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Exponential Stable Behavior of a Class of Impulsive Partial Stochastic

Differential Equations Driven by Lévy Noise

Fangxia Lu

Abstract. In this paper, using exponential stable property, the stochastic analysis
techniques and a fixed-point theorem for condensing maps, we obtain the existence
results of piecewise weighted pseudo almost periodic in distribution mild solutions for
a class of impulsive partial stochastic differential equations driven by Lévy noise in
Hilbert spaces under non-Lipschitz conditions. Furthermore, the exponential stable
of mild solution in mean square is investigated. Finally, an example is presented to

illustrate the results.

1. Introduction

Weighted pseudo almost periodic functions are more general than pseudo almost periodic
functions, which thus can better meet the demands of practical application. Weighted
pseudo almost periodic functions were introduced by Diagana [10,11]. Recently Agarwal
et al. [1], Ezzinbi [14], Chen and Hu [6] have studied basic properties of weighted pseudo
almost periodic functions and then used these results to study the existence and uniqueness
of weighted pseudo almost periodic mild solutions for some abstract differential equations.

On the other hand, the stochastic differential equations have received a lot of atten-
tion due to its applications in various fields of science and engineering. Almost periodic
and pseudo almost periodic solutions of stochastic differential equations were studied by
several authors; see [4,5,[8,/12,|33]. Chen and Lin [7] studied the mean square weighted
pseudo almost automorphic solutions for a general class of non-autonomous stochastic evo-
lution equations. Bedouhene et al. [3] obtained the existence and uniqueness of weighted
pseudo almost periodic and Stepanov-like weighted pseudo almost periodic mild solution
to some stochastic evolution equations. Most of the studies on almost periodic and almost
automorphic solutions for stochastic differential equations are concerned with equations
perturbed by Brownian motion. However, many real models involve jump perturbations
or more general Lévy noise. Wang and Liu [29] first introduced the concept of Poisson

square-mean almost periodicity and studied the existence, uniqueness and stability of the
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mean square almost period solutions for stochastic evolution equations driven by Lévy
noise. Li [19] established the existence and uniqueness of mean-square weighted pseudo
almost automorphic solutions for some linear and semilinear nonautonomous stochastic
differential equations driven by Lévy noise. Indeed, as indicated in [18,[22], it seems that
almost periodicity in distribution sense is a more appropriate concept compared with so-
lutions of stochastic differential equations. Recently, Liu and Sun [21] studied almost
automorphic in distribution solutions of stochastic differential equations with Lévy noise.
Diop et al. |13] introduced the concept of u-pseudo almost automorphic processes in dis-
tribution and studied the existence, the uniqueness and the stability of the square-mean
u-pseudo almost automorphic solutions in distribution to a class of abstract stochastic
evolution equations driven by Lévy noise.

The theory of impulsive differential equations is an important branch of differen-
tial equations, which has an extensive physical background [26]. Therefore, it seems
interesting to study the asymptotic properties of solutions of impulsive differential equa-
tions (see [20428,130]). Song et al. [27], Gu et al. [15] investigated piecewise weighted
pseudo almost periodic functions and its applications in impulsive differential and integro-
differential equations under the Lipschitz conditions. In addition to impulsive effects,
stochastic effects likewise exist in real systems. A lot of dynamical systems have variable
structures subject to stochastic abrupt changes, which may result from abrupt phenomena
such as stochastic failures and repairs of the components, changes in the interconnections
of subsystems, sudden environment changes, etc. So, it is necessary and important to
consider the qualitative properties of stochastic systems with impulsive effects. In recent
years, several interesting results on impulsive partial stochastic systems have been reported
in [16,25,[32] and the references therein. Recently, Yan and Lu [31] studied the existence
and exponential stability of pseudo almost periodic solutions for impulsive nonautonomous
partial stochastic evolution equations with delay. Up to now, to the best of the author’
knowledge, there are no results available in the literature concerning the weighted pseudo
almost periodicity in distribution to partial stochastic differential systems with impulsive
effects and Lévy noise are available in the literature.This paper focuses on the existence
and exponential stable behavior of piecewise weighted pseudo almost periodic in distri-
bution mild solutions for the following nonlinear impulsive partial stochastic differential

equations driven by Lévy noise under non-Lipschitz conditions:

dx(t) = [Az(t) + g(t, z(t))] dt + f(t,z(t)) dW (t) + / G(t,x(t—),y)ﬁ(dt,dy)

lylv <1

(L.1)
+/ F(t,.ﬁU(t—),y)N(dt,dy), teRv t#tza ’iEZ,
lylv>1

(1.2) Ax(ty) = x(t]) —a(t;) = Li(a(t)), €L,
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where A is the generator of an exponentially stable Cy semigroup {7(¢)}+>0 on LP(PP, H)
and W, N and N are the Lévy—It6 decomposition components of the two-sided Lévy
process L defined on the filtered probability space (2, F,P, F;), where F; = o{W(s) —
W(r) : s,7 < t}. The functions g, f, G, F, I;, t; satisfy suitable conditions which will
be established later. The notations z(t;"), x(t;) represent the right-hand side and the
left-hand side limits of x(-) at t;, respectively.

Two major contributions are made in this paper. For one thing, a new concept,
concerning p-mean piecewise weighted pseudo almost periodic in distribution for stochas-
tic processes driven by Lévy noise, is proposed, which naturally extends the concept of
weighted pseudo almost periodicity in distribution to dynamical systems represented by
these impulsive systems. For another, using exponential stable property and a fixed-point
theorem for condensing maps with stochastic analysis theory, we study and obtain the
existence and exponential stable behavior of mean-square piecewise weighted pseudo al-
most periodic in distribution mild solutions to system f under non-Lipschitz
conditions. Such a result generalizes most of known results on the existence of almost
periodic in distribution solutions of type system . Some results of almost periodic
and pseudo almost periodic in distribution solutions to stochastic differential equations
without impulse are included in it as special cases.

The rest of this paper is arranged as follows. In the next section, some notations and
a preliminary lemma are given. In Section 3| it is shown that equation f exist
piecewise weighted pseudo almost periodic in distribution mild solutions. In Section[4] the
exponential stable behavior of piecewise weighted pseudo almost periodic in distribution
mild solutions for f are obtained. An example is given to illustrate our results

in Section Bl A natural conclusion is drawn in the last section.

2. Preliminaries

Throughout the paper, N, Z, R and R™ stand for the set of natural numbers, integers, real
numbers, positive real numbers, respectively. We assume that (H, | - ||), (V.| |y) are real
separable Hilbert spaces and (€2, F,P) is supposed to be a filtered complete probability
space. The notation LP(P,H), for p > 1 stands for the space of all H-valued random
variables x such that E||z||P = [, ||z||? dP < co. Then LP(P, H) is a Hilbert space when it is
equipped with its natural norm |||, defined by ||z[|, = ( [, E||z||? dP) YP « o foreach o €
LP(P,H). Let C(R, LP(P,H)), BC(R, LP(P,H)) stand for the collection of all continuous
functions from R into LP(P, H), the Banach space of all bounded continuous functions from
R into LP(IP,H), equipped with the sup norm, respectively. We let L(V,H) be the space
of all linear bounded operators from K into H, equipped with the usual operator norm || -

| .(v;my; in particular, this is simply denoted by L(H) when V' = H. The filtered probability
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space (2, F,PP, F;) with covariance operator @, that is E(W(t),x)m(W(s),y)m = (t A
$)(Qz,y)m for all z,y € H, where @ is a positive, self-adjoint, trace class operator on H.
Furthermore, L9(V, H) denotes the space of all Q-Hilbert-Schmidt operators from V to H
with the norm H@Z)H%g = Tr(yQvy*) < oo for any ¢ € L(V,H).

2.1. Lévy process
Definition 2.1. [2] A V-valued stochastic process L = (L(t),t > 0) is called Lévy process
if
(i) L(0) =0 almost surely;
(ii) L has independent and stationary increments;

(iii) L is stochastically continuous, i.e., for all € > 0 and for all s > 0

lim P(|L(t) = L(s)lv > ¢) = 0.

Definition 2.2. [2]
(i) B is Borel set in V' — {0} that is bounded below.

(ii) v(-) = E(N(1,-)) is called the intensity measure associated with L, where AL(t) =
L(t) — L(t_) for each ¢t > 0 and

N(t,B)(w) :=t{0< s <t: AL(t)(w) € B} = ) xn(AL(t)(w))
0<s<t

with xp being the indicator function for any Borel set B in V' — {0}.
(iii) N(¢, B) is called Poisson random measure if B is bounded below, for each ¢ > 0.

(iv) For each ¢t > 0 and B bounded below, we define the compensated Poisson random
measure by N(t, B) = N(t, B) — tv(B).

Proposition 2.3. (Lévy-Ité6 decomposition [23]) If L is a V-valued Lévy process, then
there exist a € V, V-valued Wiener process W with covariance operator QQ, so called Q-
Wiener process, and an independent Poisson random measure on RY x (V — {0}) such
that for each t > 0,

L@:m+W@+/

|z <1

aN(t,dz) + / aN(t,dz).

|z >1

Here the Poisson random measure N has the intensity measure v which satisfies fv(]y\%/\/

1) v(dy) < oo and N is the compensated Poisson random measure of N.
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In this paper, Wiener processes we consider are Q-Wiener processes; see |9] for details.
For simplicity, we assume that the covariance operator @ of W is of trace class, i.e.,
Tr@Q < oo. Assume that Ly and Lo are two independent, identically distributed Lévy
processes with decompositions as in Proposition with a, @, W, N. Let

Ly(t) for ¢t > 0,

L(t) N —Lg(—t) for ¢ S 0.

Then L is a two-sided Lévy process. We assume that the two sided Lévy process L is
defined on the filtered probability space (2, F, P, (F;)tcr). By the Lévy—Ité decomposition,
it follows that meZlv(da:) < o0o. Then we denote b := f\ﬂ:lvzl v(dz) throughout this
paper. We note that the process L := (L(t) = L(t + s) — L(s)) for some s € R is also a

two-sided Lévy process with the same law as L.

2.2. Weighted pseudo almost periodic processes

Definition 2.4. [5] A stochastic process x: R — LP(P,H) is said to be bounded if there
exists a constant My > 0 such that

Ellz(t)|P < My, teR.

Definition 2.5. [5] A stochastic process x: R — LP(P,H) is said to be continuous
provided that for any s € R,

| e
lim E (1) — (s) [P = 0.

Let T be the set consisting of all real sequences {t; };cz such that o = infez(tir1 —t;) >
0, lim; oo t; = 00 and lim;,_ oo t; = —o0. For {t;}icz € T, let PC(R, LP(P,H)) be the
space consisting of all bounded piecewise continuous processes f: R — LP(P,H) such
that f(-) is continuous at ¢ for any t ¢ {t;}icz and f(t;) = f(¢t;) for all i € Z; let
PC(R x LP(P,H), LP(P,H)) be the space formed by all piecewise continuous processes
f: R x LP(P,H) — LP(P,H) such that for any z € LP(P,H), f(-,z) € PC(R, LP(P,H))
and for any ¢ € R, f(t,-) is continuous at z € LP(P, H).

Definition 2.6. (Cf. [26]) For {t;};cz € T, the stochastic process f € PC(R, LP(P,H)) is

said to be p-mean piecewise almost periodic if the following conditions are fulfilled:

(i) {tf =ti+;—ti}, j € Z, is equipotentially almost periodic, that is, for every sequence
of integer numbers {a/,}, there exist a subsequence {a,} and a sequence {¢;} such
that limy, o0 |tita, — ti — E| =0 forallieZ.
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(i) For any & > 0, there exists a positive number § = d(¢) such that if the points ¢’ and ¢
belong to a same interval of continuity of f and [/ —¢”| < &, then E||f(')— f(¢")||P <

E.

(iii) For every sequence of real numbers {s),}, there exist a subsequence {s,} and a
process f € C(R, LP(P,H)) such that
lim E||f(t+s.) — fA)IF =0
n—oo
for all ¢ € R satisfying the condition |t — ¢;| > € for any € > 0, i € Z.

We denote by APp(R, LP(IP, H)) the collection of all the p-mean piecewise almost pe-
riodic functions. Obviously, the space APr(R,LP(P,H)) endowed with the sup norm
defined by ||fllec = (supteREHf(t)Hp)l/p for any f € APr(R,LP(P,H)) is a Banach
space. Throughout the rest of this paper, we always assume that {tf } are equipoten-
tially almost periodic. Let UPC(R, LP(P,H)) be the space of all stochastic functions
f € PC(R, LP(P,H)) such that f satisfies the condition (ii) in Definition [2.6]

Definition 2.7. (Cf. [26]) The stochastic process f € PC(R x LP(P,H), LP(P,H)) is
said to be p-mean piecewise almost periodic in ¢ € R uniform in z € LP(P,H) if for
every sequence of real numbers {s,}, there exist a subsequence {s,} and a process f €
C(R x L?(P, H), L?(P, H)) such that

Tim_ B[ f(t+ s,7) = F(t.2)]" = 0
for every bounded or compact set K C LP(P,H), x € K, and t € R satisfying |t — t;| > ¢
for any € > 0, i € Z. Denote by APr(R x LP(P,H), LP(P,H)) the set of all such processes.

Let Uy denote the collection of functions (weights) p: Z — (0,400). For p € Uy, and
m € ZT ={n € Z,n > 0}, set u(m,p) := >0~ pk, pr € Us. Denote Uy := {p €
Ug : limp, 00 (m, p) = 00}, For p € Ugeo, define 1°°(Z, LP(P,H)) = {x: Z — LP(P,H) :
lz]| = suppez(E||z(n)[[?)/? < oo}, and

m

1
WPAPy(Z, LP(P,H), p :{xeloo Z,IP(P,H)) : lim E||z ppk:o}.
0(Z, LP (P, H), p) (z, LF(P,H)) mﬁmu(m,p)k; (e

Definition 2.8. (Cf. [27]) Let p € Uyoo. A sequence {zp}nc, € I°°(Z,X) is called
p-mean weighted pseudo almost periodic if x, = 2. + x2, where x. € AP(Z, LP(P,H)),

n’

12 € WPAPy(Z, LP(P,H), p). Denote by W PAP(Z, LP(P,H), p) the set of such sequences.

Let U be the set of all functions p: R — (0, 00) which are positive and locally integrable
over R. For a given r > 0 and each p € U, set u(r,p) := [ p(t)dt. Define Uy := {p €
U : limy o0 pu(r, p) = 00}, Up := {p € U : p is bounded and inf,cg p(z) > 0}. It is clear
that Ug C Uy C U.
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Definition 2.9. |11 Let p1,p2 € Ux, p1 is said to be equivalent to ps (i.e., p1 ~ p2) if
p1L
02 € Ug.

It is trivial to show that “~” is a binary equivalence relation on U,,. The equivalence

class of a given weight p € Uy is denoted by cl(p) = {¥ € U : p ~ U}. It is clear that

Uso = U, cl(p).
For p € Uy, we need to introduce the new space of functions defined by

PCY(R, LP(P, H)) = {f € PO(R, LP(P,H)) : lim B f(¢)[[? = 0}7
WPAPY(R, LP(P,H), p)
= {f € PC(R, LP(P,H)) : lim ' E|f()|Pp(t) dt = 0}’

r—oo pu(r, p) J
WPAPL(R x LP(P,H), L”(P, H), p)

= {f € PC(R x LP(P,H), LP(P,H)) : lim

7—00 M

1 /T .
E|f(t,x)|[Pp(t) dt = 0 uniformly
) 1f (2, ) 1Po(2)

-

with respect to € K, where K is an arbitrary compact subset of LP(P, H)}

Definition 2.10. A function f € PC(R, LP(P,H)) is said to be p-mean piecewise weighted
pseudo almost periodic if it can be decomposed as f = h+ ¢, where h € APp(R, LP(P, H))
and ¢ € WPAPY(R, LP(P,H), p). Denote by WPAPr(R, LP(P,H), p) the set of all such

functions.

Let p € Uy, 7 € R, and define p™ by p"(t) = p(t + 7) for t € R. Define Up =
{p € Us : p~ p” for each t € R}. It is easy to see that Ur contains many of weights.
WPAPp(R, LP(P,H), p), p € Ur, is a Banach space with the sup norm || - ||.

Similar to [27], one has
Remark 2.11. (i) For p € Uy, WPAPY(R, LP(P,H), p) is a translation invariant set of
PC(R, LP(P,H)).
(ii) PC’%(R, LP(P,H)) C WPAP%(R, LP(P,H), p).
Let us now establish a useful lemma which we will need in the section below.

Lemma 2.12. Let {fy}nen C WPAPA(R, LP(P,H), p) be a sequence of functions. If f,
converges uniformly to f, then f € WPAPX(R, LP(P,H), p).

The proof is similar to that of Lemma 3.6 in [27].
Definition 2.13. A stochastic process f € PC(R x LP(P,H), LP(P,H)) is said to be p-

mean piecewise weighted pseudo almost periodic if it can be decomposed as f = h + ¢,
where h € APp(R x LP(P,H), LP(P,H)) and ¢ € WPAPX(R x LP(P,H), LP(P,H), p).
Denote by WPAPp(R x LP(P,H), LP(P,H), p) the set of all such processes.
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Definition 2.14. [23] A stochastic process J: R x V' — LP(IP,H) is said to be Poisson
stochastically bounded if there exists a constant M7 > 0 such that

/ BT v(dz) < My, teR.
Vv

Definition 2.15. [23] A stochastic process J: R x V' — LP(P,H) is said to be Poisson

stochastically continuous provided that for any s € R,

lim /V E||(t) = J(s)|P v(dz) = 0.

t—s

Definition 2.16. (Cf. [29]) For {t; }icz € T, the stochastic process F' € PC(RxV, LP(P, H))
is said to be piecewise uniformly Poisson almost periodic if the following conditions are
fulfilled:

(1) {tf : j € Z} is equipotentially almost periodic.
(i) Fe UPC(R x V,LP(P,H)) for each y € V.

(iii) For every sequence of real numbers {s/} and every bounded or compact set K C
LP(P,H)), there exists a subsequence {s,}, for some stochastic process F: R x V —
LP(P,H)) with [, E||F(t,2)||P v(dz) < oo such that

lim  sup /E]F(t—i—sn,x)—ﬁ(t,m)Hpv(dx)—0.
1%

N0 tcRxeK

Denote by PAPr(R x V, LP(IP,H)) the set of all such processes.

Definition 2.17. (Cf. [29]) A stochastic process F' € PC(R x LP(P,H) x V, LP(P, H))
is said to be uniformly Poisson almost periodic if F' is Poisson continuous and that for
every sequence of real numbers {s/ }, there exists a subsequence {s,}, for some stochastic
process F: R x LP(P,H) x V — LP(P,H) with Iy E||F(t,z,y)||P v(dz) < oo such that

i sup [ BIF(+ sn.y) — Flta) P o(de) =0
=X tcRazeK JV

for every bounded or compact set K C LP(P,H), x € K, and ¢ € R satisfying |t —¢;| > ¢
for any € > 0, i € Z. Denote by PAPr(R x LP(P,H) x V, LP(P,H)) the set of all such

processes.

For p € Uy, we need to introduce the new space of functions defined by
PWPAPY(R x V, LP(P,H), p)

P : lim 1 ' p v =
_ {Fe PO(Rx V. I/(P.H) : lim —— /_T/VEHF(t,y)H () v(dy) dt o},
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PWPAPY(R x LF(P,H) x V, L (P, H), p)

= {F € PC(R x LP(P,H) x V, LP(P,H)) :

,
im E|F(t,x,y)||Pp(t) v(dy) dt = 0 uniformly with respect to
tim s [ [ BIP@IPote) o)

x € K, where K is an arbitrary compact subset of L”(P, H)}

Definition 2.18. A stochastic process F' € PC(R x LP(P,H) x V, LP(P,H)) is said to
be Poisson p-mean piecewise weighted pseudo almost periodic if it can be decomposed
as F = h + ¢, where h € PAPp(R x LP(P,H) x V, LP(P,H)) and » € PWPAPL(R x
LP(P,H) x V, LP(P,H), p). Denote by PW PAPr(R x LP(P,H) x V, LP(P,H), p) the set of

all such processes.

2.3. Weighted pseudo almost periodicity in distribution

Let P(H) be the space of all Borel probability measures on H endowed with the metric:

dpi (. v) = supﬂ/fdu—/fdv

where f is Lipschitz continuous real-valued function on H with the norm

[f(z) = f(y)]
[ =y

: HfHBLS]-}a M?VG,P(H)7

11z = max{[[fl|z, [[flloc},  [[fllz = sup , Iflleo = sup |f()].
TH#Y reH

We denote by law(z(t)) the distribution of the random variable z(t). We say that x
has almost periodic in one-dimensional distribution if the mapping t — law(z(¢)) from R
to (P(H),dpy) is almost periodic.

Definition 2.19. (Cf. [18]) For {t;};cz € T, the stochastic process f € PC(R, LP(P,H)) is

said to be piecewise almost periodic in distribution if the following conditions are fulfilled:
(1) {ti : j € Z} is equipotentially almost periodic.
(i) f e UPC(R, LP(P,H)).

(iii) The law u(t) of f(t) is a P(H)-valued almost periodic mapping, i.e., for every se-
quence of real numbers {s/ } there exist a subsequence {s,} and a P(H)-valued

continuous mapping fi(¢) such that
lim dBL(,u(t + Sn) - ﬁ(t)) =0
n—oo

hold for all ¢ € R satisfying the condition |t — ¢;| > € for any € > 0, i € Z.
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Definition 2.20. A stochastic process f € PC(R,LP(P,H)) is said to be piecewise
weighted pseudo almost periodic in distribution if it can be decomposed as f = f; + fa,
where f; is piecewise weighted almost periodic in distribution and fo € WPAP%(R,
LP(P, H), p).

Next, we introduce a useful compactness criterion on PC(R, LP(P, H)).
Let I: R — R* be a continuous function such that [(t) > 1 for all t € R and [(t) — oo
as [t| = oo. Define

PCY(R, LP(P, H)) = {f € PC(R, LP(P,H)) : |t1|i_r>noo E”;fo))“’ - 0}

endowed with the norm || f||; = sup;er %, it is a Banach space.

Lemma 2.21. A4 set B C PC?(R, LP(P,H)) is relatively compact if and only if it satisfies

the following conditions:

(i) limp—eo W = 0 uniformly for f € B.

(i) B(t) ={f(t): f € B} is relatively compact in LP(IP,H) for every t € R.
(iii) The set B is equicontinuous on each interval (t;,ti+1), i € Z.
One can refer to Lemma 4.2 in [20] for the proof of Lemma

Lemma 2.22. [24] Let D be a convex, bounded and closed subset of a Banach space X
and let ¥: D — D be a condensing map. Then, ¥ has a fixed-point in D.

3. Existence

In this section, we investigate the existence of mean-square weighted pseudo almost pe-
riodic in distribution mild solution for system (1.1)—(1.2)). Throughout the rest of the

paper, we assume p € Uy, is chosen so that the following assumptions hold:

lim sup M < 00, limsup M < 00
s—o0  p(8) r—oo M1, p)

for every 7 € R. We begin introducing the followings concepts of mild solutions.

Definition 3.1. An F-progressively measurable process z: R — L?(P,H), o > 0, is
called a mild solution of system ([1.1)—(1.2), if for every t > 0, 0 € R and 0 # t;, i € Z, it
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satisfies the corresponding stochastic integral equation
t

x(t) =Tt —o)x(o) + / T(t—s)g(s,z(s))ds + / T(t—s)f(s,x(s))dW(s)

o o

t

(3:1) +/ /| <1T(t_S)G(va(S—),y)]v(ds,dy)
+/ /| | T =s)F(s,z(s=), y)N(ds, dy) + N7 Tt — ti) (2 (t:).

o<lt;<t

Additionally, we make the following hypotheses:

1 1s the infinitesimal generator of an exponentially stable Cy semigroup t))>o0
H1) A is the infinitesimal f iall ble C i T >
on LP(P,H) such that for all t > 0, | T(t)|| < Me™% with M,§ > 0. Moreover, T(t)

is compact for ¢ > 0.

(H2) g = g1 + g2 € WPAPp(R x L?(P,H), L?(P,H), p), where g1 € APp(R x L*(P,H),
L%(P,H)) and go € WPAP(R x L2(P,H), L*(P,H),p). f = fi+ f2» € WPAPp(R x
L*(P,H), L*(P, LY), p), where f; € APp(RxL*(P,H), L*(P, L3)) and fo € WPAPL(R
x LP(P,H), L*(P, LY),p). G = Gy + G, F = F} + F, € PWPAPp(R x L*(P,H) x
V,L*(P,H), p), where G1,F} € PAPr(R x L*(P,H) x V,L*(P,H)) and Go,F» €
PWPAPJ(R x L*(P,H) x V, L*(P,H), p). I; = I;1 + 1,2 € WPAP(Z, L*(P,H), p),
where I;1 € AP(Z, L*>(P,H)) and I;2 € WPAPy(Z, L*(P,H), p).

(H3) The functions g: R x L?(P,H) — L*(P,H), f: Rx L?(P,H) — L?*(P, LY) are continu-
ous with respect to x. For any ¢ > 0, there exist a constant o > 0 and nondecreasing
continuous function O : [0,00) — [0,00) such that, for all t € R, and = € L?(P,H)
with E|jz||? > o,

sup [Elg(t,2)I” + Elf(t,2)l7g] < <O1(ll?), (¢ 2) € R x L*(P, H).
S

(H4) The functions G, F: R x L}(P,H) x V — L?*(P,H) are continuous in y uniformly
with respect to . For any ¢ > 0, there exist a constant ¢ > 0 and nondecreasing
continuous function Gs: [0,00) — [0,00) such that, for all ¢t € R, and x € L?(P, H)
with E||z|? > o,

sup [/ E|G(t,z,y)|I” v(dy) +/ B|F(t,z,y)[*v(dy)
teR L/ ]ylv <1 lylv>1

<cOy(||z)|?), (t,z,y) € R x L*(P,H) x V.

(H5) The functions I;: L*(P,H) — L*(P, H) are continuous with respect to z. For any ¢ >
0, there exist a constant ¢ > 0 and nondecreasing continuous functions @z [0,00) —
(0,00), i € Z, such that, for all ¢t € R, and = € L?(P,H) with E|/z||?> > o,

E|Li(2)|* < <€i(Elz|?), « < L*(P,H).
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(H6) The functions g¢i(t,-), fi(¢,-) are uniformly continuous in each bounded subset of
L?(P,H) uniformly in t € R. G1(t,-,y), Fi(t,-,y) are uniformly Poisson stochasti-
cally continuous in each bounded subset of L?(P, H) uniformly in t € R and y € V.

I;1(+) are uniformly continuous in z € L?(P, H) uniformly in i € Z.

Theorem 3.2. Assume that assumptions (H1)—(H6) are satisfied. Then system (L.1])—
(1.2) has a mean square weighted pseudo almost periodic in distribution mild solution on
R.

Proof. Let Y = UPC(R, L*(P,H)). Consider the operator ¥: Y — PC(R,L*(P,H))
defined by

t

(Px)(t) = / T(t—s)g(s,z(s))ds + / T(t—s)f(s,x(s))dW(s)

—0o0

+_7; /y|v<1 T(t — 8)G(s, (s

+ /_Oo /ylvzl T(t—s)F(s,x(s—),y)N(ds,dy) + ZT(t —t)L(x(t;), teR

t;<t

), )N (ds, dy)

is well defined and satisfies (3.1]). To prove which we shall employ Lemma we divide
the proof into several steps.
Step 1. Wz € Y. Let ¢/, t" € (t;,ti+1), 1 € Z, t"” < t'. By (H1), for any € > 0, there
: : € € 5 5 Y/
eXlStSO<€<m1n{@,ﬁ7ﬁ,m} SuChthat0<t t <§and

5y Y Y < _ ,—0a)\2
HT(t/_t”) _IH2 Smin{él‘C:,(SQE’ 5357 5457 <1 ef ) E}a
105’ 107 10G 10F 5

where g = 10M?||g||%,, 01 = 62, f = 10M?||f||%, 02 = 26, &1 = 62, G = 10M? sup,cg
Sty <1 BIG(s,2(s=),9) > v(dy), 65 = 26, F = 10M? supyeg [, -1 EIF(s,2(s=),9)|% v(dy),
64 =20+ 2, 5 =10M?sup;cy, || Ii]|%. Then,

ylv>1

Bj(a)(t') — (Pa)(t")[|*

g5EH/_;T(t'—s)g(s,az(s))ds—/ T(t" — s)g(s, z(s)) ds

—00

2

vse| [ OO T = )5, ) W) — [ T = )6, W (s)

—00

+5EH/_ZO /y|v<1:r(t’—S)G(s,x(s—),y)ﬁ(ds,dy)

2

a /— /|| <1 T(t” - S)G(S, x<3_)a y)ﬁ(ds, dy)
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+ 5EH /_ t;o /Wl T — $)F(s, 2(s—),y)N(ds, dy)

t// 2
_ / / T(t" — s)F(s,2(s—),y)N(ds, dy)
—oo Jyly <1

ST ) = Y T —ti) L= (t:)

t;<t’ t <t

2

+5FE

5
=25

Jj=1

By (H2) and Hélder’s inequality, we have
2

g < 10EH /too TH" —s)[T({H —t") — Ig(s,z(s))ds

2

/t” Tt —s)g(s,x(s))ds

1 t”

t
< 10M?|| T —t") — IH2(/ e 0"=) ds) </ e =) E|g(s, 2(s))? ds>

7/ t/
e—5<t’—S>E||g<s,x<s>>|2ds)

t
+ 10M2</ e 0(t'=s) ds) (/
t// t/

1
<10M2T(# — ") = 1155 llgl% + 1002 —")2lg]% < -

+ IOE'

By (H2) and the It6 integral [17], we have

o
Hy < 1OEH /_ Tt" —s)[T{t —t") = If(s,2(s)) dW (s)

2

2

+ 10E‘ /tt T — 5)f(s,(s)) AW (s)

t//
< 1002 T (1) — n\?( [ )HfH2

—00

’

t
10022 < / (—20(t' 3 ds) T
t//
E

< 10MP|T(¢ —t") — IIIQIIfHZo% +10M?|| fI[3.(t = ") < .

ot

By (H2) and the properties of the integral for the Poisson random measure, we have

E5 < IOEH /tu /y|v<1T(t” — )Tt —t") — I|G(s, x(s—), y)N(ds, dy)

g . 2
/t” /| <1T(t/_S)G(va(s—),y)N(ds,dy)

2

+ IOE‘
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t//
< 10M2 / /| | 16—25<t”-5>HT<tf_t~> — I|2E|G(s,x(s—), )| > v(dy) ds
—00 ylv<

tl
+ 1002 / / | BB (s, 2(s-). )| oldy) ds
1" yV<

1
<1007~ ')~ 1 gssup [ E|Glsya(s), ) ol
20 ser lylv <1

1002 sup / E|G(s, 2(s—), )2 v(dy) (' — ") <
seR J|yly <1

€
5 b
similarly, we have

Ey < 10EH /t:o /y|v<1 Tt — )Tt —t") — I)F(s,x(s—),y)N(ds, dy) 2

2
+ 1OE’

/ /| (T = F(s,2(s). )N (ds,dy)

§20EH / t; /y|v<1:r(t"—s)[:r(t’—t")—IJF(s,x(s—),y)N(ds,dy) i

v 2
+ 20F /_OO /|y|v<1 Tt" —s)[T(t —t") —I|F(s,xz(s—),y) v(dy) ds

2

t’ ~
+20E / / Tt — s)F(s,2(s—),y)N(ds, dy)
t |y|v<1

2

+ 20F /t” /|y|v<1 Tt — s)F(s,z(s—),y) v(dy) ds

t//
< 20112 / /| LTI ) AP B2l ) o) ds
—0o0 J|ylyv <

+20M2b / e 0" =5) 45

t//
x / / ST — ") — T|PE|| F(s, 2(s—), )| v(dy) ds
—o0 J|yly <1

tl
+ 2002 / / | IO (s, 2(s-). )| oldy) ds
17 Z/V<

t/
+20M?b /

t//

t/
¢=5(=5) g / / B F(s,2(s-), y) > v(dy) ds
t Jyly <1

1
<2007~ ") 17 gpsp [ E|F(sia(s), )P oldy
20 ser lylv <1

b
+ 2007 — ") — 1" Sup/ E|F(s,x(s=),y)lI” v(dy)
seR Jy|ly <1

+2002sup [ E|F(s,a(s-). ) P oldy) (' ~ )
seR J|yly <1
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b
20022 sup / BI[F(s,a(s=), y) > vldy) (¢ — ') < =.
seR J|yly <1

By (H2) and Hélder’s inequality again, we have

2
B5 =5E| Y T —t)[T({t' —t") — ILi(x(t:))
ti<t”
<3|z - o)~ 1P (X e ) (X et B nGe(e)) )
ti<t! ty<t!

2
Y g
< 5M2”T(t/ B t”) _ IH2< Z e a(t tz)) sug HIZHgo < c.
" , S

)
<t

By the above discussion, one has
B||(Wa)(t') — (Pz)(t")|* <e.

Consequently, Uz € Y.

Step 2. ¥ has a fized point in Y.

(1) There exists r* > 0 such that U(B,«) C B+, where By« = {x € Y : E||z||P < r*}.

For each r* > 0, B« is clearly a bounded closed convex subset in Y. We claim that
there exists 7* > 0 such that ¥(B,«) C By«. In fact, if this is not true, then for each
r* > 0 there exists 2" € B« and ¢ € R such that r* < E[|(¥2")(#")||?. On the other
hand, let ¢ > 0 be fixed. By (H3)—(H5), it follows that there exist a positive constant g
such that, for all t € R and = € L?(P,H), y € V with ||z|?> > o, i € Z,

Elg(t,2)II* + E|l£(t,¥)l7g < <O1(ll=]?),

/| L EIG ) el + / E|IF(t,2.9)|? v(dy) < <Ox(||z]?).

lylv>1

E|Li(x)|* < <6s(||=|).
Let

o =sup{ Blg(t.0)|P + EL(t.0) [y s Bllel’ < o},
€

vy = sup { [ ElGCayPoan+ [ BIFCw )| o) Bl < g},
teR lylv <1 lylv>1

vs= sup {E|L@)|: Elle|? < o}.
teRi€Z

Thus, for all t € R and = € L?(P,H), y € V, we have

(3-2) Elg(t,2)II” + E|lf(t,2) 75 < <®1(Ellx]?) + 1,

(3.3) / L Elo o) + / E|[F(t,2,9)] v(dy) < cOa(E|z|?) + v2,

lyly>1
(3.4) E|Li(x)|* < <0;(E||z|?) + v3, i€Z.
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Note that, for ¢ sufficiently small, we have

1< 3M? [<512 + 15> 171«m—>1£10f O1(r") + ( 5 gb) lim inf @2(: )

¥ 20 T*—00 r

— sup lim inf Gi(r ) .
(1—65)2Z€Zr—>oo r*

(3.5)

Then, by using (3.2)—(3.4), Holder’s inequality, the Ito integral and the properties of the

integral for the Poisson random measure, we have

E||(W1a" )t
2

< 5EH/tT $)g(s,2™" () ds

2

*

5 / T(e" — 8)f(s.2"" (s)) AW (s)

2

tr” ~
+5E / / T(t" — s)G(s, 2" (s—),y)N(ds,dy)
ylv<1

2

e
+5E/ / T(t" — $)F(s, 2" (s—),4)N(ds, dy)
ylv>1

2
+5E|| Y T — ) (2" (4:)

ti<tr”

tr . " . .
< 5M2< [ ds> ( [ et g0 <s>>||2ds)

*
r

4502 [ e HTIE| (s, a7 (5)]y ds

tr* *
o [ [ B, a7 (52, ot ds
ylv <1
tr *
e [ [ B )l o) s
lylv>1
- e -
+10M2b/ 5 = dS/ / B (s, 27 (5-), )1 v(dy) ds
|v>1
D> 6<>)( > e Em(x“(ti))u?)

ti <tr* <t

< 5M25/ V601 (El|l2" (s)|2) + m1] ds

Ve / =2 =960, (Bl|z" (5)]2) + 1] ds
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¥

1502 / e~ =) [0y (B (s)|2) + va] ds

b r*
r1o2 / e =[O, (Bl|z" (3)]|2) + va] ds
1 ¥ . =~ r*
ror e (30 OB E 1))+
ti<tr™

<Mwﬂ<;—+$>k@ﬂ )+uﬂ+<§{+§>k@ﬂ”)+w]

Then we have for all t € R,

[Cigg éi(r*) + VsH .

< BTzt

<5325+ 35 ) 010 ol + (5 + 55 ) 60a(07) +

sl S+

Dividing both sides by r* and taking the lower limit as r* — co, we obtain

1<5M2[<512+ 15>hmmf@1(r ) | <3+2b)1 mf@z(:)

r*—00 r* 20 62 ) >0 r

sup lim inf @i(r )] .

+ (1 — 6*50‘)2 ic7, T*—o0  T¥

This contradicts condition (3.5). Thus, for some positive number r*, ¥(B.«) C B+,

(2) ¥ is continuous on B,

Let {z(™} C B« with 2™ — z (n — oo) in Y, then there exists a bounded subset
K C LP(P,H) such that R(z) C K, R(z") C K, n € N. By the assumption (H3)-(H5),
for any ¢ > 0, there exists ¢ > 0 such that z,7 € K and E|z — Z||?> < ¢ implies that

Ellg(s,x(s)) — g(s,2(s)||* <&,
E|f(s,2(s)) = f(5,7(s)7g <e,

/| L PIG( (), ) = Gla ) ) o) < ¢
/| L BIEGa).) ~ F 7))ol <

for all t € R, and
E|Li(x) - L(@)|* < e
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for all i € Z. For the above ¢ there exists ng such that E|z(™ (t) — z(t)||> < € for n > ng
and t € R, then for n > ng, we have

El|g(s, 2" (5)) = g(s.2(s)|* <&,
E||f(s,2™ () = f(s,2(s)]7g <&,

tﬁl<1EWG@nﬂm®—%y)—Cﬂaxw—%yNQde<<a
/I>gMFwa@N&»w»—F@w@—xmwvww<e

for all t € R, and
E|I;(z™) - Liz)|* < e

for all ¢+ € Z. Then, by Hélder’s inequality, the Ito6 integral and the properties of the

integral for the Poisson random measure, we have

E||(w2™)(t) — (Yz)(t)]”
2

<52 [ 70 sato. 0 - gl s
t 2

+6Eg/ T(t - 5)[f (5,2 (s)) — f(s,2(5))] AW (s)

" ~ 2
sg| [ [ 2= 9)lG(sas-).0) - Glo (o). p)I N ds.dy)
—oo Jyly <1

' 2
+5E /_ /| Tt = 9)[F(s,2(s2).9) = F(s, (=), )N ds, o)

2

+5E ZT(t —t)[Li (=" (t:)) — Li(2(t;))]

t; <t
corrr(( [ esenas) ([ e I ml a6 - glssao)as)
w52 [ DB (s, 200(6)) — o, 2l b

t
saart [ B Gl a (52, 0) - Gl als).0) P o(dy) d
—oo Jyly <1
t
w1002 [0 [ pp(s,at(s-).0) - Fls,a(s-), )l ldy) ds
—oo lylv>1
t
+10Mm28 / / =35 Bl (s, 2™ (s—), ) — F(s, 2(s—), )| v(dy) ds
o —oo J|yly>1

#5020 ) (X e B 1) — Iale )]

t;<t i<t
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t 2 t
< 5M2</ e 0(t=s) ds) 5—1—20M2(/ e 20(t=s) ds>z~:

t
+1OM2§</ e ) ds>5+5M2 (Zef‘@ ) )

t; <t

Thus ¥ is continuous on Bi.«.

(3) ¥(By+) ={Vz : z € B,+} is equicontinuous.

Let 11,790 € (ti,tit1), @ € Z, 1 < T2, and © € B,«. Then, by 7, Holder’s
inequality, the It6 integral and the properties of the integral for the Poisson random

measure, we have

E|[(¥z)(r2) = (Wa)(r)||?

< 1OEH / [T(rs — 1) — IT(r1 — 8)g(s, 2(s)) ds

2

3

T2 2

+ 10F T(m2 —s)g(s,z(s))ds

T

1
2

2

+10E /_ [T =) = 1177 = 5) (s.2(s)) AW ()
+10E /Tz:r(f2 e avs)|
+10E /oo/|yv<1 (1o —71) — I|T (11 — 8)G(s,x(s—), y)N(ds, dy) 2
+10E / /y|v<1 (r2 — 8)G(s, 2(s—), y) N (ds, dy) 2
+10E /Oo /|yv>1 (2 —71) = )T (11 — ) F(s,2(s—),y)N(ds, dy) 2
1 10E / /ylv<1 (s — $)F(s,2(5—),5) N (ds, d) |
+5E t; [T(ro — 1) — IIT(11 — t;) PLi(x(t;)) 2
< 10M2|T(ry — 1) — I\\?(/T; ¢=0(r=s) ds) </Oo e‘s(ﬁS)EHg(s,x(s))\|2ds>

T2 T2
. 1OM2< [ et ds) ( / e5<72S>Eug<s,x<s>>u2ds)
T1 T1

T1
n 10M2/ e 21=9) | T(ry — 1) — IPE| f(s,2(s))ll7g ds
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T2
+ 10M2/ e B £ (5, () |2 ds
T1
T1
cr0m? [* [ B, — ) — 1B, als) )| o) ds
ylv<1
T2
#1007 [ [ B Gls,a(s). )| oldy) ds
71 Jylv<1
T1
v200? [ [ WO Ty )~ TPEF (s, a(s-) )l o(dy) ds
ylv>1
T2
T 2007 / / e~ B F (s, 5(5—), y) | o(dy) ds
lylvy>1
b
20022 / / 8= T(ry — 71) — L|2E|| F(s, 2(5—), ) |2 v(dy) ds
y|v>1
b
oo [ / e~ B[ F(s, 2(5), 9) |2 v(dy) ds
1 Jyly>1

52T - ) = 1P (30 ) (3 e B )

t;<T1 t;<T1

< 10M2||T(r2 — 71) —1\\2</_T; e~0(n=s) ds) (/ e =[O, (E||z(s)|?) + 1] d >

—0o0

T T2
+ 1OM2</ 675(7'275) d8> (/ 675(7275) [g@l(EHx( )H ) + 1/1] )

00T (s — ) —IH2< | P Ela()) + )
i 10M2< [ el + nld )
300 T(r — ) —IH?( [ B euEl (o)) + wald )

T2
+30M2< [ OBl P) + v )
T1

b
+ 20M25||T(72 —7) — 1|2</

—00

e MOy (B x(s)|?) + 1o] d )

o ([Tt euBleo)) + ] ds)

T1

+5M2||T(ry — 1) — I||p( >, e“““)) ( > e 6, (Bl|x(t:)]|) + ug])

t;<m1 t;<T1

< 10M2< L4 )HT( m = 71) = I2[s01(r*) + 1]

T2 2 T2
+ 10M? [(/ e 0(r2—s) d3> + / e 20(r2—3) ds] [¢O1(r™) + 1]
T1 T1
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+ 10M?||T(1p — 11) — IH2<3 ?2)[@2( *) + vo

+ 10M2 [3/ ~20(r2=s) gg 4 5/ 8(r2=s) ds} [€O2(r") + v2]
T1

+ 5P L MP| T (g — 1) — I))? 7&1 [<sup O;(r*) + V3].
(L—e)2 1" ez

The right-hand side of the above inequality is independent of x € B,+ and tends to zero
as 79 — 71, since the compactness of T'(t) for ¢t > 0 implies imply the continuity in the
uniform operator topology. Thus, ¥ maps B,+ into an equicontinuous family of functions.

(4) U(t) = {(Vx)(t) : © € B,»} is relatively compact in L?(P,H) for each t € R. For
each t € R, and let € be a real number satisfying 0 < ¢ < 1. For = € B,«, we define

t—e

(W) (t) = / (- $)g(s,2(s)) ds + / T(t - 8) (s, 2(s) AW (s)
+ Y T(t—t)L(x(t))

t;<t—e
= T(e)[(Vz)(t - ¢)].
Since T'(t) (¢t > 0) is compact, then the set U.(t) = {(¥°x)(t) : © € B,+} is relatively

compact in L2(P, H) for each ¢ € R. Moreover, for every x € B,«, we have

B|(x)(t) — (¥72) (1)

<5EH/t ) T(t—s)g(s,x(s))ds 2—|—5E‘ /ttET(t—s)f(s,x(s))dW(s) 2
+5 /te/v<1 (t — $)G(s,z(s—),y)N(ds,dy) :
2

+5FE / / T(t — s)F(s,xz(s—),y)N(ds,dy)
t—e Jlyly>1

2
+5F Z T(t —t;)1i(x(t;))

t—e<t;<t

t t
< 5M2( [ e ds) ( [ e I Blgts. a1 ds)
e —e

t
4502 [ e BUIE (s, 0() By ds
t—e

t
woa? [ [ G, ) () ds
t—e Jyly <1
t
w1002 [ [ e B (s a(o) ) ) s
t—e Jyly>1

b
10022 / / T IBIP ), ) o) ds
e Jylv>
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poar( ) (5 s nna))

t—e<t;<t t—e<t;<t

< 5M2< /; ¢~0l-9) ds> ( /ti 8- 1c0, (E||2(s)||2) + 1] d )

t
e / e~ 2= (e, (E||x(s)|2) + 1] ds
t—e

t
L1502 / e~ 2= [0y (E||x(s)|2) + va] ds
t—e
t

b
+ 1OM25 e 2= [cOy(E|x(s)||?) + vo] ds

s Z ) (X I Bl (1)) + 0]

t—e<t; <t t—e<t; <t

n 2 t
t—e t—e

¢
+ 5M? {3/ e 200t=5) gg 4 =2 2 e70t=s) ds] [cO2(r™) + 1]
t—e t—e
2
+5M2< 6_5“_“)) csup ©;(r*) + 3.
Z [ ieg ( ) 3]

t—e<t;<t

Therefore, letting e — 0, it follows that there are relatively compact sets U.(t) arbitrarily
close to U(t) and hence U(t) is also relatively compact in L?(P,H) for each t € R. Since
{Vz: 2 € By«} C PC)(R, L*(P,H)), then {¥x : z € B,+} is a relatively compact set by
Lemma then ¥ is a compact operator.

Therefore, ¥ is a condensing map from B,+ into B,«. Consequently, by Lemma
we deduce that ¥ has a fixed point © € B,=, which is in turn a mild solution of the
system —.

Step 3. Weighted pseudo almost periodic in distribution of mild solution. For given
x € WPAPr(R, L?(P,H), p), by the definition of the mapping ¥, we have

(Wz)(t) = (Px)(t) + (Ta)(t),

(@) (1) = / T(t - )g1(s,2(s)) ds + / T(t - 5)fi(s,2(s)) W (s)

" /—00 /va<1 T(t = s)Gi(s, 2(s—),y) N (ds, dy)
' / /yv>1 T(t — 8)F\ (s, 0(s—), y)N(ds, dy) + 3 T(t — t:) T, (w(t:))

t;<t
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and

(Ta)(t) = / T(t - 5)gals, x(s)) ds + / T(t - 5) fols, 2(s)) W (s)

' /—oo /|yv<1 Tt — 5)Ga(s, 2(s—), y) N(ds, dy)
’ /_00 /va>1 T(t — s)Fa(s,x(s—),y)N(ds, dy) + ZT(t —ti)li2(x(t;)).

ti<t

(1) ®z is almost periodic in distribution.

Let t; < t < tip1. For e > 0 and 0 < 1 < min{e, a/2}, since g1 € APp(R x
L2(R,H), L2(P,H)), fi € APp(R x L2(P,H), L3(P,L3)), G1,F1 € PAPp(R x L2(P x
H) x V,L?(P,H)), thus for every sequence of real numbers {s/,}, there exist a subse-
quence {s,} and a stochastic processes g1 € APp(R x L%(P,H), L%(P,H)), f1 € APp(R X
L2(P,H), L2(P, LY)), G1, F1 € PAPp(R x L(P,H) x V, L2(P,H)), such that

lim EHgl(t + Sn,l‘) - gl(t’x)HQ = Oa
n—00

Jim B||fy(t+ sn, ) = fo(t,2)79 =0,

(3.6) lim E|G1(t + sn,2,y) — G1(t, 2, 9)||> v(dy) = 0,
n—oo
lyly <1
(3.7) lim E|Fy(t + sn,x,y) — Fy(t,z,9)]|? v(dy) =0
n—oo |y\v>1

for each t € R, + € K, where K is any bounded subset in L?(P,H). Also, since
I;1 € APp(Z,L*(P,H)), thus for every sequence of integer numbers {a/,}, there exist
a subsequence {a;,} and a stochastic processes .72-71 € APr(Z, L*(P,H)), such that

(3.8) lim B lita,1(2) = I (2)|* =
n—oo

for each € B, where B is any bounded subset in L?(P, H).
Let Wn(s) = Wi(s+ sp) — W(sp), for each s € R. It is easy to show that W, is a

(Q-Wiener process with the same distribution as W, then
t+sn
(Px)(t+ sp) = / T(t+ sn—s)g1(s,z(s)) ds

t+sn
/ T(t+ sp —s)fi(s,z(s)) dW (s)

t+sn

+ 1 T(t+ sp — s)G1(s, z(s—),y)N(ds, dy)

+

[,
/

t+sn
/|| Tl 50 = s a(a=). )N (s, )

o0
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+ > T(t+ sy — )i (a(t)

t;<t+sn

:/_ T(t— s)g1(s + sn,x(s + sn)) ds
+/ T(t — $)f1(5+ S0 2(5 + 5)) dWa(s)
) N
+/ /yv<1 T(t_ 5)G1(5+Snam(5+5ﬂ_)7y)N(ds’dy)

+/ /yv>1T(t— 8)F1(s 4 sp, (s + 8,,—),y) N (ds, dy)
Z t+sn_tz IZ (Ji(tz))

t;<t+sn

Consider the process
t

t
xn(t) = / T(t—5)g1(s+ Sp,xTn(s ))ds+/ T(t—s)fi(s+ sp,xn(s)) dW(s)

oo

/ / T(t — 8)G1(5 4 S, 2n(s—),y)N(ds, dy)
lylv <1

+/ / T(t — s)Fi(s+ sp,xn(s—),y)N(ds,dy)
lylv>1
Z t+ Sn — z Iz l(xn(tz))

t;<t+spn

It is easy to see that (®x)(t + s,,) has the same distribution as z,,(t) for each ¢t € R.
Let z(t) satisfy the integral equation

z(t) :/ T(t—3s)gi(s,z(s ))ds+/ T(t—s)]?l(s,i(s)) dW (s)

/ /| | T(t = 5)G1(s, 3(s=), y) N (ds, dy)
lylv <
* /—oo /|y|v>1 (t = 8)Fi(s5,7(s=), y) N (ds, dy) + Z T(t—t;) ;1 (x(t;)).

t;<t

Then, we have
Ellaa(t) — z(t)|?

/ T(t - 5)[g1(5 + mr 2 (5)) — G (5,7(s))] ds

2
<5F

2

+ SEH /_tOo T(t — $)[f1(5 4 $n> n(s)) — fi(s,Z(s))] dW (s)

2

n 5EH / t /1 T(t = )[G1(s + 50, 2(5-), ) — G (5, F(5—), )] N (ds, dy)




Partial Stochastic Differential Equations 1285

i 5EH i too /| T(t = 9)Fi(5 + s za(3-),9) — Fi (s, 55=), 1)} N (ds, dy)|

2
+ 5p71E Z T(t + Sp — ti)IiJ((I}n(ti)) - Z T(t - tl)fz’l(f(tz))

t;<t+sn t; <t

5
= ZA]
j=1

By (H6), for any e > 0, there exist §; > 0 and a bounded subset K C L?(P,H) such that
2,7 C K and E||z — 7||? < 6; imply that

EHgl(t’x) - gl(t7§)||2 <&, EHfl(tax) - fl(@@”%g <g,
/ |G (b 2,) — Gr(t, 7, )P v(dy) < .
lylv <1

/ BlFi(t2,y) - Fy(t,7, )| v(dy) < e
lyly>1

for each ¢ € R. For the above §; > 0, there exists dy > 0 such that |z, (t) — Z()[|*> < &
for all n > §o and all ¢ € R. Therefore,

(3.9) Ellg1(5 + $ns2a(8)) — g1(s + 5n 5()|? <,

(3.10) E||fi(s + sn, zn(s) = fi(s + 0, T(s) 170 <<,

(3.11) / ElIG1(s + 5y 2n(s), ) — G (5 + 50, 3(5), ) |2 v(dy) < e,
lylv <1

(3.12) / ElFi(s + 50y 2n(s), ) — Fi(s + 50, 5(5), ) v(dy) <
lylv>1

for all n > 02 and all s + s, € R. Using (3.9) and Holder’s inequality, we have

t
A < 10M2</ e 0(t=5) ds)

t
: [/ ¢ IE g1(s + snswn(s) = g1(s + s, T(5)) | ds

—00

+/ e_d(t_s)E”gl(S-i-Sn,%(s)) —gl(s,f(s)) ds

—0o0

1
—e+supe

1
< 2 (1)

where 5,(11)(t) = Z;l 5,(11j)(t), and

izl tj+1—1
ealy=Y / T eI B gy (s + s, () — G1(5, B(s))|2 ds,
t
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i—1 ti+n
)= Y [ I E gy s+ 505 (5) ~ 5, 7(6)) P s,
t

j=—o0’ti
i—1

tit1
@0 = 3 [ I Blgu(s + s ) - Gl T s,
t

j=—o0 Y ti+17N

t
090 = [ e IBga(s + 50,5(5) ~ Ga(s. T d.
t

i

By (3.6)), there exists N7 € N such that
Ellgi(s + sn, Z(s)) — Gi(s,7(s))|I” < ¢

for all s € [tj +ntjs1—m, j €Z,j<i,andt—s>t—t+t— (i —n) =
s—ti+7v(i—1—7j)+mn, whenever n > Nj. Then,

i—1 i—1

tjr1—n
(11) —0(t—s) € —5(t—tjp1+m)
€n (t)SEZ/ € ds < Ze J
j=—00 tj+n 5]-:700
c i—1 .
< = —da(i—j-1) « =
j=—00
20 < 2flnl, + Il] 3 [ e
j=—00"1i
< 2flgnlle + G 3 e
Jj=—00
i—1 o
< 2([|lg1 1% + [[Gal|% )00t § emdali=d)
Jj=—o00

_ 2[lgrl% + N3 3] e
- 1 — e 0 <

Similarly, one has

eI(t) < Mie, eI (1) < Mae,
where Mg, M, are some positive constants. Therefore, we get that lim, o Sup;cg 5%1) (t) =
0. Using (3.10)) and the It6 integral, we have

t ~
Ay < 52 / e PUIE|f1(s + snywa(s) — fis, T(s)) [ 7g ds

—00

t
< 10M? [/ e PUIVE| fi(s + sn,wa(s)) = fils + 50, 8(s))[|7g ds

; _
N / e PCIE| fi(s + 50, () = fils, 7(s)) |7 ds

—0o0

1
< 10M? [—e + sup 5%2)(75)} ;
26 teR
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where e (t) = 31, €2 (¢), and

7=1
i1 tji+1—1m ~
(= 3 / T BB £ 4 0, F(5)) — Fuls F(s)) |2 d
Jj=—00 tj+n ?
1—1

ti+n ~
) = Y [ BB s+ s E(0) - AT Ry ds
j=—o0 i
i1

tit1 ~
@)= Y [ BB s+ 50 5(0) - AT Ry ds
j=—o00 Y ti+171 2
t ~
SE00) = [ POIBY (s +50,3(5) — il 35) [y ds
t;
By (3.7), there exists Ny € N such that

E| fi(s + sp, Ts) — fl(sa%s)H%g <e

for all s € [t;j +m,tjy1—n, j € Z, j < i,andt —s >t —t;+t; — (tjy1 — 1) >
s—t;+v(i —1—j)+n, whenever n > Ny. Then,

21 o« [T s 1 & 26(t—t;414n)
e >(t)§5'z / - (—s)dsgﬁg'z o~ 28(t—t; 140
J=—00 t5+n J=—00

1
—25a(i—j—-1) <
= 255 Z ‘ 25(1 — e-2a)

j=—o00

(22) 2 2 tit1tn o—20(t=s)
(1) < 20| Al + I IZ] Z/ ) ds

j=—00
N i—1

<2 fill% + 1 fill3]ee® Y et
j=—o00

i—1

< Q[Hlego + ||ﬁ||§o}5625"6_25(t_ti) Z o—20a(i—j)

j=—o00

< HIANZ + [ AlI%]efe
— 1 — e 26 !

Similarly, one has
ePI(t) < Mae, 39 (t) < Me,

n

where Mg, M4 are some positive constants. Therefore, we get that lim, . 6(2) (t) = 0.
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Using (3.11]) and the properties of the integral for the Poisson random measure, we have

¢
As < 507 / / =) Gy (s + 50, wn(5—), ) — Ca (s, 5(s—), )| v(dy) ds
lylv <1
t
< 10M2[/ / 6_25(t_5)E||G1(s+sn,xn(s—),y) — G1(5+ 8n, T(s=),y)||* v(dy) ds
ylv <1

t
+ / / "B B)|G (5 + 8, F(5—), ) — G (s, F(s), )| v(dy) ds
lylv<1

< 2 3) (4
10M {26s+§1€1£5 ()}

where e (t) = 34, 5 (¢), and

j=1
j+1—n ~
0= 5 / [ BG4 50, F5)0)  Grlo T ) () s
j=—o00 lylv <1
ti+mn .
0= 5 / [ e BIG s + s, F5),)  Galo T ) o) s
j=—o00 lylv <1
tj+1 ~
0= 5 [ [ eI B 5o, 1) = B Fa), ) ol .
j=—oc Ytit1—n /ylv <1

301 / / 250 B]|Gy (s + 50 F(5— ), y) — G (5, F(5—), )| o(dy) ds.
lylv<1
By (3.6} , there exists N3 € N such that
/ El[Gi(s + 5my #(5—), ) — G (s, (5=, )2 o(dy) < ¢
lylv <1

for all s € [t;j+ntjy1—n, j € Z,j <i,andt—s >t —t;+t; — (tjz1 —1n) >
s—t;i+7(i—1—7)+mn, whenever n > N3. Then,

i—1 tit1—n 1 i—1
(31) / —95(t—s) 1 —98(t—t;4141)
e (t) <e e ds < —e e
" J_ZOO ti+n 20 ]:ZOO
1
—25a(i—j—-1) <
= 25€j§§206 25(1 — ¢ 20) "

(32) 2 2 KA o= 20(t—s)
(1) < 2| 12, + 16 2] Z s

j=—o00
_ i—1
<2[[|GulZ + 1Ghl%]ee® Y et
j=—00
< 2[||G1||go + |\G1||go]ee25"e_25(t_ti) Z e—2§a(z—j)

j=—o0

2[[|G I3 + G 113] e
— 1— e—2§a &
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where [|G1 1% = supaer [j,, <1 ElIG1(s + sn, #(s=), y) > v(dy) and |Grl|% = [, o

E||G1 (s, %(s—),4)||? v(dy). Similarly, one has

eBI (1) < Mze, eB(t) < Mg,

where Mg,, Mﬁ are some positive constants. Therefore, we get that lim,, s 5%3) (t) =0.

Using (3.12) and the properties of the integral for the Poisson random measure, we
have

t
Ay < 10M2/ /| 6_25(t_S)E||F1(s+sn,xn(s—),y) — Fi(s,2(s=),y)||* v(dy) ds
ylv>1
¢
w1002 [ [ S IBR (s 4 s (5-).0) ~ Fils, F6-) )] old) ds
ylv>1
t
<o [ [ BIBIR s (50— Fils 4 s B oldy) ds
ylv>1
t
+f | le25“8>E||F1<s+sn,f<s—>,y>—ﬂ(sﬁ(s—),y)%(dy)d«s}
ylv>
29 ! —0(t—s) _ _ P~ 2
4+ 20M e E|Fi(s+ sn,xn(s=),y) — F1(s + $n, T(s—),y) || v(dy) ds
lylv>1
/ [ e B s 30, 9) = Falo ). ) ot |
[ylv>1

1
<20M2K + >5+su 5()t],
25 T 52 ) Tsmpe ()

where e (t) = Z? Lel (1), and

tjr1—m
6( / J / |:e—26(t—s) + be—é(t—s):|
t; lyly>1 0

j=—00

X EHFl(S + 80, B(5=),y) = Fi(s,3(5=), y)|I> v(dy) ds,

ti+
£ / 77/ {2“ 940, 6(ts):|
lylv>1 0

]700

x EHFl(S + 0, T(s=),y) — Fi(5,2(s-), ) |> v(dy) ds,

j+1
c3) 4 / 7 / [eza(ts) n b eé(ts):|
j+1—n |yly>1 0

j=—o0

X E||Fi(s + s, @(s—), y) — Fi(s,3(s=), )|> v(dy) ds,

t
67(144) (t) _ / / |:e—25(t—s) + be—é(t—s):|
ti Jylv>1 0

X B|[F1(s + sn, (=), y) — Fi(s,8(s—),9)|” v(dy) ds.
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By (3.8)), there exists N4y € N such that
[ EIR(s + 50.35-).0) - Fils, 5= ) )l ody) < <
lyly>1

for all s € [t;j +n,tjy1—1n, j € Z, j < i,andt —s >t —t;+t; — (tjz1 — 1) >
s—t;+v(i—1—j)+n, whenever n > N4. Then,

i—1

tiv1—
5%41)(15) <e Z /.7+1 n {8_26(t—s)+be—6(t—s)] ds
j=—o0 Y titn o
=1 i—1
1 b
< %g Z 6725(t7tj+1+77)_~_ﬁ€ Z o 0(t—tj1+m)
Gl i—1
1 » b »
< %t? Z 6_250‘(2_1—1) + 5*28 Z e—&x(z—]—l)
j=—o0c oo

1 b
<
- [25(1 — e~ 20a) + 0%(1 — 6—50‘)}6’

i—1 .
(42) (1) < o[ || |2 B2 fatn ~28(t—s) 4 ,~0(t=5)] 4
e () < 2[Rl +IIF%] ) t [e +e ] ds
j

j=—o00
~ izl i—1
<2[|Fll%, + HFlﬂgo]é[e%” Z e—20(t=t5) 4 oon Z ea(ttj)]
Jj=—00 j=—00

i—1 i—1
< Q[HFngo + ||ﬁ1||go]€ |:e25ne—26(t—ti) Z e—25a(i—j) + edne—ﬁ(t—ti) Z e—da(i—j):|
P j=—o0
26« do

~ (& €
< 2+ IR | e +

where || Fil[2, = supac [y 1 EIFi(s + 50, 3(s—), )| v(dy) and [Pl = f, -,
E||Fi(s,2(s—),y)||* v(dy). Similarly, one has

S0 (1) < Mye, e(9(t) < Mge,

n n

(4)

where M7, ]\78 are some positive constants. Therefore, we get that lim,,_, &5’ (t) = 0.

Since {tf}, 1€ Z,j =0,1,..., are equipotentially almost periodic, then for ¢ > 0,
there exist the sequence of real numbers {s, } and sequence of integer numbers {«,, }, such
that t; <t < tjp1, [t —t;| > €, |t —tiy1]| > &, 1 € Z, one has t + s, > t + sy + € > tita,
and tiyq,+1 > tit1 + Sp — € > t+ Sy, that is tj1qa, <t+ sy < tita,+1. By (H6), for any
£ > 0, there exist 3 > 0 and a bounded subset B C L?(P,H) such that #,Z C B and
E||lz — %||? < &5 imply that

E| Ly (x(t) — La(@(t:)|* < e
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for i € Z. For the above &3 > 0, there exists N5 > 0 such that E||z,(tita;) — T(tita,)|]? <
63, E||Z(tita, ) — T(t;)||? < &3 for all n > N5 and all i € Z. Therefore,

(3.13) Ellivan1(@n(tiva,) = Litani @ (tive))l® <e,
(3.14) Elli+an1((titan)) = Liva, 1 (@@)]* < e

for all n > N3 and all s 4+ s, € R. Then by (3.13), (3.14) and Hélder’s inequality again,

we have

o< (X s00)

t;<t

% <Z €50 (Bl Iy (@t + ) — Lipann (3 (t: + )2

t;<t

+ Ellivan1 (@ (tiran)) = Livan, 1 @E)? + Elllita, 1 (F(t:)) — Ti,l(f(ti))HQ])

15
T

IN

2% + )],

where &) = B||Liya, 1(Z(t: + o)) — L1 (E())[2. By (B8), we have limy, 002l = 0.
By above estimations, we have for all ¢ € R,

Ellza(t) - 30| < d1ea(t) + O,

where €, (t) = Z?Zl ey )(t), and 91, U2 are given constants. Therefore,

sup Bz, (t) — Z(t)||* < 91 supen(t) + doe.
teR teR

By limy, 00 SUpscr €n(t) = 0 with e sufficiently small, it follows that

sup ||z, (t) — Z(#)||> = 00 as n — oo

teR
for all ¢ € R. Since (®z)(t + s,) has the the same distribution as z,(t), it follows that
(Px)(t + sp) — Z(t) in distribution as n — oo. Hence ®z has almost periodic in one-
dimensional distributions. Note that the sequence (E|/x,(¢)||?) is uniformly integrable,
thus (E||®x(t + s,,)||?) is also uniformly integrable, so the family (E|x,(t)]|?)ier is uni-
formly integrable. Next, we prove that ®z is almost periodic in distribution. For fixed
T € R, let &, = Px(T + sp), 97 = 91(s + S, x), f1' = fi(s + sn,2), G} = fly\v<1 Gi(s+
Sn, T, y) N (ds, dy), FI' = f|y|v>1 Fi(s + sn,2,y)N(ds,dy) and I}y = liya,1(z), i € Z. By
the foregoing, (&) converges in distribution to some variable ®z(7). We deduce that
(&n) is tight, so (&,, W) is tight also. We can thus choose a subsequence (still noted sy,
for simplicity) such that (&,, W) converges in distribution to (®x(7),W). Similarly as
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the proof of [8 Property 3.1], for every T' > 7, ®x(- + s,,) converges in distribution on
PCr([r,T], L*>(P,H)) to the solution to

t

z(t) =Tt —1)p(T) + / T(t—s)gi(s,z(s))ds+ / T(t—s)fi(s,z(s)) dW (s)

T

+ [r /|yv<1 T(t - s)Gl(S,m(t),y)N(dS, dy)

+/T /|yv>1T(t—S)Fl(safr(t),y)N(ds,dy)Jr Tt — i) (w(ts)).

Tt;<t
Note that @z does not depend on the chosen interval [r,7T], thus the convergence takes
place on PCr([r,T], L*(P,H)). Hence ®x is almost periodic in distribution.
(2) Tz € WPAPY(R, L(P,H), p).

In fact, for r > 0, one has

1 " 9
g ) PO
1 T t 2
§5,u(7“,p) /_TEH/_%T(t—s)gg(s,m(s))ds p(t) dt
1 r t 2
o /_E/_ T(t — 5) fols, 2(s)) AW (s)|| p(t) dt

1" : R )
st LB ] T e N s o)
1 r t 9
o) /_E /_OO /y|v>1 T(t — s)Fy(s, x(s—),y)N(ds, dy)|| p(t)dt
1 r 2
+5m _TE ;T<t_ti)li,2(x<ti)) p(t) dt

5
= Z Hj.
j=1

By (H2) and Hélder’s inequality, we have
2

1 T oo
H1:5,u(7“,p) /TE’/U T(s)g2(t — s,z(t —s))ds|| p(t)dt

1 " —s / —6s 2
e °%ds e °K t—s,xi_5)||“dsp(t) dt
M(ra p) /7’ (/0 > 0 ||g2( ! )H p( )

oo o0 1 T
— 5M2</ e ds> / e %% ds / E|lga(t — s, z(t — 5))||?p(t) dt.
0 0 u(r,p) J
Since g € WPAPX(R x L?(P,H), L*(P,H), p), it follows that

W{p) /EH / ;m—s)gz(s,:c(s))ds

< 5M?

2
dt -0 asr — oo
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for all s € R. Using the Lebesgue’s dominated convergence theorem, we have II; — 0 as
r — 00.

By (H2) and the It6 integral, we have
2

s)fa(t — s, x(t —s))dW(s)|| p(t)dt

Tp fr

< / / BB folt — s.x(t — )|y ds p(t) dt

(7, p)
o 2 6—265 s 1 ,x(t—s 20 .
s ( [Temas) s [ Bl st = By d

Since fo € WPAPY(R x L?(P,H), L*(P, LY), p), it follows that

2
p(t)dt -0 asr — oo

_
w(r,p) J_,

for all s € R. Using the Lebesgue’s dominated convergence theorem, we have I, — 0 as

T(t—s)fa(t — s,z(t —s))dW (s)

7 — O0.

By (H2) and the properties of the integral for the Poisson random measure, we have

1 r (e%¢] —2s s oao(t—s 21) <
N(Tap)/r/o /|y|v<1e E||Ga(t — s, 2(t — 5),9) 1> v(dy) ds p(t) dt

= 5M2</000 e~ 20 ds) M(:’ ) /Tr /|y|v<1 E||Ga(t — s,z(t — 5),y)||* v(dy)p(t) dt.

Since G € PWPAPY(R x L?(P,H) x V, L?*(P,H), p), it follows that

2
p(t)dt -0 as r — o0

5 < 5072

) EH/t /yNT(t—S)GQ(t—s,x(t—s),y)ﬁ(ds,dy)

for all s € R. Using the Lebesgue’s dominated convergence theorem, we have II3 — 0 as
r — 00.

Similarly, we have

1 T x
M, < 1002 / / / 2Byt — 5,2(t — 8), ) |2 v(dy) ds p(t) dt
7“ p —-r lylv>1

b1 .
1005 / T / /| E|Fa(t — s,2(t — 5), )| v(dy) ds p(t) dt

—won( [Teas) [ /ylv>lEHF2t—sw(t—s> )P o(dy)(t) dt

b oo
+ 10M2</ e Sds) / / E||Ba(t — 5, 2(t — ), )2 v(dy)p(t) dt
d\ Jo w(rp) J—r Jpyly>1
Since Fy € PWPAPX(R x L*(P x V,K), L*(P,H), p), it follows that

p(t)dt -0 asr — oo
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for all s € R. Using the Lebesgue’s dominated convergence theorem, we have Iy — 0 as
r — 00.

For a given i € Z, define the function (Vx)(t) by (Vzx)(t) = T(t — t;)L;2(x(t:)), ti <
t <tiy1, then

Jlim B||(Va) ()] = lim BIIT(t — t;)Lia(x(t:))]|*

< lim MPeP(t= t)supEHIZQHOO =

ot i€Z
Thus Vx € PC2(R, L*(P,H)) C WPAPY(R, L?(P,H), p). Define V;z: R — L*(P,H) by
(Vijz)(t) =T(t —ti—j)Li—j2(x(ti)), ti<t<tis1, jEN.
So Vjz € WPAPX(R, L*(P,H), p). Moreover,

E|(Vjz)(@t)|* = E|T(t — ti—j)Lizj2(x(t:))]?
< M2t sup B I 0|1
1€EZL

< M2€—25(t—ti)e—2§aj SUPEHL‘*]'Q Z
1€Z

Therefore, the series Z]ﬁo V;x is uniformly convergent on R. By Lemma one has

D Tt - ti) o i ) € WPAPX(R, L*(P,H), p),
t;<t 7=0

u(r, p /r

Using the Lebesgue’s dominated convergence theorem, we have Il — 0 as r — oo.
lim

r ) B
Jm s [ B Fa0 dt =0,

which is mean that Yz € WPAPX(R, LP(P,H), p). Therefore, = is piecewise weighted
pseudo almost periodic in distribution mild solution to system ([L.1))—(1.2]). This completes
the proof. O

that is
2

p(t)dt -0 asr — oc.

N Tt —ti)p(x(t))

t; <t

Hence

4. Exponential stable of mild solution

In this section, we present the exponential stable behavior of a piecewise weighted pseudo
almost periodic in distribution mild solution of (1.1)—(1.2]). To do this, we also need the

following assumptions:



Partial Stochastic Differential Equations 1295

(B1) For any ¢ > 0, there exist constant o, (1,l2,¢; > 0, i € Z, such that, for all t € R and
r € L*(P,H) with E||z|? > o,

sup [Ellg(t,2)|* + Ellf (t,2)l7g] < <chllz]?, (¢ 2) € R x L*(P,K),
€

sup [/ EHG(t,w,y)HQv(dy)Jr/ E||F(t,z,y)|I” v(dy)
teR L J]y|ly<1 lylv>1

<clo|lz||P, (t,z,y) € R x L*(P,K) x V,
E|Li(2)|]* < seEl|z|?, i€Z, xe *PK).

(B2) There exist constants 0 < 5 < ¢, such that

sup  {eP'[E|g(t,)|* + E||f(t,2)||20] } < 00, (t,z) € R x L*(P,H),
teR,Bl|z|*<e :

sup {6[ [ BiGt el ) + [ EHF(t,x,y)u%(dw]}
teR,E||z||2 <o lylvy <1 lyly>1

< oo, (t,z,y)€RxL*P,H) xV,
sup {ME|L(@)|*} <o, i€, v e LX(P,H).
Ellz[?<e
Theorem 4.1. Assume that assumptions of Theorem hold and, in addition, hypothe-

ses (B1) and (B2) are satisfied. Then the piecewise weighted pseudo almost periodic in
distribution mild solution of (L.1)—(1.2)) is exponentially stable in mean square.

Proof. Let x(+) be a fixed point of ¥ in Y. By Theorem any fixed point of ¥ is a mild
solution of the system f. We now can choose a positive constant 8 such that
0< B <6, and

P Ella () < T,

where

¢ 2
r, = IOe’BtEH/ T(t—s)g(s,z(s))ds

t 2
+ 107 E /_ T(t—s)f(s,z(s))dW(s)

t B 2
+ 10 E / / T(t — s)G(s,xz(s—),y)N(ds, dy)
—o0 Jyly <1

2

Pt ' — s)F(s,x(s— s
1067 E / ) /y|v>1T(t VF (s, 2(s—),y) N (ds, dy)

2 5
=D i
=1

+10”B( Y T(t — ti)Ti(x(t:))

i<t
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and on the other hand, by using (B1), (B2) and combine Step 2 in Theorem (3.2 we have
forallt € R and z € L*(P,H), y € V,

(4.1) Bllg(t, )| + Bl f(t,2)|2y < chiBlJo? + mie ™,
@2 [ BIGEny) e+ [ EIFtog)|P eldy) < caBlal + vae
lylv<1 lylv>1

(4.3) E|Li(z)|]? < sE|z|* 4+ vs, icZ.

Note that, for ¢ sufficiently small, we have

, 1 1 1 1 b
20M g{[5(5—ﬂ)25—ﬂ]l1+ [25—ﬁ+225—6+5(5—ﬁ)]l2

1
+ supc; p < 1.
1= eda(1— e O-Aa) o) }

(4.4)

Then by (4.1) and Holder’s inequality, we have

t t
i < 10M265t< [ e ds> < / e—5<t—s>E||g<s,x<s>>u2ds)

t
< 10025 (/ &Sy B (5) |2 + mre=] ds)

t
< 1OM2(1;</ e~ 0D el P B 2(5)]]? + 1] d5>

1
<10M ———— Bsp 2 .
<10 56— B) [glligﬂge l|lz(s)]| —|—U1]

By (4.2) and the It6 integral, we have

t
iy < 100265 / 2= || f(s,2(s)) |2 ds

—00
t
< 10M2€’8t/ eIl Bl (s)||? + vie 7] ds

—0o0

t
< 10M? / e~ G=B)E=3) 11, P B x(s)]|? + 11 ds

— 00

< 10M?

[gll sup e’BSEHac(s)H2 + 1.
seR

1
26 — B
By (4.3) and the properties of the integral for the Poisson random measure, we have

t
fio < 10027 [ /| B s a(s) ) o) d
—o0 J |yly <

t
< lOMQeﬁt/ e B Gl B\ (s)||? + voe %] ds

—00
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t
< 10M2/ e~ @=B)E=3) (1,5 B|(s)||? + 2] ds

< 10M?

1
lysup ¢ E 2+ 1)
5% B [c 2i1€1£e |z(s)]]* + va

and

t
ia < 2002 / / e 2B F (s, 2(s), y)|1 v(dy) ds
yly>1
b t
1 o0n2 e / / I B F(s, 2(s), y)|> v(dy) ds
0 ylv>1

t
< QOMQeﬁt/ e Py B|z(s)||2 + voe ] ds

—0o0

t
+ 2OM2§eﬁt/ eIy B 2(s)]|? 4 voe 7] ds
t
< 2002 / e~ @A) [, e85 B 3(s) |2 + va] ds

b t
+ QOMQS / e~ O3 [c1yeP B x(s)]|? + 2] ds
1 n b
20—p8  6(6-0
By (4.3) and Holder’s inequality again, we have

jis < 10027 ( > e‘“‘“’) (Z e‘“t‘t”Eiifz-(w(ti))||2)

t; <t t;<t

1 ) )
<10M? e ( S e foe Blla(t)|2 + ugeﬁtﬂ)
t; <t

< 20M2< ) [§l2 sup e E||z(s)||* + 1/2].
) seR

1

< M — (Z e I geie ()| + u31)
o t; <t

1

< 2
I P T e P

[supgcieﬁtiEHx(ti)HQ + 1/3].
1EZ
Then we have for all t € R,

I < EO sup eﬁsE”l‘(S)HQ + El,
seR

whereLo—loM g{[ soem walit w2 5+5(5 Pyl M(l —= 5)a)supz€ZCz}a

2
Ly = 10M*{ [5555 5 ) 25— 5]V1+ [25= 3 + 2550 3t 50- g)]”2+ - e—«sa(l R V3} Thus,
from the above inequality, it follows that

P E||z(t)||? < 2L sup € E||z(s)||> + 2L1.
seR
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By (&.4), we get that 2Ly < 1 and
2L,
1—2Ly

SupeBtEHaz(t)H2 <
teR

Then we get that Elz(t)||* < %e_ﬂt, which is implies that the piecewise weighted
- 0
pseudo almost periodic in distribution mild solution of ((1.1)—(1.2)) is exponentially stable

in mean square. The proof is completed. O

Remark 4.2. In particular, if the exponentially stable Cg-semigroup is replaced by an
exponentially stable analytic semigroup in the system f. Then, we are also
concerned with the case which associated semigroup is analytic and the nonlinear term is
the non-Lipschitz conditions, some sufficient conditions about the exponentially stable of
mild solution for the new systems by using weaker conditions in the sense of the fractional
power arguments are established. In this way, we have improved the stability results of

this article.

5. An example

In this section, we shall illustrate the analytical results. Consider following partial stochas-

tic differential equations of the form

- aszZ z) _ ;;z(t, z) + n(t)l;l (Zx)z(t, o) + K(t)ba()z(t, x)agtv(t, z)
+ k(t)b(2)2(t7) 5 (a), tER, z € 0,7,

(5.2) 2(,0) = 2(t, 1) =0, teR,

(5.3) Az(ti,z) = k(i)2(ti,2), i€ Z, z €0,

where W is a Q-Wiener process on L?([0, 71]) with Tr Q < oo and Z is a Lévy pure jump
process on L?([0,7]) which is independent of W. The function x: R — R is given by

k(t) = sin + €2 for t € R, and b;: [0,7] — R, j = 1,2,3, are continuous

1
1+4cos t+cos \/§t )
functions. In this system, t; =i + %| sini + sin v/2i, {t}}, i € Z, j € Z are equipotentially
almost periodic and o = inf;ez(ti+1 — t;) > 0, one can see [26] for more details.
Let H =V = L?([0, 7]) with the norm ||| and define the operators A: D(A) C H — H

by Aw = w” with the domain
D(A) :={w € H: w,w are absolutely continuous, w” € H,w(0) = w(w) = 0}.

It is well known that A generates a strongly continuous semigroup 7'(-) which is compact,

analytic and self-adjoint. Furthermore, A has a discrete spectrum; the eigenvalues are
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—n?, n € N, with the corresponding normalized eigenvectors z,(z) = |/ 2 sin(nz), and the
semigroup (7'(t))>0 is hyperbolic as o(A4) NiR = (. Moreover, | T(t)|| < e~ for t > 0 for
all ¢ > 0.
Set ¢(t)(z) = ¢(t,z) for x € [0,7], y € V. We define the the maps g: R x L?(P,H) —
L*(P,H), f: Rx L*(P,H) — L*(P,H), G, F: Rx L}(P,H)x V — L*(P,H), I;: L*(P,H) —
L*(P,H) by

9(t, @) (@) = K()br(x)p(t)(x), [t @)(x) = K(t)b2(2)p(t)(2),
h(t, o) (x) = K(t)bs(x)e(t)(x), Ii(@)(x) = K(i)p(x).

Using these definitions, we can represent the system ((5.1)—(5.3) in the abstract form (1.1))—
(L.2), where

h(t, ) dZ = /

lylv <1

Gt (t—), y) N (dt, dy) + / F(t, o(t—), y)N(dt, dy)

lylv>1
with
Zta)= [ yNGdy + [ NGy
lylv <1 lylv>1

and
G(t’ @(t—), y) = h(ta @)y ’ 1|y\v<17 F(t7 90(75_)7 y)h(tv 90)9 : 1\y|v>1'

Obviously, «(+) is the almost periodic component and the weighted function

1 for t <0,

p(t) =
e 2t fort>0.

Then, lim, o 44(7, p) = 00 and hence p € Us,. The function e? is the weighted component
which satisfies . .

lim / elp(t)dt = 0.
r—oo yu(r, p) J )

It follows that g, f are weighted pseudo almost periodic and G, F' are weighted pseudo

almost periodic functions. Then, it satisfies all the assumptions given in Theorem
Therefore, the piecewise weighted pseudo almost periodic mild solution of ((5.1)—(5.3))

exponentially stable in mean square.

6. Conclusions

This paper considers a class of impulsive partial stochastic differential equations driven
by Lévy noise in Hilbert spaces under non-Lipschitz conditions. Firstly, by means of
exponential stable property, the stochastic analysis techniques and a fixed-point theorem
for condensing maps, we discuss the existence of mild solutions to systems f
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under the nonlinear terms and the jump operators satisfy the non-Lipschitz conditions.
Secondly, we present exponential stability of mean square piecewise pseudo almost periodic
mild solutions to these equations. Finally, an example is provided to show the effectiveness
of the proposed results.

Some interesting questions deserve further investigation. One may propose more re-
alistic but complex equations, for example, we will be devoted to studying a class of
impulsive partial stochastic differential equations with Lévy noise and not instantaneous
impulses. Moreover, it is of significance to study fractional impulsive partial stochastic
differential equations driven by Lévy noise. Another problem of interest is to consider op-
timal mild solutions of systems governed by impulsive partial differential equations under

both Rosenblatt process and Lévy process.
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