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Abstract. Time distributed order two-sided space differential equations of arbitrary

order offer a robust approach to modelling complex dynamical systems. In this study,

we describe a scheme for obtaining the numerical solutions of time distributed or-

der multidimensional two-sided space fractional differential equations. The numerical

discretization scheme is a hybrid scheme, comprising a Newton–Cotes quadrature

formula and a spectral collocation method. The time distributed order fractional

differential operator is approximated using the composite Simpson’s rule, and the so-

lution of the resulting differential equation is expressed as a linear combination of

shifted Chebyshev polynomials in all variables. Convergence analysis of the numerical

scheme is presented. Some one- and two-dimensional time distributed order two-sided

space fractional differential equations, such as the fractional advection-dispersion and

diffusion equations, are presented to demonstrate the accuracy and computational ef-

ficiency of the numerical scheme, and numerical solutions are compared with the exact

solutions, where these are available.

1. Introduction

In the past few decades, the number of studies on fractional calculus has grown tremen-

dously owing to the vast amount of physical phenomena that can be modelled using

fractional differential, integral and integrodifferential equations. Several mathematical

models such as diffusion [3,20,22], viscoelasticity [2,13,16,19], growth model [11] and flow

in porous media [7] have been generalized to include fractional derivatives. Fractional

models are, in general non-local, which make them ideal for modelling multi-scale phe-

nomena. Some physical systems are complex and cannot be modelled by a fixed order law,

and so using multiple fixed orders leads to distributed order fractional models. Distributed

order fractional models have been regarded as a robust tool for modelling sophisticated

dynamical systems.
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In this study, we consider a time distributed order two-sided space fractional differential

equation of the form

(1.1)

∫ βu

βl

ρ(β) C0D
β
t u(x, t) dβ = C

0D
α
xu(x, t) + C

xD
α
Lu(x, t) + g(x, t)

with appropriate initial and boundary conditions on the finite spatial interval [0, L] and

temporal domain [0,T], where α, β ∈ R+. Here, C0D
α
x and C

xD
α
L respectively denote the left

and right sided Caputo fractional differential operators defined as [16,19]

C
0D

α
xu(x, t) =

1

Γ(n− α)

∫ x

0

un(x̃, t)

(x− x̃)α+1−n dx̃, x > 0, n ∈ N

and

C
xD

α
Lu(x, t) =

1

Γ(n− α)

∫ L

x

un(x̃, t)

(x̃− x)α+1−n dx̃, x < L, n ∈ N

provided u(x, t) is a continuously differentiable function. The class of fractional differ-

ential equation, as in (1.1), has been proposed to have applications in the description

of anomalous diffusion, advection-dispersion process and relaxation phenomena in which

there is a temporal change in the diffusion exponent. We refer readers to the study in

Cai and Li [4] for the regularity of the solution of a two-sided space fractional differential

equation, and to Stojanović [21] for the regularity of the solution of a distributed order

fractional differential equation.

One of the many challenges in solving distributed order differential equations is the

huge computational cost involved compared to fixed order fractional differential equations.

Among the few studies that have been dedicated to obtaining numerical solutions of time

distributed order fractional partial differential equations are [9,12,14,15]. In Hu et al. [10],

an implicit difference method was used to solve a one-dimensional differential equation of

the form (1.1). A literature search reveals no studies where a pseudo-spectral method

has been applied to time distributed order multidimensional two-sided space fractional

differential equations. For this reason, we propose a pseudo-spectral numerical solution

for this class of fractional differential equations. We consider equations with smooth and

non-smooth solutions.

This study presents a numerical scheme to approximate the solution of (1.1) by ap-

proximating the integral using Simpson’s rule. This leads to time multi-term fractional

order two-sided space fractional differential equation which is approximated in terms of

first kind shifted Chebyshev polynomials interpolated using Gauss–Lobatto quadrature.

We illustrate the method using carefully chosen examples and compare the numerical

results with exact solutions where available.
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2. The numerical method

This section presents the numerical method of solution for (1.1). The section is divided into

several subsections which describe the quadrature rule and the numerical discretization

method used in approximating arbitrary order derivatives in the time multi-term two-sided

space fractional differential equations.

2.1. Quadrature rule: Simpson’s 1/3 rule

We approximate the distributed order derivative as a finite sum by discretizing the interval

[βl, βu] using the points βl = β0 < β1 < · · · < βQ = βu and define ∆β = (βu − βl)/Q,

where the points are evenly spaced defined as βe = βl + e∆β, e = 0, 1, 2, . . . , Q − 1, Q.

Then using the Simpson’s 1/3 quadrature formula, we have

∫ βu

βl

ρ(β) C0D
β
t u(x, t) dβ =

∆β

3

[
ρ(β0) C0D

β0
t u(x, t) + 4

Q/2∑
e=1

ρ(β2e−1) C0D
β2e−1

t u(x, t)

+ 2

Q/2−1∑
e=1

ρ(β2e)
C
0D

β2e
t u(x, t) + ρ(βQ) C0D

βQ
t u(x, t)

]
.

The time distributed order two-sided space fractional differential equation (1.1) is now

transformed into a time multi-term two-sided space fractional differential equation

∆β

3

[
ρ(β0) C0D

β0
t u(x, t) + ρ(βQ) C0D

βQ
t u(x, t) + 4

Q/2∑
e=1

ρ(β2e−1) C0D
β2e−1

t u(x, t)

+ 2

Q/2−1∑
e=1

ρ(β2e)
C
0D

β2e
t u(x, t)

]
+O((∆β)2)

= C
0D

α
xu(x, t) + C

xD
α
Lu(x, t) + g(x, t).

(2.1)

Next, we approximate the functions in (2.1) and their derivatives in terms of the first kind

shifted Chebyshev polynomials.

2.2. First kind Chebyshev approximation

Definition 2.1. [1] The first kind Chebyshev polynomials are eigenvalue solutions of

the Sturm–Liouville problem with weight function 1/
√

1− x2. Considering a change of

variable [−1, 1] 7→ [0, L], the shifted form of the polynomials is defined in series form as

TL,n(x) = n

n∑
j=0

(−1)n−j(n+ j − 1)!22j

(n− j)!(2j)!Lj
xj = n

n∑
j=0

(n+ j − 1)!22j

(n− j)!(2j)!Lj
(x− L)j .
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We approximate the solution of (2.1) as a linear combination of the shifted first kind

Chebyshev polynomials in both variables as

u(x, t) ≈ U(x, t) =

Nx∑
n1=0

Nt∑
n2=0

Ûn1,n2TL,n1(x)TT,n2(t), x ∈ [0, L], t ∈ [0,T],

where Ûn1,n2 satisfies the L2 orthogonality condition written in discrete form as

Ûn1,n2 =
1

hn1

1

hn2

Nx∑
j1=0

Nt∑
j2=0

$j1$j2U(xj1 , tj2)TL,n1(xj1)TT,n2(tj2).

Here, hn = cnπ/2 with c0 = 2, cn = 1, ∀n ≥ 1 and the Christoffel number $j = π/cjN

with c0 = cN = 2, cj = 1, ∀ 1 ≤ j ≤ N − 1. Therefore U(x, t) is given as

U(x, t) =

Nx∑
j1=0

Nt∑
j2=0

[
$j1$j2

Nx∑
n1=0

Nt∑
n2=0

1

hn1

1

hn2

TL,n1(xj1)TL,n1(xp1)TT,n2(tj2)TT,n2(tp2)

]
× U(xj1 , tj2), p1 = 0, 1, . . . , Nx, p2 = 0, 1, . . . , Nt.

Lemma 2.2. [8, 17, 18] Let α > 0 and x > 0. Suppose that u(x, t) is a continuously

differentiable function, then the approximation of the left sided derivative with respect to

x is given as

C
0D

α
xU(x, t)

=

Nx∑
j1=0

Nt∑
j2=0

[
$j1$j2

Nx∑
n1=0

Nt∑
n2=0

Nx∑
k=0

1

hn1

1

hn2

TL,n1(xj1)TT,n2(tj2)TT,n2(tp2) lD
(α)
n1,k

TL,k(xp1)

]
× U(xj1 , tj2),

where

lD
(α)
n1,k

= n1

n1∑
j1=0

(−1)n1−j1(n1 + j1 − 1)!22j1

(n1 − j1)!(2j1)!Lj1
Γ(j1 + 1)

Γ(j1 − α+ 1)
qj1,k,

and qj1,k = 0 for j1 = 0, 1, . . . , dαe − 1 and

qj1,k =
k
√
π

hk

k∑
r=0

(−1)k−r(k + r − 1)!22r

(k − r)!(2r)!
Lj1−α

Γ(j1 − α+ r + 1/2)

Γ(j1 − α+ r + 1)

for j1 = dαe, dαe+ 1, . . . , N , k = 0, 1, . . . , N .

The approximation in the above lemma can also be used for the temporal fractional

derivatives.
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Lemma 2.3. For α > 0 and x < L, and if u(x, t) is a smooth function, the right sided

derivative of arbitrary order is discretized as

C
xD

α
LU(x, t)

=

Nx∑
j1=0

Nt∑
j2=0

[
$j1$j2

Nx∑
n1=0

Nt∑
n2=0

Nx∑
k=0

1

hn1

1

hn2

TL,n1(xj1)TT,n2(tj2)TT,n2(tp2) rD
(α)
n1,k

TL,k(xp1)

]
× U(xj1 , tj2).

Here,

rD
(α)
n1,k

= n1

n1∑
j1=0

(−1)j1(n1 + j1 − 1)!22j1

(n1 − j1)!(2j1)!Lα
Γ(j1 + 1)

Γ(j1 − α+ 1)

× 2k

πck

k∑
r=0

(−1)r(k + r − 1)!22r

(k − r)!(2r)!

√
πΓ(j1 − α+ r + 1/2)

Γ(j1 − α+ r + 1)
.

The discretizations in (2.1), Lemmas 2.2 and 2.3 lead to a linear algebraic system which

is evaluated using shifted Gauss–Lobatto quadrature. This can be extended to fractional

differential equations in three variables.

3. Space of fractional derivatives and convergence analysis

Here, we give the convergence analysis of the numerical discretization scheme described

above. To this end, we define the domain ϑ = τ×χ, where τ = [0,T] and χ = [0, L]× [0, L],

and the L2
w(ϑ) norm defined as ‖ · ‖ϑ. We introduce the fractional Sobolev space Hβ

w(ϑ),

β ≥ 0 defined as

Hβ
w(ϑ) = {u ∈ L2

w(ϑ) : CDβu ∈ L2
w(ϑ)}.

Given α > 0, we define the semi-norm |u|l,α and associated norm ‖u‖l,α respectively

as [23]

|u|l,α =
(
‖C0Dα

x‖2L2
w(ϑ)

)1/2
and ‖u‖l,α =

(
‖u‖2L2

w(ϑ) + |u|2l,α
)1/2

,

and the semi-norm |u|r,α and associated norm ‖u‖r,α respectively as

|u|r,α =
(
‖CxDα

L‖2L2
w(ϑ)

)1/2
and ‖u‖r,α =

(
‖u‖2L2

w(ϑ) + |u|2r,α
)1/2

.

Lemma 3.1. [5,6] Let u ∈ Hn
w(τ) and PN be the orthogonal projector into space of shifted

Chebyshev polynomials up to degree N + 1, then we have the following estimates

‖u− PNu‖Hk
w(τ) ≤ CN2k−n‖u‖Hn

w(τ),

‖u− PNu‖L2
w(τ) ≤ CN−m‖u‖Hn

w(τ)

for k and n real numbers, such that 0 ≤ k ≤ n and C, a positive constant independent of

N .
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Lemma 3.2. [6] For u ∈ Hm,n
w (ϑ), m,n ≥ 0, we have

‖u− PN,Ntu‖L2
w(ϑ) ≤ C

(
N−nt ‖u‖H0,n

w (ϑ)
+N−m‖u‖

Hm,0
w (ϑ)

)
.

The exact solution of (1.1) is

∆β

3

[
ρ(β0) C0D

β0
t u(x, t) + ρ(βQ) C0D

βQ
t u(x, t) + 4

Q/2∑
e=1

ρ(β2e−1) C0D
β2e−1

t u(x, t)

+ 2

Q/2−1∑
e=1

ρ(β2e)
C
0D

β2e
t u(x, t)

]
+O((∆β)2)

= C
0D

α
xu(x, t) + C

xD
α
Lu(x, t) + g(x, t)

(3.1)

provided u(x, t) is regular with respect to all β ∈ [β0, βQ]. The numerical approximation

scheme is

∆β

3

[
ρ(β0) C0D

β0
t U(x, t) + ρ(βQ) C0D

βQ
t U(x, t) + 4

Q/2∑
e=1

ρ(β2e−1) C0D
β2e−1

t U(x, t)

+ 2

Q/2−1∑
e=1

ρ(β2e)
C
0D

β2e
t U(x, t)

]
= C

0D
α
xU(x, t) + C

xD
α
LU(x, t) +G(x, t).

(3.2)

Theorem 3.3. Let u(x, t) be the exact solution of (1.1) and U(x, t) be the solution given

by the numerical scheme, such that u ∈ Hm,n
w (ϑ). Then, there exists a positive constant

C independent of ∆β, N and Nt such that

‖u− U‖L2
w(ϑ) ≤ C

(
(∆β)4 +N2β0−n

t ‖ξ‖0,n +N
2βQ−n
t ‖ξ‖0,n +

Q/2∑
e=1

N
2β2e−1−n
t ‖ξ‖0,n

+

Q/2−1∑
e=1

N2β2e−n
t ‖ξ‖0,n +N2α−m‖ξ‖m,0 +N−m‖u‖m,0 +N−nt ‖u‖0,n

)
.

Proof. To prove this result, define ũ = PN,Ntu, ξ = ũ−U and note that g = G. Subtracting

(3.2) from (3.1) yields the following error equation

∆β

3

[
ρ(β0) C0D

β0
t (u− U) + ρ(βQ) C0D

βQ
t (u− U) + 4

Q/2∑
e=1

ρ(β2e−1) C0D
β2e−1

t (u− U)

+ 2

Q/2−1∑
e=1

ρ(β2e)
C
0D

β2e
t (u− U)

]
+O((∆β)2)

= C
0D

α
x(u− U) + C

xD
α
L (u− U).

(3.3)
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Projecting (3.3) into the space of shifted Chebyshev polynomials gives

∆β

3
ρ(β0) C0D

β0
t ξ +

∆β

3
ρ(βQ) C0D

βQ
t ξ +

4∆β

3

Q/2∑
e=1

ρ(β2e−1) C0D
β2e−1

t ξ

+
2∆β

3

Q/2−1∑
e=1

ρ(β2e)
C
0D

β2e
t ξ

= (C0D
α
x + C

xD
α
L )ξ + ε+O((∆β)2),

(3.4)

where

ε = −∆β

3

[
ρ(β0) C0D

β0
t (u− ũ) + ρ(βQ) C0D

βQ
t (u− ũ) + 4

Q/2∑
e=1

ρ(β2e−1) C0D
β2e−1

t (u− ũ)

+ 2

Q/2−1∑
e=1

ρ(β2e)
C
0D

β2e
t (u− ũ)

]
+ (C0D

α
x + C

xD
α
L )(u− ũ).

Applying Young’s inequality and properties of the Sobolev norm on the left-hand side

of (3.4), we have

∥∥∥∥∆β

3
ρ(β0) C0D

β0
t ξ +

∆β

3
ρ(βQ) C0D

βQ
t ξ +

4∆β

3

Q/2∑
e=1

ρ(β2e−1) C0D
β2e−1

t ξ

+
2∆β

3

Q/2−1∑
e=1

ρ(β2e)
C
0D

β2e
t ξ

∥∥∥∥
L2
w(ϑ)

≤
∥∥∥∥∆β

3
ρ(β0) C0D

β0
t ξ

∥∥∥∥
L2
w(ϑ)

+

∥∥∥∥∆β

3
ρ(βQ) C0D

βQ
t ξ

∥∥∥∥
L2
w(ϑ)

+

∥∥∥∥4∆β

3

Q/2∑
e=1

ρ(β2e−1) C0D
β2e−1

t ξ

∥∥∥∥
L2
w(ϑ)

+

∥∥∥∥2∆β

3

Q/2−1∑
e=1

ρ(β2e)
C
0D

β2e
t ξ

∥∥∥∥
L2
w(ϑ)

≤ C
(
N2β0−n
t ‖ξ‖0,n +N

2βQ−n
t ‖ξ‖0,n +

Q/2∑
e=1

N
2β2e−1−n
t ‖ξ‖0,n +

Q/2−1∑
e=1

N2β2e−n
t ‖ξ‖0,n

)
.

(3.5)

Estimating the first term on the right-hand side of (3.4) gives

(3.6)
∥∥(C0D

α
x + C

xD
α
L )ξ
∥∥
L2
w(ϑ)
≤ CN2α−m‖ξ‖m,0,

and for the second term, we get

(3.7) ‖ε‖L2
w(ϑ) ≤ C

(
N−m‖u‖m,0 +N−nt ‖u‖0,n

)
.

Applying the triangle inequality and substituting (3.5)–(3.7) into (3.4) yields

‖u− U‖L2
w(ϑ) = ‖ξ + ε‖L2

w(ϑ) ≤ ‖ξ‖L2
w(ϑ) + ‖ε‖L2

w(ϑ)
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≤ C
(

(∆β)4 +N2β0−n
t ‖ξ‖0,n +N

2βQ−n
t ‖ξ‖0,n +

Q/2∑
e=1

N
2β2e−1−n
t ‖ξ‖0,n

+

Q/2−1∑
e=1

N2β2e−n
t ‖ξ‖0,n +N2α−m‖ξ‖m,0 +N−m‖u‖m,0 +N−nt ‖u‖0,n

)
,

which completes the proof.

4. Numerical examples

In this section, we experiment with the numerical scheme described earlier with some time

distributed order two-sided space fractional partial differential equations. We consider

both one- and two-spatial dimensional two-sided space differential equations of arbitrary

orders. In the examples, we consider the fractional advection-dispersion and fractional

diffusion equations. The accuracy of the method is investigated by comparing the exact

solution of these equations with obtained numerical solutions. The results are presented

in form of tables and graphs. The results emphasize computational efficiency in terms of

CPU time and accuracy which is measured in terms of the absolute difference between the

exact and numerical solutions. The error is defined as

E = ‖u(xi, tk)− U(xi, tk)‖,

where u and U respectively represent the exact and numerical solutions. We define the

order of convergence as

Order =
log(‖E(N1)‖∞/‖E(N2)‖∞)

log(N2/N1)
,

where N1 6= N2. The numerical scheme was implemented using the Python 3.6 program-

ming language on the Spyder ide run on a computer with Intel Core i5, 7th gen, CPU

@ 2.50 GHz and 8 GB DDR4 installed RAM.

Example 4.1. [10] We consider the one dimensional time distributed order two-sided

space fractional advection-dispersion equation∫ 1

0
Γ(3− β) C0D

β
t u(x, t) dβ = −∂u(x, t)

∂x
+

1

2
C
0D

α
xu(x, t) +

1

2
C
xD

α
1 u(x, t) + g(x, t)

with 1 ≤ α < 2 and boundary conditions

u(x, t)|∂Ω = 0; Ω = [0, 1], t ∈ [0,T],

and initial condition u(x, 0) = 0. If we assume that the exact solution that satisfies the

equation is u(x, t) = t2x2(1− x)2, then

g(x, t) = g1(x, t) + g2(x, t) + g3(x, t) + g4(x, t),
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where

g1(x, t) =
2x2(1− x)2(t2 − t)

ln t
,

g2(x, t) = 2x2(1− x)(1− 2x)t2,

g3(x, t) = −x
2−αt2[(3− α)(4− α)− 6(4− α)x+ 12x2]

Γ(5− α)
,

g4(x, t) = −(1− x)2−αt2[(3− α)(4− α)− 6(4− α)(1− x) + 12(1− x)2]

Γ(5− α)
.

Tables 4.1, 4.2 and 4.3 show the maximum absolute errors and computational time (in

seconds) for Example 4.1 for different values of Nx, Nt and Q respectively. In Table 4.1,

we present the order of convergence with respect to change in Nx for α = 1.2 and 1.8,

and we can see the geometric rate of convergence of the numerical scheme. The results

show that the method is computationally accurate and efficient. In Tables 4.1 and 4.2,

we can see that accuracy improves as the number of terms (both space and time) in the

Chebyshev expansion increases.

α = 1.2 α = 1.8

Nx ‖E‖∞ Order CPU time (secs) ‖E‖∞ Order CPU time (secs)

2 0.04356 − 1.2176 0.01581 − 1.3592

4 0.00809 2.4288 1.1686 0.00689 1.1983 1.6072

8 9.0135× 10−4 3.1659 1.4856 0.00054 3.6735 1.6421

16 2.8783× 10−5 6.7067 1.6756 1.1027× 10−5 5.6138 2.2679

Table 4.1: Maximum errors, order of convergence and CPU time for different values of Nx

with α = 1.2, α = 1.8, Nt = 10, Q = 32 and T = 0.99 for Example 4.1.

α = 1.3 α = 1.9

Nt ‖E‖∞ CPU time (secs) ‖E‖∞ CPU time (secs)

2 0.00278 0.0778 0.00184 0.0654

4 5.4704× 10−5 0.2430 4.2668× 10−5 0.1729

6 5.3122× 10−5 0.2276 4.1648× 10−5 0.2679

8 5.3082× 10−5 0.7049 4.1622× 10−5 0.6553

10 5.3146× 10−5 1.1849 4.1654× 10−5 1.1606

Table 4.2: Maximum errors and CPU time for different values of Nt with α = 1.3, α = 1.9,

Nx = 10, Q = 32 and T = 0.99 for Example 4.1.
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However, in Table 4.3, it can be seen that with 2 equal subintervals in Simpson’s rule,

accurate results are obtained. Obviously, it is expected that computation would become

more expensive as the number of intervals in the quadrature formula and number of spatial

and temporal grid points increase. This can be seen from the increasing CPU time as the

quantities (Nx, Nt, Q) increase. Figure 4.1 shows the exact and numerical solutions of

Example 4.1 at t = 1.5 and 2. It can be noted that the exact solutions are in agreement

with the numerical approximations.

α = 1.3 α = 1.9

Q ‖E‖∞ CPU time (secs) ‖E‖∞ CPU time (secs)

2 5.3148× 10−5 0.1311 4.1692× 10−5 0.1589

4 5.3146× 10−5 0.1904 4.1656× 10−5 0.2746

8 5.3146× 10−5 0.3028 4.1654× 10−5 0.3129

16 5.3146× 10−5 0.5816 4.1654× 10−5 0.8234

32 5.3146× 10−5 1.2644 4.1654× 10−5 1.0751

Table 4.3: Maximum errors and CPU time for different values of Q with α = 1.3, α = 1.9,

Nx = 10, Nt = 10 and T = 0.99 for Example 4.1.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.00

0.05

0.10

0.15

0.20

0.25

u(
x,

t)

t=2

t=1.5

Numerical
Exact

Figure 4.1: Numerical and exact solutions of Example 4.1 at t = 1.5, 2 with Nt = Nx = 15,

Q = 32 and α = 1.5.

Example 4.2. Consider the two-sided space fractional diffusion equation with time frac-

tional distributed order∫ 2

0

Γ(6− β)

120
C
0D

β
t u(x, t) dβ =

1

2
C
0D

α
xu(x, t) +

1

2
C
xD

α
1 u(x, t) + g(x, t), 1 ≤ α ≤ 2

with exact solution u(x, t) = t5x2(1− x)2, such that the boundary conditions are given as

u(x, t)|∂Ω = 0; Ω = [0, 1], t ∈ [0,T],
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initial conditions given by

u(x, 0) = ut(x, 0) = 0, x ∈ Ω,

and

g(x, t) = g1(x, t) + g2(x, t) + g3(x, t), g1(x, t) =
x2(1− x)2(t5 − t3)

ln t
,

g2(x, t) = −x
2−αt5[(3− α)(4− α)− 6(4− α)x+ 12x2]

Γ(5− α)
,

g3(x, t) = −(1− x)2−αt5[(3− α)(4− α)− 6(4− α)(1− x) + 12(1− x)2]

Γ(5− α)
.

In Tables 4.4, 4.5 and 4.6, we present the maximum error and computational time for

Example 4.2 for different values of Nx, Nt and Q respectively, and the convergence order

is presented in Table 4.4.

α = 1.2 α = 1.8

Nx ‖E‖∞ Order CPU time (secs) ‖E‖∞ Order CPU time (secs)

2 0.04212 − 1.2820 0.01532 − 1.3556

4 0.00783 2.4293 1.2753 0.00649 1.2391 1.1975

8 6.2391× 10−4 3.6478 1.2452 0.00063 3.3648 1.5205

16 1.0245× 10−5 5.9283 1.5589 1.0838× 10−5 5.8612 1.5520

Table 4.4: Maximum errors, order of convergence and CPU time for different values of Nx

with α = 1.2, α = 1.8, Nt = 10, Q = 32 and T = 0.99 for Example 4.2.

α = 1.2 α = 1.8

Nt ‖E‖∞ CPU time (secs) ‖E‖∞ CPU time (secs)

2 0.04700 0.2015 0.01346 0.0658

4 0.00239 0.1227 0.00093 0.1107

6 8.1716× 10−5 0.4807 0.00014 0.1845

8 8.1689× 10−5 0.4049 0.00014 0.4408

10 8.1689× 10−5 0.8637 0.00014 0.9845

Table 4.5: Maximum errors and CPU time for different values of Nt with α = 1.2, α = 1.8,

Nx = 10, Q = 32 and T = 1.2 for Example 4.2.

The results show that the numerical method gives accurate results. The computational

efficiency of the numerical scheme in terms of CPU time is also given. The maximum

computational time is approximately 1.2s, which is the time required to solve the fractional
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differential equation with Nx = Nt = 10 terms of the shifted Chebyshev polynomials and

approximate the distributed order with 32 intervals of Simpson’s rule. In Figure 4.2, the

numerical and exact solutions of Example 4.2 for t = 0.8, 1.36, 1.6 are shown to be in

agreement.

α = 1.2 α = 1.8

Q ‖E‖∞ CPU time (secs) ‖E‖∞ CPU time (secs)

2 8.1659× 10−5 0.1626 0.00014 0.1526

4 8.1684× 10−5 0.1766 0.00014 0.2244

8 8.1689× 10−5 0.2683 0.00014 0.2773

16 8.1689× 10−5 0.5156 0.00014 0.8082

Table 4.6: Maximum errors and CPU time for different values of Q with α = 1.2, α = 1.8,

Nx = 10, Nt = 10 and T = 1.2 for Example 4.1.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0
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0.2

0.3

0.4
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t)

t=1.6

t=1.36

t=0.8

Numerical
Exact

Figure 4.2: Approximate and exact solutions of Example 4.2 at t = 0.8, 1.36, 1.6 with

Nt = 16, Nx = 15, Q = 32 and α = 1.4.

Example 4.3. In this example, we consider a two dimensional time distributed order

two-sided space fractional diffusion equation with constant coefficients∫ 1

0
Γ(3− β) C0D

β
t u dβ =

1

2

[
C
0D

α1
x u+ C

xD
α1
1 u+ C

0D
α2
y u+ C

yD
α2
1 u
]

+ g(x, y, t)

whose exact solution is assumed to be u(x, y, t) = t2x2(1 − x)2y2(1 − y)2, such that the

boundary condition is given as

u(x, y, t)|∂Ω = 0,

and initial condition

u(x, y, 0) = 0,

where Ω is the rectangular domain [0, 1]× [0, 1]. In this case the function

g(x, y, t) = g1(x, y, t) + g2(x, y, t) + g3(x, y, t) + g4(x, y, t) + g5(x, y, t),
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where

g1(x, y, t) =
2x2(1− x)2y2(1− y)2(t2 − t)

ln t
,

g2(x, y, t) = −x
2−α1t2y2(1− y)2[(3− α1)(4− α1)− 6(4− α1)x+ 12x2]

Γ(5− α1)
,

g3(x, y, t) = −(1− x)2−α1t2y2(1− y)2[(3− α1)(4− α1)− 6(4− α1)(1− x) + 12(1− x)2]

Γ(5− α1)
,

g4(x, y, t) = −y
2−α2t2x2(1− x)2[(3− α2)(4− α2)− 6(4− α2)y + 12y2]

Γ(5− α2)
,

g5(x, y, t) = −(1− y)2−α2t2x2(1− x)2[(3− α2)(4− α2)− 6(4− α2)(1− y) + 12(1− y)2]

Γ(5− α2)
.

In Table 4.7, we show the dynamics of the absolute error norms when the length of

the time domain [0,T] is varied. The number of grid points in the spatial variables (Nx

and Ny) are kept constant at Nx = Ny = 15 and the temporal grid points at Nt = 10. We

used 32 equal subintervals for the quadrature formula. We also report the computational

time, which was used as a measure of the efficiency of the numerical scheme.

α1 = α2 = 1.5 α1 = α2 = 1.9

T ‖E‖∞ CPU time (secs) ‖E‖∞ CPU time (secs)

0.5 5.0793× 10−7 3.3520 5.3510× 10−8 3.3909

1.2 3.1589× 10−6 3.3291 3.1941× 10−7 3.4827

1.9 8.1299× 10−6 3.4079 8.1058× 10−7 3.5286

2.6 1.5442× 10−5 3.4996 1.5284× 10−6 3.4398

3.3 2.5106× 10−5 3.4538 2.4736× 10−6 3.3391

4.0 3.7131× 10−5 3.4428 3.6467× 10−6 3.4458

Table 4.7: Absolute error norms and CPU time obtained from the approximation of

Example 4.3 for different time intervals [0,T] with Nx = Ny = 15, Nt = 10 and Q = 32.

Table 4.7 shows that the orders of magnitude of the errors are small indicating that

accurate results are obtained for this example. However, the accuracy diminishes as the

length of the time interval [0,T] increases. Although, the accuracy of the scheme dimin-

ishes for increasing length of time interval, the effect on CPU time is negligible, putting the

CPU time at approximately 3.4142 s and 3.4378 s for α1 = α2 = 1.5 and α1 = α2 = 1.9

respectively. In Table 4.8, we present the infinity error norm, convergence order and

computational time with respect to change in Nx and Ny for α1 = α2 = {1.2, 1.8} for

Example 4.3. Figure 4.3 shows the numerical solution of Example 4.3 for t = 5, 10 and

α1 = α2 = 1.5 with Nx = Ny = 15, Nt = 10 and Q = 32. The corresponding error
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distribution over the spatial domain [0, 1] × [0, 1] are shown in Figure 4.4. These surface

plots show that the numerical scheme is accurate on the entire spatial domain.

α1 = α2 = 1.2 α1 = α2 = 1.8

Nx = Ny ‖E‖∞ Order CPU time (secs) ‖E‖∞ Order CPU time (secs)

2 0.00298 − 1.1017 0.00105 − 1.2632

4 0.00059 2.3365 1.3942 0.00033 1.6699 1.6317

8 7.3152× 10−5 3.0117 1.3342 1.2885× 10−5 4.6787 1.7981

16 9.8584× 10−7 6.2134 3.8784 3.5353× 10−7 5.1877 5.5946

Table 4.8: Maximum errors, order of convergence and CPU time for different values of

Nx, Ny with α1 = α2 = 1.2, α = 1.8, Nt = 10, Q = 32 and T = 0.99 for Example 4.3.
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Figure 4.3: Approximate solutions obtained for Example 4.3 for α1 = α2 = 1.5, Nx =

Ny = 15 and Nt = 10 at different values of t.
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Figure 4.4: Error distribution for Example 4.3 on the spatial domain [0, 1] × [0, 1] for

α1 = α2 = 1.5 with Nx = Ny = 15 and Nt = 10 at different values of t.
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Example 4.4. Consider the two dimensional time distributed order two-sided space frac-

tional diffusion equation∫ 1

0
Γ(7/2− β) C0D

β
t u dβ =

1

2

[
C
0D

α1
x u+ C

xD
α1
1 u+ C

0D
α2
y u+ C

yD
α2
1 u
]

+ g(x, y, t)

with exact solution u(x, y, t) = t
5
2x2(1− x)2y2(1− y)2. The initial condition is given as

u(x, y, 0) = 0, x, y ∈ [0, 1]× [0, 1],

and boundary conditions as

u(x, y, t)|∂Ω = 0, t ∈ [0,T], Ω = [0, 1]× [0, 1].

The function g(x, y, t) is defined by

g(x, y, t) = g1(x, y, t) + g2(x, y, t) + g3(x, y, t) + g4(x, y, t) + g5(x, y, t),

g1(x, y, t) =
15
√
πx2(1− x)2y2(1− y)2(t− 1)t

3
2

8 ln t
,

g2(x, y, t) = −x
2−α1t

5
2 y2(1− y)2[(3− α1)(4− α1)− 6(4− α1)x+ 12x2]

Γ(5− α1)
,

g3(x, y, t) = −(1− x)2−α1t
5
2 y2(1− y)2[(3− α1)(4− α1)− 6(4− α1)(1− x) + 12(1− x)2]

Γ(5− α1)
,

g4(x, y, t) = −y
2−α2t

5
2x2(1− x)2[(3− α2)(4− α2)− 6(4− α2)y + 12y2]

Γ(5− α2)
,

g5(x, y, t) = −(1− y)2−α2t
5
2x2(1− x)2[(3− α2)(4− α2)− 6(4− α2)(1− y) + 12(1− y)2]

Γ(5− α2)
.

Figure 4.5 shows the evolution of the numerical solutions and corresponding error

distribution on the spatial domain for Example 4.4 for different time levels with α1 =

α2 = 1.4, Nx = Ny = 15, Nt = 12 and Q = 32. The surface plots of the error on the

domain x, y ∈ [0, 1]× [0, 1] show that the numerical solutions are accurate at every points

of x and y for all values of t presented. Table 4.9 shows the variation of the maximum

error norm for different length of time interval [0,T]. The computational time for each

time interval are also obtained. The table shows that the numerical results are accurate

for all time interval considered. However, as in the case of Example 4.3 (Table 4.7), the

order of magnitude of the errors reduces as the length of the time interval increases, but

the effect on computational time is trivial. The CPU times are respectively averaged at

3.3675s and 3.4654s for α1 = α2 = 1.2 and α1 = α2 = 1.7. In Table 4.10, we present the

error norm, order of convergence and computational time with respect to change in Nx

and Ny for α1 = α2 = {1.2, 1.8} for Example 4.4.
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Figure 4.5: Graphs of numerical solution and error distribution on the spatial domain

[0, 1]× [0, 1] for Example 4.4 with α1 = α2 = 1.4, Nx = Ny = 15 and Nt = 12 at different

values of t.
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α1 = α2 = 1.2 α1 = α2 = 1.7

T ‖E‖∞ CPU time (secs) ‖E‖∞ CPU time (secs)

0.5 1.6666× 10−7 3.4308 2.1362× 10−7 3.5734

1.2 1.8109× 10−6 3.2503 2.1005× 10−6 3.5425

1.9 6.1596× 10−6 3.3480 6.8529× 10−6 3.2892

2.6 1.4079× 10−5 3.4857 1.5287× 10−5 3.4667

3.3 2.6287× 10−5 3.1785 2.8072× 10−5 3.2513

4.0 4.3405× 10−5 3.5116 4.5789× 10−5 3.6692

Table 4.9: Maximum error norms and CPU time obtained from the approximation of

Example 4.4 for different time intervals [0,T] with Nx = Ny = 15, Nt = 10 and Q = 32.

α1 = α2 = 1.2 α1 = α2 = 1.8

Nx = Ny ‖E‖∞ Order CPU time (secs) ‖E‖∞ Order CPU time (secs)

2 0.00279 − 1.1691 0.00100 − 1.2043

4 0.00059 2.2415 1.4967 0.00033 1.5995 1.8864

8 6.8054× 10−5 3.1159 1.5094 6.2492× 10−5 4.7234 1.3505

16 8.3009× 10−7 6.3573 4.2552 7.0864× 10−7 6.4625 4.0479

Table 4.10: Maximum errors, order of convergence and CPU time for different values of

Nx, Ny with α1 = α2 = 1.2, α = 1.8, Nt = 10, Q = 32 and T = 0.99 for Example 4.4.

Example 4.5. Consider a one-dimensional time distributed two-sided space fractional

differential equation∫ 1

0
Γ(7/2− β) C0D

β
t u dβ = C

0D
α1
x u+ C

xD
α
2 u+ g(x, t)

with a non-smooth exact solution u(x, t) = (xt(2 − x))5/2, and initial and boundary

conditions are given respectively as

u(x, 0) = 0, x ∈ [0, 2] and u(x, t)|∂Ω = 0, t ∈ [0,T], Ω = [0, 2].

In Example 4.5, we assume that the analytical solution u(x, t) = ((2x − x2)t)5/2 /∈
C3([0, 2]), which is a three times continuously differentiable function at the spatial end-

points. Table 4.11 shows the maximum errors, convergence order and computational time

for different values of Nt for Example 4.5, while Table 4.12 presents the maximum error for

different values of Nx. Although, the solution does not satisfy the smoothness assumption

in the spatial dimension, the numerical result is computationally accurate. The numerical
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scheme for Example 4.5 can also be extended to higher dimensional two-sided space time

distributed fractional differential equations.

α = 1.2 α = 1.8

Nt ‖E‖∞ Order CPU time (secs) ‖E‖∞ Order CPU time (secs)

4 0.00467 − 0.1237 0.00296 − 1.1336

5 0.00181 4.2476 0.3949 0.00094 5.1405 0.1776

6 0.00084 4.2106 0.3899 0.00044 4.1636 0.2972

7 0.00044 4.1948 0.5469 0.00027 3.1680 0.4199

8 0.00025 4.2336 0.6124 0.00016 3.9185 0.5865

9 0.00015 4.3370 0.8757 0.00010 3.9904 0.8609

10 9.8735× 10−5 3.9692 1.2008 6.5021× 10−5 4.0856 1.6037

11 6.7162× 10−5 4.0429 1.6186 4.3713× 10−5 4.1660 2.4175

Table 4.11: Maximum errors, order of convergence and CPU time for different values of

Nt with α = {1.2, 1.8}, Nx = 10, Q = 32 and T = 2 for Example 4.5.

α = 1.2 α = 1.8

Nx ‖E‖∞ CPU time (secs) ‖E‖∞ CPU time (secs)

4 1.1209× 10−4 1.3893 6.5962× 10−5 1.1549

6 9.6827× 10−5 1.0312 6.4739× 10−5 1.1249

8 9.8545× 10−5 1.0692 6.5015× 10−5 1.1031

10 9.8735× 10−5 1.1119 6.5021× 10−5 1.0732

Table 4.12: Maximum errors and CPU time for different values of Nx with α = {1.2, 1.8},
Nt = 10, Q = 32 and T = 2 for Example 4.5.

5. Conclusion

Fractional partial differential equations are a special and important class of differential

equations. It is well known that fractional differential equation with distributed order is

a robust mathematical instrument for describing complex dynamical systems, especially

systems that occur at multiscale stages. Thus, constructing accurate numerical schemes

for this class of differential equations is essential. In this study, we have presented a

numerical method for the discretization of a general time distributed order two-sided

multi-dimensional fractional differential equation. The time distributed order fractional

differential operator was approximated using a Newton–Cotes formula. We presented both



Pseudo-spectral Method for TDO TSS FDEs 977

the left and right sided fractional differentiation matrices using approximation in terms of

shifted Chebyshev polynomials and shifted Chebyshev–Gauss–Lobatto quadrature. The

convergence of the numerical scheme for the aforementioned class of differential equation

was shown. We demonstrated the numerical discretization method on some one- and two-

dimensional time distributed order two-sided space fractional differential equations such

as the fractional advection-dispersion and fractional diffusion equations. The numerical

results showed that the method is computationally efficient and accurate.
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