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Renormings of Nonseparable Reflexive Banach Spaces and Diametrically

Complete Sets with Empty Interior

Wies lawa Kaczor, Tadeusz Kuczumow*, Simeon Reich and Mariola Walczyk

Abstract. We prove that for each nonseparable and reflexive Banach space (X, ‖ · ‖X)

with the nonstrict Opial and Kadec–Klee properties, there exists an equivalent norm

‖ · ‖0 such that the Banach space (X, ‖ · ‖0) is LUR and contains a diametrically

complete set with empty interior.

1. Introduction

It has recently been proved in [5] that after a suitable renorming, each infinite-dimensional,

reflexive and separable Banach space is locally uniformly rotund and contains a diametri-

cally complete set with empty interior. In the present paper we extend this result to each

nonseparable and reflexive Banach space which has the nonstrict Opial and Kadec–Klee

properties. The new norm is closely connected with Day’s norm on c0(Γ). For other results

of this type, see [2–4,9, 12,17–19,21,22] and the references cited therein.

Our paper is organized in the following way. In Section 2 we give basic notations and

recall facts which we use in the next sections. In Section 3 we introduce a new equivalent

norm ‖ · ‖L,α,F in a Banach space (X, ‖ · ‖X) under the assumption that there exists a

bounded family F = {f∗γ}γ∈Γ of linear functionals in X∗ such that for each x ∈ X and

for each ε > 0, the set {γ ∈ Γ : |f∗γ (x)| > ε} is finite. The construction of this norm

is based on Day’s norm on c0(Γ) [7]. We provide an explicit formula for this new norm

which contains the original norm and functionals from the family F = {f∗γ}γ∈Γ, which

is divided into two subfamilies. These two subfamilies are connected with indices in N
and Γ1, respectively, where Γ = N ∪ Γ1 and N ∩ Γ1 = ∅. With no other assumptions

on F we prove that if the Banach space (X, ‖ · ‖X) has the nonstrict Opial property,

then so does the Banach space (X, ‖ · ‖L,α,F ). In Section 4 we show that if, in addition,

(X, ‖ · ‖X) is reflexive and has the Kadec–Klee property, and the subfamily of functionals

{f∗γ∈Γ1
} in X∗ separates points in (X, ‖ · ‖X), then the Banach space (X, ‖ · ‖L,α,F ) is

LUR. Next, in Sections 5 and 6 we also assume that the space (X, ‖ · ‖X) is reflexive
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and find a concrete family F̃ = {f̃∗γ}γ∈Γ functionals in X∗ to achieve our main results.

First, applying a Schauder basis in a suitably chosen quotient space X/Y , we single out a

definite subfamily {f̃∗γ}γ∈N of the family F̃ and show that the Banach space (X, ‖ · ‖
L,α,F̃

)

contains a diametral set. However, the choice of an appropriate subfamily {f̃∗γ}γ∈Γ1 is a

real challenge in the case of nonseparable and reflexive Banach spaces. Namely, to choose

a definite subfamily {f̃∗γ}γ∈Γ1 of F̃ = {f̃∗γ}γ∈Γ, we employ the powerful Lindenstrauss

mapping theorem. Hence, if (X, ‖ · ‖X) is reflexive and has the nonstrict Opial property,

then we are able to establish the existence of a diametrically complete set with empty

interior in (X, ‖ · ‖
L,α,F̃

) by applying the Maluta–Papini theorem [18]. Finally, using all

these results we obtain the required renorming.

2. Basic notions and facts

All the material recalled in this section without a specific citation can be found in [8, 10,

11,13,15,16]. Throughout this paper all Banach spaces are real.

In our paper we always assume that Γ is an infinite set. By c0(Γ) we denote the Banach

space (with the max norm ‖ · ‖c0(Γ)) of real-valued functions u := {uγ}γ∈Γ on Γ such that

{γ ∈ Γ : |uγ | > ε} is finite for each ε > 0, where uγ is the value of u at γ ∈ Γ. We denote

the support of u ∈ c0(Γ) by N(u).

We emphasize that the Banach space (c0(Γ), ‖ · ‖c0(Γ)) plays a crucial role in our

construction of an equivalent norm in a Banach space (X, ‖ · ‖X).

We use the following notation connected with c0(Γ). Let u = {uγ}γ∈Γ ∈ c0(Γ). Then

the sequence {τ(j, u)}j with indices j, which are natural numbers, is defined as follows:

(1) if the support N(u) of u is infinite, then N(u) is enumerated as {τ(j, u)}j in such a

way that |uτ(j,u)| ≥ |uτ(j+1,u)| for j ∈ N,

(2) if N(u) = {γ̃} is a singleton, then we set τ(1, u) = γ̃ and extend τ( · , u) to all of N
so that τ( · , u) : N→ Γ is an injection,

(3) if the support N(u) of u is finite and consists of k(u) ≥ 2 elements, then N(u) is

enumerated as {τ(j, u) : j ∈ {1, . . . , k(u)}} in such a way that |uτ(j,u)| ≥ |uτ(j+1,u)|
for 1 ≤ j ≤ k(u)− 1 and we extend τ( · , u) to all of N so that τ( · , u) : N→ Γ is an

injection,

(4) if u = 0, then τ( · , u) : N→ Γ is an arbitrarily chosen injection.

We note the following elementary inequalities connected with the function τ( · , · ) (see

[7, 23]; see also [6, 8]).

Lemma 2.1. Assume that
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(1) s = {si}i is a positive and decreasing sequence,

(2) t = {ti}i ∈ c0,

(3) ti ≥ 0 for each i ∈ N,

(4) the function g : N→ N is injective.

Then
∞∑
j=1

sj · tg(j) ≤
∞∑
j=1

sj · tτ(j,t).

Directly from this lemma we get the following corollary.

Corollary 2.2. Assume that

(1) Γ is an infinite set,

(2) s = {sj}j is a positive and decreasing sequence,

(3) t = {tγ}γ ∈ c0(Γ),

(4) the function g̃ : N→ Γ is injective.

Then
∞∑
j=1

sj · |tg̃(j)| ≤
∞∑
j=1

sj · |tτ(j,t)|.

At this point we recall that the Banach space `2(Γ) consists of all u ∈ c0(Γ) such that∑∞
j=1 |uτ(j,u)|2 <∞. We use the norm ‖u‖`2(Γ) :=

(∑∞
j=1 |uτ(j,u)|2

)1/2
for u ∈ `2(Γ).

We also recall the following definitions of a few properties which play an important

role in our paper.

Definition 2.3. We say that a Banach space (X, ‖·‖X) is locally uniformly rotund (LUR)

if for each x ∈ X, every sequence {xn}n with limn ‖xn‖X = ‖x‖X and limn ‖x + xn‖X =

2‖x‖X tends strongly to x. In this case we also say that this norm is LUR.

Definition 2.4. Let (X, ‖ · ‖X) be a Banach space. We say that (X, ‖ · ‖X) has the

Kadec–Klee property with respect to the weak topology (the Kadec–Klee property, for

short) if each sequence {xn} with limn ‖xn‖X = 1, which converges weakly to a point x

with ‖x‖X = 1, tends strongly to x. In this case we sometimes also say that the norm

‖ · ‖X has the Kadec–Klee property.

The following theorem shows a connection between local uniform rotundity and the

Kadec–Klee property.
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Theorem 2.5. Let (X, ‖·‖X) be a Banach space. If (X, ‖·‖X) is locally uniformly rotund,

then (X, ‖ · ‖X) has the Kadec–Klee property with respect to the weak topology.

We also need the Opial property of a Banach space.

Definition 2.6. A Banach space (X, ‖ · ‖X) is said to have the Opial property if for each

weakly null sequence {xn} and each x 6= 0 in X, we have

lim sup
n→∞

‖xn‖X < lim sup
n→∞

‖xn − x‖X .

A Banach space (X, ‖ · ‖X) is said to have the nonstrict Opial property if for each weakly

null sequence {xn} and each point x in X, we have

lim sup
n→∞

‖xn‖X ≤ lim sup
n→∞

‖xn − x‖X .

Now we recall a few facts regarding Schauder bases in a Banach space (X, ‖ · ‖X).

We always assume that for each Schauder basis {ei}i we consider, there exist constants

0 < m̃ ≤ M̃ < ∞ such that m̃ ≤ ‖ei‖X ≤ M̃ for each i ∈ N. Then for the biorthogonal

functionals {e∗i }i associated with the Schauder basis {ei}i, there also exist constants 0 <

m̃1 ≤ M̃1 < ∞ such that m̃1 ≤ ‖e∗i ‖X∗ ≤ M̃1 for each i ∈ N (in X∗ we use the standard

norm ‖ · ‖X∗). In addition, we have limi e
∗
i (x) = 0 for each x ∈ X. A basis {ei}i is called

normalized if ‖ei‖X = 1 for all i.

We also need the definition of a diametral set.

Definition 2.7. Let (X, ‖ · ‖X) be an infinite-dimensional Banach space and let C be a

nonempty, bounded and convex subset of X. We say that the set C is diametral if

r‖·‖X (C,C) := inf
{

sup{‖y − y′‖X : y′ ∈ C} : y ∈ C
}

= diam‖·‖X (C).

A Banach space (X, ‖ · ‖X) is said to have normal structure if it does not contain any

diametral set, that is, if r‖·‖X (C,C) < diam‖·‖X (C) for each nonempty, bounded and

convex set C ⊂ X which is not a singleton.

The next notion is closely connected with the concept of the diameter of a set and is

due to Meissner.

Definition 2.8. [20] Let (X, ‖ · ‖X) be an infinite-dimensional Banach space and let C

be a nonempty, non-singleton and bounded subset of X. We say that C is a diametrically

complete set in X if

diam‖·‖X (C ∪ {x}) > diam‖·‖X (C)

for each x ∈ X \ C.
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It is obvious that a diametrically complete set must be closed and convex.

Now, we mention two results which exhibit connections between the diametral property

of a set and the emptiness of the interior of a diametrically complete set.

First, in [21, Theorem 3.2] Moreno, Papini and Phelps proved the following theorem.

Theorem 2.9. Let (X, ‖ · ‖X) be an infinite-dimensional Banach space and let C ⊂ X be

diametrically complete. If the interior of C is empty, then C is diametral.

Next, Maluta and Papini established the following result [18] which is crucial in our

considerations in Section 5.

Theorem 2.10. Each infinite-dimensional and reflexive Banach space (X, ‖ · ‖X), which

has the nonstrict Opial property and lacks normal structure, contains diametrically com-

plete sets with empty interiors.

In our paper we use the above theorem to get diametrically complete sets with empty

interiors in X with a suitably constructed equivalent norm ‖·‖L,α,F . To do this, as we have

already mentioned in Section 1, we will need a family F = {f∗γ}γ∈Γ of linear functionals in

X∗. First, in Section 3 we give a general construction of the norm ‖ · ‖L,α,F in a Banach

space (X, ‖·‖X) and show that (X, ‖·‖L,α,F ) has the nonstrict Opial property if (X, ‖·‖X)

has this property. In the next section we prove that if (X, ‖ · ‖X) is reflexive, a subfamily

of functionals {f∗γ}γ∈Γ1 in X∗ separates points in (X, ‖ ·‖X), the norm ‖ ·‖ has the Kadec–

Klee property, then the norm ‖ · ‖L,α,F is LUR. In Sections 5 and 6 we choose a concrete

family F̃ = {f̃∗γ}γ∈Γ of this kind, which is suitable for our aims. So in Section 5 we choose

a specific subfamily {f̃∗γ}γ∈N of the family F̃ = {f̃∗γ}γ∈Γ in such a way that X with the

new norm ‖ · ‖
L,α,F̃

does not have normal structure. Our choice of {f̃∗γ}γ∈N is based on

the following important and well-known theorem.

Theorem 2.11. [15, Theorem 1.b.7] Every reflexive infinite-dimensional Banach space

has an infinite-dimensional quotient space with a Schauder basis.

It is obvious that the infinite-dimensional quotient space with a Schauder basis men-

tioned in Theorem 2.11 is separable. Let us observe here that the fact that even every

WCG space has a separable quotient appears in [1]. However, the easiest proof of this can

be found in [26, Theorem 1].

Finally, in Section 6 we choose a definite subfamily {f̃∗γ}γ∈Γ1 of F̃ = {f̃∗γ}γ∈Γ by using

the Lindenstrauss mapping theorem [14] (see also [1]). Now we recall this theorem.

Theorem 2.12. Let (X, ‖ · ‖X) be an infinite-dimensional and reflexive Banach space.

Then there is a one-to-one bounded linear operator T : X → c0(Γ) for a suitable set Γ.
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3. Construction of the equivalent norm ‖ · ‖L,α,F and the nonstrict Opial property

We begin with the definition of the Day norm ||| · ||| on c0(Γ) [7]. If u = {uγ}γ∈Γ ∈ c0(Γ),

then we define D(u) := {Dγ(u)}γ∈Γ ∈ `2(Γ) by

Dγ(u) :=

uτ(j,u)

2j
if γ = τ(j, u) for some j ∈ N,

0 otherwise

and set |||u||| := ‖D(u)‖`2(Γ), where ‖ · ‖`2(Γ) is the standard norm in `2(Γ). It is not

difficult to observe that
1

2
‖u‖c0(Γ) ≤ |||u||| ≤

1√
3
‖u‖c0(Γ)

for each u ∈ c0(Γ), where ‖ · ‖c0(Γ) is the standard max-norm on c0(Γ).

At this point we recall that the local uniform rotundity of the Day norm was proved

by Rainwater [23] (see also [6, 8]).

Theorem 3.1. The Banach space (c0(Γ), ||| · |||) is LUR.

Let (X, ‖ · ‖X) be an infinite-dimensional Banach space. If there exists a family of

linear functionals in X∗ satisfying the conditions listed below, then we can introduce a

certain equivalent norm in this Banach space which is useful for our aims. The idea of our

construction of this norm is closely related to the one which can be found in [24].

First, we choose an infinite family of nonzero functionals F = {f∗γ}γ∈Γ in X∗ which

is equibounded in X∗, that is, ‖f∗γ‖X∗ ≤ K for all γ ∈ Γ, where 1 ≤ K ∈ R (on X∗ we

use the standard norm ‖ · ‖X∗). Assume, in addition, that our choice is such that for each

x ∈ X and for each ε > 0, the set {γ ∈ Γ : |f∗γ (x)| > ε} is finite. Next, we divide the set Γ

in the following way: Γ := Γ1 ∪N and Γ1 ∩N = ∅ (Γ1 can be the empty set). We need the

set N to obtain equivalence of norms. At this point we choose and fix α ∈ (0, 1). Then

with each point x ∈ X, we associate the element u(x) = {uγ(x)}γ∈Γ in the following way:

uγ(x) := f∗γ (x)

for γ ∈ Γ1,

u1(x) := α‖x‖X

and

{u2(x), u3(x), . . .} := {f∗1 (x), f∗2 (x), f∗2 (x), . . . , f∗j (x), . . . , f∗j (x), . . .},

where we repeat the coordinate f∗j (x) exactly j times.

Now, define D(u(x))) = {Dγ(u(x))}γ∈Γ ∈ `2(Γ) by

Dγ(u(x)) :=


uτ(j,u(x))(x)

2j
if γ = τ(j, u(x)) for some j ∈ N,

0 otherwise.
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Finally, we set |||u(x)||| := ‖D(u(x))‖`2(Γ) and ‖x‖L,α,F := |||u|||. It is not difficult to

observe that

α‖x‖X
2

≤ 1

2
‖u(x)‖c0(Γ) ≤ |||u(x)||| = ‖x‖L,α,F ≤

1√
3
‖u(x)‖c0(Γ) ≤

K√
3
‖x‖X

for each point x ∈ X. Thus the norm ‖ · ‖L,α,F is equivalent to the original norm ‖ · ‖X .

Now, we are ready to prove the following theorem regarding the nonstrict Opial prop-

erty. The proof is a modification of the proof of Theorem 5.4 in [5] (see also [3, 4]) and

therefore we omit it. We also note that the main idea of the proof is due to Maluta [17].

Theorem 3.2. Under the above assumptions and notations, if a Banach (X, ‖ · ‖X) has

the nonstrict Opial property, then so does the Banach space (X, ‖ · ‖L,α,F ).

4. The Kadec–Klee property of (X, ‖ · ‖) and the LUR of (X, ‖ · ‖L,α,F )

Applying the Rainwater result (Theorem 3.1) and the Smith method [24], we immediately

arrive at the following theorem.

Theorem 4.1. Under the notations as in Section 3, if the Banach space (X, ‖ · ‖X) is

reflexive, the subfamily of functionals {f∗γ∈Γ1
} in X∗ separates points in (X, ‖·‖X) and the

norm ‖ · ‖X has the Kadec–Klee property, then the Banach space (X, ‖ · ‖L,α,F ) is LUR.

Proof. Let x and {xn}n be given such that x ∈ X, ‖x‖L,α,F = 1, xn ∈ X for n =

1, 2, . . ., limn ‖xn‖L,α,F = 1 and limn ‖x+ xn‖L,α,F = 2. Then we also have |||u(x)||| = 1,

limn |||u(xn)||| = 1 and limn |||u(x) + u(xn)||| = 2. Applying the local uniform rotundity

(LUR) of (c0(Γ), ||| · |||) (see Theorem 3.1), we immediately obtain the strong convergence

of the sequence {u(xn)} to u(x) in the norm ||| · |||. But we have

1

2
‖u(x)− u(xn)‖c0(Γ) ≤ |||u(x)− u(xn)||| ≤ 1√

3
‖u(x)− u(xn)‖c0(Γ)

and

‖u(x)− u(xn)‖c0(Γ) ≥ αmax
{∣∣‖x‖X − ‖xn‖X ∣∣, sup{|uγ(x)− uγ(xn)| : γ ∈ Γ1}

}
.

This implies that lim ‖xn‖X = ‖x‖X and limn f
∗
γ (xn) = f∗γ (x) for each γ ∈ Γ1. Since the

subfamily of functionals {f∗γ}γ∈Γ1 in X∗ separates points in (X, ‖ · ‖X) and the Banach

space (X, ‖ · ‖X) is reflexive, the sequence {xn}n tends weakly to x. Finally, using the

Kadec–Klee property of the norm ‖·‖X , we see that limn xn = x in (X, ‖·‖X) and therefore

limn xn = x in (X, ‖ · ‖L,α,F ), as required.
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5. The norm ‖ · ‖L,α,F̃ and diametral sets

Let (X, ‖ · ‖X) be an infinite-dimensional and reflexive Banach space. By Theorem 2.11,

there exists a closed subspace Y of the Banach space (X, ‖ · ‖X) such that the quotient

space X/Y with the canonical norm ‖ ·‖X/Y has a Schauder basis. For this quotient space

X/Y , there exists the standard embedding ι : X → X/Y . Let {ẑm}m be a normalized

Schauder basis in (X/Y, ‖·‖X/Y ) and let {ẑ∗m}m be the sequence of biorthogonal functionals

associated with this basis. Then there is a constant K1 > 1 such that ‖ẑ∗m‖(X/Y )∗ ≤ K1

for each m ∈ N. Now let Γ1 be a set such that Γ1 ∩N = ∅ (Γ1 may well be the empty set)

and let F̃ = {f̃∗γ}γ∈Γ1 be a family of nonzero functionals in X∗. Assume that the family

{f̃∗γ}γ∈Γ1 is bounded in X∗ by 1/2 (on X∗ we use the standard norm ‖ · ‖X∗). Assume

also that for each x ∈ X and for each ε > 0, the set {γ ∈ Γ1 : |f̃∗γ (x)| > ε} is finite. Now

let Γ = Γ1 ∪ N. Then for γ = m ∈ N, we put

f̃∗γ = ẑ∗m ◦ ι.

Hence we get a family F̃ = {f̃∗γ}γ∈Γ of nonzero functionals in X∗. Fix α ∈ (0, 1). Then,

as was shown in Section 3, for each point x ∈ X, we can define u(x) = {uγ(x)}γ∈Γ and

D(u(x))) = {Dγ(u(x))} ∈ `2(Γ). Next, using Day’s norm ||| · ||| on c0 for the element

u(x) ∈ c0, we get

‖x‖
L,α,F̃

= |||u(x)||| = ‖D(u(x))‖`2(Γ) and
α

2
‖x‖X ≤ ‖x‖L,α,F̃ ≤

K1√
3
‖x‖X .

Theorem 5.1. Under the above assumptions and notations, if 0 < α ≤ 1/2, then the

infinite-dimensional and reflexive Banach space (X, ‖ · ‖
L,α,F̃

) lacks normal structure.

Proof. Since (X, ‖ · ‖X) is reflexive and the basis {ẑm}m is normalized, there exists a

sequence {zm}m in X such that zm ∈ ẑm (that is, ι(zm) = ẑm) and ‖zm‖X = 1 for each

m ∈ N. Then for m2 > m1, we have

|uγ(zm2 − zm1)| = |f∗γ (zm2 − zm1)| ≤ 1

2
‖zm2 − zm1‖X ≤ 1

for γ ∈ Γ1,

u1(zm2 − zm1) = α‖zm2 − zm1‖X ≤ 2α ≤ 1

and

{u2(zm2 − zm1), u3(zm2 − zm1), u3(zm2 − zm1), . . .}

=
{
ẑ∗1(ι(zm2 − zm1)), ẑ∗2(ι(zm2 − zm1)), ẑ∗2(ι(zm2 − zm1)), . . . ,

ẑ∗m1−1(ι(zm2 − zm1)), ẑ∗m1
(ι(zm2 − zm1)), . . . , ẑ∗m1

(ι(zm2 − zm1)),

ẑ∗m1+1(ι(zm2 − zm1)), . . . , ẑ∗m2−1(ι(zm2 − zm1)),

ẑ∗m2
(ι(zm2 − zm1)), . . . , ẑ∗m2

(ι(zm2 − zm1)), ẑ∗m2+1(ι(zm2 − zm1)), . . .
}

= {0, 0, 0, . . . , 0,−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1, 0, . . .}.
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Therefore (
m1+m2∑
k=1

4−k

)1/2

≤ ‖zm2 − zm1‖L,α,F̃ ≤

( ∞∑
k=1

4−k

)1/2

=
1√
3
.

This means that diam‖·‖
L,α,F̃
{zm}m = 1/

√
3.

Now, we compute limm dist‖·‖
L,α,F̃

(zm+1, conv{z1, . . . , zm}). To this end, suppose β1 +

· · ·+ βm = 1, where 0 ≤ βk ≤ 1 for 1 ≤ k ≤ m. Then we have∣∣∣∣∣uγ
(
zm+1 −

m∑
k=1

βkzk

)∣∣∣∣∣ =

∣∣∣∣∣f∗γ
(
zm+1 −

m∑
k=1

βkzk

)∣∣∣∣∣ ≤ 1

2

∥∥∥∥∥zm+1 −
m∑
k=1

βkzk

∥∥∥∥∥
X

≤ 1

2

m∑
k=1

βk‖zm+1 − zk‖X ≤ 1

for γ ∈ Γ1. Next, we observe that∣∣∣∣∣u1

(
zm+1 −

m∑
k=1

βkzk

)∣∣∣∣∣ = α

∥∥∥∥∥zm+1 −
m∑
k=1

βkzk

∥∥∥∥∥
X

≤ 2α ≤ 1

and {
u2

(
zm+1 −

m∑
k=1

βkzk

)
, u3

(
zm+1 −

m∑
k=1

βkzk

)
, u3

(
zm+1 −

m∑
k=1

βkzk

)
, . . .

}

=

{
ẑ∗1

(
ι

(
zm+1 −

m∑
k=1

βkzk

))
, ẑ∗2

(
ι

(
zm+1 −

m∑
k=1

βkzk

))
,

ẑ∗2

(
ι

(
zm+1 −

m∑
k=1

βkzk

))
, . . . , ẑ∗m

(
ι

(
zm+1 −

m∑
k=1

βkzk

))
, . . . ,

ẑ∗m

(
ι

(
zm+1 −

m∑
k=1

βkzk

))
, ẑ∗m+1

(
ι

(
zm+1 −

m∑
k=1

βkzk

))
, . . . ,

ẑ∗m+1

(
ι

(
zm+1 −

m∑
k=1

βkzk

))
, ẑ∗m+2

(
ι

(
zm+1 −

m∑
k=1

βkzk

))
, . . .

}
= {−β1,−β2,−β2, . . . ,−βm, . . . ,−βm, 1, . . . , 1, 0, . . . , }.

Consequently, we see that(
m+1∑
k=1

4−k

)1/2

≤

∥∥∥∥∥zm+1 −
m∑
k=1

βkzk

∥∥∥∥∥
L,α,F̃

≤

( ∞∑
k=1

4−k

)1/2

=
1√
3
.

This means that

lim
m

dist‖·‖
L,α,F̃

(
zm+1, conv{z1, . . . , zm}

)
=

1√
3

= diam‖·‖
L,α,F̃
{zm}m.
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Remark 5.2. Our proof is based on a modification of the method employed by Smith and

Turett [25].

Remark 5.3. As was mentioned in Section 3, the above theorem is valid even if the set Γ1

is empty, but in the case of nonseparable Banach spaces a nonempty set Γ1 appears in a

natural way in our considerations in Section 6.

6. Existence of a diametrically complete set with empty interior in a reflexive

Banach space

First, we have the following theorem on existence of a diametrically complete set with

empty interior.

Theorem 6.1. Let (X, ‖ · ‖X) be an infinite-dimensional and reflexive Banach space. If

(X, ‖ · ‖X) has the nonstrict Opial property, then there exists an equivalent norm ‖ · ‖
L,α,F̃

such that (X, ‖·‖
L,α,F̃

) contains a diametrically complete set the interior of which is empty.

Proof. We use the notation from Section 5. By Theorem 2.12, there exist a set Γ1 such

that Γ1 ∩ N = ∅ and a one-to-one bounded linear operator T from X into c0(Γ1). Let

{eγ}γ∈Γ1 be the standard basis in c0(Γ1) and let {e∗γ}γ∈Γ1 be the family of biorthogonal

functionals associated with this basis, that is, e∗γ(y) := yγ for each y = {yγ}γ∈Γ1 ∈ c0(Γ1)

and

e∗γ(eγ′) :=

1 if γ = γ′,

0 otherwise,

where γ, γ′ ∈ Γ1. Without loss of generality we may assume that for each γ ∈ Γ1,

there exists an x ∈ X such that e∗γ(Tx) 6= 0. Next, we choose 0 < s < 1 and set

{f̃∗γ}γ∈Γ1 = {se∗γ ◦ T}γ∈Γ1 . Then {f̃∗γ}γ∈Γ1 is a subfamily of nonzero functionals in X∗

which separates points of X. Assume, in addition, that 0 < s < 1 is sufficiently small

so that the family {f̃∗γ}γ∈Γ1 is bounded in X∗ by 1/2 (in X∗ we use the standard norm

‖ · ‖X∗). It is obvious that for each point x ∈ X, the set {γ ∈ Γ1 : |f̃∗γ (x)| > ε} is finite for

each ε > 0. Now, let Γ := Γ1∪N. For γ ∈ N we construct f̃∗γ as in Section 5. We also have

0 < α ≤ 1/2. It is clear that the Banach space (X, ‖ · ‖X) and the family F̃ = {f̃∗γ}γ∈Γ of

nonzero functionals in X∗ satisfy the assumptions of Theorems 3.2 and 5.1, and therefore

by Theorem 2.10, the Banach space (X, ‖ · ‖
L,α,F̃

) contains a diametrically complete set

the interior of which is empty, as asserted.

We finish this paper by showing that every infinite-dimensional and reflexive Ba-

nach space with the nonstrict Opial and the Kadec–Klee properties can be equivalently

renormed so that with the new norm it is LUR and contains diametrically complete sets

with empty interior. Namely, we have the following theorem.
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Theorem 6.2. Each infinite-dimensional and reflexive Banach space (X, ‖ · ‖X) with

the nonstrict Opial and the Kadec–Klee properties has an equivalent norm ‖ · ‖0 such that

(X, ‖·‖0) is LUR and contains a diametrically complete set the interior of which is empty.

Proof. We use the notations of Theorem 6.1. Set ‖ · ‖0 := ‖ · ‖
L,α,F̃

with 0 < α ≤ 1/2.

Since our infinite-dimensional and reflexive Banach space (X, ‖ · ‖X) has the nonstrict

Opial property, the space X with the equivalent norm ‖ · ‖0 contains, by Theorem 6.1, a

diametrically complete set the interior of which is empty. Next, invoking Theorem 4.1, we

see that (X, ‖ · ‖0) is also LUR, as asserted.

Remark 6.3. It is known that every separable Banach space (X, ‖·‖X) can be equivalently

renormed in such a way that this space with the new norm has both the nonstrict Opial

and the Kadec–Klee properties (see [2, 5]). An analogous result for nonseparable and

reflexive Banach spaces is not known. So the following problem is still open.

Open problem. Let (X, ‖ · ‖X) be any infinite-dimensional and reflexive Banach space.

Can it be renormed by a new norm ‖ ·‖0 in such a way that (X, ‖ ·‖0) is LUR and contains

a diametrically complete set with empty interior?
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