured that the bound is the exact value. Liu

and Zhu [16] confirmed their conjecture and completely determined the values of κ(M)

and µ(M) in this case. They also established that µ(M) = κ(M) in this case. They

further computed the value of κ(M) for M = {x, y, y− x, x+ y}, y > x and gave a better
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lower bound than κ(M) for µ(M) when both x and y are odd. In the rest of the cases,

Liu and Zhu [16] exactly computed µ(M) as well as κ(M). Collister and Liu [10] has

discussed κ(M) and µ(M) for M = {2, 3, x, y} with |x − y| ≤ 6. Very recently, Liu and

Robinson [15, Theorems 1, 2, 3] have found µ(M) and κ(M) and proved their equality

for most of the remaining cases of the family {1, x, y}. Their results also provide the

counterexamples for the two conjectures of Carraher et al. [2].

In this paper, we study maximal density problem for certain three and four-element

sets M . In Section 2, we investigate the values of µ(M) and κ(M) for the 3-element

set M = {a, a + 1, x}. In Section 3, we investigate µ(M) and κ(M) for the 4-element

sets M = {a, a + 1, x, x + 1} and M = {a, a + 1, x, x + 2}. In this study, we relate

our results with the already known results for the families M = {1, 2, x, x + 2} [14] and

M = {2, 3, x, x + 2} [10]. Our Corollary 2.6 for a = 1, provides the counterexamples to

the conjecture [2, Conjecture 29]. Although, different counterexamples to this conjecture

were already provided by Liu and Robinson [15].

2. The family M = {a, a+ 1, x}

For the sake of completeness, we mention below, Lemmas 2.1 and 2.2, which respectively,

give sharp lower and upper bounds for µ(M).

Lemma 2.1. [1] Let M = {m1,m2, . . .}. Then

µ(M) ≥ κ(M) := sup
gcd(c,m)=1

(1/m) min
k≥1
|cmk|m,

where for an integer x and a positive integer m, |x|m = |r| if x ≡ r (mod m) with

0 ≤ |r| ≤ m/2 and the supremum is taken over all pairs of relatively prime positive

integers c and m.

Lemma 2.2. [14] Let S(n) = |{0, 1, 2, . . . , n} ∩ S|. Let α be a real number, α ∈ [0, 1]. If

for any M -set S with 0 ∈ S there exists a positive integer k such that S(k) ≤ (k + 1)α,

then µ(M) ≤ α.

In this section, first we give a general lower bound for κ(M) in Theorem 2.3. Then, in

Theorem 2.4, we prove that this lower bound turns out to be the exact value for both of

µ(M) and κ(M) for certain families of {a, a + 1, x}. Later, we improve the lower bound

for κ(M) presented in Theorem 2.3, in a series of propositions, for certain families of

{a, a+ 1, x}.

Theorem 2.3. Let M = {a, a+1, x} with x > a+1. If x = k(2a+1)−r, where 0 ≤ r ≤ 2a

and k ≥ 1, then

κ(M) ≥

 ak
x+a if 0 ≤ r ≤ a,
ak+a+1−r
x+a+1 if a+ 1 ≤ r ≤ 2a.
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Proof. Consider the following two cases.

Case 1: 0 ≤ r ≤ a. Let t = k. Then we have

at ≡ ak (mod x+ a),

(a+ 1)t = (a+ 1)k =
(
a− r + k(2a+ 1)

)
− (ak + a− r)

= (a+ x)− (ak + a− r) ≡ −(ak + a− r) (mod x+ a),

xt ≡ −at ≡ −ak (mod x+ a).

Since x+a = (ak+k)+(ak+(a−r)) and 0 ≤ r ≤ a, we have ak ≤ min{ak+(a−r), ak+k} ≤
(x+ a)/2.

Case 2: a+ 1 ≤ r ≤ 2a. Let t = k. Then we have

at ≡ ak (mod x+ a+ 1),

(a+ 1)t = (a+ 1)k = (x+ a+ 1)− a(k + 1) + k(2a+ 1)− x− 1

= (x+ a+ 1)−
(
a(k + 1)− r + 1

)
≡ −

(
a(k + 1)− r + 1

)
(mod x+ a+ 1),

xt ≡ −(a+ 1)t (mod x+ a+ 1).

Since x+a+1 = (ak+k)+(a(k+1)−r+1) = ak+(a(k+1)−r+1+k) and a+1 ≤ r ≤ 2a,

we have a(k + 1)− r + 1 ≤ min{ak, a(k + 1)− r + 1 + k} ≤ (x+ a+ 1)/2.

So, using d3(M) for κ(M), we get

κ(M) ≥

 ak
x+a if 0 ≤ r ≤ a,
ak+a+1−r
x+a+1 if a+ 1 ≤ r ≤ 2a.

This completes the proof of the theorem.

Theorem 2.4. Let M = {a, a+1, x} with x > a+1. If x = k(2a+1)−r, where 0 ≤ r ≤ 2a

and k ≥ 1, then

κ(M) = µ(M) =

 ak
x+a if 0 ≤ r ≤ a,
ak+a+1−r
x+a+1 if a+ 1 ≤ r ≤ 2a

provided

k ≥


a− r − 1 if 0 ≤ r ≤ ba−1

2 c,

a− r if da2e ≤ r ≤ a,

r − a− 1 if a+ 1 ≤ r ≤ 2a.

Proof. From Theorem 2.3, we have

µ(M) ≥

 ak
x+a if 0 ≤ r ≤ a,
ak+a+1−r
x+a+1 if a+ 1 ≤ r ≤ 2a.
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If possible, let µ(M) be strictly greater than the above mentioned bound. Then by

Lemma 2.2 there exists an M -set S such that for any n ≥ 0,

(2.1) S(n) >

 ak
x+a(n+ 1) if 0 ≤ r ≤ a,
ak+a+1−r
x+a+1 (n+ 1) if a+ 1 ≤ r ≤ 2a.

Now using

k ≥


a− r − 1 if 0 ≤ r ≤ ba−1

2 c,

a− r if da2e ≤ r ≤ a,

r − a− 1 if a+ 1 ≤ r ≤ 2a

in (2.1), we can show that S(2a− 1) ≥ a. On the other hand, |S ∩ [0, 2a]| ≤ a, as S is an

{a, a+ 1}-set. So |S ∩ [0, 2a− 1]| = a. To obtain S ∩ [0, 2a− 1] = [0, a− 1], we assume on

contrary that S ∩ [a, 2a− 1] 6= ∅.
Let a+ i be the largest element of [a, 2a−1] which is in S, i.e., for i < j < a, a+j /∈ S.

Now we have the following conditions on an {a, a+ 1}-set S.

• S ∩ [0, 2a− 1] = S ∩ [0, a+ i],

• a+ i ∈ S ⇒ i, i− 1 /∈ S,

• S(0) ≥ 1, gives 0 ∈ S ⇒ a, a+ 1 /∈ S and i ≥ 2,

• S has at most one element of {l, l + a+ 1}.

We partition [0, a + i] into disjoint sets {0, a, a + 1}, {1, a + 2}, {2, a + 3}, . . . , {i − 2, a +

i− 1}, {i− 1, i, a+ i}, and {i+ 1, i+ 2, . . . , a− 1}. This gives

|S ∩ [0, a+ i]| ≤ 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
(i−2) times

+1 + (a− 1− i− 1 + 1)

= 1 + i− 2 + 1 + a− i− 1 = a− 1.

This means S contains at most a−1 elements from the set [0, a+i], which is a contradiction

as |S ∩ [0, 2a− 1]| = |S ∩ [0, a+ i]| = a. Hence S ∩ [0, 2a− 1] = [0, a− 1]. Now we consider

the following two cases.

Case 1: 0 ≤ r ≤ a. From (2.1), we have S
(
k(2a + 1) + a − r − 1

)
> ak. Moreover,

since S is an {a, a+1}-set, we have S
(
k(2a+1)−1

)
≤ ak. Therefore, at least one element

of the set {k(2a + 1), k(2a + 1) + 1, k(2a + 1) + 2, . . . , k(2a + 1) + a − r − 1} must be in

S. But this is not true since for 0 ≤ r ≤ a − 1 we have {r, r + 1, . . . , a − 1} ⊂ S and

x = k(2a+ 1)− r ∈M . So

µ(M) = κ(M) =
ka

k(2a+ 1) + a− r
=

ak

x+ a
.
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Case 2: a + 1 ≤ r ≤ 2a. From (2.1), we have S
(
k(2a + 1) + a− r

)
> ak + a + 1− r.

Moreover, since S is an {a, a+1}-set, we have S(k(2a+1)− (2a+2)) ≤ ak−a. Therefore,

at least (2a − r + 2) elements of the set {k(2a + 1) − (2a + 1), k(2a + 1) − 2a, k(2a +

1) − (2a − 1), . . . , k(2a + 1) + a − r − 1, k(2a + 1) + a − r} must be in S. But, since

{0, 1, 2, . . . , a − 1} ⊂ S and x = k(2a + 1) − r ∈ M , elements from the set {k(2a +

1) − r, k(2a + 1) − r + 1, . . . , k(2a + 1) + a − r − 1} cannot be in S. Furthermore, since

|(k(2a + 1) + a − r) − (k(2a + 1) − r − 1)| = a + 1 ∈ M , we have exactly one element of

{k(2a+ 1) + a− r, k(2a+ 1)− r − 1} in S. Therefore,

S ∩ [k(2a+ 1)− (2a+ 1), k(2a+ 1) + a− r]

= S ∩
(
[k(2a+ 1)− (2a+ 1), k(2a+ 1)− r − 2] ∪ {k(2a+ 1) + a− r, k(2a+ 1)− r − 1}

)
can contain at most (2a− r + 1) elements. This is a contradiction. So

µ(M) = κ(M) =
ak + a+ 1− r

k(2a+ 1) + a− r + 1
=
ak + a+ 1− r
x+ a+ 1

.

This completes the proof of the theorem.

Corollary 2.5. Let M = {a, a+ 1, x}, where x = k(2a+ 1)− r > a+ 1 with 0 ≤ r ≤ 2a

and k ≥ 1. Let r ∈ {a− 1, a, a+ 1, a+ 2}. Then

µ(M) = κ(M) =

 ak
x+a if 0 ≤ r ≤ a,
ak+a+1−r
x+a+1 if a+ 1 ≤ r ≤ 2a.

Proof. The proof follows immediately from Theorem 2.4.

Corollary 2.6. Let M = {a, a+ 1, x}, where x = k(2a+ 1)− r > a+ 1 with 0 ≤ r ≤ 2a

and k ≥ 1. Let a ∈ {1, 2, 3, 4}. Then

µ(M) = κ(M) =

 ak
x+a if 0 ≤ r ≤ a,
ak+a+1−r
x+a+1 if a+ 1 ≤ r ≤ 2a.

Proof. It follows from Theorem 2.4 that if a ∈ {1, 2, 3, 4} and M /∈
{
{3, 4, 7}, {4, 5, 7}, {4,

5, 8}, {4, 5, 9}, {4, 5, 10}, {4, 5, 18}
}

, then µ(M) = κ(M). However, for these few excep-

tions of M the µ(M) and κ(M) may directly be computed to obtain

µ(M) = κ(M) =

 ak
x+a if 0 ≤ r ≤ a,
ak+a+1−r
x+a+1 if a+ 1 ≤ r ≤ 2a.

For the sake of the convenience of the reader, we verify the above relation for M = {3, 4, 7}.
Clearly, we have a = 3, x = 7. Hence k = 1 and r = 0. From Theorem 2.3, we have
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µ(M) ≥ κ(M) ≥ ak/(x + a) = 3/10. To prove the reverse inequality, assume to the

contrary that µ(M) > 3/10. Then by Lemma 2.2 there exists an M -set S such that for

any n ≥ 0, S(n) > 3
10(n + 1). This implies, for instance, |S ∩ [0, 9]| = S(9) ≥ 4. But

no subset of S ∩ [0, 9] has this property. Therefore µ(M) ≤ 3/10. Combining, we have

3/10 ≥ µ(M) ≥ κ(M) ≥ ak/(x+ a) = 3/10. Hence µ(M) = κ(M) = 3/10.

From Corollary 2.6, we have if a ≤ 4, then the lower bound established in Theorem 2.3

for κ(M) is the exact value of κ(M). Furthermore, it also gives that µ(M) = κ(M).

However, this is not always true for a ≥ 5. Following three propositions give some families

of M in which the lower bound established in Theorem 2.3 for κ(M) have been improved.

Proposition 2.7. Let M = {a, a+ 1, 2a− 1}, where a = 5k + i with k ≥ 1. Then

κ(M) ≥

 a−k
2a+1 if 0 ≤ i ≤ 2,

a+k
3a−1 if 3 ≤ i ≤ 4.

Proof. Consider the following cases.

Case 1: 0 ≤ i ≤ 2. Let t = 2k + 1. Then we have

at = 2ak + a = k(2a+ 1) + (a− k) ≡ a− k (mod 2a+ 1),

(a+ 1)t = (k + 1)(2a+ 1)− (a− k) ≡ −(a− k) (mod 2a+ 1),

(2a− 1)t = (2a+ 1)(2k + 1)− 2(2k + 1) ≡ −2(2k + 1) (mod 2a+ 1).

We have min{a− k, 4k + 2} = min{4k + i, 4k + 2} = 4k + i = a− k < (2a+ 1)/2.

Case 2: 3 ≤ i ≤ 4. Let t = 3k + 1. Then we have

at = k(3a− 1) + (a+ k) ≡ a+ k (mod 3a− 1),

(a+ 1)t = (k + 1)(3a− 1)− 2a+ 4k + 2 = (k + 1)(3a− 1)− 2(a− (2k + 1))

≡ −2(a− (2k + 1)) (mod 3a− 1),

(2a− 1)t ≡ −at (mod 3a− 1).

For 3 ≤ i ≤ 4, we have that a+ k ≤ 2(a− (2k + 1)) ≤ (3a− 1)/2. Therefore,

κ(M) ≥

 a−k
2a+1 if 0 ≤ i ≤ 2,

a+k
3a−1 if 3 ≤ i ≤ 4.

This completes the proof of the proposition.

Proposition 2.8. Let M = {a, a+ 1, 2a+ 3}, where a = 5k + i ≥ 6 with k ≥ 1. Then

κ(M) ≥

 a−k
2a+1 if 1 ≤ i ≤ 2,

a+2+k
3a+4 if 3 ≤ i ≤ 5.
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Proof. Consider the following cases.

Case 1: 1 ≤ i ≤ 2. Let t = 2k + 1. Then we have

at = 2ak + a = k(2a+ 1) + (a− k) ≡ a− k (mod 2a+ 1),

(a+ 1)t ≡ −at ≡ −(a− k) (mod 2a+ 1),

(2a+ 3)t = (2a+ 1)(2k + 1) + 2(2k + 1) ≡ 2(2k + 1) (mod 2a+ 1).

For 1 ≤ i ≤ 2, we have that a− k ≤ 4k + 2 ≤ (2a+ 1)/2.

Case 2: 3 ≤ i ≤ 5. Let t = 3k + 2. Then we have

at = k(3a+ 4) + 2(a− 2k) ≡ 2(a− 2k) (mod 3a+ 4),

(a+ 1)t = (k + 1)(3a+ 3)− (a+ 1) = (k + 1)(3a+ 4)− (a+ k + 2)

≡ −(a+ k + 2) (mod 3a+ 4),

(2a+ 3)t ≡ −(a+ 1)t ≡ (a+ k + 2) (mod 3a+ 4).

For 3 ≤ i ≤ 5, we have that a+ k + 2 ≤ 2(a− 2k) ≤ (3a+ 4)/2. Therefore,

κ(M) ≥

 a−k
2a+1 if 1 ≤ i ≤ 2,

a+2+k
3a+4 if 3 ≤ i ≤ 5.

This completes the proof of the proposition.

Proposition 2.9. Let M = {a, a + 1, x}. Let a = 3k + i ≥ 6 with k ≥ 1 and x =

n(2a+ 1)± r, where 1 ≤ n ≤ (k− 1) and (i, r) ∈ {(0, k), (1, k), (1, k+ 1), (2, k+ 1)}. Then

κ(M) ≥ (a− 1)/(2a+ 1).

Proof. Note that

3a = (2a+ 1) + (a− 1), 3(a+ 1) = 2(2a+ 1)− (a− 1)

and

3(n(2a+ 1)± r) = 3n(2a+ 1)± 3r.

We see that, in each case, a − 1 ≤ 3r ≤ a + 2. Therefore µ(M) ≥ κ(M) ≥
∥∥ 3

2a+1M
∥∥ =

(a− 1)/(2a+ 1). Hence the proposition holds.

3. The families M = {a, a+ 1, x, y}

In this section, we study κ(M) and µ(M) when y = x+1 and y = x+2 with a < x−1. For

M = {a, a+1, x, x+1}, first we give a general lower bound for κ(M) in Theorem 3.1. Then,

in Theorem 3.2, we prove that this lower bound turns out to be the exact value for both

of µ(M) and κ(M) for certain families of {a, a+ 1, x, x+ 1}. For M = {a, a+ 1, x, x+ 2},
we give general lower bounds for κ(M) in Theorem 3.5 and in a series of propositions.
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Theorem 3.1. Let M = {a, a + 1, x, x + 1}, where x = k(2a + 1) + r > a + 1 with

0 ≤ r ≤ 2a. Then

κ(M) ≥

 ak+r
x+a+1 if 0 ≤ r ≤ a− 1,

ak+a
x+a+1 if a ≤ r ≤ 2a.

Proof. Let t = k + 1. So we have

at ≡ ak + a (mod x+ a+ 1),

(a+ 1)t = (a+ 1)(k + 1) = (x+ a+ 1)− (x− (a+ 1)k)

= (x+ a+ 1)− (ak + r) ≡ −(ak + r) (mod x+ a+ 1),

xt = x(k + 1) = xk + (r + k(2a+ 1))

= k(x+ a+ 1) + (ak + r) ≡ ak + r (mod x+ a+ 1),

(x+ 1)t = (x+ 1)(k + 1) = (k + 1)(x+ a+ 1)− a(k + 1)

≡ −(ak + a) (mod x+ a+ 1).

We see that, if 0 ≤ r ≤ a− 1, then

min
{
|at|(x+a+1), |(a+ 1)t|(x+a+1), |xt|(x+a+1), |(x+ 1)t|(x+a+1)

}
= ak + r,

and if a ≤ r ≤ 2a, then

min
{
|at|(x+a+1), |(a+ 1)t|(x+a+1), |xt|(x+a+1), |(x+ 1)t|(x+a+1)

}
= ak + a.

Therefore,

κ(M) ≥

 ak+r
x+a+1 if 0 ≤ r ≤ a− 1,

ak+a
x+a+1 if a ≤ r ≤ 2a.

Theorem 3.2. Let M = {a, a + 1, x, x + 1}, where x = k(2a + 1) + r with 0 ≤ r ≤ 2a.

Then

κ(M) = µ(M) =

 ak+r
x+a+1 if 0 ≤ r ≤ a− 1,

ak+a
x+a+1 if a ≤ r ≤ 2a

provided

k ≥


a− r − 1 if 0 ≤ r ≤ a− 1,

r − a− 1 if a ≤ r ≤ b3a
2 c,

r − a− 2 if d3a+1
2 e ≤ r ≤ 2a.

Proof. From Theorem 3.1, we have

µ(M) ≥

 ak+r
x+a+1 if 0 ≤ r ≤ a− 1,

ak+a
x+a+1 if a ≤ r ≤ 2a.
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We first prove that equality holds when r = 0. If possible, let µ(M) > ak/(x + a + 1) =

ak/[k(2a + 1) + a + 1]. Then there exists an M -set S such that for any n ≥ 0, S(n) >
ak

k(2a+1)+a+1(n+1). This gives S
(
k(2a+1)+a

)
> ak and if k ≥ a−1, then S∩ [0, 2a−1] =

[0, a−1]. Moreover, since S is an {a, a+1}-set, we have S
(
k(2a+1)−1

)
≤ ak. Therefore,

at least one element of the set {k(2a+ 1), k(2a+ 1) + 1, . . . , k(2a+ 1) + a} must be in S.

But this is not true as k(2a+ 1), k(2a+ 1) + 1 ∈M and {0, 1, 2, . . . , a− 1} ⊂ S.

Now let 1 ≤ r ≤ 2a and k be as it is stated in the theorem. Then using Theorem 2.4,

we have

µ(M) ≤

µ({a, a+ 1, x}) = ak+r
x+a+1 if 1 ≤ r ≤ a− 1,

µ({a, a+ 1, x+ 1}) = ak+a
x+a+1 if a ≤ r ≤ 2a.

This completes the proof of the theorem.

Corollary 3.3. Let M = {a, a + 1, x, x + 1}, where x = k(2a + 1) + r > a + 1 with

0 ≤ r ≤ 2a. Let r ∈ {a, a± 1, a− 2}. Then, κ(M) = µ(M).

Proof. The proof follows immediately from Theorem 3.2.

Corollary 3.4. Let M = {a, a + 1, x, x + 1}, where x = k(2a + 1) + r with 0 ≤ r ≤ 2a.

Let a ∈ {1, 2, 3, 4}. Then

κ(M) = µ(M) =

 ak+r
x+a+1 if 0 ≤ r ≤ a− 1,

ak+a
x+a+1 if a ≤ r ≤ 2a.

Proof. It follows from Theorem 3.2 that if a ∈ {1, 2, 3, 4} and

M /∈
{
{3, 4, 6, 7}, {3, 4, 7, 8}, {4, 5, 6, 7}, {4, 5, 7, 8}, {4, 5, 8, 9}, {4, 5, 9, 10},

{4, 5, 10, 11}, {4, 5, 17, 18}, {4, 5, 18, 19}
}
,

then µ(M) = κ(M). However, for the above exceptions of the set M , one can directly

obtain µ(M) and κ(M) from their respective definitions that

κ(M) = µ(M) =

 ak+r
x+a+1 if 0 ≤ r ≤ a− 1,

ak+a
x+a+1 if a ≤ r ≤ 2a.

Hence the corollary holds.

For the sake of the convenience of the reader, we verify the above relation for M =

{3, 4, 6, 7}. Clearly, we have a = 3, x = 6. Hence k = 0 and r = 6. From Theorem 2.4, we

have µ(M) ≥ κ(M) ≥ (ak+a)/(x+a+1) = 3/10. To prove the reverse inequality, assume

to the contrary that µ(M) > 3/10. Then by Lemma 2.2 there exists an M -set S such that

for any n ≥ 0, S(n) > 3
10(n + 1). This implies, for instance, |S ∩ [0, 9]| = S(9) ≥ 4. But

no subset of S ∩ [0, 9] has this property. Therefore µ(M) ≤ 3/10. Combining, we have

3/10 ≥ µ(M) ≥ κ(M) ≥ (ak + a)/(x+ a+ 1) = 3/10. Hence µ(M) = κ(M) = 3/10.
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Theorem 3.5. Let M = {a, a+1, x, x+2} with x > a+1, where x+a+2 = (k+1)(2a+2)+r

with 0 ≤ r < 2a+ 2 ≤ (2k + 3) + r. Then

κ(M) ≥ max

{
ak + a

x+ a+ 2
,
a(2k + 1) + r − 2

2x+ 2

}
.

Proof. Since x > a+ 1, we have k ≥ 0.

For t1 = k + 1, noting that x+ a+ 2 = (k + 1)(2a+ 2) + r, we have

at1 = ak + a, (a+ 1)t1 = (a+ 1)(k + 1) ≤ 1

2
(x+ a+ 2),

xt1 = k(x+ a+ 2) + (ak + a+ r) ≡ ak + a+ r ≡ −(ak + a+ 2k + 2) (mod x+ a+ 2),

(x+ 2)t1 ≡ −a(k + 1) (mod x+ a+ 2).

It follows that

min
{
|at1|(x+a+2), |(a+ 1)t1|(x+a+2), |xt1|(x+a+2), |(x+ 2)t1|(x+a+2)

}
= ak + a.

Hence

κ(M) ≥ ak + a

x+ a+ 2
.

For t2 = 2k + 3, noting that x+ 1 = (a+ 1)(2k + 1) + r, we have

at2 = a(2k + 1) + r − 2 + (2a+ 2− r) ≤ x+ 1,

(a+ 1)t2 ≡ −
(
(x+ 1)− (2a+ 2− r)

)
(mod 2x+ 2),

(x+ 1)− (2a+ 2− r) = a(2k + 1) + r − 2 + (2k + 3 + r − 2a− 2) ≥ a(2k + 1) + r − 2,

xt2 = (2x+ 2)(k + 1) + x− 2(k + 1) ≡ a(2k + 1) + r − 2 (mod 2x+ 2),

(x+ 2)t2 ≡ −xt2 ≡ −
(
a(2k + 1) + r − 2

)
(mod 2x+ 2).

If k ≥ 1, then a(2k+ 1) + r− 2 ≥ 3a+ r− 2 > 0. If r ≥ 2, then a(2k+ 1) + r− 2 ≥ a > 0.

If k = 0 and r ≤ 1, then x+1 = (a+1)(2k+1)+r ≤ a+2, i.e., x ≤ a+1, a contradiction.

So, in all cases, we have 0 < a(2k + 1) + r − 2 < x+ 1. It follows that

min
{
|at2|(2x+2), |(a+ 1)t2|(2x+2), |xt2|(2x+2), |(x+ 2)t2|(2x+2)

}
= a(2k + 1) + r − 2.

Hence

κ(M) ≥ a(2k + 1) + r − 2

2x+ 2
.

This completes the proof of the theorem.

The remaining case, i.e., M = {a, a+ 1, x, x+ 2} with x+ a+ 2 = (k + 1)(2a+ 2) + r

and 0 ≤ r < (2k + 3) + r < 2a+ 2 is dealt with the following three propositions.
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Proposition 3.6. Let M = {a, a + 1, x, x + 2} with 2a 6= x = n(2a + 1) − r′, where

1 ≤ r′ ≤ a− n+ 2. Then

κ(M) ≥ na

x+ a+ 2
.

Proof. Let t = n. Then we have

at ≡ an (mod x+ a+ 2),

(a+ 1)t ≡ (a+ 1)n (mod x+ a+ 2),

xt = (x+ a+ 2)n− (a+ 2)n ≡ (x+ a+ 2)− (a+ 2)n (mod x+ a+ 2),

(x+ 2)t = (x+ a+ 2)n− an ≡ −an (mod x+ a+ 2).

Since x+a+2 = n(2a+1)−r′+a+2 = n(a+2)+(na+a+2−n−r′) and 1 ≤ r′ ≤ a−n+2,

we have

min
{
|at|(x+a+2), |(a+ 1)t|(x+a+2), |xt|(x+a+2), |(x+ 2)t|(x+a+2)

}
= na.

Therefore κ(M) ≥ na/(x+ a+ 2).

Proposition 3.7. Let M = {a, a + 1, x, x + 2} with x = n(2a + 1) + r′, where 0 ≤ r′ ≤
a− (n+ 2). Then

κ(M) ≥ na+ r′

x+ a+ 1
.

Proof. Let t = n+ 1. Then we have

at = (x+ a+ 1)− (na+ r′ + (n+ 1)) ≡ −(na+ r′ + (n+ 1)) (mod x+ a+ 1),

(a+ 1)t = (x+ a+ 1)− (na+ r′) ≡ −(na+ r′) (mod x+ a+ 1),

xt = (x+ a+ 1)(n+ 1)− (a+ 1)(n+ 1) ≡ (na+ r′) (mod x+ a+ 1),

(x+ 2)t = (x+ a+ 1)(n+ 1)− (n+ 1)(a− 1) ≡ −(n+ 1)(a− 1) (mod x+ a+ 1).

Since x+a+1 = n(2a+1)+r′+a+1 = (n+1)(a+1)+na+r′ = (n+1)(a−1)+2(n+1)+na+r′

and 0 ≤ r′ ≤ a− (n+ 2), we have

min
{
|at|(x+a+1), |(a+ 1)t|(x+a+1), |xt|(x+a+1), |(x+ 2)t|(x+a+1)

}
= na+ r′.

Therefore κ(M) ≥ (na+ r′)/(x+ a+ 1).

Proposition 3.8. Let M = {a, a+ 1, 2a, 2a+ 2} with a ≥ 2. Then

1

3
≥ µ(M) ≥ κ(M) ≥


2a

3(2a+1) if a ≡ 0 (mod 3),

1
3 if a ≡ 1 (mod 3),

a
3a+2 if a ≡ 2 (mod 3).
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Proof. Clearly, µ(M) ≤ µ({a, 2a}) = 1/3. We prove the reverse inequality in the following

cases.

Case 1: a ≡ 0 (mod 3). Take t = (2a+ 3)/[3(2a+ 1)]. Then

at =
a(2a+ 3)

3(2a+ 1)
=
a

3
+

2a

3(2a+ 1)
,

(a+ 1)t =
(a+ 1)(2a+ 3)

3(2a+ 1)
=
a+ 3

3
− 2a

3(2a+ 1)
,

2at =
2a(2a+ 3)

3(2a+ 1)
=

2a+ 3

3
− 2a+ 3

3(2a+ 1)
,

(2a+ 2)t =
(2a+ 2)(2a+ 3)

3(2a+ 1)
=

2a+ 3

3
+

2a+ 3

3(2a+ 1)
.

Therefore µ(M) ≥ κ(M) ≥ ‖tM‖ = 2a/[3(2a+ 1)].

Case 2: a ≡ 1 (mod 3). Clearly, M does not contain any multiple of 3. Hence

µ(M) ≥ κ(M) ≥ 1/3.

Case 3: a ≡ 2 (mod 3). Take t = 1/(3a+ 2). Then

at =
a

3a+ 2
, (a+ 1)t =

a+ 1

3a+ 2
, 2at = 1− a+ 2

3a+ 2
, (2a+ 2)t = 1− a

3a+ 2
.

Therefore µ(M) ≥ κ(M) ≥ ‖tM‖ = a/(3a+ 2).

4. Concluding remarks

1. Let M = {a, a+1, x, x+2}. If a = 1, that is, M = {1, 2, x, x+2}, then Haralambis [14]

proved that

µ(M) = κ(M) =


x

3(x+1) if x ≡ 0 (mod 3),

x+2
3(x+4) if x ≡ 1 (mod 3),

1
3 if x ≡ 2 (mod 3).

We see that for a = 1, the lower bound established in Theorem 3.5 for κ(M) is strict.

Whereas, for a = 2, Collister and Liu [10] computed the exact value of κ(M) and they

proved that if M = {2, 3, x, x+ 2} with x+ 4 = 6β + r, then

κ(M) =


bx+4

3
c

x+4 if 0 ≤ r ≤ 2,
b 2x+1

3
c

2x+2 if 3 ≤ r ≤ 5.

Moreover, κ(M) = µ(M), if r 6= 3. So we see that for M = {2, 3, x, x + 2}, the lower

bound established in Theorem 3.5 for κ(M) is the exact value.

2. If we extend the family of sets M = {a, a+ 1, x, x+ 1} to

M ′ = M ∪ {y : y ≡ ±a or ± (a+ 1) (mod x+ a+ 1)},

where x ≡ r (mod 2a+ 1) with 0 ≤ r ≤ 2a, in Theorems 3.1, 3.2, Corollaries 3.3, and 3.4,
then we get κ(M) = κ(M ′) and µ(M) = µ(M ′).
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