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Frame-based Average Sampling in Multiply Generated Shift-invariant
Subspaces of Mixed Lebesgue Spaces

Yingchun Jiang and Jiao Li*

Abstract. In this paper, we mainly discuss the nonuniform average sampling and
reconstruction in multiply generated shift-invariant subspaces
Vo.a(®r)
{0 X Pk b= ) s el b e € (002 2°)'
k1€Z kyeZ

of mixed Lebesgue spaces LP4(R x R%), 1 < p,q < oo, where ®, = (¢1,02,...,0,)7
with ¢; € LP9(R xR?) and ¢ = (c1, ¢, ...,¢,.)T with ¢; € (PU(ZxZ),i=1,2,...,7,
under the assumption that the family {p;(z — ki, y — k2) @ (k1,k2) € Z x Z9,1 <
i < r} constitutes a (p, ¢)-frame of V,, ,(®,.). First, iterative approximation projection
algorithms for two kinds of average sampling functionals are established. Then, we

estimate the convergence rates of the corresponding algorithms.

1. Introduction

Mixed Lebesgue spaces were firstly introduced in [4], although the initial realization of
their necessity goes back to [12]. In the last years, there are many groups of people working
on mixed Lebesgue spaces from the viewpoint of harmonic analysis and operator theory,
refer to |58,/ 10L|11,13H16},21,22,26] and references therein.

For 1 < p,q < oo, the mixed Lebesgue space LP4(R x Rd) denotes the Banach space
of all functions f such that

[ fllramxma) = H”f(xlvx2)HLg2(Rd)HL§1(R) < o0.

Similarly, (77 = (P9(Z x Zd) is the Banach space of all complex valued sequences ¢ =

(c(kr, k2))(k‘17k2)ezxzd such that

cllepa = HHc(klak2)H€ZZ(Zd)HZ£1(Z) < oo0.
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Sampling plays an important role in signal and information processing, and sampling
theory in shift-invariant subspaces of classical Lebesgue spaces LP(R?) had been generally
studied in the past years, such as [1H3}[9,[28,]29]. Since mixed Lebesgue space is a suitable
tool for modeling and measuring time variant signals due to its separate integrability
for different variables, some sampling results in bandlimited subspaces, shift-invariant
subspaces and reproducing kernel subspaces of mixed Lebesgue spaces LP4(R x RY) are
given recently [17,(18}20,23}24,27,[30,31]. However, the existed works in shift-invariant
spaces always assume that the family {@;(z — k1,y — ko) : (k1, ko) € Z x Z¢,1 < i < 7}
has (p, ¢)-stability [25], instead of a possibly redundant frame.

In this paper, we will study the average sampling and reconstruction problem in the

multiply generated shift-invariant subspaces

{ S Mk k)@ — ke, - — ko) ¢ (R, k2)) by )ezxze € (PU(Z Zd))r}

k1€Z kycZd

of mixed Lebesgue spaces LP9(R x Rd), 1 < p,q < oo, where T denotes the transpose, @, =
(01,02, .., )T with ; € LP4(R x R%) and ¢ = (c1,ca,...,¢.)T with ¢; € P9(Z x Z%),
i =1,2,...,r, based on the following assumptions:
(A1) The family {@;(- — k1, - — ko) : (k1,k2) € Z x Z41 < i <7} is a (p, q)-frame for
Vp,q(®;), which is defined and characterized in [19].

Definition 1.1. The family {@;(x1 — k1,20 — ko) : i =1,...,7, (k1, ko) € Z x Z?} is called
a (p, q)-frame of V,, 4(®,) if ¢; € LP7 (R x R?%) and there exists a positive constant A > 1
(depending on p, ¢ and ®;) such that for any f €V, 4(®,),

<
o S Alf o,

AT Sl < S| 00 = b = k2 oy ccae
=1

where (-) denotes the dual product between LP4(R x R?%) and L¥"7 (R x R%), p/ and ¢

are the conjugate numbers of p and ¢, respectively.

(A2) The generators ¢;, 1 <1 < r are continuous and belong to the mixed Wiener amal-
gam space W (LY) = W (L") (R x R%) whose general forms are defined as all measurable

functions satisfying

p/a\ 1/p
v = (3 sw (5 s (fethse i) ) <o

e €01 \ L maeo?

for 1 < p,q < o0o. The cases p = co or ¢ = co obey the usual adjustment.
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(A3) We assume that there exists some §y > 0 such that osc(s, 4)(¢i) € W (L) for all
1 < i < r. Here, osc(s, ) () is the partial oscillation (or modulus of continuity) about

variable x defined by

08¢ (5.2) () (2, y) = |S}|1§6 lp(z +2',y) — ez, y)|.

Moreover, we define the partial oscillation about the variable y as

0sC(5,y) (f) (2, y) = sup, |flz,y+y) = flz,y)]
y'I<

and the oscillation

oscs(f)(z,y) = S;l‘p| 5|f(:v+af’,y+y’) — flz,y)l.
2’| <6, |y’ |<

In fact, if ¢ belongs to the classical Wiener amalgam space W (L')(R*!) defined by

lellw iy = Z Z sup oz + k1,y + k2)| < o0,
klez kQEZd ( ) [0 1 d+1

then we can obtain

| 05¢(50,2) ()l (z1:1)

= Z sup Z sup  sup |o(z+ 2 +ki,y+k2) — p(x + ki, y + k2)|
k1 GZIE[OJ] kocZd y€[0,1]¢ |2/|<do

<lelwarny+ 32 > sup sup fp(z+a’+ ki y+ k)l
k1€Z kyezd (TY)E0,1]H [27[<do

< (44 2[]) I llwzr) < o
With the requirements (A1) and (A2), we know from [19] that

(i) The space V, ,(®,) is a closed linear subspace of LP4(R x R%) and there exists a
positive constant B > 1 (depending on p, ¢ and ®,) such that

(1.1) B7Y|fllzra < Z}nf ZchHm<Bl\fHLm Vf € Vpg(®r),
=2 i—1 piXci i—1

where o; ¥ ¢; = Y1 7 D hoeza Cilk, k2)pi(- — k1, - — ka).
(ii) There exists @1, ..., € W(LYY) NV, 4(®,) such that for every f € V,, ,(®,),

F=Y30 3 (f@i(- =k, - = k))ypi(- =k, - — k)

1=1 k1€Z kyeZd

—S°S S (feile = = k)Y@ (- — k- — o),

=1 k1 €Z kyezd
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The paper is organized as follows. In Section 2] we give some lemmata which will
provide the theoretical basis for the subsequent sections. In Section (3], iterative approx-
imation projection algorithms for two kinds of average sampling schemes are given. In

Section [ we estimate the corresponding convergence rates.

2. Some lemmata

In this section, we will give some lemmata which will be used in the subsequent sections.

Lemma 2.1. If f € W(LY') and g € LY (R™1) then f+ g € W(LY') and

I1f * gllwrny < 27 fllw iy llgll -

Proof. By the definition of convolution, we can obtain

1f * gllw 1y

< Z sup Z sup // |f(z+ k1 —s,y+ka—1t)||g(s,t)| dtds
krez *€l01 . cza ve0,1]¢ R JRS

1
<2 2 /o /[01}dz sup Y sup |f(w ki —s—ly ket 6)

0 EZ e Zd klezw€[0,1] kocZd y€[0,1]4

X |g(s+€1,t + €2)| dtds

§Z Z sup sup Z sup Z sup |f(zx+k1—s—Vl1,y+ke—t—1{s)
(167 tyezad SEOATLEDL? \ ez 2€0] ) cza ye[0,1]?

1
x// 195 + L1, ¢ + £o)] dtds
o Jo,e

<> D D sup sup > sup sup [f(z+ki—s,y+ke— 1)
0€Z tyezd \ k12 7€M 5€101] ) c7q y€[0,1]4 ¢€[0,1]¢

1
x// 19(s + £1,t + £5)] dtds
o Jo,)e

< 27| Fllw oy llgll -

This completes the proof. O

Lemma 2.2. [24, Theorem 3.4] Suppose that 1 < p,q < oo and g € W(Lb)(RH).
Then for any f € LP9(R™1), the sequence

d(ky,k2) = / f(z1,22)g(z1 — k1,22 — k) dz1dxs
R /R4

belongs to (P9(Z x Z%) and ||d||g.a < || fllzrallgllwz)-
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Hence, the operator P defined by

PF=Y "3 > (fGi(-—ki, —ka)ypi(- — k1, - — ko)

i=1 k1€Z kyezd
is a bounded projection from LP¢(R. x R%) onto V,, ,(®,).

Lemma 2.3. [24, Theorem 3.1] Assume that 1 < p,q < oo and p € W(L*'). Then for
any c € (P9(Z x Z9), the function f = Y kiez Dkpeza (K1, k2)p (- — k1, - — ka) belongs to
LP9(R x RY) and

[fllzra < llellerall@llwzrry-

Lemma 2.4. Suppose that @; € W(LY) for all 1 < i < r and that {p;i(- — k1, - — ko) :
(k1,k2) € Z x Z%,1 < i <1} is a (p,q)-frame for V, ,(®,), then for any f € V, 4(®,), one
has

(2.1) 1l < I lwznn) < B (max usoirmm) 1 llzme.

1<i<r

Proof. Suppose that f(z1,22) =Y i fi(z1,22) with

filwi,me) = Y Y ailin, j2)pi(z — ji, w2 — o).

J1€Z jocZd
Write by, 1k, —j, (*) = SUPy,cio,1)¢ [@i (w1 + k1 — ji1, 22 + )| and ¢;,(-) = ¢;(j1,-). Then

1/q

sup |fi(x1 + k1, z2 + k2)|?
kocZd 3326[071]61

q\ 1/q

Z Z Cjy * bk —j (k2)

ko€Zd \Jj1€Z

Z ch1 *b$1+k1*j1‘|5‘1 < Z Hc]iHZ‘;.Z||bat1+k1*j1H€;2'
J1€Z J1€Z

IN

IN

Let aj, = chl HZ;Z and dkl*jl = SUDPg; [0,1] wa1+k1*j1 H€J1.2' Then

p\ 1/p

Z sup Z lej ||e§2 1621 4k1—51 ”4;2

kiez ©1€01] \ jez

< llaxdler < llafle dla = lcillesleillw.
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This together with (2.2) obtains || fi|lw(zra) < lleiller.all@illwzr.1). Then it follows from

(1.1) that
Hf”W(LP ay < Z ”leW(LP ay < (Z l[cillew. q) 1r2a<x ||<Pz||W L 1))

<B (max leilhwnn ) T

1<:i<

which is the right-hand side of (2.1]). The left side can be easily verified. O

Note that W (LP?7) C L>°°(R x R%). Then Lemma shows that the convergence in

LP9-gense also means the uniform convergence.

Lemma 2.5. Suppose that o € W(LYY), then oscs ) (@) € W(LYY) for any 6 > 0, and

lose(s gy (@) lwzry < (1+ 218] + 3))llellw z1)-

Proof. For any & > 0, it follows from the definition of W (L!!)-norm that

[ oscsy) (@) lwrr)

<llelw@y+ Y. sup > sup  sup |p(wr + ki, 2o + ko + 1))
ki1€Z z1€[0,1] kocZd x2€[0,1]4 |y2|<d

< lellwrny+ Y, sup > sup lp(z1 + k1, 22 + k2)|
ky ez 1€01] 1 cza @€ [~ [5]—17[5]+z]d

< (1+ 2]+ 3D ellw -
Finally, the desired result follows from o € W (LY. O]
Lemma 2.6. If o € W(LY) is continuous and 0SC(50,2) () € W (LYY for some &y > 0,
then
(2.3) ) ses (@) lhwiznn < (24 (208o] + 3l sy + (2] + ) o5c(a () v n
and lims_, || 0scs () [lw(z1.1) = 0.
Proof. Since ¢ € W(L"!') and osc(s, »)(p) € W(L"!), this together with Lemma
obtains

[l oscsy (@) llw 1)

=Y sup > sup  sup fp(z+a +ki,y+y +ko) —p(z+ ki y+ ko)
k1EZ 3?6[0,1] k2ezd y6[0>1]d |$,|§507|yl‘S60

< [lellwzrry + [l 0scsy ) (@)lw i)

+ Z sup Z sup  sup 0sc(s, ) (@) (x + ki, y +y' + ko)
k1ez @€[0.1] 7 y€[0,1]¢ [y <o

< (2 + (2[00] + 3)D)llllwzr1y + (2Ld0] + 3) 05¢(5y 2 ()l (11.2)-
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Thus, oscs, () € W(LY). Then for any ¢ > 0, there exists an integer Lo > 0 such that

£

(2.4) Z sup Z sup osc, (@) (21 + k1,22 + k2) < 3
kieZ x1€[0,1] ka|>Lo z2€[0,1]¢

5

(2.5) Z sup Z sup oscs, (@) (21 + k1,22 + k2) < 3

ki[> Lo z1€[0,1] koeZd z2€[0,1]¢

Moreover, since ¢ is continuous, there exists d; > 0 such that

£
[ —
= 3(2Lg + 1)3+1

for all (IL‘l,ZL‘g) € [0, 1] X [0, 1]d, |k‘1| < Lyg, ’k‘g’ < Lpand 0 < § < d1. Then

oscs(@)(x1 + ki, 2 + ko)

€
(2.6) Z sup sup oscs(p)(z1 + k1,2 + ko) < 5
k1| <Lo TV EO] |1y <o ©2€10,1]7

Let &' = min{dop, 01 }. It follows from ([2.4)), (2.5) and (2.6)) that for any 0 < § < ¢’, one has

loscs()lwriay = > sup > sup oscs(p)(x1 + k1,22 + ko)
kieZ x1€[0,1] kpeZd z2€[0,1]¢

<tH4i=c
3 3 3 7

Thus, lims_o || 0scs () lw (1) = 0. N

Lemma 2.7. Suppose that ¢ € W(LY1) is continuous and osc(s, () € W(LY) for
some 6 > 0. If p € LY(RY) satisfies [ [ga (2, y) dady = 1, then ¢*(z,y) = o(z,y) —
wxr(x,y) satisfies

iig%) HSDa||W(LL1) =0,
where g (+) = ad%w(a) and Vi(+) = Ya(—).

Proof. Let Qs, = {(s,t) € R x R%: |s| < o, [t| < do}. Then it follows from the definition
of p*(x,y) that

(2, y)] < +/Q > [o(z,y) — (@ + 5,y + 1)l [tha(s, t)| dsdt

(/\/m>50
=:I1(z,y) + (2, y).

Now, we estimate || 1|y (z1.1) and || I2|[y 1.1y, respectively. In fact,

I illwios
< sup sup / lo(z + k1,9 + k2)||Ya(s, t)| dsdt
(2.7) ’“;Z velol k;d yel0.1) /5260

+ Z sup Z sup lo(x + k1 + s,y + ko + t)||1a(s, t)| dsdt

klezf"’e[oal] ko€ Z y€elo,1]4 /\/WZ%
=11+ L.
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Since 1 € L'(R4*!), then changing the variables obtains

(2.8) L1 < llollwzs / (s, 1)| dsdt — 0 as a — 0.
Ve

Let Za™ = {(£1,62) € Zx Z9: /(01 + 5)% + [la + t|2 > & for any (s,t) € [0,1] x [0, 1]4}.

Then we have

I

:Z sup Z su

/

k1ez ¢€[01] kocZd y€[0,1]¢ 2+ [t[2>50

< E sup E sup E: // olx+kr+0+s,y+ke+lo t)\
0,1]4

krez v€l01] . cza vel0,1]¢ (01,02) ez

[o(z + k1 + s,y + ko + 1)|[vba(s, t)] dsdt

X g (l1 + 5,02 +t)| dtds

< ) // > sup sup Y sup  sup |p(x+ kit s,y + ky + t)]
0

(01,62)€ZIH 0,1]¢ \ g, ez #€l0,1] s€[0,1] 27 4 ye[0,1]¢ te[0,1]
X |1q (b1 + 5, €2 +t)| dtds

< 2 ol r1a / |Y(s,t)|dsdt — 0 as a— 0.
R N
This together with (2.7) and (2.8) proves that limg—o [[1[Jyy(z1.1) = 0.
Since limg o || 0scs()|lw(r11) = 0, then for any e > 0, there exists a 0 < d2 < o such
that

|| OSC(S(QO)HW(LlJ) <€ Vo<

Now, we begin to estimate || 12|y (p1.1):

Il < Y sup Y sup / 0SCmax{[s|, |t} (P) (T + K1,y + k2)[tha(s, )| dsdl
k1 EZJCE[O l]k ezdye[o 1]d Q50

<Y sp Y swp [ [ o)+ by klia(o, ) dsc
ki1€Z xE[O 1] kocZd yE[O 1] Qs /2

+/ oscs, (@) (x + k1,y + k2)|va(s,t)| dsdt
= o () )a(s,1)]

< losean a@lhwienny [ [ (s, s

+ || oscs, (¢ 11 / Ya(s,t)|dsdt
H 0 )HW (Lt1) FTP00)2 ‘ ( )‘
< + t)| dsdt.
el + || osc(;O(ap)HW(Lu)/ ET [P (s,t)| ds

This together with (2.3) obtains lim,—0 [|Z2([w(z11) = 0 and the final result holds. O
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Lemma 2.8. Let p, ¢ and p® be as in Lemma 2.7. Then

oser (e lhwzin < (1+ 24 [9]121) | oser (@) lweny
and lim., g || osc, (¢®) [l (L11y = 0.

Proof. Note that

oscy (%) (x,y) < oscy (@) (z,y) + /R /Rd oscy (@) (x + 5,y + t)|va(s, t)| dtds

= 08¢ () (7, y) + 0scy () * g (T, y).
Then it follows from Lemma 2.1 that

Foscy (ellw iy < (1 + 249 1) [ oses (@) lw ().

Since lim,—0 || 0scy (@) |l (z1.1) = 0, the desired result is proved. O

3. Average sampling and reconstruction
In this section, we will discuss the nonuniform average sampling in the multiply generated
shift-invariant subspaces V, 4(®;).

Definition 3.1. A set I' = {v;1 = (zj,y) : z; € R,y € R%,j € J1,k € Jo} is called a
~o-dense set if

R =By (zj0), V7> 0.
ik

Here, By(zj,yx) is an open ball in R4 with center (xj,yx) and radius v, J; and J are

countable index sets.

Definition 3.2. The family U = {uw;(z,y)}e5, kel, is a bounded uniform partition of
unity (BUPU) associated with I" if

(1) 0 <wujp(z,y) <1forall (z,y) € RxRY, j €Iy, k€ oy
(i) wjk(x,y) is supported in By (x;,yx) for every j € J1, k € Ja;

(i) > jen, 2oke, Wik(x,y) =1 for all (z,y) € R X RA.

. XB(z‘,fy/ﬁ)(I) XB(y,,, /ﬁ)(y)
Obviously, Uj,k(%!/) =5 J O Yoy —
'€l XB(a;1,7/v/?2) k' €lo XB(yysv/v2)\Y

,j €1, k€ Jyisan

example of bounded uniform partition of unity. Here, B(y,v/v/2) denotes a ball in R?
with radius v/ V2 centered at Y-
If f € V,q(®,), define the interpolation operator
Qrf =" flxjun)ujn.
j€l1 kela

Then we have the following conclusion.
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Lemma 3.3. Suppose that {p;}1<i<r satisfies the assumptions (A2) and (A3), then for
anyy >0 and f =371 1 cz D pyeza Cilk1, ka)pi( - — k1, - — k2) € V,4(®y), one has

1Qr fllzra < [lellera max {lleillwzrry + llosey (wi) lw iy }-

Here, ||c|lewa = iy [|cilleea for ¢ = (c1,ca,..., )T € ((P9(Z x Z%))".

Proof. By Lemma [2.3] one has

1f = Qrfllzee = ||F(@,y) DD wjn(zy) = D > Flrj un)ujn(z,y)
jE€T1 kEJs jE€T1 kEDs Lr.a
<D0 1 y) = Fag, v un(e, )
€l kel Lp
(3.1) J€d1 ked2
< Z Z OSC’Y(f)(x7 y)u],k(x7 y)
j€I ke€Ta Lr-a
,
= [oscy (N)llzra <Y llellevall osey (00) lw(zry-
i=1
Moreover, we can obtain
|Qr fllLra <IIf = QrfllLra + || f| e
T T
< leillerall osey (i) lwrrny + Y lleillealleillw g
i=1 =1
This completes the proof. O

3.1. The first average sampling

The first average sampling scheme is convolution sampling which is defined as

(3.2) (fC)va(- = (zj,ur))) = fy(xy,up), J§ €1, kel

where 1) € L'(R*™) satisfies [5 [ra ¥(2,y) dzdy = 1.
Based on the average samples obtained in (3.2)), define the prereconstruction operator

Araf =YY (g, yn)ujne
j€l1 k€el2
Lemma 3.4. Let P be a bounded projection from LP4(R x R®) onto V, 4(®,). Suppose
that {pi}i<i<, satisfies the assumptions (A1)—(A3), then there exist vo > 0 and ag > 0
such that for every vy-dense set I' with v < 7o and for every positive a < ag, the operator

I — PAr, is a contraction on Vp 4(®,).
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Proof. Suppose that f =71 Y7 ez p,ezd Ci(ki, k2)pi(- — k1, - —ka2) € V}4(P,). Since
Pf = f, then

||f — PAnaf”Lp,q = ||f —PQrf+PQrf - PAF,afHLp’q
(3-3) <|If = PQrfllLra + [[PQrf — PArofl|Lra
< IPllop(If = Qrfllzra + 1Qrf — Ar.afllzra),

where || P||op denotes the operator norm of P. Moreover, it follows from and (3.1))
that

If = @rflizes <D lleillenall oscy (0) lwzray
(3.4) i=1

< i .
< Bl fllira max || ose, (01) ey

Let o (z,y) = pi(z,y) — i *¥i(z,y), 1 <i <r. Note that

Qrf —Araf =Qr [ DD D cilkr, k)i (- — k1, - — k2)

=1 k1€Z kycZd

This together with Lemma and (|1.1)) obtains

ZQF<Z > ik, k) (- kl,-—kg))

k1€Z kycZd

|Qrf — Ar.ofl|pre =

Lp:a
< Z leillers max {Ilef lwzany + | osey (of)llwzan }
=1
< Bl fllzre max {HSO?HW(LM) + [ osey (9 lw 1) }-
<i<r
This together with (3.3]) and (3.4) obtains

If = PArof| Lo

< BIPlon ( u lloser)lwuns) + o (et wzns) + 1l oses (68 wiuasy} ) 1l

Therefore, it follows from Lemmas and that we can choose positive numbers
Y0 and ag such that for any v < vy and a < ag, one has

B|[Pllop <maX llosey (@i)llwzry + max {{lef lwzaa) +  osey (o) lw lel)}> <1

which means that I — PAr, is a contraction on V), ,(®,). O
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Theorem 3.5. Let P, {yiti<i<r, I' and Ar, be as in Lemma . Then any signal

f € Vpo(®,) can be recovered from its average samples {(f(-),Ya(- — (z;,yx)))} el kel
by the iterative approximation projection algorithm

fl — PAI‘,af and fn+1 = PAF,a(f - fn) + fn

Here, f,, uniformly converges to f, and also in W (LP?) and LP2-norms just as

(3.5) 1f = fallra < f = fallwwray < Maf||fllzra

for some a1 = ay(7,a,®,v) <1 and M < 0.

Proof. Let e, = f — fn. Then

Ent+1 = f - fn—l—l = (I - PAF,a)en-

Set
(3.6)

a1 = B| Pllop (gagx loscs (i)l ziny + max {Iefllwryy + | Oscw(wﬁ)\lw@lvl)}) :
By Lemma [3.4] we may choose v > 0 and a > 0 small enough such that c; < 1 and

lentillzra < crllenllzra < @ fllzoa.

Thus, it follows from Lemmathat (3.5) holds with M = B(maxi<i<, [l@illwrny). O

3.2. The second average sampling

The second average sampling scheme is

o) = [ [ e yistededy. jed, kel
where the average sampling functionals {¢; : j € J1,k € Jo} satisfy
() Jg Jra¥ik(@,y) dedy =1 for all j € I1, k € Ja;
(ii) There exists an R > 0 such that [5 [ga |¥jk(2,y)| dedy < R for all j € Iy, k € Ja;
(ili) supp v C Ba(w;,yx) for some a > 0.

Define the quasi-reconstruction operator
Arf =Y > (fdjm)ujpe
j€d1 kel2

Then we have the following conclusion.
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Theorem 3.6. Let P be a bounded projection from LP4(R x R®) onto V, ,(®,). Suppose
that {pi}1<i<r satisfies the assumptions (A1)—(A3), then there exist v > 0 and a > 0 such
that any f € Vp q(®,) can be recovered from its average samples {{f,V;r)}icn kej. by the

iterative algorithm

fi=PArf and fop1 = PAr(f = fo) + fu,

which converges uniformly and also satisfies

If = fallea < \If = fullw oy < Moz || fllzra
for some as = as(y,a, P, R) < 1.
P?“OOf. Let f = Z;‘":l Zklez Zkgezd Ci(kl, kg)goi( = kl, = /62) € V;,,q(cbr). Then

If — PArf|tea = ||f — PQrf + PQrf — PArf| 1ra

(3.7)
<NPllop(Ilf = Qe fllzra + Qe f — ArfllLra)-

Note that

0sca(f) <3 D7 N feilkn, k)| osca(pi) (- — ki, - — ko).

=1 k1 €Z kycZd

Then, it follows from Lemma [3.3] that

1Qrf — Arfl|Lra
= j o - ,t : 7t dsdtu; 7
< ijzﬂ /R /R 5.0 = Fo. Dl ) dsdtua(o )|
= It Z Z osca(f) (@5, yr)wjk(z,y)

j€l1 kels Lpa

< Rllcller-a max {llosca(i)llw 1.1y + Il osey(oscali)) lwrr }
< RB| fllre max {llosca (i) llw 1.1y + 1| sy (osca (i) lw(zrny }
< RB||fllura max {2l oscalei)llwasy + lloses (@)l + loscass (ellwizin }-
This together with obtains
If = PArflra
< BJ[Pllop ( max [[oses (1) lwizra)

+ R max {21 osca(s)lwz) + [10ses (00) lwe 1y + 1 05Cats () lwzin }) 1 .
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Take v > 0 and a > 0 small enough such that
(3.8)
@2 = B Pllop  max [|oscs () lwza)
+ R mmax {2]) osea(o)llwzan + [l 05 (00 lwzr) + 1| 05¢ats (00l })

<1.

Then the operator I — PAr is a contraction on V), ,(®,) and the remained proof is similar
to that of Theorem [3.5 O

4. Convergence rate

In this section, we estimate the convergence rate a; in Theorem [3.5 and ay in Theo-
rem when &, and the average sampling functionals satisfy some additional regularity

conditions.

Theorem 4.1. Suppose that {p;}1<i<, and ¢ satisfy the conditions of Theorem and
that |Vg| € W(LY) (R for everyi =1,...,r and |91, == Jg [fra [ (s, )]|(s, )] dsdt
< 0o for some 0 < n < 1. Then the convergence rate a; in Theorem satisfies

a1 < BIIPllop (V2Y(2+ 25l 1) (3 + 20D mmax (1961l gy + @11
(4.1) ==

x max (142435 lgillwzray + V26573 + 2000 96l |y ray) )-

Proof. Note that

1
lo(z1 + y1, 22 + y2) — p(x1,22)| = ‘/ (y1,92) - Vo(z1 + sy1, z2 + sy2) ds
0

1
< / (91, 92) Vol (@1 + 1, 22 + sy2) ds
0

< |(y1,92)| sup IVol(z1 + t1, 22 + t2),
[t1]<|y1],|t2]<|yz]

where - in the first equality denotes the vector inner product. Therefore, we can obtain

oscy(p)(w1,22) =  sup  |p(x1 +y1, 72 +y2) — p(T1, 22)]
ly1]<v,ly2| <y

<V2y  sup  |Vl(ar + b, @+ bo).
[t1]<y,]t2] <y
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Moreover, one has

[osey () llw (1)

= Z sup Z sup |oscy(p)(x1 + k1, 22 + k)|
kez T1€0 gy ez 22€0,1)°

(4.2) <V2y Z sup sup sup  |Vo|(x1 +t1 + ki, x2 + t2 + k2)
’ ki€Z z1€[0,1] kep €Z24 z2€[0,1]% [t1| <y, ta] <y
<V2y ) Y sup sup | Vel(y1 + ki, 2 + ka)

k1€Z kyezd V1€l 1] y2 €[, 149]4

< V2B + 20D 1Vl 1)

Next, we estimate the W (LY!)-norm of % = p—@*1?*. Following the proof of Lemma

we have

(4.3) 1l (zaay < (1424 ag " lollw o 191

Moreover, one has
Ir(z,y) < / [(s;0)]  sup [Vol(z + s1,y + t1)[va(s, )] dsdt
Q5 |51]<d0,[t1|<do

<V2a"8, Yl,  osup [Vel(x 4 s,y ).
[s1|<d0,|t1|<d0

This together with (4.3]) obtains

e lwziy < (142 a"85 e llw i 1411,
+v/2a%85 "3+ 210 IVl [y 1) |9l

Finally, it follows from Lemma and (3.6) that the desired result (4.1)) holds. O

Theorem 4.2. Suppose that {¢;}1<i<r and {1 : j € J1, k € I2} satisfy the conditions of
Theorem and that |Vp;| € W(LY)(RY) for everyi = 1,...,r. Then the convergence
rate ay in Theorem [3.0] satisfies

az < V2B|[Pllop(v(1+ R)(3 + 21y))* + 2aR(3 + 2[a]) ™ + (a +7)R(3 + 2[a +~))*)

X gﬁg“|vwi’}|W(Ll)'

Proof. The proof of Theorem is a direct consequence of (3.8) and (|4.2]). O

Remark 4.3. Note that the convergence rates a; in Theorem and oo in Theorem

are given as

a1 = By (s s (0 lhwiaon + puax {1t lhwiansy + losen Dl
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and
s = BI|Pop  max [lose, (00)llw(z1.)

+ ng%q {2[l osca(wi)llw (zrry + [ oses (@) llw iy + || OSCa—M(‘Pi)HW(LM)})-

Although we know from Lemmas and that both oy < 1 and a3 < 1 can be
achieved by taking v > 0 and a > 0 small enough, we do not have the expression of
the dependence of a; and as on v and a. Under suitable conditions, Theorems [£.1] and
obtain explicit bounds for a1 and aq, respectively, which allow us to find sufficient

conditions for density v and size a such that a; and as can be arbitrary small.
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