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On the Boundary Components of Central Streams

Nobuhiro Higuchi

Abstract. Foliations on the space of p-divisible groups were studied by Oort in 2004.

In his theory, special leaves called central streams play an important role. In this

paper, we give a complete classification of the boundary components of the central

streams for an arbitrary Newton polygon in the unpolarized case. Hopefully this

classification would help us to know the boundaries of other leaves and more detailed

structure of the boundaries of central streams.

1. Introduction

In [12], Oort defined the notion of leaves on a family of p-divisible groups, which are often

called Barsotti–Tate groups, to study the moduli space of abelian varieties in positive

characteristic. Let k be an algebraically closed field of characteristic p. Let S be a

noetherian scheme over k. For a p-divisible group Y over k, Oort introduced in [12, 2.1] a

locally closed subset CY (S) for a p-divisible group Y over S characterized by the condition

that s belongs to CY (S) if and only if Ys is isomorphic to Y over an algebraically closed

field containing k(s) and k, see the first paragraph of Section 2.1 for a review. If Y → S

is a universal family over a deformation space or a moduli space, then we call CY (S) the

central leaf associated to Y and Y.

In [12, 2.2] Oort showed that CY (S) is closed in an open Newton polygon stratum. We

consider CY (S) as a locally closed subscheme of S by giving the induced reduced scheme

structure. We are interested in the boundaries of leaves on the deformation space, the

problem of which will be formulated from the next paragraph. See [12, 6.10] for a question

in the polarized case (i.e., the case that p-divisible groups associated with polarized abelian

varieties).

Let us formulate the problem on the boundaries of central leaves. Fix a p-divisible

group X0 over k. Let Def(X0) = Spf(Γ) be the deformation space of X0. The deformation

space is the formal scheme pro-representing the functor Artk → Sets which sends R to

the set of isomorphism classes of p-divisible groups X over R such that Xk ' X0. Here

Artk denotes the category of local Artinian rings with residue field k. Let X′ → Spf(Γ)
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be the universal p-divisible group. In [5, 2.4.4] de Jong proved that the category of p-

divisible groups over Spf(Γ) is equivalent to the category of the p-divisible groups over

Spec(Γ) =: Def(X0). Let X be the p-divisible group over Def(X0) obtained from X′ by this

equivalence. Oort studied CX0(Def(X0)), see [12, 2.7]. We are interested in CY (Def(X))

for X 6= Y with Y = X. Here is a basic problem.

Problem 1.1. Let Y be a p-divisible group over k. Classify p-divisible groups X over k

such that CY (Def(X)) 6= ∅. Here CY (Def(X)) 6= ∅ means that X appears as a specializa-

tion of a family of p-divisible groups whose geometric fibers are isomorphic to Y .

In this paper we discuss the case that the p-divisible group Y is “minimal”, as the

general case looks difficult. Oort introduced the notion of minimal p-divisible groups

in [13, 1.1]. Oort showed in [13, 1.2] that the property: Let X be a minimal p-divisible

group over k, and let Y be a p-divisible group over k. If X[p] ' Y [p], then X ' Y , where

X[p] is the kernel of p-multiplication. For a Newton polygon ξ, we obtain the minimal p-

divisible group H(ξ). See the third and fourth paragraphs of Section 2.1 for the definitions

of Newton polygons and minimal p-divisible groups.

For CY (Def(X0)), if Y is minimal, then we call it a central stream. This notion is

a “central” tool in the theory of foliations. For instance, it is known that the difference

between central leaves and central streams comes from isogenies of p-divisible groups. Thus

to study boundaries of general leaves, it is natural to start with investigating boundaries

of central streams.

Let ξ be a Newton polygon. For the notation as above, we may treat the problem.

Problem 1.2. Classify p-divisible groups X over k such that CH(ξ)(Def(X)) 6= ∅.

Let us translate this problem into the terminology of the Weyl group of GLh. Let

W = Wh be the Weyl group of GLh. We identify this W with the symmetric group Sh

in the usual way. We define J = Jc by Jc = {s1, . . . , sh} − {sc}, where si is the simple

reflection (i, i+ 1). Put d = h− c. Then there exists a one-to-one correspondence between

the isomorphism classes of BT1’s of rank ph and dimension d over k and the subset JW of

W , see Section 2.2. Let X be a p-divisible group. Let w ∈ JW . We say w is the (p-kernel)

type of X[p] if the BT1 X[p] corresponds to w by this bijection.

In Proposition 2.1 we will show that for p-divisible groups X and Y over k with

X[p] ' Y [p], if CH(ξ)(Def(X)) 6= ∅, then CH(ξ)(Def(Y )) 6= ∅. Thanks to this proposition,

Problem 1.2 is reduced to

Problem 1.3. Classify elements w of JW such that

there exists a p-divisible group X over k such that

w is the type of X[p] and CH(ξ)(Def(X)) 6= ∅.
(1.1)
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As it seems difficult to answer Problem 1.3 generally, we want to formulate a problem

which is a little more restricted than this problem. For this, we recall the notion of

specializations of p-divisible groups. Let X and Y be p-divisible groups over k. We

say X is a specialization of Y if there exists a family of p-divisible group X → Spec(R)

with discrete valuation ring R in characteristic of p such that X is isomorphic to Y over

an algebraically closed field containing L and k, and Xk is isomorphic to X over an

algebraically closed field containing K and k, where L is the field of fractions of R, and

K = R/m is the residue field of R. Note that X is a specialization of Y if and only if

CY (Def(X)) 6= ∅ holds. For a p-divisible group X, we define the length `(X[p]) of the

p-kernel by the length of the element of the Weyl group which is the type of X[p]. It is

known that for the p-divisible group X0, the length `(X0[p]) is equal to the dimension of

the locally closed subscheme of Def(X0) obtained by giving the induced reduced structure

to the subset of Def(X0) consisting of points s ∈ Def(X0) such that X′s[p] is isomorphic to

X0[p] over an algebraically closed field, see [15, 6.10] and [8, 3.1.6]. We say a specialization

X of Y is generic if `(X[p]) = `(Y [p])− 1 holds.

In this paper, we treat the following problem.

Problem 1.4. Classify w ∈ JW satisfying that (∗) and `(w) = `(H(ξ)[p])−1 for arbitrary

Newton polygons ξ.

We often call w ∈ JW satisfying `(w) = `(H(ξ)[p]) − 1 generic specialization. The

terminology “generic” is justified for the following reasons. Let X0 be a p-divisible

group. Let w be the type of X0[p]. We denote by Sw(Def(X0)) the reduced subscheme

of Def(X0) = Spec(Γ) consisting of s satisfying that Xs[p] is the type of w. Then

dimSw(Def(X0)) = `(w), see [15, 6.10] and [8, 3.1.6]. This justifies the terminology

“generic” for elements w of JW .

A complete answer to this problem will be given by combining Theorems 1.5 and 1.6

below. In [3], we solved Problem 1.4 for Newton polygons ξ consisting of two slopes

satisfying that one slope is less than 1/2 and the other slope is greater than 1/2. In this

paper, our proof reduces Problem 1.4 to the case of [3].

For an arbitrary Newton polygon ξ, we denote by B(ξ) the set

(1.2) B(ξ) = {types of Xs[p] | Xη = H(ξ) and `(Xs[p]) = `(Xη[p])−1 for some X → S},

where S = Spec(R) for a discrete valuation ring (R,m), s = Spec(κ) and η = Spec(K)

with κ = R/m and K = frac(R). Problem 1.4 asks us to determine the set B(ξ). The first

result is

Theorem 1.5. Let ξ =
∑z

i=1(mi, ni) be a Newton polygon. Let ξi = (mi, ni)+(mi+1, ni+1)

be the Newton polygon consisting of two adjacent segments of ξ for i = 1, . . . , z − 1. For
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any w ∈ B(ξi), the direct sum wζ(i)⊕w belongs to B(ξ), where wζ(i) is the type of H(ζ(i))[p]

with ζ(i) = (m1, n1) + · · · + (mi−1, ni−1) + (mi+2, ni+2) + · · · + (mz, nz). Moreover, the

obtained map
z−1⊔
i=1

B(ξi)→ B(ξ)

sending w to wζ(i) ⊕ w is bijective.

This theorem implies that the determining problem of boundaries of central streams

is reduced to the case that the Newton polygon consists of two segments. Moreover, for

the two slopes case, we will show the following result.

Theorem 1.6. Let ξ = (m1, n1) + (m2, n2) be a Newton polygon satisfying that n1/(m1 +

n1) > n2/(m2 + n2) ≥ 1/2. Put ξC = (m1, n1 − m1) + (m2, n2 − m2). Then the map

sending w to w|{1,...,n1+n2} gives a bijection from B(ξ) to B(ξC).

For a Newton polygon ξ = (m1, n1) + (m2, n2), we set ξD = (n2,m2) + (n1,m1). By

the duality, it is easy to see that the map sending w to the map i 7→ l − w(l − i), with

l = m1 + n1 + m2 + n2 + 1, gives a bijection from B(ξ) to B(ξD). Using repeatedly this

duality and Theorem 1.6, we can reduce Problem 1.4 to the case of [3]. There results give

a complete answer to Problem 1.4.

Let us state next problem. Let ξ and ζ be Newton polygons. We write ζ ≺ ξ if each

point of ζ is above or on ξ. Moreover, we say that ζ ≺ ξ is saturated if there exists no

Newton polygon η such that ζ � η � ξ. We consider next problem.

Problem 1.7. For a Newton polygon ξ and a generic specialization X of H(ξ), show that

there exists a Newton polygon ζ such that

H(ζ) appears as a specialization of X, and ζ ≺ ξ is saturated.

Moreover, determine this ζ.

If we denote by np(X) by the Newton polygon of X, then as ζ ≺ ξ is saturated, we

see that np(X) = ζ, see [6, 2.3.1] and [12, Theorem 2.2]. See also [3, Lemma 2.2].

We use the notation of the paragraph after Problem 1.2. Let wξ denote the element

of JW , which is the p-kernel type of H(ξ)[p]. We can translate Problem 1.7 to a problem

with respect to the terminology of the Weyl group of GLh, and we prove the problem.

Theorem 1.8. Let ξ be any Newton polygon. Let w ∈ JW be a generic specialization of

wξ. Then there exists a Newton polygon ζ such that

(i) ζ ≺ ξ is saturated, and
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(ii) wζ ⊂ w,

where we say w′ ⊂ w if there exists a discrete valuation ring R of characteristic p such

that there exists a finite flat commutative group scheme G over R satisfying that Gκ is a

BT1 of the type w′, and GL is a BT1 of the type w, where L (resp. κ) is the fractional

field of R (resp. is the residue field of R).

Thanks to Theorem 1.5, the case that the Newton polygon ξ consists of two slopes is

essential. In fact, for a Newton polygon ξ =
∑z

i=1(mi, ni), take a generic specialization w

of wξ. Then we have the corresponding generic specialization w′ of wξi by the bijection of

Theorem 1.5 with ξi = (mi, ni) + (mi+1, ni+1). Let ζ ′ be the Newton polygon satisfying

(i) and (ii) of Theorem 1.8 for ξi and w′. Then the required Newton polygon ζ satisfying

(i) and (ii) for ξ and w is obtained by

ζ = (m1, n1) + · · ·+ (mi−1, ni−1) + ζ ′ + (mi+2, ni+2) + · · ·+ (mz, nz).

This paper is organized as follows. In Section 2, we recall notions of p-divisible groups,

Newton polygons and truncated Dieudonné modules of level one. We review the classifi-

cation of BT1’s. Moreover, we introduce the definition of arrowed binary sequences which

is the main tool to show the main results. In Section 3, we treat central streams corre-

sponding to arbitrary Newton polygons, and we show some properties of arrowed binary

sequences and Newton polygons. The goal of the section is to give a proof of Theorem 1.5.

In Section 4, we treat central streams corresponding to Newton polygons consisting of two

slopes, and give a proof of Theorem 1.6. In Section 5, we determine the Newton polygon

of each generic specialization of the minimal DM1 for any Newton polygon, and solve

Problem 1.7 by showing Theorem 1.8.

2. Preliminaries

In this section, first we recall the notions of p-divisible groups, leaves and Dieudonné

modules. In Section 2.2, we review the definition of truncated Barsotti–Tate groups of

level one (BT1) and a classification of BT1’s. Moreover, in Section 2.3 we introduce

arrowed binary sequences as a generalization of classifying data JW of BT1’s, which are

the main tool to show the main theorems.

2.1. p-divisible groups and Dieudonné modules

In this section we fix a prime number p. Let h be a non-negative integer. Let S be a

scheme in characteristic p. A p-divisible group (Barsotti–Tate group) of height h over

S is an inductive system (Gv, iv)v≥1, where Gv is a finite locally free commutative group
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scheme over S of order pvh, and for every v, there exists the exact sequence of commutative

group schemes

0 −→ Gv
iv−→ Gv+1

pv−→ Gv+1

with canonical inclusion iv. Let X = (Gv, iv) be a p-divisible group over S. Let T be

a scheme over S. Then we have the p-divisible group XT over T , which is defined as

(Gv ×S T, iv × id). For the case that T is a closed point s over S, we call the p-divisible

group Xs the fiber of X over s. Let k be an algebraically closed field of characteristic p.

Let Y → Spec(k) be a p-divisible group, and let Y → S be a p-divisible group. In [12, 2.1]

Oort defined a leaf by

CY (S) = {s ∈ S | Ys is isomorphic to Y over an algebraically closed field},

as a set, and showed that CY (S) is closed in a Newton stratum (cf. [12, 2.2]). We regard

CY (S) as a locally closed subscheme of S by giving the induced reduced structure on it.

Let K be a perfect field of characteristic p. Let W (K) denote the ring of Witt-vectors

with coefficients in K. Let σ be the Frobenius over K. We denote by the same symbol

σ the Frobenius over W (K) if no confusion can occur. A Dieudonné module over K is a

finite W (K)-module M equipped with σ-linear homomorphism F: M →M and σ−1-linear

homomorphism V: M →M satisfying that F ◦V and V ◦F equal the multiplication by p.

For each p-divisible group X, we have the Dieudonné module D(X) using the covariant

Dieudonné functor. The covariant Dieudonné theory says that the functor D induces a

canonical categorical equivalence between the category of p-divisible groups over K and

that of Dieudonné modules over K which are free as W (K)-modules. In particular, there

exists a categorical equivalence from the category of finite commutative group schemes

over K to that of Dieudonné modules over K which are of finite length.

Let {(mi, ni)}i be finite number of pairs of coprime non-negative integers satisfying

that λi ≥ λj for i < j, where λi = ni/(mi + ni) for each i. A Newton polygon is a lower

convex polygon in R2, which breaks on integral coordinates and consists of slopes λi. We

write ∑
i

(mi, ni)

for the Newton polygon. We call each coprime pair (mi, ni) segment. For a Newton

polygon ξ =
∑

i(mi, ni), we define the p-divisible group H(ξ) by

H(ξ) =
⊕
i

Hmi,ni ,

where Hm,n is the p-divisible group over Fp whose Dieudonné module is given by

D(Hm,n) =

m+n⊕
i=1

W (Fp)ei
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with the operations F and V satisfying that Fei = ei−m, Vei = ei−n and ei−(m+n) = pei.

Note that Hm,n is of dimension n, and its Serre-dual is of dimension m.

We say a p-divisible groupX is minimal ifX is isomorphic toH(ξ) over an algebraically

closed field for a Newton polygon ξ. For a p-divisible groupX, the p-kernelX[p] is obtained

by the kernel of the multiplication by p. It is known that the Dieudonné module of H(ξ)[p]

makes a truncated Dieudonné module of level one (abbreviated as DM1) D(H(ξ)[p]). A

DM1 over K of height h is the triple (N,F,V) consisting of a K-vector space N of height h,

a σ-linear map F and a σ−1-linear map V from N to itself satisfying that ker F = im V

and im F = ker V.

Let ξ =
∑

i(mi, ni) be a Newton polygon. We denote by Nξ the DM1 associated to

the p-kernel of H(ξ). Then Nξ is described as

Nξ =
⊕

Nmi,ni ,

where Nm,n is the DM1 corresponding to the p-kernel of Hm,n.

We use the same notation as Section 1. The following proposition would be well-known

to the specialists, but as any good reference cannot be found, we have give a proof for the

reader’s convenience. A proof in the polarized case is given in [11, 12.5].

Proposition 2.1. Let ξ be a Newton polygon. Put Y = H(ξ). Let X and X ′ be p-

divisible groups over an algebraically closed field of characteristic p. If CY (Def(X)) 6= ∅
and X[p] ' X ′[p], then CY (Def(X ′)) 6= ∅.

Proof. Let h and c be positive integers such that X[p] is the type of w ∈ JW with W = Wh

and J = Jc. Put d = h−c. Let F (resp. V) denote the σ-linear map (resp. σ−1-linear map)

of the DM1 D(X[p]) = D(X)/pD(X) with σ the Frobenius. We take a basis zd+1, . . . , zh

of the image of V, and choose z1, . . . , zd ∈ D(X[p]) so that z1, . . . , zh is a basis of D(X[p]).

We choose lifts z1, . . . , zh of z1, . . . , zh to D(X). Then {z1, . . . , zh} is a basis of D(X). We

write A B

C D


for the display of X with respect to the basis z1, . . . , zh, where A is the d× d matrix, and

D is the (h − d) × (h − d) matrix. See [10] for the construction of the display. Then for

the Dieudonné module D(X) of X equipped with the operations F and V, we have

(Fz1, . . . ,Fzh) = (z1, . . . , zh)

A pB

C pD


and

(Vz1, . . . ,Vzh) = (z1, . . . , zh)

pα pβ

γ δ

σ−1

,
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where
(
α β
γ δ

)
is the inverse matrix of the display of X. The operations F and V on D(X[p])

satisfy that

(Fz1, . . . ,Fzh) = (z1, . . . , zh)

A 0

C 0


and

(Vz1, . . . ,Vzh) = (z1, . . . , zh)

0 0

γ δ

σ−1

.

For the p-divisible group X → Spec(R) corresponding to the universal p-divisible group

over Spf(R), the display of X induces that

(Fz1, . . . ,Fzh) = (z1, . . . , zh)

A+ TC 0

C 0


and

(Vz1, . . . ,Vzh) = (z1, . . . , zh)

0 0

γ −γT + δ

σ−1

,

where T is an (h− n)× n matrix on R.

Choose an isomorphism from X[p] to X ′[p]. Let ei be the element of D(X ′[p]) cor-

responding to zi ∈ D(X[p]) via the isomorphism. Then {e1, . . . , eh} gives a basis of

D(X ′[p]) = D(X ′)/pD(X ′). We have then

(Fe1, . . . ,Feh) = (e1, . . . , eh)

A 0

C 0


and

(Ve1, . . . ,Veh) = (e1, . . . , eh)

0 0

γ δ

σ−1

.

Choose a basis e1, . . . , eh of D(X) which are lifts of ei. Leta b

c d


be the display of X with respect to e1, . . . , eh. Note that a = A and c = C. Let Y be the

p-divisible group having 1 T

0 1

a b

c d


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as its display, where T is a matrix with T mod p = T . Then for the display of Y[p], we see

(Fe1, . . . ,Feh) = (e1, . . . , eh)

a+ Tc 0

c 0


and

(Ve1, . . . ,Veh) = (e1, . . . , eh)

0 0

γ −γT + δ

σ−1

,

whence Y belongs to CY (Def(X ′)).

2.2. Classification of BT1’s

In this section, we work over an algebraically closed field k. Let us review the classification

of truncated Barsotti–Tate groups of level one.

Definition 2.2. A truncated Barsotti–Tate group of level one (BT1) is a commutative,

finite and flat group scheme N over a scheme in characteristic p satisfying properties

[p]N = 0, and

im(V: N (p) → N) = ker(F: N → N (p)),

im(F: N → N (p)) = ker(V: N (p) → N).

A DM1 appears as a Dieudonné module of a BT1. Let W = Wh be the Weyl group

of the general linear group GLh. This W can be identified with the symmetric group Sh.

We denote by si the simple reflection (i, i + 1) in Sh = W . Set Ω = {s1, . . . , sh−1}. We

define J = Jc by Jc = Ω − {sc}. Put d = h − c. For the set WJ := Wc ×Wd, let JW

be the set consisting of elements w of Wh such that w is the shortest element of JW · w,

see [1, Chap. IV, Ex. §1(3)]. Then we have

Theorem 2.3. There exists a one-to-one correspondence

JW ←→ {BT1’s over k of height h of dimension d}/∼= .

Moreover, running over all d, we have⊔
d

JW ←→ {0, 1}h.

Kraft [7], Oort [11] and Moonen–Wedhorn [9] show that there exists a one-to-one

correspondence

{0, 1}h ←→ {DM1’s over k of height h}/∼= .
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For ν ∈ {0, 1}h, we construct the DM1 D(ν) as follows. We write ν(i) for the i-th

coordinate of ν. Put N = ke1 ⊕ · · · ⊕ keh. We define maps F and V as follows:

Fei =

ej j = #{l | ν(l) = 0, l ≤ i} for ν(i) = 0,

0 otherwise.

Let j1, . . . , jc, with j1 < · · · < jc, be the natural numbers satisfying ν(jl) = 1. Put

d = h− c. Then a map V is defined by

Vei =

ejl l = i− d for i > d,

0 otherwise.

Therefore D(ν) is given by D(ν) = (N,F,V). Thus we can identify DM1’s with sequences

consisting of 0 and 1.

For w ∈ JW , we define ν(j) = 0 if and only if w(j) > c for j = 1, . . . , h, and we

obtain the element (ν(1), ν(2), . . . , ν(h)) of {0, 1}h. This gives a one-to-one correspondence

between JW and the subset of {0, 1}h consisting of elements ν satisfying #{j | ν(j) =

0} = d. Thus we obtain a bijection between JW and the set of isomorphism class of DM1’s

over k of height h and dimension d.

We say that w′ is a specialization of w, denoted by w′ ⊂ w, if there exists a discrete

valuation ring R of characteristic p such that there exists a finite flat commutative group

scheme G over R satisfying that Gκ is a BT1 of the type w′, and GL is a BT1 of the

type w, where L (resp. κ) is the fractional field of R (resp. is the residue field of R). A

generic specialization w′ of w is a specialization of w satisfying `(w′) = `(w)−1. Here, we

show a lemma used for the construction of generic specializations. We define x ∈ W by

x(i) = i+ d if i ≤ c and x(i) = i− c otherwise. Let θ be the map from W to itself defined

by θ(u) = xux−1. By [14, 4.10], we have w′ ⊂ w if and only if there exists u ∈ WJ such

that u−1w′θ(u) ≤ w with the Bruhat order ≤. Let us recall [3, Lemma 2.7].

Lemma 2.4. Let w ∈ JW . Let w′ be a specialization of w. If w′ is generic, then there

exist v ∈W and u ∈WJ such that

(i) v = ws for a transposition s,

(ii) `(v) = `(w)− 1,

(iii) w′ = uvθ(u−1).

2.3. Arrowed binary sequences

In order to classify the types of generic specializations of H(ξ), we introduce a new notion

arrowed binary sequence which is slightly more generalized than the notion of binary
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sequences {0, 1}h. This notion of arrowed binary sequences is useful for classifying generic

specializations of minimal p-divisible groups.

Definition 2.5. An arrowed binary sequence (we often abbreviate as ABS) S is the

triple (T,∆,Π) consisting of an ordered symbol set T = {t1 < t2 < · · · < th}, a map

∆: T → {0, 1} and a bijection Π: T → T . For an ABS S, let T (S) denote the ordered

symbol set of S. Similarly, we denote by ∆(S) (resp. Π(S)) the map from T (S) to {0, 1}
(resp. the map from T (S) to itself). For an ABS S, we define the length `(S) of S by

`(S) = #{(t, t′) ∈ T (S)× T (S) | t < t′ with ∆(S)(t) = 0 and ∆(S)(t′) = 1}.

Remark 2.6. Let N = (N,F,V) be a DM1. We construct the arrowed binary sequence

(Λ, δ, π) associated to N as follows. Let ν be the element of {0, 1}h corresponding to N .

For an totally ordered set Λ = {t1, . . . , th}, let δ : Λ → {0, 1} be the map which sends ti

to the i-th coordinate of ν. We define a map π : Λ→ Λ by π(ti) = tj , where j is uniquely

determined by Fei = ej if δ(ti) = 0,

Vej = ei otherwise.

We say an ABS S is admissible if there exists a DM1 such that S is obtained from this

DM1 as above.

Remark 2.7. For the DM1 Nm,n corresponding to the p-divisible group Hm,n, we get the

ABS S as follows. Set T (S) = {t1 < · · · < tm+n}. The map ∆(S) is defined by ∆(S)(ti) =

1 if i ≤ m, and ∆(S)(ti) = 0 otherwise. The map Π(S) is defined by Π(S)(ti) = ti+n if

i ≤ m and Π(S)(ti) = ti−m otherwise.

Let S be an ABS. Put δ = ∆(S) and π = Π(S). The binary expansion b(t) of t ∈ T (S)

is the real number b(t) = 0.b1b2. . . ., where bi = δ(π−i(t)).

Proposition 2.8. Let S be an admissible ABS. For elements ti and tj of T (S) = {t1 <
t2 < · · · < th}, the following holds.

(i) Suppose ∆(S)(ti) = ∆(S)(tj). Then ti < tj if and only if Π(S)(ti) < Π(S)(tj).

(ii) Suppose b(ti) 6= b(tj). Then b(ti) < b(tj) if and only if i < j.

Proof. (i) follows from the construction of admissible ABS’s. Let us see (ii). Put δ = ∆(S)

and π = Π(S). By the construction of admissible ABS’s, for elements t and t′ of T (S), if

δ(t) = 1 and δ(t′) = 0, then π(t′) < π(t). First, assume b(ti) < b(tj). Then there exists a

non-negative integer u such that δ(π−v(ti)) = δ(π−v(tj)) for non-negative integers v with

v < u and δ(π−u(ti)) = 0, δ(π−u(tj)) = 1. We have then π−u+1(ti) < π−u+1(tj), and

the assertion follows from (i). Next, assume i < j. To lead a contradiction, we suppose
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that b(tj) < b(ti). Then there exists a non-negative integer u such that δ(π−u(tj) = 0

and δ(π−u(ti)) = 1, and for non-negative integers v satisfying v < u, we have δ(π−v(tj) =

δ(π−v(ti)). This implies that π−u+1(tj) < π−u+1(ti). We have then tj < ti with i < j. By

(i), this is a contradiction.

We denote by H′(h, d) the set of admissible ABS’s whose corresponding DM1’s are of

height h and dimension d. We shall translate the ordering ⊂ on JW via the bijection from
JW to H′(h, d), and we obtain an ordering on H′(h, d) as the notion of specializations of

admissible ABS’s.

We shall give a method to construct a type of the specializations of ABS’s. It will

turns out to correspond to specializations w′ ⊂ w with v = ws < w and w′ = uvθ(u−1),

where s denotes a transposition and u ∈ WJ . From S ∈ H′(h, d), we construct a new

admissible ABS S′.

Definition 2.9. Let S be an ABS with T (S) = {t1 < · · · < th}. Let i and j be natural

numbers satisfying that ∆(S)(ti) = 0 and ∆(S)(tj) = 1 with i < j. We define an ABS S(0)

as follows. We set T (S(0)) = {t′1 <′ · · · <′ t′h} to be t′z = tf(z) for f = (i, j) transposition.

Let ∆(S(0)) = ∆(S). For a natural number z with z ≤ h, we denote by g(z) the natural

number satisfying Π(S)(tz) = tg(z). We define Π(S(0)) : T (S(0))→ T (S(0)) by

Π(S(0))(t′z) =


t′g(j) if z = i,

t′g(i) if z = j,

t′g(z) otherwise.

Thus we obtain an ABS S(0). We call this ABS small modification by (ti, tj).

Definition 2.10. Let S be an ABS. Let S(0) be the small modification by (ti, tj). Put

T (S(0)) = {t1 < · · · < th}. We define an ABS S′ as follows. Let T (S′) = T (S(0)) as sets.

Let <′ denote an ordering of T (S′). Put ∆(S′) = ∆(S(0)) and Π(S′) = Π(S(0)). We say

that the ABS S′ is a specialization of S by (ti, tj) if for elements tx and ty of T (S′),

tx <
′ ty =⇒ b(tx) ≤ b(ty).

We say a specialization S′ of S is generic if `(S′) = `(S)− 1.

Note that for the small modification S(0), in general the specialization S′ is not unique.

However, the DM1 obtained by the pair (T (S′),∆(S′)) is unique. See Example 2.16.

Remark 2.11. Let S ∈ H′(h, d). Let S′ be the specialization of S obtained by exchanging

(ti, tj) with T (S′) = {t′1 <′ · · · <′ t′h}. We denote by w the element of JW corresponding

to S. Put s = (i, j) transposition. Maps Π(S) and Π(S′) can be regarded as elements of
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W . We have then Π(S) = xw. For the small modification S(0) with T (S(0)) = {t(0)
1 <

· · · < t
(0)
h }, we define ε ∈W to be t

(0)
z = t′ε(z). Since b(t

(0)
z ) < 0.1 if z ≤ d and b(t

(0)
z ) > 0.1

otherwise, ε stabilizes {1, 2, . . . , d}. Put v = ws. Then w′ = uvθ(u−1) corresponds to S′

for u = x−1ε−1x ∈WJ . The map Π(S′) is obtained by ε−1Π(S)sε.

Next, in Definition 2.12 below, we introduce the direct sum of admissible ABS’s. The

construction of the direct sum is induced from the direct sum of corresponding DM1’s.

Definition 2.12. Let S1 and S2 be admissible ABS’s. We define the direct sum S =

S1 ⊕ S2 of S1 and S2 as follows. Let T (S) = T (S1) t T (S2) as sets. We define the map

∆(S) : T (S) → {0, 1} to be ∆(S)|T (Si) = ∆(Si) for i = 1, 2. Let Π(S) be the map from

T (S) to itself satisfying that Π(S)|T (Si) = Π(Si) for i = 1, 2. We define the order on T (S)

so that for elements t and t′ of T (S),

(i) if b(t) ≤ b(t′), then t < t′, and

(ii) t < t′ if and only if Π(S)(t) < Π(S)(t′) when ∆(S)(t) = ∆(S)(t′).

Notation 2.13. Let Nξ be the minimal DM1 of a Newton polygon ξ =
∑z

i=1(mi, ni).

Let S be the ABS associated to Nξ. Then S is described as S =
⊕z

i=1 Si, where Si is the

ABS associated to the DM1 Nmi,ni . If an element t of T (S) belongs to T (Sr), then we

denote by tr or τ r this element t with τ = ∆(S)(t). If we want to say that the element tr

is the i-th element of T (Sr), we write tri for the element tr. Furthermore, we often write

τ ri for the element tri of T (S) with τ = ∆(S)(tri ). Moreover, we describe the map Π(S) by

arrows:

• • ,

Π(S)

��
•

Π(S)

CC• .

Example 2.14. Let us see an example of constructing a specialization. Let ξ = (2, 7) +

(3, 5), and let S be the ABS associated to Nξ. Then S is described as

S = 11
1 8811

2 8801
3

		
01

4

		
01

5

		
12

1 ::12
2 ::01

6

��
01

7

��
12

3 ==02
4

��
02

5

��
01

8

��
01

9

��
02

6

��
02

7

��
02

8

��
.

Let S′ denote the specialization obtained by (01
4, 1

2
2). Then S′ is described as

S′ = 11
1 8801

3

��
11

2 8812
2 8801

5

��
12

1 9901
4

��
01

6

��
01

7

��
02

4

��
12

3 ??
02

5

��
01

8

��
01

9

��
02

7

��
02

6

��
02

8

��
.
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One can see that these S and S′ satisfy `(S′) = `(S)− 1, i.e., this S′ is a generic special-

ization of S.

Example 2.15. Next, let us treat a Newton polygon consisting of three segments. Let

ξ = (2, 7) + (1, 2) + (3, 5). Then the ABS S corresponding to Nξ is

S = 11
1 6611

2 6601
3

		
01

4

		
01

5

		
12

1 8813
1 8813

2 8801
6

��
01

7

��
02

2

��
13

3 ;;03
4

��
03

5

��
01

8

��
01

9

��
02

3

��
03

6

��
03

7

��
03

8

��
.

For this S, the specialization S′ obtained by exchanging 01
4 and 13

2 is

S′ = 11
1 6601

3

��
11

2 7713
2 7701

5

��
13

1 8812
1 8801

4

��
01

6

��
01

7

��
03

4

��
13

3 ;;02
2

��
03

5

��
01

8

��
01

9

��
03

7

��
03

6

��
02

3

��
03

8

��
.

We see that this S′ is not generic.

Example 2.16. Let ξ = (3, 4) + (3, 2). Then the ABS S corresponding to Nξ is described

as

11
1 ??

11
2 ??

11
3 ??

01
4

��
12

1 AA
12

2 AA
01

5

��
01

6

��
01

7

��
12

3 JJ
02

4

��
02

5

��
.

Let us consider the specialization obtained by 01
4 and 12

3. For elements t of the small

modification T (S(0)), binary expansions b(t) are obtained by

b(t) =

0.010101 · · · if ∆(S)(t) = 1,

0.101010 · · · otherwise.

Thus in this case, the specialization is not unique. However the DM1 corresponding the

specialization is uniquely determined as Nζ with ζ = 6(1, 1).

For certain Newton polygons ξ, the ABS associated to Nξ is described as follows:

Lemma 2.17. Let Nξ be the minimal DM1 of ξ = (m1, n1)+(m2, n2) with λ2 < 1/2 < λ1.

For the above notation, the sequence S associated to Nξ is obtained by the following:

11
1 · · · 11

m1︸ ︷︷ ︸
m1

01
m1+1 · · · 01

n1︸ ︷︷ ︸
n1−m1

12
1 · · · 12

n2︸ ︷︷ ︸
n2

01
n1+1 · · · 01

h1︸ ︷︷ ︸
m1

12
n2+1 · · · 12

m2︸ ︷︷ ︸
m2−n2

02
m2+1 · · · 02

h2︸ ︷︷ ︸
n2

.
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Proof. See [2], Proposition 4.20.

In Definitions 2.18 and 2.19 below, we introduce sequences of sets, which are called

A-sequences and B-sequences, to construct specializations S′ of S combinatorially. Using

this method we can calculate lengths of specializations, and classify generic specializations.

For instance, in Proposition 3.12 and Corollary 3.13, using this construction, we give a

necessary condition for a specialization to be generic.

Definition 2.18. Let S be the ABS of a minimal DM1. Let S(0) be the small modification

by (0ri , 1
q
j). Set δ = ∆(S(0)) and π = Π(S(0)). For non-negative integers n, we write αn

for πn(0ri ). We define a subset A0 of T (S(0)) to be

A0 = {t ∈ T (S(0)) | t < α0 and α1 < π(t) in T (S(0)), with δ(t) = 0}

endowed with the order induced from T (S(0)). Let n be a natural number. We construct

an ABS S(n) and an ordered set An by the ABS S(n−1) and the set An−1 as follows. Let

T (S(n)) = T (S(n−1)) as sets. We define the order on T (S(n)) so that for t < t′ in S(n−1),

we have t > t′ if and only if αn < t′ ≤ π(tmax) and t = αn in S(n−1). Here tmax is the

maximum element of An−1. We define the set An by

An = {t ∈ T (S(n))− T (Sq) | t < αn and αn+1 < π(t) in T (S(n)) with δ(t) = δ(αn)}

endowed with the order induced from S(n). Thus we obtain the ABS S(n) = (T (S(n)), δ, π)

and the set An. We call {An} the A-sequence associated to S, 0ri and 1qj .

Proposition 3.8 implies that if the specialization obtained by a small modification is

generic, then there exists a non-negative integer a such that Aa = ∅. Now we suppose

that there exists such an integer a. Then we can define the following ABS’s and sets.

Definition 2.19. For the ABS S corresponding to a minimal DM1, let S(0) be the small

modification by (0ri , 1
q
j). We write δ for ∆(S(0)) and π for Π(S(0)). Put βn = πn(1qj) for

non-negative integers n. Assume that there exists the minimum non-negative integer a

such that Aa = ∅, and we define a set B0 by

B0 = {t ∈ T (S(a)) | β0 < t and π(t) < β1 in T (S(a)) with δ(t) = 1}

endowed with the order induced from T (S(a)). For the ABS S(a+n−1) and the set Bn−1, we

define an ABS S(a+n) as follows. Let T (S(a+n)) = T (S(a+n−1)) as sets. Let ∆(S(a+n)) =

∆(S(a+n−1)) and Π(S(a+n)) = Π(S(a+n−1)). The ordering of T (S(a+n)) is given so that for

t < t′ in S(a+n−1), we have t > t′ if and only if π(tmin) ≤ t < βn and t′ = βn, where tmin

is the minimum element of Bn−1. We define an ordered set Bn as

Bn = {t ∈ T (S(a+n)) | βn < t and π(t) < βn+1 in T (S(a+n)) with δ(t) = δ(βn)}
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with the ordering obtained from the order on S(a+n). Thus we obtain the ABS S(a+n) and

the set Bn. We call {Bn} the B-sequence associated to S, 0ri and 1qj .

For a small modification by (0ri , 1
q
j), if there exists non-negative integers a and b such

that Aa = ∅ and Bb = ∅, then we call the ABS S(a+b) the full modification by (0ri , 1
q
j). In

Proposition 3.10, we will see that if the specialization is generic, then for the above sets Bn,

there exists a non-negative integer b such that Bb = ∅, i.e., every generic specialization

is obtained by the ABS S(a+b) for some integers a and b. The small modification in

Example 2.16 is an example where the number b does not exist. The specialization of the

ABS S of Example 2.16 is obtained by S(5).

Example 2.20. Let ξ = (2, 7) + (3, 5). Let S be the ABS of Nξ. The small modification

S(0) by (01
4, 1

2
2) is described as

S(0) = 11
1 8811

2 8801
3

		
12

2 ::01
5

×

		
12

1 ::01
4

◦

��
01

6

��
01

7

��
12

3 ==02
4

��
02

5

��
01

8

��
01

9

��
02

6

��
02

7

��
02

8

��
.

For this S(0), we have sets A0 = {01
5} and A1 = ∅. The ABS S(1) is obtained by

S(1) = 11
1 8801

3

��
11

2 8812
2

◦

::01
5

��
12

1

×

::01
4

��
01

6

��
01

7

��
12

3 ==02
4

��
02

5

��
01

8

��
01

9

��
02

6

��
02

7

��
02

8

��
.

By the above B0 = {12
1}. We have B1 = {02

7} with the ABS

S(2) = 11
1 8801

3

��
11

2 8812
2 8801

5

��
12

1 9901
4

��
01

6

��
01

7

��
12

3 ==02
4

��
02

5

��
01

8

��
01

9

��
02

7

◦

��
02

6

×

��
02

8

��
.

Clearly B2 = ∅. Hence we see a = 1 and b = 1. One can check that the full modification

S(3) is equal to S′ of Example 2.14.

Example 2.21. Let ξ = (3, 10) + (5, 2). The ABS corresponding to the DM1 Nξ is

described as
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S = 11
1 7711

2 7711
3 7701

4

��
01

5

��
01

6

��
01

7

��
01

8

��
01

9

��
01

10

��
12

1 ??
12

2 ??
01

11

��
01

12

��
01

13

��
12

3 JJ
12

4 JJ
12

5 JJ
02

6

zz
02

7

zz
.

Let us treat the small modification S(0) obtained by (01
8, 1

2
2). Then S(0) is

S(0) = 11
1 7711

2 7711
3 7701

4

��
01

5

��
01

6

��
01

7

��
12

2 <<01
9

×

��
01

10

×

��
12

1 ??
01

8

◦

��
01

11

��
01

12

��
01

13

��
12

3 JJ
12

4 JJ
12

5 JJ
02

6

zz
02

7

zz
.

We have then A0 = {01
9, 0

1
10}. The ABS S(1) is

S(1) = 11
1 7711

2 7711
3 7701

4

��
01

6

×

		
01

7

×

		
01

5

◦

��
12

2 <<01
9

��
01

10

��
12

1 ??
01

8

��
01

11

��
01

12

��
01

13

��
12

3 JJ
12

4 JJ
12

5 JJ
02

6

zz
02

7

zz
.

We have A1 = {01
6, 0

1
7}. The ABS S(2) is

S(2) = 11
1 7711

3

×

9901
4

		
11

2

◦

8801
6

��
01

7

��
01

5

��
12

2 <<01
9

��
01

10

��
12

1 ??
01

8

��
01

11

��
01

12

��
01

13

��
12

3 JJ
12

4 JJ
12

5 JJ
02

6

zz
02

7

zz
.

The set A2 is {11
3}. Similarly, we have A3 = {01

13}, A4 = {01
10}, A5 = {01

7} and A6 = ∅.
The ABS S(6) is

S(6) = 11
1 7701

4

��
11

3 8811
2 7701

7

��
01

6

��
01

5

��
12

2

◦

<<01
10

��
01

9

��
12

1

×

??
01

8

��
01

11

��
01

13

��
01

12

��
12

3 JJ
12

4 JJ
12

5 JJ
02

6

zz
02

7

zz

with B0 = {12
1}. By definition, we have B1 = {12

3}, and the set B2 is an empty set. Thus

we obtain a = 6 and b = 2, and the full modification S(8) is described as

S(8) = 11
1 7701

4

��
11

3 8811
2 7701

7

��
01

6

��
01

5

��
12

2 ::01
10

��
01

9

��
12

1 ==01
8

��
01

11

��
01

13

��
01

12

��
12

4 JJ
12

3 JJ
02

6

||
12

5 LL
02

7

zz
.
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One can see that this full modification satisfies that `(S(8)) = `(S)− 1.

See also Example 3.14 for an example of constructing a full modification.

3. The case of arbitrary Newton polygons

Let ξ be a Newton polygon. In this section, we will prove Theorem 1.5, and reduce

Problem 1.4 to the case that ξ consists of two slopes. Let S be the ABS corresponding

to the minimal DM1 Nξ, and let S′ be the specialization of S obtained by (0ri , 1
q
j) with

r < q. The key statement is that S′ is generic only if the r-th segment is adjacent to the

q-th segment, i.e., q = r + 1, see Corollary 3.13. Moreover, to show this, we give some

necessary conditions for a specialization to be generic in Propositions 3.8 and 3.10.

3.1. Euclidean algorithm for Newton polygons

We denote by NP the set of Newton polygons satisfying that the segments of a Newton

polygon are not all the same. Let NPsep be the subset of NP consisting of Newton polygons∑z
i=1(mi, ni) with nz/(mz + nz) < 1/2 < n1/(m1 + n1). In this section, we introduce a

map from NP to NPsep. In Proposition 3.5, using this map, we show a property of ABS’s

corresponding to minimal DM1’s. Moreover, thanks to this map, to solve Problem 1.4, we

may assume that the Newton polygon belongs to NPsep and consists of two segments, see

Section 4. To introduce the map, first, we define two operations of Newton polygons. Let

ξ =
∑z

i=1(mi, ni) be a Newton polygon. We define the Newton polygon ξD by

ξD =

z∑
i=1

(nz−i+1,mz−i+1).

We call this ξD the dual of ξ. Moreover, if ξ satisfies mi ≤ ni for all i, we define the

Newton polygon ξC by

ξC =

z∑
i=1

(mi, ni −mi),

and we call this ξC the curtailment of ξ.

For the Newton polygon ξ, we define the height of ξ by ht(ξ) = m1 + n1 +m2 + n2 +

· · · + mz + nz. Let ξ belong to NP. Let us define a map Φ: NP → NPsep by induction

on the height of ξ. First we assume z = 2. If ξ belongs to NPsep, then define Φ(ξ) = ξ.

Note that the segments (mi, ni) are different from each other by the definition of NP. So

for at least one segment (mi, ni), we have mi < ni or ni < mi. If mi ≤ ni for i = 1, 2,

then we define the image Φ(ξ) of ξ to be the image of Φ of ξC. On the other hand, if

mi ≥ ni for i = 1, 2, then we define the image Φ(ξ) to be the image of Φ of ξDC. Let us

see that this operation ends in a finite number of times. It is obvious that ht(ξC) < ht(ξ)
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and ht(ξD) = ht(ξ). Since gcd(mi, ni) = 1 for all i, we see that the height of ξ is greater

than one. If ht(ξ) = 2, then, since ξ has at least two types of segments, we see that ξ is

uniquely determined by ξ = (0, 1) + (1, 0).

Finally, we treat the case z > 2. For the Newton polygon η = (m1, n1) + (mz, nz), let

W be the word of C and D such that Φ(η) = ηW. We define the image Φ(ξ) of ξ by ξW.

Remark 3.1. By the above construction, the Newton polygon Φ(ξ) is described as Φ(ξ) =

ξQ1Q2···Qm , where Qi is either the operation C or the operation D for every i. Thus by the

duality, if Theorem 1.6 is true, then for all Newton polygons ξ consisting of two segments,

we obtain a bijection from B(ξ) to B(Φ(ξ)).

Example 3.2. Let ξ = (5, 13) + (7, 16). Then Φ(ξ) is obtained by Φ(ξ) = ξCCDC =

(2, 5) + (3, 2).

Let S (resp. R) be the ABS of Nξ (resp. NξC). Next, we describe a relation between S

and R. In the following lemma, we show that the set T (R) can be regarded as a subset of

T (S) as ordered sets. This relation is used for the proof of Proposition 3.5, Lemma 3.11

and Theorem 1.6.

Lemma 3.3. Let ξ = (m1, n1) + (m2, n2) be a Newton polygon consisting of two segments

with mi ≤ ni for i = 1, 2. Let S and R be the ABS’s corresponding to Nξ and NξC

respectively. Put T (S) = {t1, . . . , th} and T (R) = {t′1, . . . , t′h′} with h = m1 +n1 +m2 +n2

and h′ = n1 +n2. We regard T (R) as a subset of T (S) as ordered sets by the map sending

t′i to ti. Then we have

(3.1) {t ∈ T (R) | ∆(R)(t) = 1} = {t ∈ T (S) | ∆(S)(t) = 1}

as ordered sets, and

(3.2) T (S)− T (R) = {Π(S)(t) | t ∈ T (S) with ∆(S)(t) = 1}.

Let t be an element of T (R). We also regard t as an element of T (S). Then

(3.3) Π(R)(t) =

Π(S)(t) if ∆(R)(t) = 0,

Π(S)2(t) otherwise

holds.

Proof. Recall that for the i-th element tri of T (Sr), with Sr the ABS corresponding to the

DM1 Nmr,nr , we have Π(Sr)(t
r
i ) = tri+nr

if ∆(Sr)(ti) = 1 and Π(Sr)(t
r
i ) = tri−mr

otherwise.

Since ξC = (m1, n1−m1) + (m2, n2−m2), it is clear that T (R) is a subset of T (S) as sets,

and we have the standard one-to-one correspondence between {t ∈ T (R) | ∆(R)(t) = 1}
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and {t ∈ T (S) | ∆(S)(t) = 1} as sets. Let t and s be elements of {t ∈ T (R) | ∆(R)(t) = 1}.
Let t′ and s′ be the elements of {t ∈ T (S) | ∆(S)(t) = 1} corresponding to t and s

respectively by the standard one-to-one correspondence. Considering binary expansions,

one can see that b(t) < b(s) if and only if b(t′) < b(s′). Indeed, the value replacing 1 with

01 for b(t) is equal to b(t′). Put b(t) = 0.b1b2 . . . and b(s) = 0.b′1b
′
2 . . .. We have b(t) < b(s)

if and only if there exists a non-negative integer v such that bl = b′l for l < v and bv < b′v.

Hence clearly we have b(t′) < b(s′). Thus we obtain the equality (3.1) as ordered sets, and

this implies that T (R) is a subset of T (S) as ordered sets. We immediately obtain the

equalities (3.2) and (3.3).

Note that all elements t of T (S)− T (R) satisfy ∆(S)(t) = 0. Example 3.4 below is an

example of Lemma 3.3.

Example 3.4. Let ξ = (2, 7) + (3, 5). Let S and R be the ABS’s corresponding to Nξ

and NξC respectively. We have then

S = 11
1 8811

2 8801
3

		
01

4

		
01

5

		
12

1 ::12
2 ::01

6

��
01

7

��
12

3 ==02
4

��
02

5

��
01

8

��
01

9

��
02

6

��
02

7

��
02

8

��
,

R = 11
1 ==11

2 ==01
3

		
01

4

		
01

5

		
12

1 DD
12

2 DD
01

6

��
01

7

��
12

3 JJ
02

4

��
02

5

��
.

One can easily check that the equations (3.1), (3.2) and (3.3) of Lemma 3.3 hold.

Thanks to the map Φ: NP→ NPsep, we can partially describe the construction of the

ABS corresponding to Nξ for a Newton polygon ξ. We state it as follows:

Proposition 3.5. Let S be the ABS of a minimal DM1 Nξ with ξ =
∑z

i=1(mi, ni). For

natural numbers r and q with r < q, we have

(i) 1r1 < 1q1, (ii) 0rmr+nr
< 0qmq+nq

, (iii) 0rmr+1 < 0qmq+1

in the ordered set T (S).

Proof. To show the proposition, it suffices to deal with the case z = 2. Note that (iii)

follows from (i) since 0rmr+1 and 0qmq+1 are the inverse images of 1r1 and 1q1 by Π(S)

respectively. For a Newton polygon ξ, let P(ξ) denote the assertion: The ABS associated

to the minimal DM1 Nξ satisfies (i) and (ii). By Lemma 2.17, if ξ satisfies that λ2 <

1/2 < λ1, then P(ξ) holds. To show that P(ξ) is true for all Newton polygons ξ, we claim
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(A) If P(ξD) holds, then P(ξ) also holds;

(B) If mi ≤ ni for all i and P(ξC) holds, then P(ξ) also holds.

The claim (A) is obvious by the duality. Moreover, by Lemma 3.3, we see that (B) holds.

In fact, let R be the ABS corresponding to NξC . Clearly 11
1 < 12

1 holds in T (S) by

Lemma 3.3. Moreover, in T (S), the inverse images 01
m1+n1

and 02
m2+n2

of 01
n1

and 02
n2

respectively by Π(S) satisfy that 01
m1+n1

< 02
m2+n2

since in T (R) we have 01
n1
< 02

n2
. For

a Newton polygon ξ, we have the Newton polygon Φ(ξ) satisfying λ2 < 1/2 < λ1 using

the map Φ: NP → NPsep, whence the assertion of the proposition follows from (A) and

(B).

3.2. Combinatorial construction of generic specializations

In this section, using A-sequences and B-sequences defined in Definitions 2.18 and 2.19

respectively, we construct a full modification, which is a specialization constructed combi-

natorially, for a given small modification.

We use the notation of Notation 2.13. Furthermore, we fix the following notation.

Let S be the ABS associated to Nξ. Let S(0) be the small modification by (0ri , 1
q
j) with

r < q. Then we obtain arrowed binary sequences S(1), S(2), . . . and the A-sequence {An} by

Definition 2.18. Put δ = ∆(S(0)) and π = Π(S(0)). We set αn = πn(0ri ) and βn = πn(1qj)

for non-negative integers n.

Proposition 3.6. Let a′ be the natural number satisfying that αa′ = β0. Let n be a natural

number with n < a′. The set An is equal to

(3.4) {π(t) | t ∈ An−1, π(t) /∈ T (Sq) and δ(π(t)) = δ(αn)}.

Proof. Note that, for elements t and t′ of T (S(n)), with n < a′, we have t < t′ and

π(t′) < π(t) with δ(t) = δ(t′) if and only if t ∈ An and t′ = αn, or t = β0 and t′ ∈ B′0,

where B′0 = {t ∈ T (S(0)) | β0 < t and π(t) < β1 in T (S(0)) with δ(t) = 1}. First, take an

element π(t) of the set (3.4). Let us show that this π(t) belongs to An. We describe the

part of S(n−1) as

αn+1 • π(π(t)) αn
��

•
��

π(t)
��

•

×

		
t

×




αn−1

◦

��
.

Since t belongs to An−1, we see αn < π(t) in T (S(n−1)). As δ(π(t)) = δ(αn), this induces

αn+1 < π(π(t)) in T (S(n−1)). To construct S(n), we move the element αn to the right side

of the maximum element of π(An−1). By construction, the part of S(n) can be described

as
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αn+1 • π(π(t)) •

×

��
π(t)

×

��
αn

◦

��
•

��
t

��
αn−1

��
.

We have then π(t) < αn and αn+1 < π(π(t)) in S(n). Hence we see that π(t) belongs to

An.

Conversely, take an element t′ of An. There exists the element t of T (S(n)) such that

t′ = π(t). It suffices to show that t belongs to An−1. This t satisfies that π(t) < αn

and αn+1 < π(π(t)) in T (S(n)) by the definition of An. Since δ(π(t)) = δ(αn), we have

αn+1 < π(π(t)) and αn < π(t) in T (S(n−1)). On the other hand, to lead a contradiction,

suppose αn−1 < t in T (S(n−1)). Then for the maximum element tmax of An−1, since

αn < π(tmax) < π(t) in T (S(n−1)), we have αn < π(t) in T (S(n)) by the construction

of An. This is a contradiction. Thus we have shown that t < αn−1 in T (S(n−1)), and t

belongs to An−1. Hence we see that t′ belongs to the set (3.4).

Proposition 3.7. Let n be a non-negative integer. An does not contain elements αm for

m ≤ n.

Proof. Note that for every non-negative integer n, by the definition of An, the set An does

not contain the inverse image α−1 of α0 by Π(S(0)) as α−1 is an element of T (Sq). Here

Sq is the ABS corresponding to the DM1 Nmq ,nq . Let us show the assertion by induction

on n. The case n = 0 is obvious. For a natural number n, to lead a contradiction, suppose

that An contains αm for a non-negative integer m with m ≤ n. By Proposition 3.6, then

An−1 contains αm−1. This contradicts the hypothesis of induction.

Proposition 3.8. If there exists no non-negative integer a such that Aa = ∅, then the

specialization S′ is not generic.

Proof. First, let us construct the specialization combinatorially in this case. Let a′ be the

minimum number satisfying αa′ = β0. Let B′0 be the subset of T (S(0))

B′0 = {t ∈ T (S(0)) | β0 < t and π(t) < β1 in T (S(0)) with δ(t) = 1}.

A part of the ABS S(a′−1) can be described as

β0 BBs
DD

π(t′)
??

π(s) β1 π2(t′) t′
yy

αa′−1

yy
.

Suppose that π(Aa′−1) is contained in B′0. Then, since t′′ < β0 and π(t′′) < β1 in

T (S(a′)) for all elements t′′ of π(Aa′−1), there is no element s ∈ T (S(a′)) such that s < αa′
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and αa′+1 < π(s), i.e., Aa′ is empty. This is a contradiction. Thus there exists an element

t′ of Aa′−1 such that β0 < π(t′) and β1 < π(π(t′)) in T (S(a′−1)) with δ(β0) = δ(π(t′)).

Then for all elements s of B′0, we have s < π(t′). In fact, if π(t′) < s, then π(t′) < s and

π(s) < π(π(t′)) holds with δ(s) = δ(π(t′)), and this is a contradiction. Thus there exists

no element u of T (S(a′)) such that β0 < u and π(u) < β1. This implies that elements t

and t′ of T (S(a′)) with t < t′ satisfy π(t′) < π(t) if and only if t′ = αa′ and t ∈ Aa′ . By

hypothesis, there exists a non-negative integer m such that |Am| = |Am+1| = · · · . By the

definition of the sets An, for n ≥ m, all elements t of An have the same value δ(t). For

this number m, the elements of T (S(m)) are ordered by binary expansions by π. Let S′ be

the admissible ABS associated to (δ(t1), . . . , δ(th)) with T (S(m)) = {t1 < · · · < th}. Then

S′ is a specialization of S. Note that `(S′) = `(S(m)).

Here, let us compare lengths of S and S′. One can see that `(S) − `(S(0)) = |A0| +
|B′0|+ 1. Since `(S(m))− `(S(0)) ≤ |A0| − |Am|, we see `(S′) < `(S)− 1.

By Proposition 3.8, we may assume that there exists a non-negative integer a such

that Aa is an empty set to classify generic specializations S′ of S.

In Proposition 3.10 below, we will show that to classify generic specializations, it

suffices to consider the case that there exists a non-negative integer b such that Bb = ∅.
Note that, to show Proposition 3.10, we may assume that there exists a non-negative

integer a such that Aa = ∅. Let us see a property of the B-sequence, which is used for the

proof of Proposition 3.10.

Proposition 3.9. Let n be a natural number. The set Bn is equal to

{π(t) | t ∈ Bn−1 and δ(π(t)) = δ(βn)}.

Proof. Note that the B-sequence is the “dual” object of the A-sequence. A proof is given

by the same way as Proposition 3.6.

Proposition 3.10. If there exists no non-negative integer b such that Bb = ∅, then the

specialization is not generic.

Proof. In this hypothesis, there exists a non-negative integer m such that |Bm| = |Bm+1| =
· · · . By the definition of the sets Bn, for n ≥ m, all elements t of Bn have the same value

δ(t). Then the elements of T (S(a+m)) are ordered by these binary expansions by π. Let S′

be the admissible ABS associated to (δ(t1), . . . , δ(th)) with T (S(a+m)) = {t1 < · · · < th}.
Then S′ is a specialization of S. Note that `(S′) = `(S(a+m)).

Let us compare lengths of S and S′. It is clear that `(S) − `(S(0)) = |A0| + |B′0| + 1,

where the set B′0 is same as in Proposition 3.8. If the non-negative integer a satisfies

a ≥ a′ with the minimum number a′ satisfying αa′ = β0, then |B0| < |B′0| by the proof of
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Proposition 3.8. Since `(S(a))− `(S(0)) ≤ |A0| and `(S(a+m))− `(S(a)) ≤ |B0| − |Bm|, we

see that the specialization S′ is not generic in this case. Let us see the case a < a′. For

a natural number n such that δ(αn) = 1 and An−1 contains the inverse image of β0, we

see that αn belongs to B0. Let I be the set consisting of such elements αn. We have then

B0 = B′0∪ I. If αn belongs to I, then `(S(n))− `(S(n−1)) = |An−1|− |An|−1 since β0 does

not belongs to An. Thus we have `(S(a))− `(S(0)) ≤ |A0| − |I|. As `(S(a+m))− `(S(a)) =

|B0| − |Bm| with |Bm| > 0, we have

`(S′) ≤ `(S)− 1− |Bm|.

Thus we see that `(S′) < `(S)− 1.

By Propositions 3.8 and 3.10, to classify generic specializations, we may suppose that

there exist non-negative integers a and b such that Aa = ∅ and Bb = ∅ for a small

modification. For the ABS S(a+b), if elements t and t′ of T (S(a+b)) satisfy that t < t′ and

δ(t) = δ(t′), then π(t) < π(t′) holds. Thus in this assumption, the specialization S′ of S

by (0ri , 1
q
j) is obtained by S′ = S(a+b). We call this ABS S(a+b) the full modification by

(0ri , 1
q
j).

3.3. Proof of Theorem 1.5

The main purpose of this section is to prove Theorem 1.5. The notation is as above.

Let S(0) denote the small modification by (0ri , 1
q
j) with r < q and 0ri < 1qj in T (S).

Using Lemma 3.11 and Proposition 3.12 below, we will show that, to classify generic

specializations, we may suppose that the r-th segment of the Newton polygon ξ is adjacent

to the q-th segment, i.e., q = r + 1, see Corollary 3.13.

Lemma 3.11. Let S be the ABS associated to Nξ with ξ =
∑z

i=1(mi, ni) a Newton

polygon. Let 0r and 1q be elements of T (S) satisfying that the r-th segment is not adjacent

to the q-th segment, i.e., q > r+ 1, and 0r < 1q in T (S). Then there exists an element tx

of T (S) such that r < x < q and 0r < tx < 1q.

Proof. For a Newton polygon ξ, we write Q(ξ) for the assertion: For elements 0r and 1q of

the ABS associated to Nξ satisfying that r+ 1 < q and 0r < 1q, there exists an element tx

such that r < x < q and 0r < tx < 1q. It suffices to treat the case z = 3, r = 1 and q = 3.

If λ1 = λ2 (resp. λ2 = λ3) holds, then we immediately have the desired element tx since

for elements 01
i < 13

j , the element 02
i (resp. 12

j ) satisfy 01
i < 02

i < 13
j (resp. 01

i < 12
j < 13

j ).

From now on, we assume that the slopes are different from each other. We treat

Newton polygons satisfying one of the following:

(i) λ3 < 1/2 ≤ λ2 < λ1, (ii) λ3 < λ2 ≤ 1/2 < λ1.
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By the duality, if Q(ξ) is true for all ξ satisfying (i), then Q(ξ) holds for all ξ satisfying

(ii). Suppose that ξ satisfies (i). Put hx = mx + nx for all x. By Lemma 2.17, in the

subset T (S1 ⊕ S3) of T (S), there exists no element t satisfying that 01
n1

< t < 13
1 or

01
h1
< t < 13

n3+1, where the ABS Si corresponds to the DM1 Nmi,ni . Hence it is enough to

show that there exist elements t2x and t2y such that 01
n1
< t2x < 13

1 and 01
h1
< t2y < 13

n3+1 in

T (S). If λ2 is greater than 1/2, then these elements are obtained by t2x = 02
n2

and t2y = 02
h2

.

In fact, by Proposition 3.5, we have 01
n1
< 02

n2
and 01

h1
< 02

h2
. Moreover, considering the

subset T (S2 ⊕ S3) of T (S), by Lemma 2.17, we obtain 02
n2
< 13

1 and 02
h2
< 13

n3+1. If λ2

equal 1/2, then the desired elements t2x and t2y are obtained by 12
1 and 02

2 respectively.

Let us show that Q(ξ) holds for any Newton polygons ξ. We claim that

(A) If Q(ξD) holds, then Q(ξ) also holds;

(B) If mi ≤ ni for all i and Q(ξC) holds, then Q(ξ) also holds.

If the claims (A) and (B) are true, then for a Newton polygon ξ in NP, using the function

Φ: NP → NPsep defined in Section 3.1, the proposition is reduced to the case (i) or (ii),

and we complete the proof. The claim (A) is obvious. Let us show (B). Let S (resp. R)

denote the ABS associated to ξ (resp. ξC). By Lemma 3.3, we can regard T (R) as a subset

of T (S) as ordered sets. Let U (resp. V ) be the subset of T (R)×T (R) (resp. T (S)×T (S))

consisting of pairs (01, 13) of elements of T (R) (resp. T (S)) satisfying 01 < 13. Again by

Lemma 3.3, since all elements t of T (S)−T (R) satisfy ∆(S)(t) = 0, we have U = V . Thus

(B) holds.

Compare Examples 2.14 and 2.15 for an example of Lemma 3.11.

In Proposition 3.12 below, we give necessary conditions for specializations to be generic.

Moreover, by Corollary 3.13 below, we see that to classify generic specializations of the

ABS corresponding to a minimal DM1, it suffices to treat specializations by pairs (0r, 1r+1).

Proposition 3.12. Let S be the ABS associated to Nξ with ξ =
∑z

i=1(mi, ni). For the

small modification S(0) by (0ri , 1
q
j), if either of the following assertions

(i) the set A0 contains an element 0x with r < x, or

(ii) the set B0 contains an element 1x with x < q

holds, then the specialization S′ by (0ri , 1
q
j) is not generic.

Proof. Put π = Π(S(0)) and δ = ∆(S(0)). Set αn = πn(0ri ) and βn = πn(1qj) for all n. By

Propositions 3.8 and 3.10, we may assume that there exist non-negative integers a and b

such that Aa = ∅ and Bb = ∅. Put

B′0 = {t ∈ T (S(0)) | β0 < t and π(t) < β1 in S(0) with δ(t) = 1}.
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For this set, `(S)− `(S(0)) = |A0|+ |B′0|+ 1. Define d(n) by

d(n) =

|An| − |An+1| if n < a,

|Bn| − |Bn+1| if n ≥ a.

We have then `(S(n+1))−`(S(n)) ≤ d(n). Clearly `(S′)−`(S(0)) ≤ |A0|+ |B0| holds. First,

we show that `(S′)−`(S(0)) ≤ |A0|+ |B′0|. Let I be the subset of B0 consisting of elements

which are of the form αm for some natural number m. We have then |B0| ≤ |B′0| + |I|.
Let m be a non-negative integer such that Am contains the inverse image of β0. We have

then `(S(m+1))− `(S(m)) ≤ d(m)− 1 since β0 is not contained in Am+1. If δ(αm+1) = 1,

then αm+1 belongs to I. Hence we see `(S(a)) − `(S(0)) ≤ |A0| − |I|. Moreover, we have

`(S′)− `(S(a)) ≤ |B0|. Thus we get the desired inequality.

Let us see that in the case (i) the specialization is not generic. Let m be the minimum

number such that the set Am contains no element tx with r < x. Take an element tx of

Am−1 with r < x. Put t = π(tx). Note that since t does not belong to Am, the values of

t and αm are different from each other. Now we claim that δ(t) = 1 and δ(αm) = 0. If

δ(t) = 0 and δ(αm) = 1 is true, then there exists an element 1x satisfying αm < 1x < t in

T (S). In fact, if 1xn < αm holds in T (S) for all n, then we have 1xmx
< 1rmr

with r < x. By

Proposition 3.5 this is a contradiction. Thus we see that the set Am contains the element

1x. This contradicts the minimality of m. Hence we have δ(t) = 1 and δ(αm) = 0, and it

implies that `(S(m))− `(S(m−1)) < d(m). This induces that `(S(a))− `(S(0)) < |A0| − |I|.
Let us treat the case (ii). In the same way as the case (i), if B0 contains an element

tx with x < q, then there exists a non-negative integer m such that `(S(m))− `(S(m−1)) <

d(m). In fact, for the minimum number m such that Bm contains no element tx with

x < q, take an element tx of Bm−1 satisfying x < q. Then for t = π(tx), we have δ(t) = 0

and δ(βm) = 1 since if δ(t) = 1 and δ(βm) = 0 is true, then there exists an element 0x of

T (S) satisfying that t < 0x < βm by Proposition 3.5. This implies that Bm contains an

element 0x, and this contradicts the minimality of m.

By the above, in the cases (i) and (ii), we have `(S′) − `(S(0)) < |A0| + |B′0|, and by

`(S)− `(S(0)) = |A0|+ |B′0|+ 1, it follows that `(S′) < `(S)− 1.

Corollary 3.13. If the r-the segment is not adjacent to the q-th segment, i.e., q > r+ 1,

then the specialization is not generic.

Proof. Put δ = ∆(S). For a small modification by (0r, 1q), it follows from Lemma 3.11

that there exists an element tx of T (S) such that 0r < tx < 1q and r < x < q. If

δ(tx) = 0, then the element tx belongs to A0, and the assertion immediately follows from

Proposition 3.12. Let us see the case δ(tx) = 1. If the set B0 contains tx, then by

Proposition 3.12 we complete the proof. Let us consider the case that the element tx with
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δ(tx) = 1 does not belong to B0. For the set B′0 of Proposition 3.12, tx is contained in B′0.

Thus, if tx does not belong to B0, then the minimum number a satisfying Aa = ∅ must

satisfy that a ≥ a′, where a′ is the minimum number such that αa′ = β0 since |B0| < |B′0|
only if a ≥ a′. In this case, we have |B0| < |B′0| + |I|, where the set I is the same as the

set in the proof of Proposition 3.12. Clearly we have `(S)− `(S(0)) = |A0|+ |B′0|+ 1. As

`(S′)− `(S(0)) < |A0|+ |B0| − |I|, we are done.

Example 3.14 below is an example of a specialization which is not generic. This

example indicates that for the small modification S(0) by (0r, 1q), if the r-th segment is

not adjacent to the q-the segment, then the specialization by 0r and 1q is not generic.

Compare with Example 2.20.

Example 3.14. For the ABS S of ξ = (2, 7)+(1, 2)+(3, 5), consider the small modification

by (01
4, 1

3
2). Then the ABS S(0) is

S(0) = 11
1 6611

2 6601
3

		
13

2 8801
5

×

		
12

1 8813
1 8801

4

◦

��
01

6

��
01

7

��
02

2

��
13

3 ;;03
4

��
03

5

��
01

8

��
01

9

��
02

3

��
03

6

��
03

7

��
03

8

��
.

We have A0 = {01
5} and A1 = ∅. Thus we see a = 1. We have sets B0 = {12

1, 1
3
1} and

B1 = {02
3, 0

3
6} with the ABS S(2)

S(2) = 11
1 6601

3

��
11

2 7713
2 7701

5

��
12

1 8813
1 8801

4

��
01

6

��
01

7

��
03

4

◦

��
02

2

×

��
13

3 ==03
5

��
01

8

��
01

9

��
03

7

��
02

3

��
03

6

��
03

8

��
.

By the ABS S(2), we obtain the set B2 = {02
2}. Similarly, we obtain B3 = {12

1}, B4 = {02
3}

and B5 = ∅ with the ABS’s S(4), S(5) and S(6). Hence we have b = 5, and the full

modification S(6) is equal to S′ of Example 2.15.

Let ξ =
∑z

i=1(mi, ni) be a Newton polygon. Let S be the ABS of the DM1 Nξ.

Recall that the ABS S is the direct sum S =
⊕z

i=1 Si of ABS’s Si corresponding to the

DM1 Nmi,ni . Propositions 3.8 and 3.10 imply that all generic specializations are given by

full modifications. Now let us show Theorem 1.5. This theorem says that to determine

generic specializations of H(ξ) it is enough to deal with Newton polygons consisting of

two segments.
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Proof of Theorem 1.5. Let S be the ABS of Nξ. Let us construct a bijection map

z−1⊔
i=1

{generic specializations of Ri} −→ {generic specializations of S},

where Ri denotes the ABS corresponding to the DM1 of the two slopes Newton polygon

(mi, ni) + (mi+1, ni+1). As we can regard T (Rr) as a subset of T (S) as ordered sets, we

denote by tri (resp. tr+1
j ) the i-th (resp. the j-th) element of the first (resp. the second)

component of Rr, corresponding to the segment (mr, nr) (resp. (mr+1, nr+1)). By Corol-

lary 3.13, it suffices to show the claim: The full modification of S by (0ri , 1
r+1
j ) is generic

if and only if the full modification of Rr by (0ri , 1
r+1
j ) is generic. For a small modification

S(0) by (0ri , 1
r+1
j ) of S, we use the same notation as Definitions 2.18 and 2.19. To simplify,

set π = Π(S(0)) and δ = ∆(S(0)). Let E (resp. F ) denote the subset of A0 (resp. B0)

consisting of elements 0x (resp. 1y) with x 6= r (resp. y 6= r + 1). Put R = Sr ⊕ Sr+1.

Let R′ be a generic specialization of R by (0ri , 1
r+1
j ), and let S′ be the specialization of

S by (0ri , 1
r+1
j ). For the small modifications S(0) and R(0) by (0ri , 1

r+1
j ), we clearly have

`(S) − `(S(0)) = `(R) − `(R(0)) + |E| + |F |. To show the claim, it suffices to see that

`(S)− `(S′) = `(R)− `(R′). So we will show that

(3.5) `(S′)− `(S(0)) = `(R′)− `(R(0)) + |E|+ |F |.

Let m be the minimum number such that αm = 1rmr
. Let C0, C1, . . . be the A-sequence

associated to R, 0ri and 1r+1
j . Note that as R′ is generic, there exists a non-negative integer

a′ such that Ca′ is empty. We show the following three claims:

(a) for every element 0x of E, we have x < r,

(b) there exists no element tx of Am such that x 6= r,

(c) there exists a non-negative integer a satisfying Aa = ∅, and

(3.6) `(S(a))− `(S(0)) = `(R(a′))− `(R(0)) + |E|.

Put q = r + 1. To show (a), suppose r < x. For an element 0x of A0, we have 0x < 0ri in

T (S(0)). So it is clear that 0x < 1qj in T (S). Then clearly 0xmx+1 < 0qmq+1 in T (S), and by

Proposition 3.5 we have x < q. As r and q are adjacent, this is a contradiction. We have

shown (a). To show (b), suppose that Am−1 contains an element tx with x 6= r. Then

there exists an element tx0 of A0 such that πm−1(tx0) = tx by Proposition 3.6, and by (a),

we see x < r. Then δ(π(tx)) = 0. In fact, if δ(π(tx)) = 1, then we have 1rmr
< π(tx) ≤ 1xmx

with x < r. By Proposition 3.5, this is a contradiction. Since δ(αm) = 1, we obtain

(b). Let us show (c). Note that the sets Cn satisfy An = Cn ∪ {tx ∈ An | x 6= r} for
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all n. Thus, using (b), there exists a non-negative integer a such that Aa is empty. Let

n be a non-negative integer. Suppose that the set An contains an element tx such that

π(tx) does not belong to An+1. Note that δ(αn+1) and δ(π(tx)) are different from each

other by the definition of An+1. To show (3.6), it suffices to show that δ(αn+1) = 1

and δ(π(tx)) = 0. In fact, let En be the subset of An consisting of elements tx with

x 6= r satisfying that π(tx) does not belong to An+1. If δ(αn+1) = 1 and δ(π(tx)) = 0

are true, then `(S(n+1)) − `(S(n)) = `(R(n+1)) − `(R(n)) + |En|, and by (b), we get the

equation (3.6). To read a contradiction, suppose that δ(αn+1) = 0 and δ(π(tx)) = 1.

We have then 0rmr+1 ≤ αn+1 < π(tx) < 0xmx+1. As x < r holds by (a), this contradicts

Proposition 3.5.

Similarly, we have the “dual” of (a), (b) and (c). Let m′ be the minimum number such

that βm′ = 0qmq+1. Then

(d) for every element 1y of F , we have q < y,

(e) there exists no element ty of Bm′ such that y 6= q,

(f) we have

(3.7) `(S′)− `(S(a)) = `(R′)− `(R(a′)) + |F |.

By (3.6) and (3.7), we get (3.5). Thus, for a generic specializationR′ obtained by (0ri , 1
r+1
j ),

the specialization S′ of S obtained by (0ri , 1
r+1
j ) is generic. In the same way, one can check

if a specialization S′ of S by (0ri , 1
r+1
j ) is generic, then the specialization R′ of R by

(0ri , 1
r+1
j ) is also generic.

Example 3.15. Let ξ = (2, 5) + (3, 7) + (3, 2). For the small modification obtained by

(02
5, 1

3
1), the set A0 contains 01

5. One can check that the specialization by (02
5, 1

3
1) is generic.

Moreover, for the ABS corresponding to N(3,7)+(3,2), the specialization by (01
5, 1

2
1) is also

generic.

4. The case of Newton polygons consisting of two slopes

In this section, to solve Problem 1.4, we give a proof of Theorem 1.6. In Section 3, we have

seen that it suffices to deal with Newton polygons consisting of two segments to classify

generic specializations. Thus we mainly treat Newton polygons consisting of two segments

in this section. The notation is as Sections 2 and 3.

For a Newton polygon ξ, we have a bijection from B(ξ) to B(ξD), see the paragraph

after Theorem 1.6. See (1.2) for the definition of B(ξ). Moreover, to get a bijection

between B(ξ) and B(ξC), we use Lemma 3.3. If Theorem 1.6 is true, then using the two
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bijections and the map Φ: NP→ NPsep defined in Section 3.1, we can reduce Problem 1.4

into the case of [3].

Proof of Theorem 1.6. Let S (resp. R) denote the ABS associated to ξ (resp. ξC). Let

G(S) (resp. G(R)) denote the set of generic specializations of S (resp. R). The assertion

is paraphrased as follows: There exists a map G(S)→ G(R) defined by sending a generic

specialization S′ of S obtained by (01
i , 1

2
j ) to the generic specialization R′ of R obtained by

(01
i , 1

2
j ), and this map is bijective. The set T (R) can be regarded as a subset of T (S) as

ordered sets, see Lemma 3.3. Again by Lemma 3.3, we have

{(01, 12) ∈ T (S)× T (S) | 01 < 12 in T (S)}

= {(01, 12) ∈ T (R)× T (R) | 01 < 12 in T (R)}.

Take elements 01
i and 12

j , with 01
i < 12

j , of T (S) such that the specialization S′ of S by

(01
i , 1

2
j ) is generic. Let {An} (resp. {A′n}) be the A-sequence associated to S, 01

i and 12
j

(resp. R, 01
i and 12

j ), see Definition 2.18 for the definition of the A-sequence. Clearly we

have A0 = A′0 and `(S(0)) = `(R(0)). For a non-negative integer n, suppose that An = A′n
and `(S(n)) = `(R(n)). If elements t of A′n satisfy that ∆(R)(t) = 0, then by Lemma 3.3

we see that An+1 = A′n+1 and `(S(n+1)) = `(R(n+1)). Moreover, if elements t of A′n satisfy

∆(R)(t) = 1, then it follows from Lemma 3.3 thatAn+2 = A′n+1 and `(S(n+2)) = `(R(n+1)).

Note that in this case An+1 is not empty. Thus, as the specialization S′ of S by (01
i , 1

2
j )

is generic, it follows from Proposition 3.8 and the above that there exists the minimum

number a (resp. a′) such that Aa (resp. Aa′) is empty. Similarly, for the B-sequence

{Bn} (resp. {B′n}) associated to S, 01
i and 12

j (resp. R, 01
i and 12

j ), we have B0 = B′0
and `(S(a)) = `(R(a′)). See Definition 2.19 for the definition of the B-sequence. For a

non-negative integer n, suppose that Bn = B′n. Similarly as above, we haveBn+1 = B′n+1 and `(S(a+n+1)) = `(R(a′+n+1)) if ∆(R)(t) = 0 for t ∈ B′n,

Bn+2 = B′n+1 and `(S(a+n+2)) = `(R(a′+n+1)) otherwise.

Thus we see that `(R′) = `(R)− 1 if and only if `(S′) = `(S)− 1.

The following is an example of Theorem 1.6. See also Example 2.20.

Example 4.1. Let ξ = (2, 7) + (3, 5). We have then ξC = (2, 5) + (3, 2). Let R be the

ABS associated to NξC . For this ABS

R = 11
1 ==11

2 ==01
3

		
01

4

		
01

5

		
12

1 DD
12

2 DD
01

6

��
01

7

��
12

3 JJ
02

4

��
02

5

��
,

the specialization R′ obtained by exchanging 01
4 and 12

2 is
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R′ = 11
1 ==01

3

��
11

2 ??
12

2 ??
01

5

��
12

1 AA
01

4

��
01

6

��
01

7

��
02

4

��
12

3 LL
02

5

��
.

For the small modification by (01
4, 1

2
2), we have sets A0 = {01

5}, A1 = ∅, B0 = {12
1} and

B1 = ∅. Thus we have a = 1 and b = 1. Compare with Example 2.20 A-sequences and

B-sequences of S and R. By Example 2.14, we can regard T (R) as a subset of T (S) as

ordered sets. One can check that these R and R′ satisfy `(R′) = `(R)− 1. Moreover, the

sets of pairs (01
i , 1

2
j ) constructing generic specializations for ABS’s corresponding to Nξ

and NξC are both

{(01
4, 1

2
1), (01

4, 1
2
2), (01

5, 1
2
1), (01

5, 1
2
2), (01

6, 1
2
3), (01

7, 1
2
3)}.

5. Determining Newton polygons of generic specializations

In this section, we prove Theorem 1.8. Let ξ =
∑

i(mi, ni) be a Newton polygon. By

Corollary 3.13, for the ABS corresponding to Nξ, generic specializations are obtained by

specializations by 0r and 1r+1. First, we see that it suffices to deal with ξ consisting of

two segments in order to show Theorem 1.8.

Lemma 5.1. If Theorem 1.8 is true for ξ with two segments, then Theorem 1.8 is true

for any ξ.

Proof. Let w ∈ B(ξ). Then there exists the generic specialization w′ in B(ξi) correspond-

ing to w via the map obtained in Theorem 1.5 for some i with ξi = (mi, ni)+(mi+1, ni+1).

By hypothesis, we have a Newton polygon ζ ′ satisfying (i) and (ii) of Theorem 1.8 for ξi

and w′. Put ζ = (m1, n1) + · · ·+ (mi−1, ni−1) + ζ ′ + (mi+2, ni+2) + · · ·+ (mz, nz). Then

this ζ satisfies (i) and (ii) of Theorem 1.8 for ξ and w.

The key statement for the proof of Theorem 1.8 is Theorem 5.2 below. We show the

theorem by reducing it to the case that the Newton polygon of a minimal DM1 consists

of two segments, where one slope is less than 1/2 and the other slope is greater than 1/2,

see [3, Section 5] for the proof in the case.

Theorem 5.2. Let ξ = (m1, n1) + (m2, n2) be a Newton polygon consisting of two seg-

ments. Assume m2n1−m1n2 > 1. For any element w of B(ξ), there exist a specialization

w− of w and a segment ρ such that

w− = w′ ⊕ wρ

with w′ ∈ B(ξ′) and ρ = (c, d), where ξ′ is either (m1− c, n1− d) + (m2, n2) or (m1, n1) +

(m2 − c, n2 − d):
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ξ

ρ

ξ′ ξ
ρ

ξ′

so that the area of the region surrounded by ξ, ξ′ and ρ is one.

Proof. If ξ = (m1, n1) + (m2, n2) belongs to NPsep, then we have shown this fact in [3,

Proposition 5.1]. In this case, it is straightforward to see that m2n1 −m1n2 = 1 if and

only if ξ = (0, 1) + (1, 0).

Let us show the statement by induction on the height of ξ. Consider the case that

ξ does not belong to NPsep. Then ξ satisfies mi ≤ ni for i = 1, 2 or ni ≤ mi for

i = 1, 2. If the Newton polygon ξ satisfies the latter, then we replace ξ with ξD =

(n2,m2) + (n1,m1). Thus it suffices to see the case that ξ satisfies the former. Recall

that for a Newton polygon ξ = (m1, n1) + (m2, n2) satisfying mi ≤ ni for i = 1, 2, we set

ξC = (m1, n1 −m1) + (m2, n2 −m2), see the first paragraph of Section 3.1. Put η = ξC.

Let w ∈ B(ξ). We denote by wC the image of the map B(ξ) → B(η) of Theorem 1.6.

It is clear that the height of η is less than that of ξ. By the hypothesis of induction,

there exist a specialization (wC)− of wC and a segment τ such that (wC)− = v ⊕ wτ ,

with v ∈ B(η′), where η′ is uniquely determined by η and τ so that the area of the

region surrounded by η, η′ and τ is one. Then we construct required w− as follows. We

denote by S (resp. R) the ABS corresponding to w (resp. wC), which is the type of N−ξ
(resp. N−

ξC
) in the notation of [3, Section 5]. By Theorem 1.6, if we write {s1 < · · · < sh}

(resp. {s′1 < · · · < s′h′}) for the ordered set T (S) (resp. T (R)), with h = m1 +n1 +m2 +n2

and h′ = n1 + n2, then sx = s′x for x = 1, . . . , h′. Moreover, if ∆(S)(sx) = 1 for an integer

x, then Π(S)2(sx) = Π(R)(s′x), see Theorem 1.6. Suppose that the specialization R− of

R by (01
i , 1

2
j ) corresponds to (wC)− = v ⊕ wτ . Let us consider the specialization S− of

S by (01
i , 1

2
j ). If we denote by {t1 <′ · · · <′ th} and {t′1 <′ · · · <′ t′h′} the ordered sets

T (S−) and T (R−) respectively, then tx = t′x for x = 1, . . . , h′. Moreover, if ∆(S−)(tx) = 1

for an integer x, then Π(S−)2(tx) = Π(R−)(t′x). Thus we see that S− corresponding to

w− = w′ ⊕ wρ, with (w′)C = v and ρC = τ .

Remark 5.3. Let ξ = (m1, n1)+(m2, n2) be a Newton polygon consisting of two segments.

If m2n1 − m1n2 = 1, then B(ξ) consists of only one element, and it is wζ with ζ =

(m1 + m2, n1 + n2). Note that ζ ≺ ξ is saturated. This fact is proved by reducing the

problem to the case of ξ = (0, 1) + (1, 0) via the map Φ: NP→ NPsep, in the similar way

as the proof of Theorem 5.2.

Theorem 1.8 follows from Theorem 5.2. Indeed, this can be proven in the same way

as the proof of [3, Theorem 1.3], but we write the proof for the reader’s convenience.
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Proof of Theorem 1.8. Thanks to Lemma 5.1, we may assume that ξ consists of two seg-

ments. Put ξ = (m1, n1) + (m2, n2). Let us show the statement by induction on the value

m2n1 − m1n2. The minimum value is one. We have discussed the case of the minimal

value in Remark 5.3.

Suppose that m2n1 −m1n2 is greater than one. Then, by Theorem 5.2, for w ∈ B(ξ),

there exist a specialization w− and a segment ρ such that w− = w′⊕wρ, with w′ ∈ B(ξ′),

where ξ′ = (m′1, n
′
1) + (m′2, n

′
2) is uniquely determined by ξ and ρ so that the area of the

region surrounded by ξ, ξ′ and ρ is one. Note that m′2n
′
1−m′1n′2 is less than m2n1−m1n2.

By the hypothesis of induction, there exists a Newton polygon ζ ′ such that ζ ′ ≺ ξ′ is

saturated, and wζ′ ⊂ w′. Then the Newton polygon ζ = ζ ′ + ρ satisfies that ζ ≺ ξ is

saturated, and wζ ⊂ w.

Remark 5.4. Thanks to Theorems 5.2 and 1.8, by the same argument as the proof of [4,

Theorem 5.1], for a Newton polygon ξ and for a generic specialization w of wξ, we obtain

a sequence

(5.1) wζ = w(n) ⊂ w(n−1) ⊂ · · · ⊂ w(1) ⊂ w(0) = w,

where w(i+1) is a specialization of w(i), and w(i) corresponds to N−
ξi
⊕ (Nρ ⊕Nρ1 ⊕ · · · ⊕

Nρi−1) in the notation of [3, Section 5], where ρi is the ρ appearing when we apply [3,

Proposition 5.1] to ξi. Moreover, n+ 1 is equal to twice the area of the region surrounded

by ζ and ξ (cf. [4, Section 4]). Note that ζ ≺ ξ is saturated. From this, for w and w− of

Theorem 5.2, we obtain `(w−) = `(w)− 1, i.e., w− is a generic specialization of w because

otherwise (5.1) implies `(wξ)− `(wζ) < n+ 1, which contradicts [4, Corollary 5.2].

Here is an example of Theorems 5.2 and 1.8.

Example 5.5. Let ξ = (2, 7) + (3, 5). Let R denote the ABS corresponding to ξC =

(2, 5) + (3, 2). Let R− be the generic specialization obtained by exchanging 01
4 and 12

2.

Consider the full modification by (01
3, 1

1
2) for R−. Then this full modification can be

described as

11
1 AA

01
3

��
12

2 DD
12

1 DD
01

4

��
01

6

��
02

4

��
12

3 LL
02

5

��
⊕ 11

2 JJ
01

5

��
01

7

��
.

The former component is a generic specialization of N(1,3)+(3,2), and the latter component

is associated to the Newton polygon (1, 2) consisting of one segment. For the first com-

ponent, let us consider the full modification by (02
4, 1

2
3). We have then the specialization

N−(1,3)+(2,1) ⊕N(1,1). One can see that we obtain the Newton polygon ζ ′ satisfying (i) and

(ii) of Theorem 1.8 for ξC by ζ ′ = 2(1, 2) + 3(1, 1).
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Next, for the ABS S corresponding to Nξ, let S− be the generic specialization obtained

by exchanging 01
4 and 12

2. The specialization of S− by 01
3 and 11

2 is described as

11
1 ::01

3

��
12

2 ;;12
1 ;;01

4

��
01

6

��
02

4

��
12

3 AA
02

5

��
01

8

��
02

7

��
02

6

��
02

8

��
⊕ 11

2 GG
01

5

��
01

7

��
01

9

��
.

The former component is a generic specialization of N(1,4)+(3,5), and the latter component

is associated to the segment (1, 3). For the first component, let us consider the full

modification by (02
4, 1

2
3). We have then the specialization N−(1,4)+(2,3) ⊕N(1,2). If we write

ζ for the Newton polygon satisfying (i) and (ii) of Theorem 1.8 for ξ, we have then

ζ = 2(1, 3) + 3(1, 2), and one can easily check that ζC = ζ ′.
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