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A Mean Field Type Flow on a Closed Riemannian Surface with the Action of

an Isometric Group

Yamin Wang

Abstract. Let (X2, g) be a closed Riemannian surface, G = {o1,...,0n} be an iso-
metric group acting on it. Denote a positive integer { = ming,ex I(x), where I(z) is
the number of all distinct points of the set {o1(z),...,on(z)}. By a method of flow
due to Castéras (Pacific J. Math. 2015), we prove that the solution to the mean field

equation
he" 1
—A,u = 8n/ —
= w, ~wo)

exists under given conditions. This gives a new proof of Yang and Zhu’s result in
(Internat. J. Math. 2020). The case ¢ = 1 was studied by Li and Zhu (Calc. Var.
Partial Differential Equations 2019).

1. Introduction

Let (X, g) be a closed Riemannian surface and A be the Laplace-Beltrami operator with

respect to the metric g. The famous mean field equation is stated as follows:

he" 1
1.1 — Au = —
(L) e <f2 he dvg V019(2)> ’

where p is some real number, h € C*°(X), and Voly(X) stands for the volume of ¥. For
p < 8r, Ding, Jost, Li and Wang [12] proved that has a solution when h is a smooth
positive function; for p = 87, a sufficient condition for existence of solutions to is
given by Yang and Zhu [23] when h > 0 and h # 0. When X is a flat torus, it was
independently proved by Nolasco and Tarantello [20] that has a solution for p = 8.
While the problem on S? is much more complicated and known as the Nirenberg problem.
For works in this direction, we refer the reader to [4,5,9-11,15,[18,/19]. When p € (87, 47?)
and h = 1, Struwe and Tarantello [22] pointed out that the solutions of are nontrivial
under the assumption that ¥ is flat torus with a fundamental domain. For p € (87, 167),
it was proved by Ding, Jost, Li and Wang [13] that exists a non-minimal solution.
In the case p # 8N7, VN € N, Chen and Lin [6,/7] obtained a degree-counting formula

Received August 5, 2020; Accepted January 17, 2021.
Communicated by Jenn-Nan Wang.
2020 Mathematics Subject Classification. 58J05.

Key words and phrases. mean field type flow, isometric group action, compactness.

1053



1054 Yamin Wang

for provided that the genus of ¥ is positive. Later, the result was generalized by
Malchiodi [17] to p € (8mm,16mm) (m € Z*) when ¥ is a general Riemannian surface.
For the recent work, Li and Zhu [16] showed that under certain assumptions, has a
smooth solution with p = 87 on a closed Riemannian surface.

Let G = {01, ...,0n} be a finite isometric group acting on a closed Riemannian surface
(X,9), and u: ¥ — R be a measurable function, we say that u € Sg if u is G-invariant,
namely u(o;(z)) = u(z) for any 1 < ¢ < N and almost every z € ¥. Define a Hilbert

space
(1.2) Ha = {u cWh(Z,9)N S - / udvg = O}
b

with an inner product (u,v); = [w(Vu,Vv)dv,, where (Vu, Vo) stands for the Rie-
mannian inner product of Vu and Vv. Denote

(1.3) (= ;nelgl(ac)

with I(z) = §G(x), where A stands for the number of all distinct points in the set A, and
G(z) = {o1(x),...,on(z)} for any € ¥. Recently, Yang and Zhu [25] extended Ding,
Jost, Li and Wang’s result [12] to (X, g) with an isometric group action G. Precisely, for
p =8l and u € ¢, they considered the functionals

ngg(l ou /|Vgu\ dvg — 8ml(1 —€) log/ he" dvy,

where h is a smooth positive function and h(o(x)) = h(z) for all o € G and all z € 3.
For any 0 < € < 1, it follows from Chen [§] and a direct method of variation that jgﬂg(l_g)
attains its minimum at some minimizer u.. While if Jg;¢ has no minimizer on .7, using
a method of blow-up analysis, they obtain
(1.4) inf Jgre(u) > —4ml max(2log(mlh(z)) + Ay) — 87,

ueHG €Y

where A, = limr_m(éx(y) +4logr) is a constant, r denotes the geodesic distance between

x and y, G, is a Green function satisfying

AG, = %17—87726 and /Eaxdug:o.

Clearly, the minimizer is a solution of . Moreover, for works of related issues, we refer
the reader to Fang and Yang [14] and Yang and Zhu [24].

Castéras [2] investigated a gradient flow related to the mean field equation . Con-
tinuing [2], Castéras [3] obtained the global existence of the flow. The mean field type
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flow in [2,3] is presented as follows:

ge’ =M= Q+ p5

(15) Js e dvg?’
v(z,0) = vo(z),

where vy € C?T%(X), a € (0,1) is the initial data and Q € C*>(X) is a given function such
that fz Q dvy = p. It is a gradient flow involving the functional

(1.6) Jo(v(t)) = ;/Zwv(m?dvﬁ/zcgv(t) dvgplog/ze”(t) dv,.

Suppose h € C*(X) is a positive function, and h satisfies
(1.7) Alogh =Q — p.

Using the flow due to [2,3], Li and Zhu [16] gave a new proof to the results of [12].
Motivated by [16,125], it is natural for us to consider the same question as in [25] by the
method of flow. Our aim is to prove the convergence of the mean field type flow on
(3, g) with an isometric group action. Different from Yang and Zhu [25], it is not required

to assume fz vdvg = 0 in our paper. Here we define a Hilbert space
(1.8) HE ={ve W™ (S,9)N SIg}, n=12,

where Zg is defined as in ((1.2)).

Then our main result reads

Theorem 1.1. Let (X, 9) be a closed Riemannian surface, G = {o1,...,04} be an iso-
metric group acting on it. Define a function space H¢ as in and a function I(x)
as in . Let v(t) € %”é be the solution of , and Q) be a smooth function in ,
satisfying Q(o(z)) = Q(x) for all 0 € G and all x € X. Suppose that I(z) = £ for all
z €%, and that 2log h(z) + A, achieves its mazimum at some point p € %, where h(z)
and A, are defined in and respectively. If in addition

(1.9) Q(p) > 2K(p),

where K (p) denotes the Gaussian curvature of (X, g) at p, then for p = 8wl, there exists
an initial data vo € C?*T(X) such that v(t) converges in H*(X) to a solution ve, € C°()

of

evoe

1.10 — Avso =8l ——.
(1.10) Voo + @ wae%odvg
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The proof of Theorem[L.1]is based on the works of [2/[3|[16] related with a gradient flow.
Let us describe its outline. To prove the convergence of the flow in with p = 8wl
we first study some properties of the flow and then we get the compactness theorem. It is
shown that we have the following alternative: either v(¢x) is compact or v(tx) blows up,
where v(t;) is a subsequence of v(t) as t; — oco. Next, we suppose blow-up happens. By
blow-up analysis, we derive

lim Jgro(v(t)) > —4ml mag((Qlog(Wﬁh(x)) + A,) — 8wl
ze

t——+o0

1
+87T€/loghdvg—/ |V log h|? dv,,
= 2 /s

where h(z) and A, are defined in (1.7) and (1.4)) respectively. However, under the hy-
pothesis (|1.9), we construct a sequence of initial data vo . such that

Jare(vo,e) < —dml ma§(2log(7r€h(a:)) + Ay) — 8l
z€
1
+ 8775/ log h dvg — 2/ |V10gh]2 dvg,
DY )

which makes a contradiction, since Jgr¢(v(t)) decreases in t. Thus, we exclude the blow-up
phenomenon. According to the monotonicity of Jg.¢(v(t)), under some appropriate initial
data vg ¢, we finally prove the solution of converges to a solution vs, € C*°(X) of
. Since the equation is equivalent to the mean field equation , we conclude
that has a smooth solution for p = 87¢. This ends the proof of Theorem For the
special case G = {Id}, where Id: ¥ — ¥ is the identity map, our results are reduced to
that of Li and Zhu [16]. Though the method we employ is similar to [16], there are many
technical difficulties to be smoothed. Furthermore, by the symmetric properties of (X, g),
we deal with the singular points in constructing Green functions to derive the lower bound
of Jyre(v(1)).
According to Yang and Zhu [24], one can raise the same question for the functional

1
Jo,p(u) = 2/2 (IVgul* — au?) dvg — ﬁlog/zhe” dvg

on a function space J# = {u e Wh2(s,g) : Jsudvg = 0}. It is also interesting to consider
the existence of solutions to through the method of flow.

Note that % fz e?®) dvg = 0 by . This leads to fz e?(®) dvy = C. Hereafter, we can
assume without loss of generality that [ e’() dv, = 1. The remaining part of this paper
is to prove Theorem [I.1] Throughout this paper, we assume the volume of ¥ equals to
1, and we write vy = v(tx) for simplicity. Moreover, sequence and subsequence are not

distinguished, and various constants are often denoted by the same C' from line to line.
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2. Proof of Theorem

In this section, we begin by studying some properties of the flow. Following the same
arguments of [3, Theorem 0.1], we can obtain the global solution of the flow (1.5) on
a closed Riemann surface with an isometric group action. As an obvious analogue of

Proposition 2.1 in [16], we prove

Proposition 2.1. Let v(t) € H#Z be the solution of (L.5) with p = 8nl. For all t > 0,
there holds

(2.1) Jsre(v(t)) > —C,
where C' > 0 is a constant not depending on t and ,%”é is defined in (|1.8)).

Proof. Denote T = [, vdvg. Since [y Q dvy = 87/, we have

(2.2) Jsre(v / |Vu(t) ]2dvg /Q —-T dvg—87r€10g/E (t)_gdvg.
According to Chen [§], one gets by Young’s inequality
_ L Vo2 dme—2> 1
@3) oy [Ty <tog [ TR 0y, < o [ 90, o
» » 1674 »
Inserting (2.3)) into ([2.2)), we obtain
(2.4) Jare(v /Q —7)dvg —C.

In view of ([1.5) and (1.7, applying the integration by parts, one has

/ Qv(t) —v) dvg = / Av -log h dvg
(2.5) = =

c +/(Q — 8mle”) log h du.
x Ot 2
We estimate the two integrals on the right-hand side of (2.5) respectively. Taking the
derivative with respect to t of Jgr¢(v(t)) in (1.6)), one can check that

o L, Ov ov\?
(2.6) aJ&rg(v(t)) —/E(—AU+Q—87T€6 )a dvy = _/2 (815) e’ dvg,

due to (1.5)). Since @ € C*°(X) and h € C°(X), it follows from the Holder inequality and

28) that
1/2
e’ ov\? , /
T loghdvgz—mgx\logM o e’ dvg

9 1/2
= —mzax\logh| (_mt]&ré(v(t))) )

(2.7)
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and that
(2.8) /(Q — 8mle”) log hdvg > / Qlog hdvy — SwEmSX |log hl.
b b
Combing ([2.4), (2.5), (2.7) and (2.8]), we obtain
P 1/2
(2.9) Jgre(v(t)) > —87r€m2ax|log h|+/ Qloghdvg—mzaxﬂog h| (athﬁg(v(t))> -C.
b

If maxy, |logh| = 0, we can get the desired result directly. In the following, suppose
maxy; | logh| > 0. Then (2.9)) can be rewritten as

Jswe(0(1)) JsQloghdv, —C' (0 2
1 et Y] S (== :
(2.10) maxy |logh| — B+ maxy, | log A ot Tome(v(8))
Denote
loghdvy — C
(2.11) fo L _gppy m@loshdy

maxy |log h|’ maxy |log A

We claim that for any ¢ > 0, there holds

(2.12) §Jsre(v(t)) — ¢ = 0.

For otherwise, there exists some tg > 0 such that for all £ > t,
(2.13) §Jsre(v(t)) — ¢ <0

By , we have for any t; > t¢ that

" dJsro(v(t))
/to @) 107 ST

namely,
1

* —&Jsre(v(to)) + ¢

<—€(751 — to)

Letting t; — 400, we find

) (—&Jgre(v(t1)) +¢) > 1.

9

which contradicts (2.13)). Then, inserting (2.11)) into (2.12]), one gets by (|1.7))

1 >
i Jiee00) 2

s,

Jsre(v(t)) > 871'4/ log h dv, —/ |V log h|? dv, — 87r€mzax |logh|—C.
% b

Noting that h € C*°(X), we conclude (2.1). This completes the proof. O
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In view of ([2.6]), we can see that Jg,¢(v(t)) decreases with respect to t. By integrating
(2.6) from 0 to ¢, one finds

t v\ 2
/ / <8t) e’ dvgdt = Jgre(v(0)) — Jare(v(t)).
0 J=
This together with Proposition leads to

00 2
/ / <g¥> e’ dvgdt < C' < +00.
0 >

Thus, there exists a sequence t; — +o0o such that

2
(2.14) lim (%?) €% dvg — 0
Y

t—+00

as k — 4o0.

To proceed, we need the following estimate, which is similar to Proposition 2.1 in [3].

Proposition 2.2. For p = 87l, if v(t) € H#S is the solution of (L.5)), then
0

(2.15) - &e”(xv” + 8le’ @D > ) Vt>0,Vrex,

where the constant C > 0 not depending on t, and %é is defined in (|1.8)).

Since no new idea comes out in its proof, we omit the details here but refer the readers
to [3]. Thanks to (2.14) and (2.15), we can see that the conditions in [2, Theorem 1.2] are

satisfied by vg. Following [2], we describe the compactness theorem as below.

Theorem 2.3. Define a function space #g as in (L.8). Let v(t) € HG be the solution of
(1.5)) with p = 8xwl. Then for a sequence tp, — 400, we have for k — +oo, either

(i) there exists a constant C' not depending on k such that
vkl 2z < C,
or (ii) there exists a sequence of points {xr} and a sequence of real positive numbers
{Ri} — 0 such that
. v 1 .
lim erdvyg=—, Vi=1,...,4,
k—+o0 BQRk(cri(zk)) E
where Bag, (,(z,)) C 2 denotes a geodesic ball centered at oi(zy) with radius 2Ry, and
lim e’ dvg = 0.
k=+oo Jo\UL_, Bapy (o;(zy,))

In what follows, the sequence vy C H?(X) is said to be compact if it is uniformly
bounded in H2(X). Theorem shows that we have the following alternative: either vy is

compact or v blows up. Subsequently, we will exclude the blow-up phenomenon to occur.
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3. Blow-up analysis
Recall that %%2' is defined in (1.8). In this section, we study the asymptotic behavior of
non-compact solutions v, C #g in Theorem Set

Oevk

ot

(3.1) Avp, =Q + — 8mle’ = Fy,

where [, €% dvg = 1. Similar to [16], we discuss the convergence of vy, near and away from

the blow-up point xy. Based on the blow-up analysis, we finally calculate

lim Jyre(v(t)) > —dnl max(2log(nlh(z)) + A,) — 8l
e

t—4o00

1
+ 87r£/ log hdvg — 2/ |V log h|? dv,,
b b
where h(z) and A, are defined in (1.7) and (T.4) respectively.
3.1. Asymptotic behavior near the blow-up point

According to |2, Proposition 3.1], the convergence of vy, is described as follows:

Proposition 3.1. Let vy, C jfé be a sequence of non-compact solutions of (3.1)), satisfying
(2.14) and (2.15). Denote

U = vp(expy, (1x-)) + 2logry,

where exp,, represents the exponential map centered in xy and jfé isin (L.8)). Then, there
erist a sequence of points xp and a sequence of real numbers r, such that as k — +o0,
Uk, — Voo 0 C2_(R?) for some o € (0,1), and weakly in HZ (R?), where Vs is the solution
of

— ATy = 87le"™.
Moreover, there exist X\ > 0 and To € R? such that

2\
14+ (Mz — Zol)?

Voo () = 2log + log

1
Aml”
Since the proof of Proposition is an obvious analog of that of |2, Proposition 3.1],

we omit it, but refer the reader to [2] for details.

3.2. Convergence away from the blow-up point

Similar to [16], we have the following two observations of v, which are essential in our
analysis. The difference is that vy is G-invariant in our case, namely vg(o;(x)) = vi(x)

for any 1 <7 < N and almost every = € Y. The first key observation is the following:
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Proposition 3.2. Let vy, C %é be a sequence of non-compact solutions of (3.1)), satisfying
(2.14) and (2.15). Then for any 1 < p < 2, there holds

vk = Vkllwrrs) < C,
where the constant C > 0 is independent of k, and jfé is defined in (|1.8)).

Proof. By the result of |25, Proposition 5], there exists a unique Green function G, (y) on

(3, g), which is a distributional solution to

14
(3.2) NGy = Ogya) —
i=1

Note that vg(o(x)) = vi(x) for all ¢ € G and all z € ¥. Then it follows from [1}
Theorem 4.13] that

1 [ ~
(3.3) vp(x) — U = E/ G2 (y)Fi(y) dvg(y) for ae. x € X,
b
and that
(34) [Vor(z)] < 7 / VG ()| Fi ()] dvg(y) < C/ IFk( )| dvg(y)-
Combing (|2 and (| -, we deduce that
Oev*
(3.5) | Fkllrsy < 167 + <C.
Ot Nl

This together with , Jensen’s inequality and Fubini’s Theorem gives

Vor(@)P duy(a s 0 o)y (o)
L. < o e )

(3.6) < C’sup/ - dvg(x)

yeD

T — ylp
< Cr??,
where B,.(z*) C 3 denotes a ball centered at z* with radius > 0. Noticing ¥ is compact,

for any 1 < p < 2, we can see ||[Vvg ()| zp(x) < C by (3.6). Then by Poincaré’s inequality,
we get the desired result. This achieves the proof of the proposition. O

To get the convergence of v, away from the blow-up point, we also need the proposition

as below.

Proposition 3.3. Let vy, C jfé be a sequence of non-compact solutions of (3.1)), satisfying
(2.14) and (2.15). Then for each V. CC X'\ {Ule oi(zo)}, there exist constants C' > 0
and o > 1 such that

/ ea(vk—m) dvg <C,
1%
where HE is defined in (1.8).
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Proof. Let V be any subset satisfying V' CC ¥\ {Ule ci(z0)}. Note that vy is non-
compact. By the results of [2, Proposition 2.1] and Theorem we have for any x € V,

there exists r; > 0 such that for some d, > 0
(3.7) / Fy| < dr — 6,
BT‘I (Z‘)

in B, (z) C $\{ Ule ci(z0)}. Then we can find an integer m satisfying V' C Uiz, By, )2 (xj),
where z; € V. In view of (3.3)), for z € Brzj /2(z;), one has by (3.5)) that

ea(vk (z)—1) _ e% (mej (z) éz () Fr(y) dvg (y)+fE\Brzj (z5) ér(y)Fk (v) dvg (y))

(3.8)

< Ce% ‘[B’V‘Ij () 6I(y)Fk ) dvg(y)a

where o > 0 is a constant and G, (y) is in (3.2).
Set B(y) = |Ei(y)xB.,, @)/ I1Ek(W)XB,,, @)Lt (). This together with (3.8) yields

/ 20T gy ()
7‘1 /2 m])

o . Ga
= C/ / )6 ’ ”Fk(y)XBij( ])”Ll(z)l W dUg(y)dUg(!L')
m: /2 m])

1 QﬂgHFk(y)XBrxj (z]-)HLl(E)
< C'sup/ < ) dvg(x).

yex Jxy |x*y‘

The first inequality is a direct consequence of Jensen’s inequality. The second one follows
from [1, Theorem 4.13]. Due to (3.7) and ¢ > 1, there exists the constant o > 1 such that

(6%
TMHFk(y)Xij @l <2

for each j € {1,...,m}. As a consequence,

/ (v —Ug) d’U < Z/ Oé(vk(w)—ﬂk) d’Ug(l') < C.
71 /2(‘I7

Therefore, Proposition is established. O

Recall that h is defined as in ([1.7)). Denote uy = vy — log h. It is clear that

Vk

0
(3.9) Al = Fi) = 870+

— 8mle*,

and that p, C %”GQ Then we obtain the proposition as follows.
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Proposition 3.4. Let py be defined as above. For 1 < p < 2 and some 0 < v < 1, there

holds
pi — T = Gy weakly in WP(E),

= > Gy strongly in W22(S, { ULz, (20},

p = g = Gy in O (E\ { Uiy oi(20) })
as k — 400, where the Green function CN{,EO satisfies

~ E ~
(3.10) AGqy =81l =87 Y 6y.(sp) and / Gy dvg = 0.
i=1 =

Moreover, éwo takes the form
(3.11) Gay(x) = —4logr + Ay, + O(r)
near o;(x0), where Ay, is a constant, r denotes the geodesic distance between x and o;(xq),
i=1,...,L

Proof. Observe that logh € C*°(X). By employing Proposition we see that ||ur —
Agllwirzy < C for any 1 < p < 2. Since Gy (z) is the unique solution of (3.10), up
to a subsequence, we have up — @i, — Gy, weakly in WHP(X) as k — +oo. Recall
that V. CC ¥\ {Ule oi(xo)}. Due to Proposition we obtain by using the Jensen’s
inequality that

(3.12) /Veo‘”’“(x) dvg = ek /V ®(Vk(@)=) dvg < C </E vk (@) dvg> <C,

where a > 1. Together with Holder’s inequality and ([2.14)), it leads to

, Do\ 2 /2 1-r/2
(3.13) / dvg < / <k> e’ dvg (/ vk (@) dvg> —0
v v\ ot v

as k — +o00, where r = 2a/(av 4+ 1) > 1. Choose w = min{r, a}. Combining (3.12) and

(3.13]), we employ the elliptic estimate to (3.9)), which yields ||u; — ﬁkHWZ,w(V) < C. And
. loc

then Sobolev’s embedding theorem implies that u, — 71, — G, in Cf (E\ { Ule oi(wo)})

for 0 < v < 1. Following the same arguments as in |16, Proposition 3.5], one can show

Oevk
Ot

that ||px — T — G|l m2v) — 0. By elliptic estimates, we obtain (3.11)). This concludes
the proof of Proposition |3.4 O

3.3. A lower bound of Jg,¢(v(t))

In this subsection, we shall derive a lower bound of Jg;¢(v(t)). Precisely, we have the

following proposition.
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Proposition 3.5. Define a function space ¢ as in (1.8). Let v(t) € H#Z be the solution
of (L.5) with p = 8ml. Suppose vy is a noncompact sequence of v(t). Then we have
li ~o(v(t)) > —4ml max(2log(nlh A) — 87l
i Js(0() > — At max(2log(nlh(r) + A) — 87

(3.14) 1
+87r€/ loghdvg—2/ |V log h|? dv,
b b

where where h(z) and A, are defined in (1.7) and (3.11) respectively.
Proof. We prove the statement on the contrary. For otherwise, there exists a constant
€ > 0 such that

lim Jgre(v(t)) < —4ml max(2log(mlh(z)) + Ay) — 87l

t—+o00 TEX
(3.15) 1
+ 87r€/ log h dvg — 2/ IV log h|? dv, — e.
b b

Let v, C & be a sequence of non-compact solutions of (3.1]), satisfying (2.14) and (2.15).
Notice that [y e = 1. This leads to log [y e’ dvy = 0. Then ([L.6) can be rewritten as

1
(3.16) Jsre(vg) = 2/ |Vvk|2 dvg+/ Quy dvy,
by b

where [¢ Q dvg = 8m¢. Now, we estimate the two integrals on the right-hand side of (3.16])
respectively. By Proposition

(3.17) Ok — T — Gy +log h — /Zloghdvg

: y
in C.

(=\{ Ule oi(z0)}), for some 0 < v < 1. This together with (L.7) gives that

/ Quy dvg = —/ Vlog h - Vg, dvg + 8mly,

(3.18) > > N

= / |V log h? dvg — / Viegh - VGg, dvg + 8mlvy, + oi(1).
b b

To calculate the integral fz |Vog|? dvg, we divide it into three parts, namely

Vg |? do, +/ Vg |* du,

/Z\Uf=1 Bs(oi(zr)) Ui—1 Bs(0i(z1))\Brr, (0i(z1))

+ / Vg |* dvg,
Uiz1 Brey (0i(z))

where § > 0. Then the above parts shall be estimated respectively. We begin with the
first part. It follows from Proposition [3.4] that

/ , |Vog|? dvg
S\Ui=1 Bs(oi(w))

(3.19) = |V (ux + log h)|? du,

/E\Ufl Bs(oi(zy))

= /E\Uf Btoston) (\V@EO]Q +2VG,, - Viogh + ]VloghP) dvg + or(1).
i=1 Ps(0i(Zo
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In a normal coordinate system {x1,x2} near zg, by elliptic estimates, CN;'IO can be repre-

sented by
(3.20) C:’xo () = —4logr + gxo + bix1 + bozo + clx% + 2cox129 + c;:,x% + O(Tg),

where AVZO, b1, ba, c1, 2, c3 are constants, r(x) denotes the geodesic distance between z
and oi(zp), i = 1,..., L. Using the divergence theorem, we calculate by (3.10) and (3.20))
that

(3.21)

VG ey = [ Guy - T2 s,
U, 9Bs(oi(x0)) on

/z\u51 Bs(ci(0))

L
Go (&w —8r >y 5C,i($o)> dvg

=1

/E\Uf_l Bs(oi(x0))
= —32nllogd + 87r€gx0 + o5(1).

Inserting (3.21)) into (3.19)), one has

/ , |Vo|? dvg
E\Ui—1 Bs(oi(wr))

(3.22) _

/ é (2V @y, - Vlog hdug + |V log h|?) du,
UL, Bs(oi(z0))

— 3210log & + 8Tl AL, + 05(1) + ok (1).

Next we estimate the integral of v on the annulus. Since vy C %ﬂé, it yields to

(3.23) V| dvg = ¢ |Vog|? dvg.

/Uf_l Bs(0i(zk))\Brry, (0i (k) Bs(zk)\Brr, (zk)

We use a technique of [12] to get the estimate on the annulus. Set

(3.24) o= inf  wp, Yp= sup wvg, k= Pk — Y+ 2logry + Vy.
OBRy, (k) dBjs(xy,)

In view of Proposition and (3.17), we see that as k — +o0

dr +2logre — inf Tyo(z) in C2(R?),

|z|=R
and
N ¢
Y — Up —  sup (GIO +logh — / Uloghdvg> in C)) | 2\ U oi(xo) ¢ |,
9Bs(xo) z i=1
where 0 < @ < 1 and 0 < v < 1. Then,
(3.25) v — inf Uo(z) — sup <(~Jz0 +logh — / vloghdvg)
lz|=R OBs(z0) %
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as k — +oo. Sequently, we proceed in a normal coordinate system near x. Let T'(¢, ¢r)
be a set of all smooth functions v € R? with ulgms0) = Y and u]aBRTk ©) = Pk It is
not difficult to see that infi,cr(y, ¢,) Jz, (0)\B s, (0) |Vul|? dx is attained by some function h
satisfying Ah = 0 in Bs(0) \ Bgy, (0) with hlsg,0) = ¥k, h|aIBR'rk ) = ¢x- Then it follows

that
¢r(logd — logr) + i (logr — log Rry,)

hle) = log § — log Rry, ’
and that
9 )2
(3.26) / VA do = 2Tk =)
B5(0)\By,, (0) log § — log Rry,

Define a function space

We(Wr, dr) = {vr € HE(Bs (k) \ Brry, (21)) : VkloBs(ay) = Ures VkloBg,, (21) = Pk}

where %”é is in (1.8). Let vy = max{ig, min{uvg, ¢x}}. Then vy € #i(¢k, ¢r) and in a

normal coordinate system near zj, there holds by

Vo) dvg > /

V|2 dv, z/ |Vh|? d.
Bs (21)\Brr), (%)

/Bé(xk)\BRrk (zk) B5(0)\Brx, (0)

This together with (3.23)), (3.24) and (3.26]), one can easily check that

/ \Vog|? dvg
Uty Bs(i(k))\Brr, (0i (1))

o 2ml(dk — i)?
~ logé — log Rry,

(3.27) B 5 o
>2ml | 2+ Uk —logrk—l—logR—loch—L’(s
log 7, log 7,
U, orCRs (Ch 5Vk
4 24+ — : : 1
+4nt < + logrk> < (logrk)2> 2(log ry)? +ox(1),

where Cg s and CY, 5 are constants relying only on § and R.
Finally, we compute the integral fUlﬁ
tion [3.1] we obtain

/ \Vug|? dvg
‘1 Brry (0i(z1))

(3.28) = 0(1 + ox(1)) / [Uoo () |2 d

Br(0

) |Vug|?dvg.  Thanks to Proposi-

1 Brry (0i(z

> omt(1+ 0u(1) (log(1 + V(R ul) — g P

1+ M2(R— |7|)2
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Inserting (3.18]), (3.22)), (3.27) and (3.28]) into (3.16)), we conclude that

(3.29)
T 2 e T C
U, R.sVk Vi R,0¥Pk
- > —7/ll 2 — ’ 2ml | 2 + ——— —
Jare(vi) = —mllogry, < logrk) + 2(log 1 )? +en < + log Tk> <S0k + (10g7“k)2>
_ 2
~ C
— 167llogd + AmlA,, + 1l 2+ 2k log R — log § — —1%9
log rg, log ry,

AR — [0))?
R !50|)2> *os(l)

+ 870(1 + o (1)) <log(1 + A*(R — |70])?)

_/U" o ))V@x()-Vloghdvg
i=1 Ps(0i(Zo

1

/ |V log h|* dvy + og(1).
2 Js\U!_, Bs(oi(20))

Using the divergence theorem, one has

/ VG, - Vog hdv,
i=1 Bs(0i(x0))

(3.30) .y </ agafo log h ds, _/ Aém loghdv9>
dBs(zo) 9N Bs(o)

= 05(1).

Moreover, (3.29) implies that

_ 1 2
Jsre(vg) > (C —wllogrg) | 2 — Uk +0| - +C.
log 7 log 7

Note that Jsre(vr) < Jgre(vg). Then it follows that

C
< .
= (—Llogry)Y/2

Letting k& — 400 leads to vy/logry — 2. Together with (3.25), (3.29) and (3.30]), we

finally arrive at

Uk
log ry.

klim Jsre(vy) > —4ml mazx(Qlog(ﬁéh(x)) + Zgg) — 87l

— 00 xe

(3.31) )

+87r€/ 1oghdvg—2/ |V log h|* dv,,
b b

by passing to the limit k¥ — +o0 first and then 6 — 0, R — +o00. Notice that Jgr¢(v(t))
decreases in t. According to (3.15)), we can find some tg > 0 such that

Jsre(v(to)) < —4mlmax(2log(nlh(z)) + A,) — 8l
Tre
£

1
+87r€/loghdvg—/ IV log h|* dv, — .
> 2 Js 2
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Then when ti > to, we see that Jgr¢o(v(tr)) < Jsre(v(to)), namely,

Jsre(v(ty)) < —4ml mazx(Qlog(ﬂﬁh(x)) + Zx) — 81/
HAS
1
+87r€/ Ioghdvg—/ |V log h|* dv,,

which contradicts with (3.31)). Thus the proposition is proved. O

4. Completion of the proof of Theorem

In this section, we will complete the proof of Theorem Under the assumptions of

Theorem [I.T} we shall construct a sequence of initial data vo. to show

Jsne(v0¢) < —4ml max(2log(nth(z)) + A,) —8nl
S
1
+87r€/ log h dvy — 2/ |V log h|* dvg,
Y by

where ﬁx is defined as in (3.11). Observe from (2.6) that Jg¢(v(t)) < Jsxe(voe) as
t — 4o00. This yields to a contradiction with Proposition |3.5] Therefore we conclude that
vg is compact. Then we follow the idea of [3] to get the convergence of the flow. This

finishes the proof of the theorem.

4.1. Exclusion of blow-up phenomenon

We first exclude the blow-up phenomenon. Pick up some point p € ¥ such that

(4.1) 2log(mlh(p)) + A, = = max(2log(th(z)) + Ay).

zeX

Notice that I(x) = §G(z) = £ for all z € ¥ and G = {o1,...,04}. Then I(p) = ¢ and
o1(p),...,0u(p) are different points on ¥. For some 6 > 0, choose a normal coordinate

)
system (B(;( 0),exp, s {y', y?}) near p. By [25], G can be written as

(4.2) Gplexp,(y)) = —4logr + A, + biy" + bay? + c1(y")? + 2c29"y? + c3(y2)* + O(?),

where r = |y| = dy(p, exp,(y)), Ap is a constant. Following the arguments of [25, Section 5],

we define
c—2l0g (14 &) + Ay + alexp; (07 (2)), @ € Breloi(p), i =1,...,,
Oc(x) = | Gp(z) — n(o; ' (x))Blexp, Lo (2))), z € Bage(0i(p)) \ Bre(oi(p)),
Gp(), z € S\ U, Bore(oi(p)),

where jp is defined in (4.2), R and ¢ are constants depending only on e and will be

determined later, r = r(z) denotes the geodesic distance between = and o;(p) for x €
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Bre(oi(p)), n € C§°(Bare(p)) is a cut-off function, satisfying 0 <n <1, n =1 on Bgr(p)
and [Vyn| < 4/(Re), a(y) = biy' +bay® and B(y) = c1(y')? + 229"y + e3(y?)* + O(r).
Set Vo = (¢ — ¢.) + log h. In view of (1.6)), we obtain

~ 1 _
Jsre(Voe) = = / |V e |* dv, — 87l 10g/ hee dv, + 8mlg,

1
+ snz/ log hdv, — 2/ |V log h|? dv,.
) )
By the result of [25], it then follows from (4.3]) that

(4.4)
Jane(To.e) = —8ml — dml A, — 87l log(mlh(p))

1
€2 log ~
€

Ah 2(kyby + kb
—32we<8w£—2K(p)+b%+b§+ (p) | 2kaby + 22)—}—06(1))

h(p) h(p)
1
+87T€/loghdvg—/ |Vlogh]2dvg,
) 2 Jx

where by and by are defined in (4.2)), (k1,k2) = Vh(p). Since Alogh = @ — 87¢, there
holds

Ah(p) k? + k3

h(p) h(p)*
Under the hypothesis Q(p) > 2K (p), we have by (4.5) that
Ah(p) | 2(kib1 + kob2)

(4.5) —Q-—8nl+

81l — 2K (p) + b3 + b3 +

(4.6) h(p) ) h(p) )
= Q(p) — 2K (p) + <k1 Z?;;l@)) <k2 tlé);)h(p)> > 0.

Inserting (4.6]) into (4.4), by (4.1)), we find

Jsre(Voc) < —4ml mag(Qlog(wEh(x)) + A,) — 8wl
z€
(4.7) . 2
+ 87T€/ log h dvg — 2/ |V log h|” dv,.
Y by

Observe that vg . is the function of Lipschitz. Clearly, v can be modified into a smooth
function Vg, and Jgre(Voc) satisfies (4.7). Then, choose some constant cy such that

%=+ gy, = 1. Denote voe = Tp. + co. As a consequence,
pY [ , 7
JSﬂE(UO,s) < —4ml meag}j((2 IOg(ﬂ-gh(x)) + Av:v) — 8ml
x
1
+ 87r€/ log b dvy — 2/ |V log h|? dvg,
2 )

which contradicts to (3.14]). Thus, we conclude that blow-up can’t happen and the se-

quence vy is compact.
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4.2. The convergence

We follow the ideas of Catéras in [3] for the study of convergence. As k — 400, note that

v\ 2
/(Avk — Aveo)? dvy = / <87r€(e”°° —e™) + 0 > dvg

SC/ (e — %) dvy + C
>

where vy is a solution of (1.10). By the result of Simon [21], we finally obtain that
[v(t) = Vool r2(zy — 0 as k — +oo.

Therefore, Theorem [T.1] is established.
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