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Existence of Solutions for a Class of Fractional Kirchhoff-type Systems in RN

with Non-standard Growth

Elhoussine Azroul, Athmane Boumazourh* and Nguyen Thanh Chung

Abstract. This paper is concerned with the existence and multiplicity of nontrivial

solutions for a class of Kirchhoff-type systems in RN involving the fractional pseudo-

differential operators defined as the generalizations of the p(x)-Laplace operator. Our

main tools come from a direct variational methods, the Mountain Pass Theorem, the

symmetric Mountain Pass Theorem and the Fountain Theorem in critical point theory.

The obtained results of this note significantly contribute to the study of Kirchhoff-

type systems in the sense that our situation covers not only differential operators of

fractional order but also nonhomogeneous differential operators in Sobolev spaces with

variable exponent.

1. Introduction

In this paper, we aim to investigate the existence and multiplicity of weak solutions for

the following fractional Kirchhoff type elliptic system

(1.1)


M1(Is,p(x,y)(u))(−∆)sp(x,· )(u) + |u|p(x)−2u = ∂F

∂u (x, u, v) in RN ,

M2(Is,q(x,y)(v))(−∆)sq(x,· )(v) + |v|q(x)−2v = ∂F
∂v (x, u, v) in RN ,

(u, v) ∈W s,p(x,y)(RN )×W s,q(x,y)(RN ),

where

Is,r(x,y)(w) =

∫
RN×RN

|w(x)− w(y)|r(x,y)

r(x, y)|x− y|N+sr(x,y)
dxdy for w ∈W s,r(x,y)(RN ),

and p, q : RN × RN → ]1,+∞[ are symmetric continuous functions such that

(1.2) 1 < p− ≤ p(x, y) ≤ p+ < +∞, 1 < q− ≤ q(x, y) ≤ q+ < +∞,

where
p− = inf

(x,y)∈RN×RN
p(x, y), p+ = sup

(x,y)∈RN×RN
p(x, y),

q− = inf
(x,y)∈RN×RN

q(x, y), q+ = sup
(x,y)∈RN×RN

q(x, y),
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and p(x) = p(x, x), and q = q(x, x).

The critical fractional Sobolev exponent is given by

m∗s(x) =


Nm(x,x)
N−sm(x,x) if N > sm(x, x),

+∞ if N ≤ sm(x, x).

Mi : [0,+∞)→ (0,+∞), i = 1, 2, are continuous functions satisfying the following condi-

tions:

(M0) There exist mi > 0, i = 1, 2, such that

Mi(t) ≥ mi for all t ≥ 0.

(M1) There exists θ ∈ (0, 1) such that

M̂i(t) ≥ θtMi(t) for all t ≥ 0,

where M̂i(t) =
∫ t

0 Mi(s) ds.

The function F is assumed to satisfy Caratheodory conditions and be L∞ in x ∈ RN

and C1 in u, v ∈ R. For s ∈ (0, 1), (−∆)sp(x,· ) is the fractional p(x)-Laplacian operator

defined as

(−∆)sp(x,y)u(x) = lim
ε→0

∫
RN\Bε(x)

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+sp(x,y)
dy for x ∈ RN ,

which is a pseudo-differential operator allowing to introduce the non-integer derivative

order. This operator is a fractional version of the so-called p(x)-Laplacian operator which

is given by (−∆)p(x)u = −div(|∇u|p(x)−2∇u).

The problem (1.1) is related to the stationary version of the Kirchhoff equation

(1.3) ρ
∂2u

∂t2
−
(
P0

h
+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx)∂2u

∂x2
= 0,

presented by Kirchhoff [22] in 1883, is an extension of the classical d’Alembert’s wave

equation by considering the changes in the length of the string during vibrations. In (1.3),

L is the length of string, h is the area of the cross section, E is the Young modulus of the

material, ρ is the mass density, and P0 is the initial tension. The Kirchhoff’s model takes

into account the length changes of the string produced by transverse vibrations. Some

interesting results can be found, for example in [10]. On the other hand, Kirchhoff-type

boundary value problems model several physical and biological systems where u describes

a process which depend on the average of itself, as for example, the population density.

We refer the reader to [2, 18,26] for some related works.
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Recently, a great attention has been given to the study of the fractional Lebesgue

and Sobolev spaces and their generalizations to variable exponents (see [21, 24]). We re-

fer to Di Nezza, Palatucci and Valdinoci [24] for a comprehensive introduction to the

study of nonlocal problems. In the context of non homogeneous materials (such that elec-

trorheological fluids and smart fluids), the use of Lebesgue and Sobolev spaces Lp and

W s,p seems to be inadequate, which leads to the study of variable exponent Lebesgue

and Sobolev spaces Lp(x) and W s,p(x,· ). Moreover, the study of problems which involves

the fractional p(x, · )-Laplacian and the corresponding nonlocal elliptic equations consti-

tutes a promising domain of research in which many mathematicians had contributed

(see for example [1, 7, 11, 12, 14, 21]). Furthermore, this type of problems arise in many

physical phenomena such as conservation laws, ultra-materials and water waves, opti-

mization, population dynamics, soft thin films, mathematical finance, phases transitions,

stratified materials, anomalous diffusion, crystal dislocation, semipermeable membranes,

flames propagation, ultra-relativistic limits of quantum mechanics, we refer the reader

to [9, 24] for details.

For the problems involving fractional Kirchhoff type, we refer the reader to the works

[1, 3–6], where the authors use different methods to establish the existence of solutions.

In the local case (s = 1) and when M1 = M2 = 1, Xu et al. [28] have shown the

existence and multiplicity of solutions for the following elliptic system with nonstandard

growth conditions in RN :
−div(|∇u|p(x)−2∇u) + |u|p(x)−2u = ∂F

∂u (x, u, v) in RN ,

−div(|∇v|q(x)−2∇v) + |v|q(x)−2v = ∂F
∂v (x, u, v) in RN ,

(u, v) ∈ X,

where X = W 1,p(x)(RN )×W 1,q(x)(RN ), N ≥ 2, p(·), q(·) are functions on RN , the function

F is assumed to verify Carathéodory conditions and L∞ in x ∈ RN and C1 in u, v ∈ R.

In our context, Dai [13] considered the following nonlocal elliptic systems of gradient

type with nonstandard growth conditions
−M1

(∫
Ω

1
p(x) |∇u|

p(x) dx
)

div(|∇u|p(x)−2∇u) = ∂F
∂u (x, u, v) in Ω,

−M2

(∫
Ω

1
q(x) |∇v|

q(x) dx
)

div(|∇v|q(x)−2∇v) = ∂F
∂v (x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN with a smooth boundary ∂Ω. M1(·), M2(·) are

continuous functions and F : Ω×R×R→ R is assumed to be continuous in x ∈ Ω and of

class C1 in u, v ∈ R.

The main purpose of this paper is to prove the existence and multiplicity of weak

solutions for problem (1.1). We know that in the study of fractional problems in RN
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involving the p(x, · )-Laplacian operator, the main difficulty arises from the lack of com-

pactness. To overcome this difficulty we will include the method of weight functions. By

the critical point theory, we present here two type of results for problem (1.1). These

results correspond to the “sublinear” and the “superlinear” cases. Our paper is motivated

by [4,8,13,28] and organized as follows: in Section 2 we recall some notations and proper-

ties of fractional Lebesgue and Sobolev spaces with variable exponents. In order to prove

the main theorems in Section 3 some useful lemmas are given.

2. Preliminaries and basic assumptions

In this section, we recall some necessary properties of variable exponent spaces. For more

details we refer to [17,23,25], and the references therein. Consider the set

C+(RN ) =
{
r ∈ C(RN ) : r(x) > 1, ∀x ∈ RN

}
.

For any r ∈ C+(RN ), we define the generalized Lebesgue space Lr(·)(RN ) as

Lr(x)(RN ) =

{
u : RN → R measurable :

∫
RN
|u(x)|r(x) dx < +∞

}
,

this space equipped with the Luxemburg norm

‖u‖r(x) = ‖u‖Lr(x)(RN ) = inf

{
λ > 0 :

∫
RN

∣∣∣∣u(x)

λ

∣∣∣∣r(x)

dx ≤ 1

}
is a separable reflexive Banach space.

Let r̂ ∈ C+(RN ) be the conjugate exponent of r, i.e., 1
r(x) + 1

r̂(x) = 1. Then we have

the following Hölder-type inequality.

Lemma 2.1 (Hölder’s inequality). If u ∈ Lr(·)(RN ) and v ∈ Lr̂(x)(RN ), so∣∣∣∣ ∫
RN

uv dx

∣∣∣∣ ≤ ( 1

r−
+

1

r̂−

)
‖u‖r(x)‖v‖r̂(x) ≤ 2‖u‖r(x)‖v‖r̂(x).

The modular of Lr(x)(RN ) is defined by

ρr(x) : Lr(x)(RN )→ R, u 7→ ρr(x)(u) =

∫
RN
|u(x)|r(x) dx.

Proposition 2.2. [16, 23] Let u ∈ Lr(x)(RN ), then we have

(1) ‖u‖r(x) < 1 (resp. = 1, > 1) ⇐⇒ ρr(x)(u) < 1 (resp. = 1, > 1).

(2) ‖u‖r(x) < 1 =⇒ ‖u‖r+r(x) ≤ ρr(·)(u) ≤ ‖u‖r−r(x).

(3) ‖u‖r(x) > 1 =⇒ ‖u‖r−r(x) ≤ ρr(·)(u) ≤ ‖u‖r+r(x).



Fractional (p(·), q(·))-Laplacian System in RN 985

Proposition 2.3. If u, uk ∈ Lr(x)(RN ) and k ∈ N, then the following assertions are

equivalent

(1) limk→+∞ ‖uk − u‖r(x) = 0.

(2) limk→+∞ ρr(x)(uk − u) = 0.

(3) uk → u in measure in RN and limk→+∞ ρr(x)(uk) = ρr(x)(u).

Now, let’s introduce our fundamental space. Let s ∈ (0, 1), and let r : RN × RN →
(1,+∞) be a Lipschitz continuous variable exponent satisfying (1.2). We define the usual

fractional Sobolev space with variable exponent as

W s,r(x,y)(RN ) =

{
u ∈ Lr(x)(RN ) :

∫
RN×RN

|u(x)− u(y)|r(x,y)

|x− y|N+sr(x,y)
dxdy <∞

}
,

which is equipped with the norm

‖u‖W s,r(x,y)(RN ) = ‖u‖r(x) + [u]s,r(x,y),

where r(x) = r(x, x) and [u]s,r(x,y) is a Gagliardo seminorm with variable exponent which

is defined by

[u]s,r(x,y) = inf

{
λ > 0 :

∫
RN×RN

|u(x)− u(y)|r(x,y)

λr(x,y)|x− y|N+sr(x,y)
dxdy ≤ 1

}
.

The space
(
W s,r(x,y)(RN ), ‖·‖W s,r(x,y)(RN )

)
is separable and reflexive Banach space (see, [7,

Lemma 3.1]).

For any u ∈W s,r(x,y)(RN ), define the modular function ρr( · ,· ) : W s,r(x,y)(RN )→ R

ρr(x,y)(u) =

∫
RN×RN

|u(x)− u(y)|r(x,y)

|x− y|N+sr(x,y)
dxdy +

∫
RN
|u(x)|r(x) dx,

and its norm

‖u‖s,r(x,y) = ‖u‖ρr(x,y)
= inf

{
λ > 0 : ρr(x,y)

(
u

λ

)
≤ 1

}
.

It is easy to see that ‖ · ‖s,r(x,y) is a norm which is equivalent to the norm ‖ · ‖W s,r(x,y)(RN ).

Throughout this paper we will use the norm ‖ · ‖s,r(x,y).

Lemma 2.4. Let r : RN×RN → ]1,+∞[ be a continuous variable exponent and s ∈ ]0, 1[ .

Let u, uk ∈W s,r(x,y)(RN ), then we have

(1) ‖u‖s,r(x,y) < 1 (resp. = 1, > 1) ⇐⇒ ρp( · , )(u) < 1 (resp. = 1, > 1),
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(2) ‖u‖s,r(x,y) < 1 =⇒ ‖u‖q+s,r(x,y) ≤ ρp( · , )(u) ≤ ‖u‖q−s,r(x,y),

(3) ‖u‖s,r(x,y) > 1 =⇒ ‖u‖q−s,r(x,y) ≤ ρp( · , )(u) ≤ ‖u‖q+s,r(x,y),

(4) limk→+∞ ‖uk − u‖s,r(x,y) = 0 ⇐⇒ limk→+∞ ρp( · , )(uk − u) = 0.

Theorem 2.5. [14, 21] Let Ω be a open bounded subset of RN and s ∈ (0, 1). Let

r : Ω×Ω→ (1,+∞) be a continuous variable exponent with sr+ < N for all (x, y) ∈ Ω×Ω.

Let q : Ω→ (1,+∞) be a continuous variable exponent such that

r∗s(x) =
Nr(x, x)

N − r(x, x)
> q(x) ≥ q− > 1, ∀x ∈ Ω.

Then the space W s,r(x,y)(Ω) is continuously embedded in Lq(x)(Ω). Moreover, this embed-

ding is compact. In other words, there exists a constant C = C(N, s, p, q,Ω) > 0 such that

for every u ∈W s,r(x,y)(Ω),

‖u‖Lq(x)(Ω) ≤ C‖u‖W s,r(x,y)(Ω).

Now, let ω : RN → R be a function satisfying the following condition

(ω0) ω ∈ C(RN ,R) such that ω(x) ≥ 0 for all x ∈ RN and ω 6= 0.

For q ∈ C+(RN ), define

Lq(x)
ω (RN ) =

{
u : RN → R measurable :

∫
RN

ω(x)|u(x)|q(x) dx < +∞
}
,

which endowed with the Luxemburg norm

‖u‖q(x),ω = ‖u‖
L
q(x)
ω (RN )

= inf

{
λ > 0 :

∫
RN

ω(x)

∣∣∣∣u(x)

λ

∣∣∣∣q(x)

dx ≤ 1

}
.

It is easy to see that ρq(x),ω =
∫
RN ω(x)|u(x)|q(x) dx is a semimodular. Moreover,

(
L
q(x)
ω (RN ),

‖u‖q(x),ω

)
is a Banach space.

Lemma 2.6. [27] The following assertions are equivalent:

(i) limn→∞ ‖un‖q(x),ω = 0;

(ii) limn→∞ ρq(x),ω(un) = 0.

Lemma 2.7. [4, 19] Suppose that (1.2) holds. Let h ∈ C+(RN ) with 1 < h− ≤ h(x) ≤
h+ < r∗s(x) for all x ∈ RN . Assume that ω ∈ L

n(·)
n(·)−h(·) such that

r(x) ≤ n(x) ≤ r∗s(x) for all x ∈ RN , and inf
x∈RN

(n(x)− h(x)) > 0.

Then, the embedding W s,r(x,y)(RN ) ↪→ L
h(x)
ω (RN ) is continuous. Moreover, if n+ < r∗s(x)

for all x ∈ RN , the embedding W s,r(x,y)(RN ) ↪→ L
h(x)
ω (RN ) is compact.
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Lemma 2.8. Let r ∈ C+(RN × RN ) satisfy (1.2), h ∈ C+(RN ) and let ω be a weight

function. Then for any u ∈ W s,r(x,y)(RN ) there exist h ∈ [h−, h+] and a constant c > 0

such that ∫
RN

ω(x)|u|h(x) dx ≤ c‖u‖hs,r(x,y).

Proposition 2.9 (Fountain Theorem). Let X be a Banach space with the norm ‖ · ‖X
and let Xj be a sequence of subspaces of X with dimXj < ∞ for each j ∈ N. Further,

X =
⊕

j∈NXj, the closure of the direct sum of all Xj. Set Yk =
⊕k

j=1Xj, Zk =
⊕∞

j=kXj.

Assume that Ψ ∈ C1(X,R) satisfies the (PS) condition and Ψ(−u) = Ψ(u). For every

k ∈ N, suppose that there exist Rk > rk > 0 such that

(A1) inf u∈Zk
‖u‖X=rk

Ψ(u)→ +∞ as k →∞.

(A2) max u∈Yk
‖u‖X=Rk

Ψ(u) ≤ 0.

Then Ψ has an unbounded sequence of critical values.

Remark 2.10. Since X is a separable and reflexive space, there exist {ei}∞i=1 ⊂ X and

{fi}∞i=1 ⊂ X∗ such that

fi(ej) = δi,j =

1 if i = j,

0 if i 6= j.

Hence X = span{ei : i = 1, 2, . . .} and X∗ = span{fi : i = 1, 2, . . .}. For k = 1, 2, . . ., we

define

X = span{ei : i = 1, 2, . . .}, Yk =

k⊕
i=0

Xi, Zk =

∞⊕
i=k

Xi.

Lemma 2.11. [27] Let r ∈ C+(RN ) such that 1 < r− ≤ r(x) ≤ r+ < min{p∗s(x), q∗s(x)},
∀x ∈ RN . For k = 1, 2, . . ., set

αk = sup
u∈Zk
‖u‖X≤1

∫
RN

ω(x)|u|r(x) dx.

Then αk → 0 as k → +∞.

Next, we will state the Symmetric Mountain Pass Lemma. For this purpose, we should

introduce the definition of genus.

Definition 2.12. Let X be a real Banach space and A a subset of X. A is said to be

symmetric if u ∈ A implies −u ∈ A. For a closed symmetric set A which does not contain

the origin, we define the genus γ(A) of A by the smallest integer k such that there exists

an odd continuous mapping from A to Rk \{0}. If there does not exist such a k, we define

γ(A) = ∞. Moreover, we set γ(∅) = 0. Let Γk denotes the family of closed symmetric

subsets A of X such that 0 /∈ A and γ(A) ≥ k.
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We recall the Symmetric Mountain Pass Lemma.

Theorem 2.13. [20] Let X be an infinite dimensional Banach space and J ∈ C1(X;R)

satisfy the following assertions:

(S1) J is even, bounded from below, J (0, 0) = 0 and J (u, v) satisfies the (PS) condition.

(S2) For each k ∈ N , there exists an Ak ∈ Γk such that supu∈Ak J (u, v) < 0.

Then J admits a sequence of critical points {(uk, vk)} such that J (uk, vk) < 0, (uk, vk) 6=
(0, 0) and limk→∞(uk, vk) = (0, 0).

3. Main results

In this section we prove our main theorems, Theorems 3.4, 3.5, 3.6 and 3.10. The solutions

of our problem (1.1) belong to E = W s,p(x,y)(RN )×W s,q(x,y)(RN ), the Cartesian product

of two Banach spaces, which is a reflexive Banach space endowed with the norm

‖(u, v)‖E = ‖u‖s,p(x,y) + ‖v‖s,q(x,y),

where ‖ · ‖s,p(x,y) and ‖ · ‖s,q(x,y) are modular norms of W s,p(x,y)(RN ) and W s,q(x,y)(RN )

respectively.

For every (u, v) and (ϕ,ψ) in E, let

F(u, v) =

∫
RN

F (x, u, v) dx,

then

F ′(u, v)(ϕ,ψ) =

∫
RN

∂F

∂u
(x, u, v)ϕdx+

∫
RN

∂F

∂v
(x, u, v)ψ dx.

Suppose F satisfies

(F0) There exist p0, p1 ∈ C+(RN ) and q0, q1 ∈ C+(RN ) such that, for all (s, t) ∈ R2 and

for a.e. x ∈ RN , we have∣∣∣∣∂F∂s (x, s, t)

∣∣∣∣ ≤ a1(x)|s|p0(x)−1 + a2(x)|t|q0(x)−1,∣∣∣∣∂F∂t (x, s, t)

∣∣∣∣ ≤ b1(x)|s|p1(x)−1 + b2(x)|t|q1(x)−1,

where a1(·) ∈ Lσ1(x)(RN ), a2(·), b1(·) ∈ Lσ2(x)(RN ) and b2(·) ∈ Lσ3(x)(RN ),

σ1(x) =
p(x)

p(x)− 1
, σ2(x) =

p∗s(x)q∗s(x)

p∗s(x)q∗s(x)− p∗s(x)− q∗s(x)
, σ3(x) =

q(x)

q(x)− 1
.
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Lemma 3.1. Under the assumptions (F0), F is differentiable in sense of Fréchet, i.e.,

for fixed (u, v) ∈ E and given ε > 0, there exists δ = δ(ε, u, v) > 0 such that

|F(u+ ϕ, v + ψ)−F(u, v)−F ′(u, v)(ϕ,ψ)| ≤ ε(‖ϕ‖s,p(x,y) + ‖ψ‖s,q(x,y))

for all (ϕ,ψ) ∈ E with ‖ϕ‖s,p(x,y) + ‖ψ‖s,q(x,y) < δ.

Proof. Let Br = {x ∈ RN : |x| < r} be the ball of radius r which centred at the origin of

RN and B̂r = RN \ Br. Define the functional Fr : W s,p(x,y)(Br) ×W s,q(x,y)(Br) → R as

follows:

Fr(u, v) =

∫
Br

F (x, u, v) dx.

It is easy to see that Fr ∈ C1(W s,p(x,y)(Br) × W s,q(x,y)(Br),R) and for all (ϕ,ψ) ∈
W s,p(x,y)(Br)×W s,q(x,y)(Br), we have

F ′r(u, v)(ϕ,ψ) =

∫
Br

∂F

∂u
(x, u, v)ϕdx+

∫
Br

∂F

∂v
(x, u, v)ψ dx.

In addition, the operator F ′r : W s,p(x,y)(Br)×W s,q(x,y)(Br)→
(
W s,p(x,y)(Br)×W s,q(x,y)(Br)

)∗
is compact. So, for all (u, v), (ϕ,ψ) ∈ E we can write

|F(u+ ϕ, v + ψ)−F(u, v)−F ′(u, v)(ϕ,ψ)|

≤
∣∣Fr(u+ ϕ, v + ψ)−Fr(u, v)−F ′r(u, v)(ϕ,ψ)

∣∣
+

∣∣∣∣ ∫
B̂r

(
F (x, u+ ϕ, v + ψ)− F (x, u, v)− ∂F

∂u
(x, u, v)ϕ− ∂F

∂v
(x, u, v)ψ

)
dx

∣∣∣∣.
By virtue of mean-value theorem, there exist µ1, µ2 ∈ (0, 1) such that

F (x, u+ ϕ, v + ψ)− F (x, u, v) =
∂F

∂u
(x, u+ µ1ϕ, v)ϕ− ∂F

∂v
(x, u, v + µ2ψ)ψ.

Using condition (F0), we have∣∣∣∣ ∫
B̂r

(
F (x, u+ ϕ, v + ψ)− F (x, u, v)− ∂F

∂u
(x, u, v)ϕ− ∂F

∂v
(x, u, v)ψ

)
dx

∣∣∣∣
≤
∫
B̂r

(
a1(x)

(
|u+ µ1ϕ|p0(x)−1 − |u|p0(x)−1

)
ϕ+ b2(x)

(
|v + µ2ψ|q1(x)−1 − |v|q1(x)−1

)
ψ
)
dx

≤ (2p
+
0 −1 − 1)

∫
B̂r

a1(x)|u|p0(x)−1ϕdx+ (2µ1)p
±
0 −1

∫
B̂r

a1(x)|ϕ|p0(x) dx

+ (2q
−
1 −1 − 1)

∫
B̂r

b2(x)|v|q1(x)−1ψ dx+ (2µ2)q
±
1 −1

∫
B̂r

b2(x)|ψ|q1(x) dx

≤ (2p
+
0 −1 − 1)‖a1‖Lσ1(x)(B̂r)

‖u‖p0

(p0(x)−1)p∗s(x)‖ϕ‖Ns
+ (2µ1)p

±
0 −1‖a1‖Lσ1(x)(B̂r)

(
‖ϕ‖p

−
0

p0(x) + ‖ϕ‖p
+
0

p0(x)

)
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+ (2q
+
1 −1 − 1)‖b2‖Lσ3(x)(B̂r)

‖v‖q1

(q1(x)−1)q∗s (x)‖ψ‖Ns
+ (2µ2)q

±
1 −1‖b2‖Lσ3(x)(B̂r)

(
‖ψ‖q

−
1

q1(x) + ‖ψ‖q
+
1

q1(x)

)
≤ c‖a1‖Lσ1(x)(B̂r)

(
‖u‖p0

s,p(x,y)‖+ ϕ‖p
−
0 −1

s,p(x,y) + ‖ϕ‖p
+
0 −1

s,p(x,y)

)
‖ϕ‖s,p(x,y)

+ c‖b2‖Lσ3(x)(B̂r)

(
‖v‖q1

s,q(x,y)‖+ ‖ψ‖q
−
1 −1

s,q(x,y) + ‖ψ‖q
+
1 −1

s,q(x,y)

)
‖ψ‖s,q(x,y)

and by the fact that

(3.1) ‖a1‖Lσ1(x)(B̂r)
→ 0

and

(3.2) ‖b2‖Lσ3(x)(B̂r)
→ 0

as r sufficiently large, it follows that∣∣∣∣∫
B̂r

(
F (x, u+ ϕ, v + ψ)− F (x, u, v)− ∂F

∂u
(x, u, v)ϕ− ∂F

∂v
(x, u, v)ψ

)
dx

∣∣∣∣
≤ ε
(
‖ϕ‖s,p(x,y) + ‖ψ‖s,q(x,y)

)
.

It remains to show that F ′ is continuous on E. Indeed, let (un, vn), (u, v) ∈ E such that

(un, vn)→ (u, v), then for (ϕ,ψ) ∈ E, we have

|F ′(un, vn)(ϕ,ψ)−F ′(u, v)(ϕ,ψ)|

≤ |F ′r(un, vn)(ϕ,ψ)−F ′r(u, v)(ϕ,ψ)|+
∣∣∣∣∫
B̂r

∂F

∂u
(x, un, vn)ϕ− ∂F

∂u
(x, u, v)ϕdx

∣∣∣∣
+

∣∣∣∣∫
B̂r

∂F

∂v
(x, un, vn)ψ − ∂F

∂v
(x, u, v)ψ dx

∣∣∣∣ .
Put

I1 =

∣∣∣∣∫
B̂r

(
∂F

∂u
(x, un, vn)ϕ+

∂F

∂u
(x, u, v)ϕ

)
dx

∣∣∣∣ ,
I2 =

∣∣∣∣∫
B̂r

(
∂F

∂v
(x, un, vn)ψ +

∂F

∂v
(x, u, v)ψ

)
dx

∣∣∣∣ .
By (F0) we can write

I1 ≤
∫
B̂r

(
a1(x)|un|p0(x)−1 + a2(x)|vn|q0(x)−1

)
ϕdx

+

∫
B̂r

(
a1(x)|u|p0−1 + a2(x)|v|q0(x)−1

)
ϕdx

≤ ‖a1‖σ1(x)‖un‖
p0

(p0(x)−1)p∗s(x)‖ϕ‖Ns + ‖a2‖σ2(x)‖vn‖
q0

(q0(x)−1)q∗s (x)‖ϕ‖p∗s(x)

+ ‖a1‖σ1(x)‖u‖
p0

(p0(x)−1)p∗s(x)‖ϕ‖Ns + ‖a2‖σ2(x)‖v‖
q0

(q0(x)−1)q∗s (x)‖ϕ‖p∗s(x)

≤
(
‖a1‖σ1(x)‖un‖

p0

s,p(x,y) + ‖a2‖σ2(x)‖vn‖
q0

s,q(x,y)

)
‖ϕ‖s,p(x,y)

+
(
‖a1‖σ1(x)‖u‖

p0

s,p(x,y) + ‖a2‖σ2(x)‖v‖
q0

s,q(x,y)

)
‖ϕ‖s,p(x,y)
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and

I2 ≤
∫
B̂r

(
b1(x)|un|p1−1 + b2(x)|vn|q1(x)−1

)
ψ dx

+

∫
B̂r

(
b1(x)|u|p1−1 + b2(x)|v|q1(x)−1

)
ψ dx

≤ ‖b1‖σ2(x)‖un‖
p1

(p1(x)−1)p∗s(x)‖ψ‖q∗s (x) + ‖b2‖σ3(x)‖vn‖
q1

(q1(x)−1)q∗s (x)‖ψ‖Ns
+ ‖b1‖σ2(x)‖u‖

p1

(p1(x)−1)p∗s(x)‖ψ‖q∗s (x) + ‖b2‖σ3(x)‖v‖
q1

(q1(x)−1)q∗s (x)‖ψ‖Ns
≤
(
‖b1‖σ2(x)‖un‖

p1

s,p(x,y) + ‖b2‖σ3(x)‖vn‖
q1

s,q(x,y)

)
‖ψ‖s,q(x,y)

+
(
‖b1‖σ2(x)‖u‖

p1

s,p(x,y) + ‖b2‖σ3(x)‖v‖
q1

s,q(x,y)

)
‖ψ‖s,q(x,y).

Since F ′r is continuous on W s,p(x,y)(Br)×W s,q(x,y)(Br), we have

|F ′r(un, vn)(ϕ,ψ)−F ′r(u, v)(ϕ,ψ)| → 0 as n→∞.

Moreover, using (3.1) and (3.2), and when r is sufficiently large, I1 and I2 tend also to 0.

Hence

|F ′(un, vn)(ϕ,ψ)−F ′(u, v)(ϕ,ψ)| → 0

as (un, vn)→ (u, v). This implies that F ′ is continuous on E.

Remark 3.2. By the same way we can get the weak-strong continuity of F ′, i.e., for

(un, vn) ⇀ (u, v) in E, we have F ′(un, vn)→ F ′(u, v) in E∗.

Definition 3.3. We say that (u, v) ∈ E is a weak solution of (1.1) if

M1(Is,p(x,y)(u))

∫
RN×RN

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy

+

∫
RN
|u|p(x)−2uϕdx

+M2(Is,q(x,y)(v))

∫
RN×RN

|v(x)− v(y)|q(x,y)−2(v(x)− v(y))(ψ(x)− ψ(y))

|x− y|N+sq(x,y)
dxdy

+

∫
RN
|v|q(x)−2vψ dx−F ′(u, v)(ϕ,ψ) = 0

for all (ϕ,ψ) ∈ E.

To find such a solution (u, v) ∈ E of (1.1), we shall study the critical point of the

energy functional J defined as

J (u, v) = Ψ(u, v)−F(u, v),

where

Ψ(u, v) = M̂1(Is,p(x,y)(u)) +

∫
RN

1

p(x)
|u|p(x) dx+ M̂2(Is,q(x,y)(v)) +

∫
RN

1

q(x)
|v|q(x) dx.
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The same argument in [8, Lemma 3.2] combined with Lemma 3.1 implies that J is well

defined on E, and it is of class C1(E,R) and its Fréchet derivative is given by

〈J ′(u, v), (ϕ,ψ)〉

= M1(Is,p(x,y)(u))

∫
RN×RN

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy

+

∫
RN
|u|p(x)−2uϕdx

+M2(Is,q(x,y)(u))

∫
RN×RN

|v(x)− v(y)|q(x,y)−2(v(x)− v(y))(ψ(x)− ψ(y))

|x− y|N+sq(x,y)
dxdy

+

∫
RN
|v|q(x)−2vψ dx−F ′(u, v)(ϕ,ψ)

for any (ϕ,ψ) ∈ E.

3.1. The sublinear case

In this case we assume that

(F1) p+
0 < p−, q+

1 < q− and q+
0 < min{p−, q−}.

(F2) F (x,−s,−t) = F (x, s, t) for all (x, s, t) ∈ RN × R2.

(F3) There exist constants R > 0, µ < min{p−, q−} and a positive function H : RN ×
R2 → R such that for x ∈ RN , |u|, |v| > R and t > 0 sufficiently small, we have

F (x, tu, tv) ≥ tµH(x, u, v).

(F4) There are δ1, δ2 > 0 such that

F (x, s, t) ≥ h1(x)|s|p0(x) + h2(x)|t|q1(x) for x ∈ RN and 0 < s < δ1, 0 < t < δ2,

where hi ∈ C(RN ,R), hi(x) ≥ 0, i = 1, 2 are not identical to zero.

Theorem 3.4. Under the assumptions (M0), (M1), (F0), (F1) and (F3), the problem (1.1)

has at least one nontrivial solution.

Proof. We will prove that J is coercive. We have

F (x, u, v) =

∫ u

0

∂F

∂s
(x, s, v) dx+ F (x, 0, v)

=

∫ u

0

∂F

∂s
(x, s, v) dx+

∫ v

0

∂F

∂t
(x, 0, t) dx+ F (x, 0, 0)

≤
∫ u

0

(
a1(x)|s|p0(x)−1 + a2(x)|v|q0(x)−1

)
dx+

∫ v

0
b2(x)|t|q1(x)−1 dx

≤ C1

(
a1(x)|u|p0(x) + a2(x)|v|q0(x)−1|u|+ b2(x)|v|q1(x)

)
.
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Using Young’s inequality, we get

F (x, u, v) ≤ C2

(
a1(x)|u|p0(x) + a2(x)|v|q0(x) + a2(x)|u|q0(x) + b2(x)|v|q1(x)

)
.

Then, from Lemma 2.8 there exist p0 ∈ (p−0 , p
+
0 ), q0 ∈ (q−0 , q

+
0 ), q1 ∈ (q−1 , q

+
1 ) and a

constant C3 > 0 such that

(3.3)

∫
RN

F (x, u, v) dx ≤ C3

[
‖u‖p0

s,p(x,y) + ‖v‖q0s,q(x,y) + ‖u‖q0s,p(x,y) + ‖v‖q1s,q(x,y)

]
.

Without loss of generality, we assume that ‖v‖s,q(x,y) ≥ ‖u‖s,p(x,y). When ‖(u, v)‖E > 1,

and if ‖u‖s,p(x,y) > 1, then

J (u, v) = M̂1(Is,p(x,y)(u)) +

∫
RN

1

p(x)
|u|p(x) dx+ M̂2(Is,q(x,y)(v))

+

∫
RN

1

q(x)
|v|q(x) dx−F(u, v)

≥ min{m1, 1}
p+

‖u‖p
−

s,p(x,y) +
min{m2, 1}

q+
‖v‖q

−

s,q(x,y)

− C3

[
‖u‖p0

s,p(x,y) + ‖v‖q0s,q(x,y) + ‖u‖q0s,p(x,y) + ‖v‖q1s,q(x,y)

]
,

if ‖u‖s,p(x,y) < 1, then

J (u, v) ≥ min{m2, 1}
q+

‖v‖q
−

s,q(x,y) − c1‖v‖q0s,q(x,y) + c2‖v‖q1s,q(x,y) − C4.

Since p+
0 < p−, q+

1 < q− and q+
0 < min{p−, q−}, we get the coercivity of J . Remark 3.2

leads to conclude that J is weakly lower semi-continuous. Hence, there exists (u1, v1) ∈ E
a critical point minimizing J . This provides a solution of problem (1.1).

Now, we prove that (u1, v1) is nontrivial. Indeed, From (M1) we know that the map

t 7→ m(t) = M̂i(t)

t1/θ
is decreasing. Then, for any t0 > 0 such that t > t0, we have

m(t) ≤ m(t0) ≤ C0.

Hence

(3.4) M̂i(t) ≤
M̂i(t0)

t
1/θ
0

t1/θ ≤ C0t
1/θ.

Fix (u0, v0) ∈ E with ‖(u0, v0)‖ = 1. For t ∈ (t0, 1) from (3.4) and (F3), we have

J (tu0, tv0) = M̂1(Is,p(x,y)(tu0)) +

∫
RN

1

p(x)
|tu|p(x) dx+ M̂2(Is,q(x,y)(tv0))

+

∫
RN

1

q(x)
|tv0|q(x) dx−

∫
RN

F (x, tu0, tv0) dx
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≤ C0(Is,p(x,y)(tu0))1/θ +
tp
−

p−

∫
RN
|u0|p(x) dx+ C0(Is,q(x,y)(tv0))1/θ

+
tq
−

q−

∫
RN
|v0|q(x) dx−

∫
RN

tµH(x, u0, v0) dx

≤ C0t
p−
θ

(p−)1/θ

(∫
RN×RN

|u0(x)− u0(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy

)1/θ

+
tp
−

p−

∫
RN
|u0|p(x) dx

+
C0t

q−
θ

(q−)1/θ

(∫
RN×RN

|v0(x)− v0(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy

)1/θ

+
tq
−

q−

∫
RN
|v0|q(x) dx

− tµ
∫
RN

H(x, u0, v0) dxdx.

Since µ < min{p−, q−} < min
{p−
θ ,

q−

θ

}
we can find t > t0 > 0 small enough such that

J (tu0, tv0) < 0, i.e., inf(u,v)∈E J (u, v) < 0. Hence, the obtained solution (u1, v1) of (1.1)

is nontrivial.

Theorem 3.5. Suppose that (M0), (M1), (F0), (F1), (F2) and (F4) are fulfilled. Then,

problem (1.1) has a sequence of solutions {(±un,±vn) : n = 1, 2, . . .} such that J (±un,
± vn) < 0 and J (±un,±vn)→ 0 as n→ +∞.

Proof. Choose g ∈ C∞([0,+∞)],R) such that 0 ≤ g(t) ≤ 1 for t ∈ [0,+∞), and for every

ε > 0, g(t) = 1 for 0 ≤ t ≤ ε/2, g(t) = 0 for t ≥ ε. Consider the functional

H(u, v) = M̂1(Is,p(x,y)(u)) +

∫
RN

1

p(x)
|u|p(x) dx+ M̂2(Is,q(x,y)(v))

+

∫
RN

1

q(x)
|v|q(x) dx− g(‖(u, v)‖E)F(u, v),

we know that H ∈ C1(E,R). To prove Theorem 3.5 it is sufficient to show that H
admits a sequence of nontrivial critical points {(±un,±vn) : n = 1, 2, . . .} such that

H(±un,±vn) < 0 and H(±un,±vn)→ 0 as n→ +∞.

(S1) For ‖(u, v)‖E > max{1, ε}, we have

H(u, v) ≥ min{m1, 1}
p+

‖u‖p
−

s,p(x,y) +
min{m2, 1}

q+
‖v‖q

−

s,q(x,y),

which implies that H(u, v) → +∞ as ‖(u, v)‖E → +∞. Hence H is coercive on E and

thus it is bounded from bellow and the (PS) sequence is bounded. From Lemma 3.1, the

(PS) condition is satisfied. By (F2) it is easy to see that H(−u,−v) = H(u, v).

(S2) Since hi(x) 6= 0 and hi(x) ≥ 0, i = 1, 2, we can find bounded sets Ω1,Ω2 ⊂ RN

such that hi(x) > 0 for x ∈ Ωi, i = 1, 2. Set Ω = Ω1 ∪ Ω2. W
s,p(x,y)
0 (Ω) ×W s,q(x,y)

0 (Ω) is

isomorphic to a subsequence of E, and so it is a subspace of E. For any k, we choose a k-

dimensional linear subspaces Uk of W
s,p(x,y)
0 (Ω) and Vk of W

s,q(x,y)
0 (Ω) such that Uk×Vk ⊂
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C∞0 (Ω) × C∞0 (Ω). As the norms on Uk (respectively Vk) are equivalent each other, there

exists 0 < ρk < min{ε/2, 1} such that (u, v) ∈ Uk × Vk with ‖(u, v)‖E ≤ ρk implies

‖u‖∞ ≤ δ1 and ‖v‖∞ ≤ δ2. Define

S(k)
ρk

= {(u, v) ∈ Uk × Vk : ‖(u, v)‖E = ρk}.

From the compactness of S
(k)
ρk and condition (F4), we conclude that there exist constants

dk > 0 and d′k > 0 such that∫
Ω

h1(x)

p0(x)
|u|p0(x) dx ≥ dk;

∫
Ω

h2(x)

q1(x)
|v|q1(x) dx ≥ d′k, ∀ (u, v) ∈ S(k)

ρk
.

For (u, v) ∈ S(k)
ρk and t ∈ (t0, 1), we have

H(tu, tv) = M̂1

(
Is,p(x,y)(tu)|Ω×Ω

)
+

∫
Ω

1

p(x)
|tu|p(x) dx+ M̂2

(
Is,q(x,y)(tv)|Ω×Ω

)
+

∫
Ω

1

q(x)
|tv|q(x) dx−

∫
Ω
F (x, tu, tv) dx

≤ C0t
p−
θ

(p−)1/θ

(∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy

)1/θ

+
tp
−

p−

∫
Ω
|u|p(x) dx

+
C0t

q−
θ

(q−)1/θ

(∫
Ω×Ω

|v(x)− v(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy

)1/θ

+
tq
−

q−

∫
Ω
|v|q(x) dx

− tp
+
0

∫
Ω

h1(x)

p0(x)
|u|p0(x) dx− tq

+
1

∫
Ω

h2(x)

q1(x)
|v|q1(x) dx

≤ C0t
p−
θ

(p−)1/θ
(ρk)

1/θ +
tp
−

p−
ρk +

C0t
q−
θ

(q−)1/θ
(ρk)

1/θ +
tq
−

q−
ρk − tp

+
0 dk − tq

+
1 d′k.

Since p+
0 < p− < p−

θ and q+
1 < q− < q−

θ , we can find tk ∈ (t0, 1) small enough and εk > 0

such that

H(tku, tkv) ≤ −εk < 0, ∀ (u, v) ∈ S(k)
ρk
,

that is,

H(u, v) < 0, ∀ (u, v) ∈ S(k)
tkρk

.

Therefore, S
(k)
tkρk
⊂ {(u, v) ∈ E : H(u, v) < 0}. We know that γ

(
S

(k)
tkρk

)
= k + 1, then

γ({(u, v) ∈ E : H(u, v) < 0}) ≥ γ
(
S

(k)
tkρk

)
.

Let Ak = {(u, v) ∈ E : H(u, v) < 0}, we have Ak ∈ Γk and sup(u,v)∈Ak J (u, v) <

0. Hence (S1) and (S2) hold. So, by Theorem 2.13 J admits a sequence of criti-

cal points {(±uk,±vk)} such that J (±uk,±vk) = ck < 0, (±uk,±vk) 6= (0, 0) and

limk→∞(±uk,±vk) = (0, 0).

In the following, we will prove that ck → 0 as k → +∞. By the coercivity of J , there

exists a constant R > 0 such that J (u, v) > 0 as ‖(u, v)‖E > R. Taking A ∈ Γk, then
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γ(A) > k. Let Yk and Zk defined in Proposition 2.9 be the subspaces of E. We have

A ∩ Zk 6= 0. Take

βk = sup
(u,v)∈Zk
‖(u,v)‖E≤R

|F(u, v)|,

by Lemma 2.11 we have βk → 0 as k → +∞. When (u, v) ∈ Zk and ‖(u, v)‖E ≤ R, we

have

J (u, v) = Ψ(u, v)−F(u, v) ≥ −F(u, v) ≥ −βk,

and hence ck ≥ −βk, which concludes ck → 0 as k → +∞. This completes the proof of

Theorem 3.5.

3.2. The superliniear case

In this case we suppose that

(F5) p−0 > p+, q−1 > q+ and q−0 > min{p+, q+}.

(F6) F satisfies the Ambrosetti–Rabinowitz condition: There exist η1 >
p+
θ and η2 >

q+
θ

such that

0 < F (x, s, t) ≤ s

η1

∂F

∂s
(x, s, t) +

t

η2

∂F

∂t
(x, s, t).

Theorem 3.6. Let s ∈ (0, 1). Let p, q : RN × RN → (1,+∞) be two continuous variable

exponents with sp+ < N and sq+ < N . If the hypotheses (M0), (M1), (F0), (F5) and (F6)

hold, then the problem (1.1) has at least one nontrivial weak solution.

Lemma 3.7. Let s ∈ (0, 1). Let p, q : RN × RN → (1,+∞) be two continuous variable

exponents with sp+ < N and sq+ < N . Under assumptions hypotheses (M0), (F0) and

(F5), there exist r > 0 and k > 0 such that J (u, v) ≥ k for every (u, v) ∈ E satisfying

‖(u, v)‖E = r.

Proof. From (3.3), we have∫
RN

F (x, u, v) dx ≤ C3

[
‖u‖p0

s,p(x,y) + ‖v‖q0s,q(x,y) + ‖u‖q0s,p(x,y) + ‖v‖q1s,q(x,y)

]
.

Consequently

J (u, v) = M̂1(Is,p(x,y)(u)) +

∫
RN

1

p(x)
|u|p(x) dx+ M̂2(Is,q(x,y)(v))

+

∫
RN

1

q(x)
|v|q(x) dx−F(u, v)

≥ min{m1, 1}
p+

‖u‖p
+

s,p(x,y) +
min{m2, 1}

q+
‖v‖q

+

s,q(x,y)

− C3

[
‖u‖p0

s,p(x,y) + ‖v‖q0s,q(x,y) + ‖u‖q0s,p(x,y) + ‖v‖q1s,q(x,y)

]
.



Fractional (p(·), q(·))-Laplacian System in RN 997

Since p−0 > p+, q−1 > q+ and q−0 > min{p+, q+}, there exist r ∈ (0, 1) and k > 0 such that

J (u, v) ≥ k for every (u, v) ∈ E satisfying ‖(u, v)‖E = r.

Lemma 3.8. Let s ∈ (0, 1). Let p, q : RN × RN → (1,+∞) be two continuous variable

exponents with sp+ < N and sq+ < N . Under assumptions (M0), (M1), (F0) and (F6),

there exists (u0, v0) ∈ E \ {0, 0} such that for ‖(u0, v0)‖E > r we have J(u0, v0) < 0.

Proof. For any t0 > 0 such that t > t0, we have

M̂i ≤
M̂i(t0)

t
1/θ
0

t1/θ ≤ C0t
1/θ.

On the other hand, we claim that the assumption (F6) implies the following inequality [15]

F (x, s, t) ≥ C4

(
|s|η1 + |t|η2

)
− 1, ∀ (x, s, t) ∈ RN × R2.

Choose (u0, v0) ∈ E, u0, v0 > 0 and ‖(u0, v0)‖E > r. It follows that if t > t0 > 0 is large

enough

J (tu0, tv0) = M̂1(Is,p(x,y)(tu0)) +

∫
RN

1

p(x)
|tu0|p(x) dx+ M̂2(Is,q(x,y)(tv0))

+

∫
RN

1

q(x)
|tu0|q(x) dx−

∫
RN

F (x, u0, v0) dx

≤ C0(Is,p(x,y)(tu0))1/θ +
tp

+

p−

∫
RN
|u0|p(x) dx+ C0(Is,q(x,y)(tv0))1/θ

+
tq

+

q−

∫
RN
|v0|q(x) dx− C4

∫
RN

(
|tu0|η1 + |tv0|η2

)
dx− C ′4

≤ C0t
p+

θ

(p−)1/θ

(∫
RN×RN

|u0(x)− u0(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy

)1/θ

+
tp

+

p−

∫
RN
|u0|p(x) dx

+
C0t

q+

θ

(q−)1/θ

(∫
RN×RN

|v0(x)− v0(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy

)1/θ

+
tq

+

q−

∫
RN
|v0|q(x) dx

− C4t
η1

∫
RN
|u0|η1 − C4t

η2

∫
RN
|v0|η2 dx− C ′4.

Since η1 >
p+

θ > p+ and η2 >
q+

θ > q+, we conclude that J (tu0, tv0) < 0 and J (tu0, tv0)→
−∞ as t→∞.

Lemma 3.9. The functional J satisfies the Palais–Smale condition (PS)c for any c ∈ R.

Proof. Let (un, vn) ⊂ E be a sequence satisfying

J (un, vn) ≤ c for some c > 0, and J ′(un, vn)→ 0E∗ as n→∞.
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We will show that (un, vn) is a bounded sequence. We have

c ≥ J (un, vn) = M̂1(Is,p(x,y)(un)) +

∫
RN

1

p(x)
|un|p(x) dx+ M̂2(Is,q(x,y)(vn))

+

∫
RN

1

q(x)
|vn|q(x) dx−

∫
RN

F (x, un, vn) dx

≥ θM1(Is,p(x,y)(un))Is,p(x,y)(un) +
1

p+

∫
RN
|un|p(x) dx

+ θM2(Is,q(x,y)(vn))Is,q(x,y)(vn) +
1

q+

∫
RN
|vn|q(x) dx

−
∫
RN

F (x, un, vn) dx

≥ θ

p+
m1

∫
RN×RN

|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

1

p+

∫
RN
|un|p(x) dx

+
θ

q+
m2

∫
RN×RN

|vn(x)− vn(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy

+
1

q+

∫
RN
|vn|q(x) dx−

∫
RN

F (x, un, vn) dx

On the other hand, we have

〈J ′(un, vn), (un, vn)〉 ≤ εn‖un, vn‖E −→
n→+∞

0.

So

εn
(
‖un‖s,p(x,y) + ‖vn‖s,q(x,y)

)
≥M1(Is,p(x,y)(un))

∫
RN×RN

|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
RN
|un|p(x) dx

+M2(Is,q(x,y)(vn))

∫
RN×RN

|vn(x)− vn(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

∫
RN
|vn|q(x) dx

−
∫
RN

∂F

∂u
(x, un, vn)un dx−

∫
RN

∂F

∂v
(x, un, vn)vn dx.

Thus, by condition (F5), we get

c+ ε ≥
(
θ

p+
m1 −

m1

η1

)∫
RN×RN

|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

(
1

p+
− 1

η1

)∫
RN
|un|p(x) dx

+

(
θ

q+
m2 −

m2

η2

)∫
RN×RN

|vn(x)− vn(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

(
1

q+
− 1

η2

)∫
RN
|vn|q(x) dx

+

∫
RN

(
1

η1

∂F

∂u
(x, un, vn)un +

1

η2

∂F

∂v
(x, un, vn)vn − F (x, un, vn)

)
dx

≥ min

{(
θ

p+
− 1

η1

)
m1,

(
1

p+
− 1

η1

)}
ρs,p(x,y)(un)
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+ min

{(
θ

q+
− 1

η2

)
m2,

(
1

q+
− 1

η2

)}
ρs,q(x,y)(vn)

≥ min

{(
θ

p+
− 1

η1

)
m1,

(
1

p+
− 1

η1

)}
‖un‖p

±

s,p(x,y)

+ min

{(
θ

q+
− 1

η2

)
m2,

(
1

q+
− 1

η2

)}
‖vn‖q

±

s,q(x,y),

where ± = + if ‖ · ‖s,·(x,y) ≤ 1 and ± = − if ‖ · ‖s,·(x,y) ≥ 1. Since η1 > p+

θ > p+

and η2 > q+

θ > q+, we conclude that (un, vn) is bounded in E. Hence, there exists a

subsequence denoted by (un, vn) that converges weakly to (u, v) ∈ E. We will prove that

(un, vn) converges strongly to (u, v). Indeed, we have

〈J ′(un, vn), (un − u, 0)〉

= M1(Is,p(x,y)(un))

×
∫
RN×RN

|un(x)− un(y)|p(x,y)−2(un(x)− un(y))(un(x)− u(x) + un(y)− u(y))

|x− y|N+sp(x,y)
dxdy

+

∫
RN
|un|p(x)−2un(un − u) dx−

∫
RN

∂F

∂u
(x, un, vn)(un − u) dx.

By (F0) we have∫
RN

∂F

∂u
(x, un, vn)(un − u) dx

≤
∫
RN

a1(x)|un|p0(x)−1(un − u) dx+

∫
RN

a2(x)|vn|q0(x)−1(un − u) dx

≤ 2p
+
0 −1

(∫
RN

a1(x)|un − u|p0(x) dx+

∫
RN

a1(x)|u|p0(x)−1(un − u) dx

)
+ 2q

+
0 −1

(∫
RN

a2(x)|vn − v|q0(x)−1(un − u) dx+

∫
RN

a2(x)|v|q0(x)−1(un − u) dx

)
≤ 2p

+
0 −1

(∫
RN

a1(x)|un − u|p0(x) dx+

∫
RN

a1(x)|u|p0(x)−1(un − u) dx

)
+ 2q

+
0 −1

(∫
RN

a2(x)
q0(x)− 1

q0(x)
|vn − v|q0(x) dx+

∫
RN

a2(x)
1

q0(x)
|un − u|q0(x) dx

+

∫
RN

a2(x)|v|q0(x)−1(un − u) dx

)
≤ 2p

+
0 −1

(∫
RN

a1(x)|un − u|p0(x) dx+

∫
RN

a1(x)|u|p0(x)−1(un − u) dx

)
+ 2q

+
0 −1

(
q+

0 − 1

q−0

∫
RN

a2(x)|vn − v|q0(x) dx+
1

q−0

∫
RN

a2(x)|un − u|q0(x) dx

+

∫
RN

a2(x)|v|q0(x)−1(un − u) dx

)
.
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Since un ⇀ u in W s,p(x,y)(RN ), we have
∫
RN a1(x)|u|p0(x)−1(un − u) dx −→

n→+∞
0 and∫

RN a2(x)|v|q0(x)−1(un−u) dx −→
n→+∞

0. Since p0(x) < p∗s(x) and q0(x) < min{p∗s(x), q∗s(x)}

a.e. x ∈ RN . Combining Lemmas 2.6 and 2.7, we conclude that (un) converges strongly

to u in L
p0(x)
a1(x)(R

N ) and in L
q0(x)
a2(x)(R

N ) and (vn) converges strongly to v in L
q0(x)
a2(x)(R

N ) and

so ∫
RN

a1(x)|un − u|p0(x) dx −→
n→+∞

0,

∫
RN

a2(x)|un − u|q0(x) dx −→
n→+∞

0,∫
RN

a2(x)|vn − v|q0(x) dx −→
n→+∞

0.

Consequently

(3.5)

∫
RN

∂F

∂u
(x, un, vn)(un − u) dx −→

n→+∞
0.

Similarly, ∫
RN

∂F

∂u
(x, u, v)(un − u) dx −→

n→+∞
0.

From (3.5) and using the fact that ‖J ′(un, vn)‖E∗ → 0 as n→∞, it is easy to see that

M1(Is,p(x,y)(un))

×
∫
RN×RN

|un(x)− un(y)|p(x,y)−2(un(x)− un(y))(un(x)− u(x) + un(y)− u(y))

|x− y|N+sp(x,y)
dxdy

+

∫
RN
|un|p(x)−2un(un − u) dx −→

n→+∞
0.

On the other hand, since un converges weakly to u in W s,p(x,y)(Ω), we have 〈J ′(u, v),

(un − u, 0)〉 → 0 as n→∞ or

M1(Is,p(x,y)(u))

×
∫
RN×RN

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(un(x)− u(x) + un(y)− u(y))

|x− y|N+sp(x,y)
dxdy

+

∫
RN
|u|p(x)−2u(un − u) dx−

∫
RN

∂F

∂u
(x, u, v)(un − u) dx→ 0 as n→∞,

which implies that

M1(Is,p(x,y)(u))

×
∫
RN×RN

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(un(x)− u(x) + un(y)− u(y))

|x− y|N+sp(x,y)
dxdy

+

∫
RN
|u|p(x)−2u(un − u) dx→ 0 as n→∞.
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Hence,

M1(Is,p(x,y)(un))

×
∫
RN×RN

|un(x)− un(y)|p(x,y)−2(un(x)− un(y))− |u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+sp(x,y)

× (un(x)− u(x) + un(y)− u(y)) dxdy

+
[
M1(Is,p(x,y)(un))−M1(Is,p(x,y)(u))

]
×
∫
RN×RN

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(un(x)− u(x) + un(y)− u(y))

|x− y|N+sp(x,y)
dxdy

+

∫
RN

(
|un|p(x)−2un − |u|p(x)−2u

)
(un − u) dx −→

n→+∞
0.

Using (M1), we can easily obtain that

M̂1(t) ≤ c̃1t
1/θ.

Hence, from (M0), it follows that

m1 ≤M1(t) ≤ M̂1(t) ≤ c̃1

θ1
t

1−θ1
θ1 .

Since {un} ⊂ W s,p(x,y)(RN ) and u ∈ W s,p(x,y)(RN ), by Proposition 2.9, we deduce that

M1(Is,p(x,y)(un)) and M1(Is,p(x,y)(u)) are bounded.

For the continuity of Φu defined by

Φu(ϕ) =

∫
RN×RN

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy,

we obtain it as the same in [7] where the authors have shown that the operator L associated

to the (−∆p(x))
s defined as

L : W
s,p(x,y)
0 −→ (W

s,p(x,y)
0 )∗

u 7−→ L(u) : W
s,p(x,y)
0 −→ R

ϕ 7−→ 〈L(u), ϕ〉

such that

〈L(u), ϕ〉 =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy

is an homeomorphism and in particular is continuous.

Thus, we have[
M1(Is,p(x,y)(un))−M1(Is,p(x,y)(u))

]
×
∫
RN×RN

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(un(x)− u(x) + un(y)− u(y))

|x− y|N+sp(x,y)
dxdy −→

n→+∞
0,
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so that

min{1,m1}‖un − u‖p
+

s,p(x,y)

≤M1(Is,p(x,y)(un))

×
∫
RN×RN

|un(x)− un(y)|p(x,y)−2(un(x)− un(y))− |u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+sp(x,y)

× (un(x)− u(x) + un(y)− u(y)) dxdy

+

∫
RN

(
|un|p(x)−2un − |u|p(x)−2u

)
(un − u) dx −→

n→+∞
0.

Hence, un → u in W s,p(x,y)(RN ). In the same way we show that vn → v in W s,q(x,y)(RN ).

Thus, J satisfies the (PS)c condition.

Proof of Theorem 3.6. The proof of Theorem 3.6 can be deduced from the following ar-

guments:

(1) We have that J is of class C1(E,R) and J ′ is continuous.

(2) In Lemma 3.7, under the hypothesis of Theorem 3.6, we have proved that there exist

r > 0 and k > 0 such that J(u, v) ≥ k for every (u, v) ∈ E satisfying ‖(u, v)‖E = r.

(3) In Lemma 3.8, under the hypothesis of Theorem 3.6, we have proved that there

exists (u, v) ∈ E \ {0, 0} such that for ‖(u, v)‖E > r we have J(u, v) ≤ 0.

(4) In Lemma 3.9, under the hypothesis of Theorem 3.6, we have proved that J satisfies

the Palais–Smale conditions on E.

Therefore, by the Mountain Pass Theorem, we conclude that the functional J has at least

one nontrivial critical point (u, v) in E, which is a weak solution of our problem (1.1).

This achieves the proof.

Theorem 3.10. Let s ∈ (0, 1). Let p, q : RN ×RN → (1,+∞) be two continuous variable

exponents with sp+ < N and sq+ < N . Assume that the assumptions (M0), (M1), (F0),

(F5) and (F6) hold. Then problem (1.1) has a sequence of nontrivial solutions {(un, vn)}
such that

J (un, vn)→ +∞ as n→ +∞.

Proof. It suffices to show that J has an unbounded sequence of critical points. We verify

that J satisfies the conditions of Fountain Theorem. Indeed, for n = 1, 2, 3, . . . set

αn = sup
(u,v)∈Zn
‖(u,v)‖E≤1

∫
RN

a1(x)|u|p0(x) dx, βn = sup
(u,v)∈Zn
‖(u,v)‖E≤1

∫
RN

a2(x)|v|q0(x)−1|u| dx,

γn = sup
(u,v)∈Zn
‖(u,v)‖E≤1

∫
RN

b2(x)|v|q1(x) dx, ξn = αn + βn + γn.
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Then αn, βn, γn > 0 and by Lemma 2.11 we have

αn → 0, βn → 0, γn → 0 and ξn → 0 as n→ +∞.

Let (u, v) ∈ Zn with ‖(u, v)‖E > 1, then

J (u, v) ≥ m1Is,p(x,y)(u) +

∫
RN

1

p(x)
|u|p(x) dx+m2Is,q(x,y)(v) +

∫
RN

1

q(x)
|v|q(x) dx

−
∫
RN

(
a1(x)|u|p0(x) + a2(x)|v|q0(x)−1|u|+ b2(x)|v|q1(x)

)
dx

≥ m1

p+

∫
RN×RN

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

1

p+

∫
RN
|u|p(x) dx

+
m2

q+

∫
RN×RN

|v(x)− v(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

1

q+

∫
RN
|vn|q(x) dx

− αn‖u‖p0

s,p(x,y) − γn‖v‖
q1
s,q(x,y) − βn‖u‖s,p(x,y)‖v‖

q0
s,q(x,y)

≥ min

{
min{m1, 1}

p+
,
min{m2, 1}

q+

}
‖(u, v)‖min{p−,q−}

E

− C5αn‖(u, v)‖p0

E − C6γn‖(u, v)‖q1E − C7βn‖(u, v)‖q0+1
E

≥ min

{
min{m1, 1}

p+
,
min{m2, 1}

q+

}
‖(u, v)‖min{p−,q−}

E − C8ξn‖(u, v)‖ωE ,

where ω = max{p0, q0, q1 + 1}. Put C = min
{min{m1,1}

p+ , min{m2,1}
q+

}
At this stage we fix

rn =

(
C min{p−, q−}

C8ωξn

) 1
ω−min{p−,q−}

→ +∞ as n→ +∞.

Consequently, when (u, v) ∈ Zn and ‖(u, v)‖E = rn, we have

J (u, v) ≥ ω −min{p−, q−}
min{p−, q−}

(
C min{p−, q−}

ω

) ω
ω−min{p−,q−}

(
1

ξn

) min{p−,q−}
ω−min{p−,q−}

.

Since ξn → 0 and ω > max{p−, q−}, we get

inf
(u,v)∈Zn
‖(u,v)‖E=rn

J (u, v)→ +∞ as n→∞.

Hence (A1) is satisfied.

On the other hand, for any (u, v) ∈ Yn with ‖(u, v)‖E = 1 and t > 1, we have

J (tu0, tv0) = M̂1(Is,p(x,y)(tu0)) +

∫
RN

1

p(x)
|tu|p(x) dx+ M̂2(Is,q(x,y)(tv0))

+

∫
RN

1

q(x)
|tv0|q(x) dx−

∫
RN

F (x, u0, v0) dx
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≤ C0(Is,p(x,y)(tu0))1/θ +
tp

+

p−

∫
RN
|u0|p(x) dx+ C0(Is,q(x,y)(tv0))1/θ

+
tq

+

q−

∫
RN
|v0|q(x) dx− C4

∫
RN

(
|tu0|η1 + |tv0|η2

)
dx− C ′4

≤ C0t
p+

θ

(p−)1/θ

(∫
RN×RN

|u0(x)− u0(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy

)1/θ

+
tp

+

p−

∫
RN
|u0|p(x) dx

+
C0t

q+

θ

(q−)1/θ

(∫
RN×RN

|v0(x)− v0(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy

)1/θ

+
tq

+

q−

∫
RN
|v0|q(x) dx

− C4t
η1

∫
RN
|u0|η1 dx+ C4t

η2

∫
RN
|v0|η2 dx− C ′4.

Since η1 >
p+

θ > p+ and η2 >
q+

θ > q+, we conclude that J (tu, tv) → −∞ as t → +∞.

Thus (A2) is satisfied. This ends the proof.
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[25] V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable

Exponents: Variational methods and qualitative analysis, Monographs and Research

Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.

[26] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J.

Global Optim. 46 (2010), no. 4, 543–549.

[27] M.-C. Wei and C.-L. Tang, Existence and multiplicity of solutions for p(x)-Kirchhoff-

type problem in RN , Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 3, 767–781.

[28] X. Xu and Y. An, Existence and multiplicity of solutions for elliptic systems with

nonstandard growth condition in RN , Nonlinear Anal. 68 (2008), no. 4, 956–968.

Elhoussine Azroul and Athmane Boumazourh

Laboratory of Mathematical Analysis and Application, Faculty of Sciences Dhar El

Mahraz, Sidi Mohamed Ben Abdellah University, FEZ, P.O. Box 1796, Atlas 30000 FEZ,

Morocco

E-mail addresses: elhoussine.azroul@gmail.com, athmane.boumazourh@gmail.com

Nguyen Thanh Chung

Department of Mathematics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi,

Quang Binh, Vietnam

E-mail address: ntchung82@yahoo.com


	Introduction
	Preliminaries and basic assumptions
	Main results
	The sublinear case
	The superliniear case


