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A Mean Field Type Flow on a Closed Riemannian Surface with the Action of

an Isometric Group

Yamin Wang

Abstract. Let (Σ, g) be a closed Riemannian surface, G = {σ1, . . . , σN} be an iso-

metric group acting on it. Denote a positive integer ` = minx∈Σ I(x), where I(x) is

the number of all distinct points of the set {σ1(x), . . . , σN (x)}. By a method of flow

due to Castéras (Pacific J. Math. 2015), we prove that the solution to the mean field

equation

−∆gu = 8π`

(
heu∫

Σ
heu dvg

− 1

Volg(Σ)

)
exists under given conditions. This gives a new proof of Yang and Zhu’s result in

(Internat. J. Math. 2020). The case ` = 1 was studied by Li and Zhu (Calc. Var.

Partial Differential Equations 2019).

1. Introduction

Let (Σ, g) be a closed Riemannian surface and ∆ be the Laplace-Beltrami operator with

respect to the metric g. The famous mean field equation is stated as follows:

(1.1) −∆u = ρ

(
heu∫

Σ he
u dvg

− 1

Volg(Σ)

)
,

where ρ is some real number, h ∈ C∞(Σ), and Volg(Σ) stands for the volume of Σ. For

ρ < 8π, Ding, Jost, Li and Wang [12] proved that (1.1) has a solution when h is a smooth

positive function; for ρ = 8π, a sufficient condition for existence of solutions to (1.1) is

given by Yang and Zhu [23] when h ≥ 0 and h 6≡ 0. When Σ is a flat torus, it was

independently proved by Nolasco and Tarantello [20] that (1.1) has a solution for ρ = 8π.

While the problem on S2 is much more complicated and known as the Nirenberg problem.

For works in this direction, we refer the reader to [4,5,9–11,15,18,19]. When ρ ∈ (8π, 4π2)

and h ≡ 1, Struwe and Tarantello [22] pointed out that the solutions of (1.1) are nontrivial

under the assumption that Σ is flat torus with a fundamental domain. For ρ ∈ (8π, 16π),

it was proved by Ding, Jost, Li and Wang [13] that (1.1) exists a non-minimal solution.

In the case ρ 6= 8Nπ, ∀N ∈ N, Chen and Lin [6, 7] obtained a degree-counting formula
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for (1.1) provided that the genus of Σ is positive. Later, the result was generalized by

Malchiodi [17] to ρ ∈ (8mπ, 16mπ) (m ∈ Z+) when Σ is a general Riemannian surface.

For the recent work, Li and Zhu [16] showed that under certain assumptions, (1.1) has a

smooth solution with ρ = 8π on a closed Riemannian surface.

Let G = {σ1, . . . , σN} be a finite isometric group acting on a closed Riemannian surface

(Σ, g), and u : Σ → R be a measurable function, we say that u ∈ IG if u is G-invariant,

namely u(σi(x)) = u(x) for any 1 ≤ i ≤ N and almost every x ∈ Σ. Define a Hilbert

space

(1.2) HG =

{
u ∈W 1,2(Σ, g) ∩IG :

∫
Σ
u dvg = 0

}
with an inner product 〈u, v〉HG

=
∫

Σ〈∇u,∇v〉 dvg, where 〈∇u,∇v〉 stands for the Rie-

mannian inner product of ∇u and ∇v. Denote

(1.3) ` = min
x∈Σ

I(x)

with I(x) = ]G(x), where ]A stands for the number of all distinct points in the set A, and

G(x) = {σ1(x), . . . , σN (x)} for any x ∈ Σ. Recently, Yang and Zhu [25] extended Ding,

Jost, Li and Wang’s result [12] to (Σ, g) with an isometric group action G. Precisely, for

ρ = 8π` and u ∈HG, they considered the functionals

J̃8π`(1−ε)(u) =
1

2

∫
Σ
|∇gu|2 dvg − 8π`(1− ε) log

∫
Σ
heu dvg,

where h is a smooth positive function and h(σ(x)) = h(x) for all σ ∈ G and all x ∈ Σ.

For any 0 < ε < 1, it follows from Chen [8] and a direct method of variation that J̃8π`(1−ε)

attains its minimum at some minimizer uε. While if J̃8π` has no minimizer on HG, using

a method of blow-up analysis, they obtain

(1.4) inf
u∈HG

J̃8π`(u) ≥ −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`,

where Ãx = limr→0(G̃x(y)+4 log r) is a constant, r denotes the geodesic distance between

x and y, G̃x is a Green function satisfying

∆gG̃x =
8π`

Volg(Σ)
− 8π

∑̀
i=1

δσi(x) and

∫
Σ
G̃x dvg = 0.

Clearly, the minimizer is a solution of (1.1). Moreover, for works of related issues, we refer

the reader to Fang and Yang [14] and Yang and Zhu [24].

Castéras [2] investigated a gradient flow related to the mean field equation (1.1). Con-

tinuing [2], Castéras [3] obtained the global existence of the flow. The mean field type
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flow in [2, 3] is presented as follows:

(1.5)


∂
∂te

v = ∆v −Q+ ρ ev∫
Σ e

v dvg
,

v(x, 0) = v0(x),

where v0 ∈ C2+α(Σ), α ∈ (0, 1) is the initial data and Q ∈ C∞(Σ) is a given function such

that
∫

ΣQdvg = ρ. It is a gradient flow involving the functional

(1.6) Jρ(v(t)) =
1

2

∫
Σ
|∇v(t)|2 dvg +

∫
Σ
Qv(t) dvg − ρ log

∫
Σ
ev(t) dvg.

Suppose h ∈ C∞(Σ) is a positive function, and h satisfies

(1.7) ∆ log h = Q− ρ.

Using the flow due to [2, 3], Li and Zhu [16] gave a new proof to the results of [12].

Motivated by [16, 25], it is natural for us to consider the same question as in [25] by the

method of flow. Our aim is to prove the convergence of the mean field type flow (1.5) on

(Σ, g) with an isometric group action. Different from Yang and Zhu [25], it is not required

to assume
∫

Σ v dvg = 0 in our paper. Here we define a Hilbert space

(1.8) H n
G =

{
v ∈Wn,2(Σ, g) ∩IG

}
, n = 1, 2,

where IG is defined as in (1.2).

Then our main result reads

Theorem 1.1. Let (Σ, g) be a closed Riemannian surface, G = {σ1, . . . , σ`} be an iso-

metric group acting on it. Define a function space H 1
G as in (1.8) and a function I(x)

as in (1.3). Let v(t) ∈H 1
G be the solution of (1.5), and Q be a smooth function in (1.6),

satisfying Q(σ(x)) = Q(x) for all σ ∈ G and all x ∈ Σ. Suppose that I(x) ≡ ` for all

x ∈ Σ, and that 2 log h(x) + Ãx achieves its maximum at some point p ∈ Σ, where h(x)

and Ãx are defined in (1.7) and (1.4) respectively. If in addition

(1.9) Q(p) > 2K(p),

where K(p) denotes the Gaussian curvature of (Σ, g) at p, then for ρ = 8π`, there exists

an initial data v0 ∈ C2+α(Σ) such that v(t) converges in H2(Σ) to a solution v∞ ∈ C∞(Σ)

of

(1.10) −∆v∞ +Q = 8π`
ev∞∫

M ev∞ dvg
.
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The proof of Theorem 1.1 is based on the works of [2,3,16] related with a gradient flow.

Let us describe its outline. To prove the convergence of the flow in (1.5) with ρ = 8π`,

we first study some properties of the flow and then we get the compactness theorem. It is

shown that we have the following alternative: either v(tk) is compact or v(tk) blows up,

where v(tk) is a subsequence of v(t) as tk → ∞. Next, we suppose blow-up happens. By

blow-up analysis, we derive

lim
t→+∞

J8π`(v(t)) ≥ −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg,

where h(x) and Ãx are defined in (1.7) and (1.4) respectively. However, under the hy-

pothesis (1.9), we construct a sequence of initial data v0,ε such that

J8π`(v0,ε) < −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg,

which makes a contradiction, since J8π`(v(t)) decreases in t. Thus, we exclude the blow-up

phenomenon. According to the monotonicity of J8π`(v(t)), under some appropriate initial

data v0,ε, we finally prove the solution of (1.5) converges to a solution v∞ ∈ C∞(Σ) of

(1.10). Since the equation (1.10) is equivalent to the mean field equation (1.1), we conclude

that (1.1) has a smooth solution for ρ = 8π`. This ends the proof of Theorem 1.1. For the

special case G = {Id}, where Id: Σ → Σ is the identity map, our results are reduced to

that of Li and Zhu [16]. Though the method we employ is similar to [16], there are many

technical difficulties to be smoothed. Furthermore, by the symmetric properties of (Σ, g),

we deal with the singular points in constructing Green functions to derive the lower bound

of J8π`(v(t)).

According to Yang and Zhu [24], one can raise the same question for the functional

Jα,β(u) =
1

2

∫
Σ

(
|∇gu|2 − αu2

)
dvg − β log

∫
Σ
heu dvg

on a function space H =
{
u ∈W 1,2(Σ, g) :

∫
Σ u dvg = 0

}
. It is also interesting to consider

the existence of solutions to (1.1) through the method of flow.

Note that ∂
∂t

∫
Σ e

v(t) dvg = 0 by (1.5). This leads to
∫

Σ e
v(t) dvg = C. Hereafter, we can

assume without loss of generality that
∫

Σ e
v(t) dvg = 1. The remaining part of this paper

is to prove Theorem 1.1. Throughout this paper, we assume the volume of Σ equals to

1, and we write vk = v(tk) for simplicity. Moreover, sequence and subsequence are not

distinguished, and various constants are often denoted by the same C from line to line.
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2. Proof of Theorem 1.1

In this section, we begin by studying some properties of the flow. Following the same

arguments of [3, Theorem 0.1], we can obtain the global solution of the flow (1.5) on

a closed Riemann surface with an isometric group action. As an obvious analogue of

Proposition 2.1 in [16], we prove

Proposition 2.1. Let v(t) ∈ H 1
G be the solution of (1.5) with ρ = 8π`. For all t ≥ 0,

there holds

(2.1) J8π`(v(t)) ≥ −C,

where C > 0 is a constant not depending on t and H 1
G is defined in (1.8).

Proof. Denote v =
∫

Σ v dvg. Since
∫

ΣQdvg = 8π`, we have

(2.2) J8π`(v(t)) =
1

2

∫
Σ
|∇v(t)|2 dvg +

∫
Σ
Q(v(t)− v) dvg − 8π` log

∫
Σ
ev(t)−v dvg.

According to Chen [8], one gets by Young’s inequality

(2.3) log

∫
Σ
ev−v dvg ≤ log

∫
Σ
e

1
16π`
‖∇v‖22+4π` v2

‖∇v‖22 dvg ≤
1

16π`

∫
Σ
|∇v|2 dvg + C.

Inserting (2.3) into (2.2), we obtain

(2.4) J8π`(v(t)) ≥
∫

Σ
Q(v(t)− v) dvg − C.

In view of (1.5) and (1.7), applying the integration by parts, one has∫
Σ
Q(v(t)− v) dvg =

∫
Σ

∆v · log h dvg

=

∫
Σ

∂ev

∂t
log h dvg +

∫
Σ

(Q− 8π`ev) log h dvg.

(2.5)

We estimate the two integrals on the right-hand side of (2.5) respectively. Taking the

derivative with respect to t of J8π`(v(t)) in (1.6), one can check that

(2.6)
∂

∂t
J8π`(v(t)) =

∫
Σ

(−∆v +Q− 8π`ev)
∂v

∂t
dvg = −

∫
Σ

(
∂v

∂t

)2

ev dvg,

due to (1.5). Since Q ∈ C∞(Σ) and h ∈ C∞(Σ), it follows from the Hölder inequality and

(2.6) that ∫
Σ

∂ev

∂t
log h dvg ≥ −max

Σ
| log h|

(∫
Σ

(
∂v

∂t

)2

ev dvg

)1/2

= −max
Σ
| log h|

(
− ∂

∂t
J8π`(v(t))

)1/2

,

(2.7)
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and that

(2.8)

∫
Σ

(Q− 8π`ev) log h dvg ≥
∫

Σ
Q log h dvg − 8π`max

Σ
| log h|.

Combing (2.4), (2.5), (2.7) and (2.8), we obtain

(2.9) J8π`(v(t)) ≥ −8π`max
Σ
| log h|+

∫
Σ
Q log h dvg−max

Σ
| log h|

(
− ∂

∂t
J8π`(v(t))

)1/2

−C.

If maxΣ | log h| = 0, we can get the desired result directly. In the following, suppose

maxΣ | log h| > 0. Then (2.9) can be rewritten as

(2.10)
J8π`(v(t))

maxΣ | log h|
≥ −8π`+

∫
ΣQ log h dvg − C

maxΣ | log h|
−
(
− ∂

∂t
J8π`(v(t))

)1/2

.

Denote

(2.11) ξ =
1

maxΣ | log h|
, ζ = −8π`+

∫
ΣQ log h dvg − C

maxΣ | log h|
.

We claim that for any t ≥ 0, there holds

(2.12) ξJ8π`(v(t))− ζ ≥ 0.

For otherwise, there exists some t0 > 0 such that for all t ≥ t0,

(2.13) ξJ8π`(v(t))− ζ < 0.

By (2.10), we have for any t1 ≥ t0 that∫ t1

t0

− dJ8π`(v(t))

(−ξJ8π`(v(t)) + ζ)2
≥ t1 − t0,

namely, (
−ξ(t1 − t0) +

1

−ξJ8π`(v(t0)) + ζ

)
(−ξJ8π`(v(t1)) + ζ) ≥ 1.

Letting t1 → +∞, we find

lim
t→+∞

J8π`(v(t)) ≥ ξ

ζ
,

which contradicts (2.13). Then, inserting (2.11) into (2.12), one gets by (1.7)

J8π`(v(t)) ≥ 8π`

∫
Σ

log h dvg −
∫

Σ
|∇ log h|2 dvg − 8π`max

Σ
| log h| − C.

Noting that h ∈ C∞(Σ), we conclude (2.1). This completes the proof.
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In view of (2.6), we can see that J8π`(v(t)) decreases with respect to t. By integrating

(2.6) from 0 to t, one finds∫ t

0

∫
Σ

(
∂v

∂t

)2

ev dvgdt = J8π`(v(0))− J8π`(v(t)).

This together with Proposition 2.1 leads to∫ ∞
0

∫
Σ

(
∂v

∂t

)2

ev dvgdt < C < +∞.

Thus, there exists a sequence tk → +∞ such that

(2.14) lim
tk→+∞

∫
Σ

(
∂vk
∂t

)2

evk dvg → 0

as k → +∞.

To proceed, we need the following estimate, which is similar to Proposition 2.1 in [3].

Proposition 2.2. For ρ = 8π`, if v(t) ∈H 1
G is the solution of (1.5), then

(2.15) − ∂

∂t
ev(x,t) + 8π`ev(x,t) ≥ −C, ∀ t ≥ 0, ∀x ∈ Σ,

where the constant C > 0 not depending on t, and H 1
G is defined in (1.8).

Since no new idea comes out in its proof, we omit the details here but refer the readers

to [3]. Thanks to (2.14) and (2.15), we can see that the conditions in [2, Theorem 1.2] are

satisfied by vk. Following [2], we describe the compactness theorem as below.

Theorem 2.3. Define a function space H 1
G as in (1.8). Let v(t) ∈H 1

G be the solution of

(1.5) with ρ = 8π`. Then for a sequence tk → +∞, we have for k → +∞, either

(i) there exists a constant C not depending on k such that

‖vk‖H2(Σ) ≤ C,

or (ii) there exists a sequence of points {xk} and a sequence of real positive numbers

{Rk} → 0 such that

lim
k→+∞

∫
B2Rk(σi(xk))

evk dvg =
1

`
, ∀ i = 1, . . . , `,

where B2Rk(σi(xk)) ⊂ Σ denotes a geodesic ball centered at σi(xk) with radius 2Rk, and

lim
k→+∞

∫
Σ\
⋃`
i=1B2Rk(σi(xk))

evk dvg = 0.

In what follows, the sequence vk ⊆ H2(Σ) is said to be compact if it is uniformly

bounded in H2(Σ). Theorem 2.3 shows that we have the following alternative: either vk is

compact or vk blows up. Subsequently, we will exclude the blow-up phenomenon to occur.
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3. Blow-up analysis

Recall that H 2
G is defined in (1.8). In this section, we study the asymptotic behavior of

non-compact solutions vk ⊆H 2
G in Theorem 2.3. Set

(3.1) ∆vk = Q+
∂evk

∂t
− 8π`evk := Fk

where
∫

Σ e
vk dvg = 1. Similar to [16], we discuss the convergence of vk near and away from

the blow-up point x0. Based on the blow-up analysis, we finally calculate

lim
t→+∞

J8π`(v(t)) ≥ −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg,

where h(x) and Ãx are defined in (1.7) and (1.4) respectively.

3.1. Asymptotic behavior near the blow-up point

According to [2, Proposition 3.1], the convergence of vk is described as follows:

Proposition 3.1. Let vk ⊆H 2
G be a sequence of non-compact solutions of (3.1), satisfying

(2.14) and (2.15). Denote

ṽk = vk(expxk(rk· )) + 2 log rk,

where expxk represents the exponential map centered in xk and H 2
G is in (1.8). Then, there

exist a sequence of points xk and a sequence of real numbers rk such that as k → +∞,

ṽk → ṽ∞ in Cαloc(R2) for some α ∈ (0, 1), and weakly in H2
loc(R2), where ṽ∞ is the solution

of

−∆ṽ∞ = 8π`eṽ∞ .

Moreover, there exist λ > 0 and x̃0 ∈ R2 such that

ṽ∞(x) = 2 log
2λ

1 + (λ|x− x̃0|)2
+ log

1

4π`
.

Since the proof of Proposition 3.1 is an obvious analog of that of [2, Proposition 3.1],

we omit it, but refer the reader to [2] for details.

3.2. Convergence away from the blow-up point

Similar to [16], we have the following two observations of vk, which are essential in our

analysis. The difference is that vk is G-invariant in our case, namely vk(σi(x)) = vk(x)

for any 1 ≤ i ≤ N and almost every x ∈ Σ. The first key observation is the following:
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Proposition 3.2. Let vk ⊆H 2
G be a sequence of non-compact solutions of (3.1), satisfying

(2.14) and (2.15). Then for any 1 < p < 2, there holds

‖vk − vk‖W 1,p(Σ) ≤ C,

where the constant C > 0 is independent of k, and H 2
G is defined in (1.8).

Proof. By the result of [25, Proposition 5], there exists a unique Green function G̃x(y) on

(Σ, g), which is a distributional solution to

(3.2) ∆gG̃x =
∑̀
i=1

δσi(x) − `.

Note that vk(σ(x)) = vk(x) for all σ ∈ G and all x ∈ Σ. Then it follows from [1,

Theorem 4.13] that

(3.3) vk(x)− vk =
1

`

∫
Σ
G̃x(y)Fk(y) dvg(y) for a.e. x ∈ Σ,

and that

(3.4) |∇vk(x)| ≤ 1

`

∫
Σ
|∇G̃x(y)||Fk(y)| dvg(y) ≤ C

∫
Σ

1

|x− y|
|Fk(y)| dvg(y).

Combing (2.15) and (3.1), we deduce that

(3.5) ‖Fk‖L1(Σ) ≤ 16π`+

∥∥∥∥∂evk∂t

∥∥∥∥
L1(Σ)

≤ C.

This together with (3.4), Jensen’s inequality and Fubini’s Theorem gives∫
Br(x∗)

|∇vk(x)|p dvg(x) ≤
∫
Br(x∗)

∫
Σ
‖Fk‖p−1

L1(Σ)

|Fk(y)|
|x− y|p

dvg(y)dvg(x)

≤ C sup
y∈Σ

∫
Br(x∗)

1

|x− y|p
dvg(x)

≤ Cr2−p,

(3.6)

where Br(x
∗) ⊂ Σ denotes a ball centered at x∗ with radius r > 0. Noticing Σ is compact,

for any 1 < p < 2, we can see ‖∇vk(x)‖Lp(Σ) ≤ C by (3.6). Then by Poincaré’s inequality,

we get the desired result. This achieves the proof of the proposition.

To get the convergence of vk away from the blow-up point, we also need the proposition

as below.

Proposition 3.3. Let vk ⊆H 2
G be a sequence of non-compact solutions of (3.1), satisfying

(2.14) and (2.15). Then for each V ⊂⊂ Σ \
{⋃`

i=1 σi(x0)
}

, there exist constants C > 0

and α > 1 such that ∫
V
eα(vk−vk) dvg ≤ C,

where H 2
G is defined in (1.8).
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Proof. Let V be any subset satisfying V ⊂⊂ Σ \
{⋃`

i=1 σi(x0)
}

. Note that vk is non-

compact. By the results of [2, Proposition 2.1] and Theorem 2.3, we have for any x ∈ V ,

there exists rx > 0 such that for some δx > 0

(3.7)

∫
Brx (x)

|Fk| < 4π − δx

inBrx(x) ⊂ Σ\
{⋃`

i=1 σi(x0)
}

. Then we can find an integerm satisfying V ⊂
⋃m
j=1Brxj /2(xj),

where xj ∈ V . In view of (3.3), for x ∈ Brxj /2(xj), one has by (3.5) that

eα(vk(x)−vk) = e
α
`

(∫
Brxj

(xj) G̃x(y)Fk(y) dvg(y)+
∫
Σ\Brxj (xj) G̃x(y)Fk(y) dvg(y)

)

≤ Ce
α
`

∫
Brxj

(xj) G̃x(y)Fk(y) dvg(y)
,

(3.8)

where α > 0 is a constant and G̃x(y) is in (3.2).

Set β(y) = |Fk(y)χBrxj (xj)|/‖Fk(y)χBrxj (xj)‖L1(Σ). This together with (3.8) yields

∫
Brxj /2

(xj)
eα(vk(x)−vk) dvg(x)

≤ C
∫
Brxj /2

(xj)

∫
Σ
β(y)e

α
`
‖Fk(y)χBrxj (xj)‖L1(Σ)|G̃x(y)|

dvg(y)dvg(x)

≤ C sup
y∈Σ

∫
Σ

(
1

|x− y|

) α
2π`
‖Fk(y)χBrxj (xj)‖L1(Σ)

dvg(x).

The first inequality is a direct consequence of Jensen’s inequality. The second one follows

from [1, Theorem 4.13]. Due to (3.7) and ` ≥ 1, there exists the constant α > 1 such that

α

2π`
‖Fk(y)χBrxj (xj)‖L1(Σ) < 2

for each j ∈ {1, . . . ,m}. As a consequence,∫
V
eα(vk−vk) dvg ≤

m∑
j=1

∫
Brxj /2

(xj)
eα(vk(x)−vk) dvg(x) ≤ C.

Therefore, Proposition 3.3 is established.

Recall that h is defined as in (1.7). Denote µk = vk − log h. It is clear that

(3.9) ∆(µk − µk) = 8π`+
∂evk

∂t
− 8π`evk ,

and that µk ⊆H 2
G. Then we obtain the proposition as follows.
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Proposition 3.4. Let µk be defined as above. For 1 < p < 2 and some 0 < γ < 1, there

holds 
µk − µk ⇀ G̃x0 weakly in W 1,p(Σ),

µk − µk → G̃x0 strongly in W 2,2
loc

(
Σ \

{⋃`
i=1 σi(x0)

})
,

µk − µk → G̃x0 in Cγloc

(
Σ \

{⋃`
i=1 σi(x0)

})
as k → +∞, where the Green function G̃x0 satisfies

(3.10) ∆G̃x0 = 8π`− 8π
∑̀
i=1

δσi(x0) and

∫
Σ
G̃x0 dvg = 0.

Moreover, G̃x0 takes the form

(3.11) G̃x0(x) = −4 log r + Ãx0 +O(r)

near σi(x0), where Ãx0 is a constant, r denotes the geodesic distance between x and σi(x0),

i = 1, . . . , `.

Proof. Observe that log h ∈ C∞(Σ). By employing Proposition 3.2, we see that ‖µk −
µk‖W 1,p(Σ) ≤ C for any 1 < p < 2. Since G̃x0(x) is the unique solution of (3.10), up

to a subsequence, we have µk − µk ⇀ G̃x0 weakly in W 1,p(Σ) as k → +∞. Recall

that V ⊂⊂ Σ \
{⋃`

i=1 σi(x0)
}

. Due to Proposition 3.3, we obtain by using the Jensen’s

inequality that

(3.12)

∫
V
eαvk(x) dvg = eαvk

∫
V
eα(vk(x)−vk) dvg ≤ C

(∫
Σ
evk(x) dvg

)α
≤ C,

where α > 1. Together with Hölder’s inequality and (2.14), it leads to

(3.13)

∫
V

∣∣∣∣∂evk∂t

∣∣∣∣r dvg ≤
(∫

V

(
∂vk
∂t

)2

evk dvg

)r/2(∫
V
eαvk(x) dvg

)1−r/2
→ 0

as k → +∞, where r = 2α/(α + 1) > 1. Choose ω = min{r, α}. Combining (3.12) and

(3.13), we employ the elliptic estimate to (3.9), which yields ‖µk − µk‖W 2,ω
loc (V )

≤ C. And

then Sobolev’s embedding theorem implies that µk−µk → G̃x0 in Cγloc

(
Σ\
{⋃`

i=1 σi(x0)
})

for 0 < γ < 1. Following the same arguments as in [16, Proposition 3.5], one can show

that ‖µk − µk − G̃x0‖H2(V ) → 0. By elliptic estimates, we obtain (3.11). This concludes

the proof of Proposition 3.4.

3.3. A lower bound of J8π`(v(t))

In this subsection, we shall derive a lower bound of J8π`(v(t)). Precisely, we have the

following proposition.
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Proposition 3.5. Define a function space H 1
G as in (1.8). Let v(t) ∈H 1

G be the solution

of (1.5) with ρ = 8π`. Suppose vk is a noncompact sequence of v(t). Then we have

lim
t→+∞

J8π`(v(t)) ≥ −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg,

(3.14)

where where h(x) and Ãx are defined in (1.7) and (3.11) respectively.

Proof. We prove the statement on the contrary. For otherwise, there exists a constant

ε > 0 such that

lim
t→+∞

J8π`(v(t)) < −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg − ε.

(3.15)

Let vk ⊆H 2
G be a sequence of non-compact solutions of (3.1), satisfying (2.14) and (2.15).

Notice that
∫

Σ e
vk = 1. This leads to log

∫
Σ e

vk dvg = 0. Then (1.6) can be rewritten as

(3.16) J8π`(vk) =
1

2

∫
Σ
|∇vk|2 dvg +

∫
Σ
Qvk dvg,

where
∫

ΣQdvg = 8π`. Now, we estimate the two integrals on the right-hand side of (3.16)

respectively. By Proposition 3.4,

(3.17) vk − vk → G̃x0 + log h−
∫

Σ
log h dvg

in Cγloc

(
Σ \

{⋃`
i=1 σi(x0)

})
, for some 0 < γ < 1. This together with (1.7) gives that∫

Σ
Qvk dvg = −

∫
Σ
∇ log h · ∇vk dvg + 8π`vk

= −
∫

Σ
|∇ log h|2 dvg −

∫
Σ
∇ log h · ∇G̃x0 dvg + 8π`vk + ok(1).

(3.18)

To calculate the integral
∫

Σ |∇vk|
2 dvg, we divide it into three parts, namely∫

Σ\
⋃`
i=1 Bδ(σi(xk))

|∇vk|2 dvg +

∫
⋃`
i=1 Bδ(σi(xk))\BRrk (σi(xk))

|∇vk|2 dvg

+

∫
⋃`
i=1 BRrk (σi(xk))

|∇vk|2 dvg,

where δ > 0. Then the above parts shall be estimated respectively. We begin with the

first part. It follows from Proposition 3.4 that∫
Σ\
⋃`
i=1Bδ(σi(xk))

|∇vk|2 dvg

=

∫
Σ\
⋃`
i=1Bδ(σi(xk))

|∇(µk + log h)|2 dvg

=

∫
Σ\
⋃`
i=1Bδ(σi(x0))

(
|∇G̃x0 |2 + 2∇G̃x0 · ∇ log h+ |∇ log h|2

)
dvg + ok(1).

(3.19)
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In a normal coordinate system {x1, x2} near x0, by elliptic estimates, G̃x0 can be repre-

sented by

(3.20) G̃x0(x) = −4 log r + Ãx0 + b1x1 + b2x2 + c1x
2
1 + 2c2x1x2 + c3x

2
2 +O(r3),

where Ãx0 , b1, b2, c1, c2, c3 are constants, r(x) denotes the geodesic distance between x

and σi(x0), i = 1, . . . , `. Using the divergence theorem, we calculate by (3.10) and (3.20)

that

∫
Σ\
⋃`
i=1 Bδ(σi(x0))

|∇G̃x0 |2 dvg = −
∫
⋃`
i=1 ∂Bδ(σi(x0))

G̃x0 ·
∂G̃x0

∂n
dsg

−
∫

Σ\
⋃`
i=1 Bδ(σi(x0))

G̃x0

(
8π`− 8π

∑̀
i=1

δσi(x0)

)
dvg

= −32π` log δ + 8π`Ãx0 + oδ(1).

(3.21)

Inserting (3.21) into (3.19), one has∫
Σ\
⋃`
i=1Bδ(σi(xk))

|∇vk|2 dvg

=

∫
Σ\
⋃`
i=1Bδ(σi(x0))

(2∇G̃x0 · ∇ log h dvg + |∇ log h|2) dvg

− 32π` log δ + 8π`Ãx0 + oδ(1) + ok(1).

(3.22)

Next we estimate the integral of vk on the annulus. Since vk ⊆H 2
G, it yields to

(3.23)

∫
⋃`
i=1Bδ(σi(xk))\BRrk (σi(xk))

|∇vk|2 dvg = `

∫
Bδ(xk)\BRrk (xk)

|∇vk|2 dvg.

We use a technique of [12] to get the estimate on the annulus. Set

(3.24) φk = inf
∂BRrk (xk)

vk, ψk = sup
∂Bδ(xk)

vk, ϕk = φk − ψk + 2 log rk + vk.

In view of Proposition 3.1 and (3.17), we see that as k → +∞

φk + 2 log rk → inf
|x|=R

ṽ∞(x) in Cαloc(R2),

and

ψk − vk → sup
∂Bδ(x0)

(
G̃x0 + log h−

∫
Σ
v log h dvg

)
in Cγloc

(
Σ \

{⋃̀
i=1

σi(x0)

})
,

where 0 < α < 1 and 0 < γ < 1. Then,

(3.25) ϕk → inf
|x|=R

ṽ∞(x)− sup
∂Bδ(x0)

(
G̃x0 + log h−

∫
Σ
v log h dvg

)
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as k → +∞. Sequently, we proceed in a normal coordinate system near xk. Let T (ψk, φk)

be a set of all smooth functions u ∈ R2 with u|∂Bδ(0) = ψk and u|∂BRrk (0) = φk. It is

not difficult to see that infu∈T (ψk,φk)

∫
Bδ(0)\BRrk (0) |∇u|

2 dx is attained by some function h

satisfying ∆h = 0 in Bδ(0) \ BRrk(0) with h|∂Bδ(0) = ψk, h|∂BRrk (0) = φk. Then it follows

that

h(x) =
φk(log δ − log r) + ψk(log r − logRrk)

log δ − logRrk
,

and that

(3.26)

∫
Bδ(0)\BRrk (0)

|∇h|2 dx =
2π(φk − ψk)2

log δ − logRrk
.

Define a function space

Wk(ψk, φk) =
{
vk ∈H 2

G(Bδ(xk) \BRrk(xk)) : vk|∂Bδ(xk) = ψk, vk|∂BRrk (xk) = φk
}
,

where H 2
G is in (1.8). Let ṽk = max{ψk,min{vk, φk}}. Then ṽk ∈ Wk(ψk, φk) and in a

normal coordinate system near xk, there holds by∫
Bδ(xk)\BRrk (xk)

|∇vk|2 dvg ≥
∫
Bδ(xk)\BRrk (xk)

|∇ṽk|2 dvg ≥
∫
Bδ(0)\BRrk (0)

|∇h|2 dx.

This together with (3.23), (3.24) and (3.26), one can easily check that∫
⋃`
i=1 Bδ(σi(xk))\BRrk (σi(xk))

|∇vk|2 dvg

≥ 2π`(φk − ψk)2

log δ − logRrk

≥ 2π`

(
2 +

vk
log rk

)2(
− log rk + logR− log δ −

CR,δ
log rk

)
+ 4π`

(
2 +

vk
log rk

)(
ϕk +

ϕkCR,δ
(log rk)2

)
+

`C ′R,δvk

2(log rk)2
+ ok(1),

(3.27)

where CR,δ and C ′R,δ are constants relying only on δ and R.

Finally, we compute the integral
∫⋃`

i=1BRrk (σi(xk)) |∇vk|
2 dvg. Thanks to Proposi-

tion 3.1, we obtain∫
⋃`
i=1BRrk (σi(xk))

|∇vk|2 dvg

= `(1 + ok(1))

∫
BR(0)

|ṽ∞(x)|2 dx

≥ 16π`(1 + ok(1))

(
log(1 + λ2(R− |x̃0|)2)− λ2(R− |x̃0|)2

1 + λ2(R− |x̃0|)2

)
.

(3.28)
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Inserting (3.18), (3.22), (3.27) and (3.28) into (3.16), we conclude that

J8π`(vk) ≥ −π` log rk

(
2− vk

log rk

)2

+
`C ′R,δvk

2(log rk)2
+ 2π`

(
2 +

vk
log rk

)(
ϕk +

CR,δϕk
(log rk)2

)
− 16π` log δ + 4π`Ãx0 + π`

(
2 +

vk
log rk

)2(
logR− log δ −

CR,δ
log rk

)
+ 8π`(1 + ok(1))

(
log(1 + λ2(R− |x̃0|)2)− λ2(R− |x̃0|)2

1 + λ2(R− |x̃0|)2

)
+ oδ(1)

−
∫
⋃`
i=1Bδ(σi(x0))

∇G̃x0 · ∇ log h dvg

− 1

2

∫
Σ\
⋃`
i=1Bδ(σi(x0))

|∇ log h|2 dvg + ok(1).

(3.29)

Using the divergence theorem, one has∫
⋃`
i=1 Bδ(σi(x0))

∇G̃x0 · ∇ log h dvg

= `

(∫
∂Bδ(x0)

∂G̃x0

∂n
log h dsg −

∫
Bδ(x0)

∆G̃x0 log h dvg

)
= oδ(1).

(3.30)

Moreover, (3.29) implies that

J8π`(vk) ≥ (C − π` log rk)

(
2− vk

log rk
+O

(
− 1

log rk

))2

+ C.

Note that J8π`(vk) ≤ J8π`(v0). Then it follows that∣∣∣∣2− vk
log rk

∣∣∣∣ ≤ C

(−` log rk)1/2
.

Letting k → +∞ leads to vk/ log rk → 2. Together with (3.25), (3.29) and (3.30), we

finally arrive at

lim
k→∞

J8π`(vk) ≥ −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg,

(3.31)

by passing to the limit k → +∞ first and then δ → 0, R → +∞. Notice that J8π`(v(t))

decreases in t. According to (3.15), we can find some t0 > 0 such that

J8π`(v(t0)) < −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg −

ε

2
.
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Then when tk > t0, we see that J8π`(v(tk)) ≤ J8π`(v(t0)), namely,

J8π`(v(tk)) < −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg,

which contradicts with (3.31). Thus the proposition is proved.

4. Completion of the proof of Theorem 1.1

In this section, we will complete the proof of Theorem 1.1. Under the assumptions of

Theorem 1.1, we shall construct a sequence of initial data v0,ε to show

J8π`(v0,ε) < −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg,

where Ãx is defined as in (3.11). Observe from (2.6) that J8π`(v(t)) ≤ J8π`(v0,ε) as

t→ +∞. This yields to a contradiction with Proposition 3.5. Therefore we conclude that

vk is compact. Then we follow the idea of [3] to get the convergence of the flow. This

finishes the proof of the theorem.

4.1. Exclusion of blow-up phenomenon

We first exclude the blow-up phenomenon. Pick up some point p ∈ Σ such that

(4.1) 2 log(π`h(p)) + Ãp = max
x∈Σ

(2 log(π`h(x)) + Ãx).

Notice that I(x) = ]G(x) ≡ ` for all x ∈ Σ and G = {σ1, . . . , σ`}. Then I(p) = ` and

σ1(p), . . . , σ`(p) are different points on Σ. For some δ > 0, choose a normal coordinate

system (Bδ(x0), exp−1
p ; {y1, y2}) near p. By [25], G̃p can be written as

(4.2) G̃p(expp(y)) = −4 log r + Ãp + b1y
1 + b2y

2 + c1(y1)2 + 2c2y
1y2 + c3(y2)2 +O(r3),

where r = |y| = dg(p, expp(y)), Ãp is a constant. Following the arguments of [25, Section 5],

we define

φε(x) =


c− 2 log

(
1 + r2

8ε2

)
+ Ãp + α(exp−1

p (σ−1
i (x))), x ∈ BRε(σi(p)), i = 1, . . . , `,

G̃p(x)− η(σ−1
i (x))β(exp−1

p (σ−1
i (x))), x ∈ B2Rε(σi(p)) \BRε(σi(p)),

G̃p(x), x ∈ Σ \
⋃`
i=1B2Rε(σi(p)),

where Ãp is defined in (4.2), R and c are constants depending only on ε and will be

determined later, r = r(x) denotes the geodesic distance between x and σi(p) for x ∈
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BRε(σi(p)), η ∈ C∞0 (B2Rε(p)) is a cut-off function, satisfying 0 ≤ η ≤ 1, η ≡ 1 on BRε(p)

and |∇gη| ≤ 4/(Rε), α(y) = b1y
1 + b2y

2 and β(y) = c1(y1)2 + 2c2y
1y2 + c3(y2)2 +O(r3).

Set ṽ0,ε = (φε − φε) + log h. In view of (1.6), we obtain

J8π`(ṽ0,ε) =
1

2

∫
Σ
|∇gφε|2 dvg − 8π` log

∫
Σ
heφε dvg + 8π`φε

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg.

(4.3)

By the result of [25], it then follows from (4.3) that

J8π`(ṽ0,ε) = −8π`− 4π`Ãp − 8π` log(π`h(p))

− 32π`

(
8π`− 2K(p) + b21 + b22 +

∆h(p)

h(p)
+

2(k1b1 + k2b2)

h(p)
+ oε(1)

)
ε2 log

1

ε

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg,

(4.4)

where b1 and b2 are defined in (4.2), (k1, k2) = ∇h(p). Since ∆ log h = Q − 8π`, there

holds

(4.5)
∆h(p)

h(p)
= Q− 8π`+

k2
1 + k2

2

h(p)2
.

Under the hypothesis Q(p) > 2K(p), we have by (4.5) that

8π`− 2K(p) + b21 + b22 +
∆h(p)

h(p)
+

2(k1b1 + k2b2)

h(p)

= Q(p)− 2K(p) +

(
k1 + b1h(p)

h(p)

)2

+

(
k2 + b2h(p)

h(p)

)2

> 0.

(4.6)

Inserting (4.6) into (4.4), by (4.1), we find

J8π`(ṽ0,ε) < −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg.

(4.7)

Observe that ṽ0,ε is the function of Lipschitz. Clearly, ṽ0,ε can be modified into a smooth

function v̂0,ε, and J8π`(v̂0,ε) satisfies (4.7). Then, choose some constant c0 such that∫
Σ e

v̂0,ε+c0 dvg = 1. Denote v0,ε = v̂0,ε + c0. As a consequence,

J8π`(v0,ε) < −4π`max
x∈Σ

(2 log(π`h(x)) + Ãx)− 8π`

+ 8π`

∫
Σ

log h dvg −
1

2

∫
Σ
|∇ log h|2 dvg,

which contradicts to (3.14). Thus, we conclude that blow-up can’t happen and the se-

quence vk is compact.
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4.2. The convergence

We follow the ideas of Catéras in [3] for the study of convergence. As k → +∞, note that∫
Σ

(∆vk −∆v∞)2 dvg =

∫
Σ

(
8π`
(
ev∞ − evk

)
+
∂evk

∂t

)2

dvg

≤ C
∫

Σ

(
ev∞ − evk

)2
dvg + C

∫
Σ

∣∣∣∣∂vk∂t
∣∣∣∣2 evk dvg → 0,

where v∞ is a solution of (1.10). By the result of Simon [21], we finally obtain that

‖v(t)− v∞‖H2(Σ) → 0 as k → +∞.

Therefore, Theorem 1.1 is established.
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