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Degree Bipartite Ramsey Numbers

Ye Wang, Yusheng Li and Yan Li*

Abstract. Let H
s−→ G denote that any edge-coloring of H by s colors contains a

monochromatic G. The degree Ramsey number r∆(G; s) is defined to be min{∆(H) :

H
s−→ G}, and the degree bipartite Ramsey number br∆(G; s) is defined to be min

{∆(H) : H
s−→ G and χ(H) = 2}. In this note, we show that r∆(Km,n; s) is linear on

n with fixed m. We also evaluate br∆(G; s) for paths and other trees.

1. Introduction

Ramsey theory is a fascinating branch of combinatorics. There are many difficult open

problems in this area. Ramsey theory can be viewed as a generalization of the Pigeonhole

Principle. A typical result in Ramsey theory states that if some mathematical object is

partitioned into finite many parts, then one of the parts must contain a sub-object of

particular property. The smallest size of the large object to guarantee the property is

called Ramsey number. For more, see Graham, Rothschild and Spencer [11].

For graphs G and H, let H
s−→ G denote that any edge-coloring of H by s colors

contains a monochromatic G. The Ramsey number r(G; s) is the smallest N such that

KN
s−→ G. More generally, for any monotone graph parameter ρ, the ρ-Ramsey number is

defined as

rρ(G; s) = min{ρ(H) : H
s−→ G}.

This generalizes the Ramsey number since rρ(G; s) = r(G; s) if ρ(H) denotes the order

of H. When ρ(H) denotes the size of H, it becomes the size Ramsey number r̂(G; s),

see [2,3,6,7,10,18]. For cases ρ(H) of being the clique number and the chromatic number

of H, we refer the reader to [9, 16,17] and [5, 21,22], respectively.

The degree Ramsey number is defined as

r∆(G; s) = min{∆(H) : H
s−→ G},
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where ∆(H) is the maximum degree of H. Kinnersley, Milans and West [14], and Jiang,

Milans and West [12] obtained bounds for degree Ramsey numbers of trees and cy-

cles. Kang and Perarnau [13] proved that r∆(C4; s) = Θ(s2), and Tait [19] proved that

r∆(C6; s) = Θ(s3/2) and r∆(C10; s) = Θ(s5/4).

In this note, we define the degree bipartite Ramsey number br∆(G; s) as

br∆(G; s) = min{∆(H) : H is bipartite and H
s−→ G}.

Obviously, for any bipartite graph G, we have

(1.1) r∆(G; s) ≤ br∆(G; s).

Note that (1.1) holds with equality for trees in Theorem 1.1. Now we consider the degree

bipartite Ramsey numbers of trees, including stars, paths, and complete bipartite graphs.

We show that r∆(Km,n; s) is linear on n with m fixed.

Theorem 1.1. If T is a tree in which one vertex has degree k and all others have degree

at most dk/2e, then

br∆(T ; s) = s(k − 1) + 1.

Kinnersley, Milans and West [14] showed r∆(T ; s) = s(k−1)+1 for any tree T satisfying

conditions in Theorem 1.1 with odd k, and thus the inequality in (1.1) is sharp. They also

proved

(1.2) r∆(T ; s) ≤ 2s(∆(T )− 1)

for any tree T . We shall generalize (1.2) to the bipartite version. Hence if (1.2) holds with

equality, then the inequality in Theorem 1.2 becomes an equality from (1.1).

Theorem 1.2. If T is a tree, then

br∆(T ; s) ≤ 2s(∆(T )− 1).

The above bound is sharp since Alon, Ding, Oporowski and Vertigan [1] showed that

r∆(Pn; s) = 2s for fixed s and large n, where Pn is a path on n vertices.

Let us have more notation. The Turán number of a graph G, denoted by ex(N ;G), is

the maximum number of edges in a graph of order N that contains no G. For a bipartite

graph G, the Zarankiewicz number z(N ;G) is defined [20] to be the maximum number of

edges in a subgraph of KN,N that contains no G. For two positive functions f(t) and g(t),

we write that f(t) ≤ O(g(t)) or g(t) ≥ Ω(f(t)) if there exists a positive constant c so that

f(t) ≤ cg(t) for large t, and f(t) = Θ(g(t)) if Ω(g(t)) ≤ f(t) ≤ O(g(t)).

We now turn to even cycles and complete bipartite graphs. The results r∆(C2m; s) =

Θ(s1+1/(m−1)) in [13,19] and the upper bound in (1.1) imply br∆(C2m; s) ≥ Ω(s1+1/(m−1))



Degree Bipartite Ramsey Numbers 429

for cycles C2m withm = 2, 3, 5 and s→∞. It is well known that ex(2n;C2m) ≤ O(n1+1/m)

shown by Bondy and Simonovits [4] for fixed m and n → ∞. On the other hand, if

the edges of Kn,n are colored by s colors, then at least n2/s edges are monochromatic.

Therefore, if n2/s ≥ Ω(n1+1/m), equivalently n ≥ Ω(s1+1/(m−1)), then n2/s ≥ ex(2n;C2m)

and Kn,n
s−→ C2m, hence br∆(C2m; s) ≤ O(s1+1/(m−1)) for m ≥ 2 and s→∞. Combining

with the lower bound as mentioned, we have

br∆(C2m; s) = Θ(s1+1/(m−1))

for m = 2, 3, 5 and s→∞.

The following result differs from the result in [19] which pointed out r∆(Km,n; s) =

Θ(sm) for fixed m and n with n > (m− 1)! and s→∞.

Theorem 1.3. If m and s are fixed integers and ε > 0, then

e−2s(mn−1)/(m+n)n ≤ r∆(Km,n; s) ≤ br∆(Km,n; s) ≤ (1 + ε)smn

for all large n.

2. Proofs of main results

Lemma 2.1. For any integers n, s ≥ 2, br∆(K1,n; s) = s(n− 1) + 1.

Proof. Since K1,s(n−1)+1
s−→ K1,n, we have br∆(K1,n; s) ≤ s(n−1)+1. For the lower bound,

for any bipartite graph H with maximum degree s(n − 1), let H ′ be an s(n − 1)-regular

bipartite supergraph of H. By Hall’s Theorem, H ′ decomposes into 1-factors. Taking

each of s color classes to be the union of n − 1 of these 1-factors yields an edge-coloring

of H ′ by s colors with degree n− 1 in each color at each vertex.

A classic result of Erdős and Sachs [8] for the existence of regular graphs with large

degree and girth can be modified to yield a bipartite form easily.

Lemma 2.2. (see Erdős and Sachs [8]) For any positive integers g and k, there is a

k-regular bipartite graph with girth at least g.

Proof of Theorem 1.1. For the lower bound, for any tree T in which one vertex has degree

k, it is obtained that K1,k ⊆ T and br∆(K1,k; s) ≤ br∆(T ; s), so br∆(T ; s) ≥ s(k − 1) + 1

by Lemma 2.1.

For the upper bound, by Lemma 2.2, let H be a regular bipartite graph having degree

s(k − 1) + 1 and girth more than |V (T )|. In any edge-coloring of H by s colors, by the

pigeonhole principle, some color class has average degree more than k − 1, which yields a

monochromatic bipartite subgraph H1 with average degree more than k − 1. If H1 has a
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subgraph with a vertex u of degree at most r − 1 with r = dk/2e, as k − 1 ≥ 2(r − 1),

graph H1 \{u} has average degree more than k−1. Thus there must be a subgraph H2 in

H with minimum degree at least r and average degree more than k− 1. Then H2 also has

a vertex of degree at least k, denoted by v. In such a graph H2, we can “grow” T from v

by adding children. When we want to grow from a current leaf, it has r − 1 neighbors in

H2 that (by the girth condition) are not in the tree yet, and then we get the desired tree

T , finishing the proof.

The following lemma is a well known fact, and we shall use it to prove Theorem 1.2.

Here we sketch the proof. For graph H with average degree d > 0, when we delete the

vertices of degrees less than d/2 repeatedly if any, then the resulting graphs have non-

decreasing average degrees and minimum degrees.

Lemma 2.3. For positive integers δ and d with d ≥ 2(δ − 1), if graph H has average

degree at least d, then H contains a subgraph with minimum degree at least δ and average

degree at least d.

Proof of Theorem 1.2. Let r = ∆(T ). And we can construct a 2s(r − 1)-regular bipartite

graph H with girth more than |V (T )| which is known to be possible in various ways. See

for instance [8] for constructing a 2s(r− 1)-regular graph G with girth more than |V (T )|,
then the direct product H = G × K2 is a 2s(r − 1)-regular bipartite graph with girth

g(H) ≥ g(G) ≥ |V (T )|.
Consider an edge-coloring of bipartite graph H by s colors, then by the pigeonhole

principle, some color class has average degree at least 2(r − 1), which yields a monochro-

matic bipartite subgraph H1 with average degree at least 2(r − 1). By Lemma 2.3, H1

contains a subgraph H2 with minimum degree at least r. First we choose a vertex from

V (H2) as the root of tree and then “grow” T from this vertex by adding children. When

we want to grow from the current leaf, it has r − 1 neighbors in H2 that (by the girth

condition) are not in the tree yet. Thus, we have the desired monochromatic tree T .

The following lemma appeared in [13] firstly, and then it was restated by Tait [19] in

a more general way. Before stating it, we need some notations. For v ∈ V (G), denote by

NG(v) the set of all neighbors of v in G. For graphs G and H, a homomorphism φ from

G to H is an edge preserving mapping from V (G) to V (H). A homomorphism from G to

H is locally injective if NG(v) is mapped to NH(φ(v)) injectively for every v ∈ V (G). A

graph is LG-free if it does not contain any graph in LG as a subgraph, where LG is the

set of all graphs H such that there is a locally injective homomorphism from G to H.

To avoid confusion, let us clarify a decomposition of a graph G means a partition of

the edge set of G in this note.
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Lemma 2.4. [13,19] Let G be a graph with at least one cycle and H a graph of maximum

degree ∆. If KN can be decomposed into O(N1−ξ) LG-free graphs for fixed ξ > 0, then H

can be decomposed into O(∆1−ξ) graphs which are G-free.

Proof of Theorem 1.3. For the lower bound, we shall show that r∆(Km,n; s) ≥ e−2

s(mn−1)/(m+n)n, which is equivalent to showing that any graph of maximum degree ∆

can be decomposed into (e2∆/n)(m+n)/(mn−1) graphs which are Km,n-free. By taking

ξ = 1− (m+ n)/(mn− 1) and N = e−2s(mn−1)/(m+n)n, we have

(e2∆/n)(m+n)/(mn−1) = O(∆1−ξ).

By Lemma 2.4, it suffices to show thatKN can be decomposed into (e2N/n)(m+n)/(mn−1) =

O(N1−ξ) graphs which are Km,n-free. Let us consider a random edge-coloring of KN by

s colors such that each edge is colored independently with probability 1/s. Let p be

the probability that there is a monochromatic Km,n. Then p ≤ s
(
N

m+n

)(
m+n
m

)
/smn. For

s = (e2N/n)(m+n)/(mn−1), we have

p ≤
(

eN

m+ n

)m+n(e(m+ n)

m

)m(1

s

)mn−1

=
e2m+nNm+n

mm(m+ n)nsmn−1

=
nm+n

mmen(m+ n)n
=

nm

mmen

(
1− m

m+ n

)n
≤ nm

mmen
e−mn/(m+n)

≤ nm

(
√
em)men

,

which implies p < 1 for finitely many n. Hence KN 6
s−→ Km,n and the desired lower bound

follows from Lemma 2.4.

For the upper bound, let M = br∆(Km,n; s) − 1. Then there is an edge-coloring of

KM,M by s colors that contains no monochromatic Km,n. A well known argument of

Kövári, Sós and Turán [15] shows that the Zarankiewicz number

z(M ;Km,n) ≤ (n− 1)1/mM2−1/m + (m− 1)M.

Let c = (1 + ε)1/m − 1 > 0. Then we have

M2 ≤ s z(M ;Km,n) ≤ (1 + c)sn1/mM2−1/m,

which yields M ≤ (1 + ε)smn.
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