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Homogeneous g-difference Equations and Generating Functions for the

Generalized 2D-Hermite Polynomials
Zeya Jia

Abstract. In this paper, we deduce several types of generating functions for ¢-2D
Hermite polynomial by the method of homogeneous g-difference equations. Besides,
we deduce a multilinear generating function for ¢-2D Hermite polynomials as a gener-
alization of Andrew’s result. Moreover, we build a transformation identity involving
the generalized ¢-2D Hermite polynomials by the method of homogeneous g-difference
equations. As an application, we give a transformation identity involving D,(m,n)
and Dy (m,n).

1. Introduction and statement of results

The 2D-Hermite polynomials {ITIm,n(zl, z9)} are defined by [16]

mAn
(1.1) ﬁ[m,n(zl, 29) = Z <7:) <Z> (=D)FE1F207F where m A n = min(m, n).
k=0
Recently several mathematical physicists studied these types of polynomials from math-
ematical and physical points of view. Recent references on the 2D-Hermite polynomials
are [14121-23].
Ismail and Zhang [15] introduced (1.2)) and (1.3) as the g-analogues of ([1.1)):

(12)  Hpaler ) = é et

mAn
m| [n ) (n— ko
(13 ez = 3 |7 |[1] (-0t s b
k=0
By using the raising and lowing operators, they got several types of generating func-
tions for ¢-2D Hermite polynomials. This paper arose from the desire to understand the
generalized ¢-2D Hermite polynomials through the method of homogeneous g-difference

equations and to give some new applications.
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Throughout this paper, we use the standard g-notations [2,|12]. For |¢| < 1, we define
the g-shifted factorials as

n—1 00

(a'§ Q)O =1, (a; Q)n = H(l - aqk)a (a§ Q)oo = H(l - aqk)'

k=0 k=0
For convenience, we also adopt the following compact notation for the multiple g-shifted
factorial:
(a1, @2, .., am; @n = (a130)n(a2; @)n - - (@m3 @n,
where n is an integer or co. The basic hypergeometric series ¢ is defined as

p <a1,a2,...,ar.q z> :i (a1,a2,...,a:;q)n ((_Unqn(n—l)/z)HH n
n b17b27"'7bs’ ’ n:O(Q>blab27"'7bs;Q>n ‘

The ¢-binomial coefficients are defined by

- o

For any function f(z), the g-derivative of f(x) with respect to x, is defined as

_ J(@) — flgx)

Dq,x{f(x)} - (1 _ q)x )
and we further define Dgx{f(x)} = f(x), and for n > 1, Dy {f(v)} = D{Dy % ()}
The Leibniz rule for D, is

n

(1.4 Dyufo)e) = 3 [} Dhas 00Dy o)

k=0

The ¢-binomial theorem is

io: (CL; q)n n __ (CLZ; Q)oo
A —
= (@D (25 @)oo
Two important special and limiting cases are the Euler identities
(0.9] n 1

(1.5) Z(z = — and Z —(z;q)oo
n n=0

= (@ )n  (30)

The Rogers-Szegé polynomials are given by [1]

n n

n n— n n(k—n n—
hn<b,c|q>=2[k}b’fc ¢ and gn<b,c|q>=z[k]q<’f phen

k=0 k=0
Chen, Fu and Zhang [6] introduced the following homogeneous Rogers-Szegé polynomials

and gave some results

n

(e, 3la) :Z[ }pk zy) and py(e,y) = (o — )@ —ya)--- (o — yd* ).
k=0
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Motivated by Liu [19] and Cigler |9], Cao and Niu studied the extension of Cigler’s poly-

nomials by the g-difference equations [4]

(1.6) O\ (,b) = kzn::O [n J,; a} m (~1)%q) (q; q)p 2" FbF
and
(1.7) D (x,b) = ki:o [n J,g a} m (=15 g =R (g; q), 2" B

Actually, it is natural to research the further extension of ¢-2D Hermite polynomials

as follows:
mAn m n A

(1.8) Hpon(21,22,2,0) = Z []J [k‘] (—1)1‘3(1(2)(61;(]);C zfﬁ“kz;*kzk
k=0

and

mAn
(1.9) Qmn(21,22,2,a) = Z [n]j [Z] (—1)]“q_mk_”k+l’C2 (a;9)k z’ln_kzg_kzk.
k=0
Remark 1.1. (1) When taking a = ¢, m=n+a, 21 = 1, 20 = z and z = b in (L.8), we
obtain . Noting that m and n are integers, the equation m = n + « implies that « is
an integer.
(2) When taking a =q, m=n+a«, 21 =1, 20 = x and 2z = bg"T® in , we obtain
(L.7). Similarly, « is also an integer as in (1).
(3) When taking z =1 and a = ¢ in and respectively, Hy, n (21,22, 2,a) =
ﬁm7n(21722)7 Qmn(21,22,2,a) = ¢ ™y (21, 22).
(4) When taking m = n, a = 0, z = —tz122¢°" in , we have the ¢-Narayana
polynomials [10]: ,
— " n 2
Mo(t) = (zm)nkzzo [k] s
The method of g¢-difference operator has shown to be effective in solving generating
functions for certain g-orthogonal polynomials. For more information, please refer to
[5-8,[17]. Liu [18] established the key relation between g-exponential operator and g-
difference equations by using analytic function. In [3], Cao gave the generating functions
of g-hypergeometric polynomials by using the special homogeneous g-difference equations.
Analytic functions expansion and ¢-difference equations often serve as a building block
in finding the generating functions for orthogonal polynomials. Indeed, if an analytic
function in several variables satisfies a system of g¢-difference equations, then, it can be

expanded in terms of the product of some polynomials.
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Liu [19] obtained several important results on Rogers-Szegé polynomials by the fol-
lowing g-difference equations with two variables. Liu and Zeng [20] further the relations

between the g-difference equations and Rogers-Szeg6 polynomials.
Proposition 1.2. Let f(a,b) be a two-variable analytic function at (0,0) € C2. Then

(a) f can be expanded in terms of hy(a,blq) if and only if f satisfies the functional
equation

bf(a% b) - af(a7 bq) = (b - a)f(a7 b)

(b) f can be expanded in terms of gn(a,blq) if and only if f satisfies the functional
equation

af(agq,b) —bf(a,bq) = (a —b)f(aq,bq).

The main task of the paper is to research the following homogeneous ¢-difference

equations and the generating functions for the generalized ¢-2D Hermite polynomials.

Theorem 1.3. Let f(z1, 22, 2,a) be a 4-variable analytic function at (0,0,0,0) € C*. Then
f can be expanded in terms of Hy,n(21,22,2,a) if and only if f satisfies the functional

equation

zla{ f(z1, 22, ZC]Q,CI) — f(z1q; 22, ZC]Q, a) — f(z1, 229, ZQQ; a) + f(z14, 224, ZQQ, a)}
(1-10) - {f(Zl, 29,24, a) — f(21q7 22,24, a) - f(Zl, 224, zq,a) + f(Zlq, 224, 24, a)}]
- ZIZQ{f(Zly 22, 2927 a) - 2f(zl) 22,24, CL) + f(zlu 22, Z)a)}'

Proof. From the theory of several complex variables, we assume that

o0
(111) f(Zl,ZQ,Z,CL) :ZAk‘(ZlaZQaa)Z
Substituting the above equation into (1.10)), we have

z {GZ ) {Ak(21, 22,0) — Ar(21, 229, ) — Ag(219; 22, @) + Ar(214, 229, a) }
k=0

(1.12) Z (20)"{ Ak (21, 22, @) — Ag(21, 229, @) — Ak(21q, 22, a) + Ap(214, 22, )}
k:O

= 2122 Z F(gF — 1)2 Ak (21, 22, ).
k=0

By direct calculation, equating coefficients of z* on both sides of (1.12), we obtain

1— 2 k—1 a k—1 _ 1
Ak(zla 22, a/) - ( Q) (qqk: _(1?2 )Dq7leq’Z2{Ak,1(2’1, 22, a)}
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Repeating this process, we have
k
(1 - 9*(=1)q2) (a; g}

(¢;9)} (D, Da,z5) " { Ao (21, 22, ) }.

Ai(21,22,a) =

Setting f(z1, 22,0,a) = Ag(z1, 22,a) = E;inzo Hmn 2] 24, we have

k
2

— 2k (1) (5) (g o0
A(er, 2, a) = EZ DO @@ 5~ pk Gy (DF | (23)

Ry 4,21 4,22
(q7 q)k m,n:O
k
_ (l—q)2k(_1)kq(2)(a;q)k i i [m] (q; )k Jm—k [n] (¢;)n ek
- m,n .
(4:9)7 e S e L NC T L
By using (1.11f), we have
f(Zl,ZQ,Z,a)
k
& (1= PP (=1)F2qE) (a5 q) i p [M} (G Dk m (G Dk o
- m,n
P (@ 9)7 e k] (L=qF ™ (k] (11—
oo mAn X ml n
- Z Z Mm,n(_l)kqu(Q)(aé Dk [k] [k] Z{n_k'z;_k
m,n=0 k=0
(o.)
= Z Nm,nHm,n(ZhZZ,Zaa)-
m,n=0
We complete the proof of this theorem. O

Theorem 1.4. Let g(z1, 22, 2, a) be a 4-variable analytic function at (0,0,0,0) € C*. Then
g can be expanded in terms of Qmn (21,22, 2,a) if and only if g satisfies the functional

equation

(1.13)
Z[a{g(zlq_l’ ZQq_lv 24, CL) - g(zlq_la 22,24, CL) - g(zla ZQq_la zq, a) + g(zla 22, 24, CL)}
- {g('zlq_la 22(]_1, 2, (I) - g('zlq_lv 22, Z,CL) - g(zla z2q_17 Zva) + g(zla 22, 2, (I)}]

1

= q ' 2120{g(21, 22, 2,0a) — 29(21, 22, 2¢, @) + g(21, 22, 2¢°, a) }.

Proof. From the theory of several complex variables, we assume that

oo
(1.14) 9(21,22,2,0) = > Ap(21, 22,0)2F.
k=0
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Substituting the above equation into (1.13)), we have

(1.15)

o0
2122{2 q" —1)%2" Ag (21, 22, )}
k=0

= Z[ Z(Z(J) {Ae(z1¢7 " 2207 a) — Ap(z147 ", 22,0) — Ar(21, 22071, ) + Ag(21, 22,0) }
k=0

=Y H{A(zg7 227 @) = Ap(z1q 7 22,0) — Ap(z1,22¢7 1 0) + Ag(z1, 22,0) .

By direct calculation, equating coefficients of z* on both sides of (I.15)), we obtain

(1—q)%q *ag"*
(g8 —1)?

-1
Ak(zl, 29, a) = )qul,leqfl,zg {Ak,l(zl, Z92, a)}

Repeating this process, we have

(1= q)** (¢ H*(=1)*(a; 9

A (21, 22,a) =
(g;9)?

D12, Ao (21, 22, 0) }.

(D

gtz

Setting g(z1, 22,0,a) = Ag(z1, 22,a) = Z;in:o Hmn 27" 24, we have

—\2k —lk_ka. oo
Ap(zr, 2y = L@ VD@D 5~ pk Dk ()

(¢;9)3 oo
B e A G VTt qm“<>
B (¢;9)3 mzn:k —q )
m zn—kz —nk+(2) n
X [k](Q;Q)k(—l)kz(lEq_l)k[k} (¢ Q) (—1)%.

By using (|1.14]), we have

oo mAn
—mk—nk4k2 || [T m—k n—
f(z1,22,2,a) = Z Zﬂm,n(—l)kqu fonkk {k] [k:] (a;q)r 27" "2y 7"

m,n=0 k=0

00
= Z Mm,an,n (217 22,2, a)'

m,n=0

We complete the proof of this theorem. O

The rest part of this paper is organized as follows. In Section [2] we give two types of
generating functions for the generalized ¢-2D Hermite polynomials with four parameters
by the method of homogeneous ¢-difference equations. In Section |3] we gain a mixed

generating functions for the generalized ¢-2D Hermite polynomials and the homogeneous
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Rogers-Szegé polynomials. In Section [d] we deduce multilinear generating function for
the generalized ¢-2D Hermite polynomials as a generalization of Andrew’s result. In Sec-
tion [5, we obtain a dual multilinear generating functions for the generalized ¢-2D Hermite
polynomials. In Section [6] we build a transformation identity involving the generating
functions of H,, (21, 22, 2,a). In Section |7 as an application, a transformational identity

is given in regard of Dy(m,n) and Dj(m,n).

2. Generating function for the generalized ¢-2D Hermite polynomials

Ismail and Zhang [15] gave the following generating function for the ¢-2D Hermite poly-

nomials by using the transformation and summation.

Proposition 2.1. For max{|ul, |v|, |z1], |22]} < 1, we have

umyt - (uv; q)oo
2.1 —————Hpn(21,20) = ——————
( ) m;O (CL q)m Q)n ( ) (uzl,vz?; q)OO
and
. ym g . (—21uq"?, —20v4"?; @) o
2.9 " 2y (21, 2) = :
(22) m%;O (@ O)m (@3 ¢)n 122) (—uv; ¢)oo

In this section, we generalize the generating function for ¢-2D Hermite polynomials by

the method of homogeneous g-difference equations.

Theorem 2.2. For max{|ul|, |v],|z1], |22, |al,|2]} < 1, we have

o0 m

23 Y

o (@ D)m (g @)n

,Un

Z % 9 (uvz)’c

k=0 a4 k

Hm,n(zlyz%zaa) = (uzl V291 q
) 3 q oo

and
[o¢]
Z L v q(m2+n2)/2Qm n(Z17 22, %, CL)
(24) o= (@ Dm (@ )n ’
2. ’
oo
= (—z1uq'/?, —zvq"/ (—uvz)".
k=0

Remark 2.3. For z = 1 and a = ¢ in the above theorem, and (| reduce to ([2.1))
and (2.2) by using (L.5)), respectively.
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Proof of Theorem [2.2] Denoting the right-hand side of (2.3) by f(z1, 22, 2,a), we verify
that f(z1, 22, 2, a) satisfies ((1.10):

f(Zl,ZQ,Z,CL) =

1 i (—1)%q(2) (a; q) (uv2)

v
m,n=0 k=0 (q’ Q) (q; q m( ; Q)n

so we have
f(Zl,ZQ,Z (I Z HmnHmn(zlazQaz a)
m,n=0

and

1 2 (uz1)
f(Zl,ZQ,OCL Z Hm,nZ1 ZQ—(UZl’—:Z -

vz
m,n=0 2 Q) m=0 n=0

Thus, we have

[eS) n
u v
f(Zl,ZQ,Z,CL) = H, s (Z172272,a).
mz,n_o (@ Dml@a)n ™"

On the other hand, rewriting the right-hand side of (2.4)) as g(z1, 22, 2, a), we can verify

that (2.4]) satisfies ((1.13]), so

9(2172272 (1 Z Nanmn(zlaz%Z a)

m,n=0

and

9(21,22,0,0) = Y pmal"2 = (—21ug"?, —200¢"%; 0o

m,n=0

:Zq 2’1(11/2 Zq 22q1/2

Thus, we have

um g™ 2/24n2/2

(¢ Dm(aDn

o0
9(z1,22,2,a) = Z Qmn(21,22, 2, a). O

m,n=0

Takingm =n+a, 2=0,21=1, 20 =2, a=qand m=n+a, z = bg", 21 = 1,

zo = x, a = q respectively, we have the following corollary.
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Corollary 2.4. If |u| <1, |v] <1, |b] <1 and |z| < 1, we have

& n+a,n

ut (uvb; @)oo
— CW(g,h) = ~———
Z (¢ ODn+a(a; On (z,0) (U, V23 @)oo

n=0

and

oo

n+a,n 1/2 1/2.
Z w_ v q(n2+2na+a2/2)D7(1a)(x7b) _ (—uq / ), —vrq / $ @)oo
0 (Q; Q)n-‘ra (Q; Q)n (_uvb; Q)oo

(—’U/Ub; Q>n+a-

3. A mixed generating function for the generalized ¢-2D Hermite polynomials

Using the homogeneous ¢-difference operator, Chen, Fu and Zhang [6] gave the generating

function for the homogeneous Rogers-Szeg6 polynomials.

Proposition 3.1. If |[t| < 1 and |z| < 1, we have

. t" (yt; @)oo
e = .
nzo (l4) (@G on (Gt q)s

In this section, we obtain the following mixed generating function for the generalized

g-2D Hermite polynomials and the homogeneous Rogers-Szeg6 polynomials.

Theorem 3.2. For max{|z1],|z2], ||, |z|, |y|, |a|} <1, we have

> u™ [AL—
ho(z,y|qQ) Hmn(21, 22, 2,0
mzn:o @ @@ @ YD (21,22 2,0)
. ’<t ) X, (1)) (a39) N (y/z, 22t:9)
Yiz2;4q)co —1)"qg\2/(a; q)k i \Y/ T, 22159 )
— ‘ Z — (zut)kZ[ ](:nqk i : .
(uz1, 29t, 2225 ¢) oo —o (4 9)% — U (ytzo; q)

Remark 3.3. For x =y and t = v in Theorem (3.1)) reduces to ([2.3).

Proof of Theorem [3.2] Denoting the right-hand side of (3.1)) as f(z1, 22, 2, a), we have

f(zly 22, %, CL)

I (20 O N G VL ) PN 1 N (11 S 20}

= (uztht,(I}tZQ;q)oo kZ:O (q; q)z (Z’LLt) lz:% |:l:| («CUq (ytZQ;q)l

_ 1 (=R (@), s TR s 1ok , (yt220"; @)oo
- (uz139)w kz_: (@:9); = l; H G W D iy oty g)

0
S (DR = (@i g ! e [ W)
- (a0 Dhe{ e | P }

tz2, Tt22; q)oo
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By using (|1.4)), we verify that the above equation satisfies (1.10]), so we have

o0
flz1,22,2,0) = Y pimnHmn(21, 22, 2, 0)
m,n=0

and
x

o
(yt22; @)oo u
f(z1,22,0,a) = n2lzy = — -
(1200 = 3 pmadd's (uz1, zat, 293 q)oo m%;() (@ 0)m (g O)n

mtn

Ton (2, ylq) 27" 25
m,n=0

Thus, we have

ut"

—Enz:,qum,nz,z,z,a. OJ
(4 )m (@ On (@, y1a) Him.n (21, 22, 2, 0)

f(ZhZQ,Zan) =

m,n=0

4. Multilinear generating function for the generalized ¢-2D Hermite polynomials

Andrews [1] proved the following formula for the g-Lauricella function.

Proposition 4.1. For max{|al, |r|, |y1],...,|yk|} <1, we have

i (% Oy tnot+ny (815 Ona (825 D - (Brs O Y g
(TQ Q)n1+n2+-'~+nk (q; Q)m (q; Q)nz T (q; Q)me b b

n1,m2,...,nk=0

_ (a, Bry1, Baye, - - - Bryk; @)oo T/ YL Y2 Yk

- . ¢ g, ).
(rvylay%"'vyk’aQ)oo 511/1752242,---75%14

By using g-Partial differential equation, Liu [19] generalized Andrew’s result (8; = 0).

Proposition 4.2. For max{|al,|r|,|z1],...,|zkl, |y1],---,|yk]} < 1, we have

i (Oé, Q)n1+n2+~~+nk h‘nl ('7;17 y1|Q)hn2 (1'2, 312|(I) e hnk (xka yk‘|q)

oo (T3 @y nat ot (4 @) (@ Dnz - (4 Dy
_ (a7q)00 (Zs r/a7x17y17x27y27”'7$k7yk‘q o
(7"7»’517y17$27y2w--a$k7kaQ)oo 2k T2k 0707"'70 o .

In the following, we obtain our main results about the multilinear generating function

by using the homogeneous ¢-difference equation.

Theorem 4.3. For max{|a/|,|r|,|y1], ..., |vexl, |m1l, ..., |ml, |a1|,|az]|,...,|ak]} < 1, we

have
o0

Z (a§ Q)n1+n2+~~-+n2k (613 Q)nl (52? Q)nz cet (52k5 Q)ngk
(73 Dnytnattnae (GO (G Dng (€ Dy,

ni,ng,...,noE=0

X Hn1,n2 (yla Ya2,M1, al)Hn37n4 (y3a Yq,M2, a2) e Hanfl,TLQk (ka‘—lv Y2k, M, ak)

(4.1) (o, B1y1, Bova, - s BokYor; D)oo o~ (T Y1, Y2, Yok Q)i o

(T7 Y1,Y2, - - -5 Yok, Q)OO =0 ((L 51917 623/27 cee )BQkka; Q)l

a'76'761+1
< 1 3¢3< B, ,leﬂ.z . Z5Q7miq2l>'
i=1,3,....2k—1 q, PiYiq", Pi+1Yi+14
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Proof. Rewrite Proposition [4.1] as

i (O[, q)n1+n2+.‘.+n2k (/Bla Q)nl (BQ, q)?’LQ T (ﬁka )nzk ?lyng y;}ik
(75 Dnytnottnae (GO0 (G Dno - (¢ Qg

n1,M2,...,n2x=0
42) = (v, Bry1, Bayz, - - - Boryak: @)oo +1¢2k< T/0, YL Y2, -y Y2k ;q,a>
(7 Y1, Y2, - Y2k Qoo Biy1, BoYas - - -, Boryok
(3 @)oo N~ (/0 (Bry1d's Bogad - Bokyond's oo
(@)oo 7= (G (¢ 9205 y2rd's oo '

If we use f(y1,y2,---, Yok, M1, M2,y ..., Mk, a1,02, .. .,a;) to denote the right-hand side of
(4.1)), then, by direct computation, we can verify that f(y1,y2,. .., Yok, mi, ma, ..., Mg, a,

az,...,ay) satisfies (1.10):

Fyi, 92, -, Yok, M1, ma, ..., My, a1, a2, .. ., )
- (e 3 T/WZ 15 @) (1~ 02 (~1)71q D
Joo = (¢34 (4:9)s

(ﬁlqu , B2y2q! ;Q)oo}
(114", y20"; @)oo

2\ (an; q)s (1 — ¢)23 (=1)%¢(F) ', Bayad'; @)oo
‘3 (a2;@)sy (1 — q)*(=1)"¢\ 2/m3 {Dq,ySqu}*{(ﬁgmq Bayaq'; q) }

X {Dgy; Dy} {

= (4 0)ss (y3d', yad'; @)oo
S2k—1
L3 (o @y (1= g)% 21 (=)o g% Dz
N (5 Q)5

(Bak—1Y26-14", Bory2rd'; @)oo }

X {Dq,yok—1Dg,y 1} {
q,Y2 9,Y2 (yzkflql,yszZSQ)oo

By using Theorem there exists a sequence Ay, .. pn,, independent of y1,¥o,. .., Yok, M1,

ma,...,Mg,ai,0ds,...,a; and that
f(ylay2a"'ay2k‘7mlam25”'7mk‘7a1aa2a'°'aak‘)
(o9

= E )\nl,...7n2an1,7’L2(y17y27m17a1) T 'Hngk_l,nzk (y2k717y2kamk7ak)-

n1,m2,...,N2=0
Setting m; = mg = -+ =my = 0 in (4.1)) and using (4.2)), we have

f(ylay27""y2k7070)"'705a15a25'°'7ak)

[e.9]

_ E ni, n nag
- )‘Tlh oY1 Yo Yo

n1,n2,...,noE=0

_ (@B, Baya, - -, Bokyok; 9) ooz (r/a,y1,92, -, Y2k; Q)i o
("Y1, 92, - -+ Y2ki @)oo (g, Bry1, Bay2, - - -, BorYor: @)1
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[e.o]

_ Z (a; Q)n1+n2+---+n2k (51; Q)n1 (52; Q)nQ U (BQk; )nzk ynlyng ynzk
(7 Dnytnottnoe (G On (G Dng (G Dy - 72 2k

ni,n2...,noE=>0

We deduce that f(y1,y2, ..., Y2k, m1, M2, ..., Mk, a1,a2,...,a;) is equal to the left-hand
side of (4.1)), so we have

f(y17y27"‘7y2k‘;m1am27"'7mkaalaa2a"'aak‘)

i (a§ Q)n1+n2+~~‘+n2k (/81; Q)nl (62; Q)nz C (52k; Q)nzk
(7 Dnitnottnor (G Ony (G Dy (G Qg

n1,m2,...,N2=0

X Hnl,ng (y17 Y2, M1, al)Hng,n4 (y37 Yq, M2, CLQ) T Hngk_l,ngk (y2k717 Y2k, Mg, ak)'
The proof is complete. O
If we take k =1 and a = r in (4.1]), we obtain the following corollary.

Corollary 4.4. For max{|yi|, |y2|, |m1l,|B1l,|B2|, |a1]} < 1, we have

(B1y1, Bay2; @) o < a1, B, B2 )
qg,my | .
(1,923 @)oo 4, Y151, B2yo

Hyn(y1,y2,m1,01) =

i (B1; @)m(B2; D

wioto (& Dm(ga)n
Further, setting 1 = a/u, B2 = b/v, y1 = z1u, Y2 = 220, a1 = q and m; = uv, we get

the following generating function of ¢-2D Hermite polynomials.

Corollary 4.5. |15 For max{|a/ul,|b/v|,|z1],|22]|, |2|} < 1, we have

(21,0225 @)oo <a/u, b/v >
202 ; :

(Wh VZ2; q)oo

Hm,n(zly Zg) =

i (a/u; @)mu™(b/v; ) pv™
m,n=0 (Q7 Q)m(q, q)n
5. A dual multilinear generating function for the generalized ¢-2D Hermite

polynomials

Andrew [1] gave Proposition by using basic Appell series. In this section, we gain a dual
multilinear generating function for ¢-2D Hermite polynomials by using the homogeneous

g-difference equation.

Theorem 5.1. For max{|a|, ||, |mi|,...,|mk|} <1, we have

(n3/2+4n3/2++n3;, /2403, /2)

[ee]
Z (0 @)nitno+dngy 4
wrms o T Dnatnattnog (G D (G Dz =+ (65 Do
X in,nz (ylu Y2, ml)Qng,m; (3/37 Y4, ’I’TLQ) T Qan_thk (ka—la Y2k, mk)
_ (@514 —y2d L~k )
(7" —mi, —Mma, ..., —MMyg; q)oo

XZ 7’/04 q (=ma, —ma, ..., =My q)ok o
= (GOr (—nd"? =g —yard )k
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We will give a transformation for Basic Appell series before our main results which is
a dual transformation of Proposition

Proposition 5.2. For max{|a|, |c|} < 1, we have

— (@ QDmin 2" y" qm2/2+n2/2
oo (@D min (@ Om (G 0)n
. _ (g S (c/a: )
a5 q)co c/a;q k
BT OOZ% (¢, —20" %, —yg % )i

Proof. The left-hand side of (5.1) can be rewritten as

i (@ Qman 2™ y" qm2/2+n2/2
o (& Dmin (6 Dm (@ D)n

m+n m,n,m?/2+n?/2

Z =2
aqm*”, Doo (G Dm(GDn

a; q

C7 o

r(m+n) ,.m,n, m?/24+n?/2

_ (459)

~ (sq)

(a7 )OO C/G’QTaq(
=9 >y

_ (a;q)

T7Yyq
S (¢ @)m (% @)n
), N ) .
OO
(69w — (¢, —2q"?, —yq"/?;q),
The proof of Proposition can be directly generalized to prove
Proposition 5.3. For max{|al, |r|, |y1],...,|yk|} <1, we have
oo
Z (a;Q)n1+n2+---+nk y?ly;m ' y:k q(n?/2+n§/2+~"+ni/2)
w0 (T3 @Dnatnatotng (@ @na (@ Dz -+ (@ @)y
_ (o 2 g e < r/a,0,0,...,0 » a)
(r:1¢)oo —1a"2, =g 2, g2

In the following, we gain a dual multilinear generating functions for ¢-2D Hermite

polynomials by using the above proposition.

Theorem 5.4. For max{|a|, ||, |m1|,...,|mg|} < 1, we have
ni,n2,...,noE=0 (T; q)n1+n2+"~+n2k (q; Q)m (q; Q)nz ce (q; Q)nzk
X in,nz (yla Y2,Mmy, al)Qng,m; (y?n Yq,M2, a2) o Qn% 1,2k (y?k—l; Y2k, Mk, ak)
B2) (=919 —y24" 2, —yad 4o Z (r/a; q); z
(75 @) oo y1q1/2 - *y2kq1/2 Q)

nz
CL
% | | § : isq ;zquZnL

i=1,3,...,2k—1 n;=0 qqnz



58 Zeya Jia

Proof. If we use f(y1,vy2,- .., Yok, M1, M2, ..., Mk, a1,0a2, ...,a;) to denote the right-hand
side of (5.2), then, we can verify that f(y2i—1,y2i,mi,a;) (i = 1,2...,k) satisfies (1.13]).

By using Theorem and mathematical induction, there exists a sequence Ay, . p,, in-
dependent of y1,yo,...,yor, m1, M2, ..., Mk, a1, as, . ..,a, and that
f(y17y27"' y Y2k, M1, M2, ..., ME, A1, 02, . . . 7ak’)
o0
- Z )\nl,...,anin,le(yhy27m17a1) o Qngk_l,nzk(ka—17y2k7mk7ak)'
ni,ng,...,noE=0
Setting m; = mg = -+ =my = 0 in (.2)) and using Proposition we have
f(yl7?/2,- '-,?/2k70707~-,0,a1,a27~ . '7ak)
[o.¢]
= Z /\nlwmzky?ly? y;ﬁk
n1,n2,...,no=0
_ (aa _y1q1/27 —9291/27 ) —yqul/Q; q)oo (]5 T/av 07 07 s 70 .
(75 @)oo O g g1/2, —yog! /2, —yopg /2T
o0 T
= Z (o Q)n1+n2+~~+n2k y?ly;w i y2,§k q(n?/2+n§/2+'"+n§k/2).

(75 @ na4nottnor (G On (G Dns - (€5 Qo

n1,n2;...,n2=0

We deduce that f(y1,y2, ..., Y2k, M1, M2, ..., Mg, a1,0a2,...,a;) is equal to the left-hand
side of (5.2)), so we have

f(y17y27"'7y2k7m1am27"'7mk7a17a27"'7ak)
q(n§/2+n§/2+-~+n§k/2)

o0
Z (Oé; Q)n1+n2+---+n2k
(75 @) nynottnoe (G Ony (G Dno -+ (€5 Dy

n1,n2,...,noE=0

X in,nz (yla Ya2,Mm1, al)Qng,m; (?/3, Ya, M2, a?) e Q’nzkfl,nzk (ka—lv Yok, Mk, ak)'
The proof is complete. O

Taking a; = ¢ in the above theorem, we obtain our main result (Theorem . Taking

k =1 in the above theorem, we obtain the following corollary.

Corollary 5.5. For max{|my|,|r|} < 1, we have

o0

Qa;q 1 1 2 2
Z ( : )m+n ‘ ‘ qm /24n /sz,n(y1,y27m1,a)
—— (73 QD man (G Om (G Qn
_ (OZSQ)oo(iqul/ ygq i (r/o; q)i zz m’fqmn
= )oo .
(r: @)oo (¢, ~y19"% —y20" %0 =

Remark 5.6. Taking o — 7, y1 — z1u, y2 — 22U, m1; — zuw in this corollary, we obtain

&9).
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6. A transformation identity involving generating function for the generalized ¢-2D

Hermite polynomials

Liu [17] gave some important transformational identities by the method of g-exponential
operator. Similarly, we will deduce the following transformational identity involving gen-
erating functions for the generalized ¢-2D Hermite polynomials by the method of homo-

geneous ¢-difference equation.

Theorem 6.1. If two sequences (Am ) and (B;) satisfy

Z A nzl 2 _ leu” OOZB Z2Na

m,n—=0 z2,u, Zl/’L)

then we have

- e N2k (.
(6-1) Z Am,nHm,n(ZhZQaZ,a) Zl'u q = ZB 22/1,, lzq ) (a7Q)k.

(2213 0)00 &= (13l 2= (gl q) (@ )7

m,n=0

Proof. Denoting the right-hand side of (6.1)) as f(z1, 22, 2, a), we verify that f(z1, 22, 2,a)
satisfies ([1.10]), by Theorem there exists a sequence )\, , independent of z1, 22, 2z, a
and that

0
f(Zl,ZQ,Z (I Z Am,nHmn 21,225 %, a)

m,n=0

Setting z = 0 in (6.1]), we have
- (21145 @)oo
1
f(Z17Z270 a Z )\m,nzl Z Z Z Am nzl 22
m,n=0 =0 2Mq q m,n=0
Hence, we obtain
oo
f(zla 22, %, a) = Z Am,nHm,n(Zla 22,2, CL).

m,n=0

This proof is complete. O

. n+m(_1\m (T;) _ . .
Taking A, n = % and B; = (¢"";q); in and using ((1.5]), we obtain
the following corollary.

Corollary 6.2. For max{|z1], |z2|, |u|} < 1, we have

o

prtm(—1)mq(5)

—k

(21143 @)oo u 2)* (a; q)x
Hpon(21,22,2,0) = E .
(@ Dm(@a)n ™" (221 O)oc =2 (2115 C1) (@)

m,n=0
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7. Application

Recall that the Delannoy numbers count lattice paths from (0,0) to (n,m) consisting of
horizontal (1,0), vertical (0,1), and diagonal (1,1) steps, and have the following explicit
formulas in terms of binomial coefficients [11]:

‘_nnn%—m—k_nnmk
(7.1) D(m,n) _Z<k>< . >_Z<k><k>2
k=0 k=0
The following two natural g-analogues of Delannoy numbers were introduced in [11]:
"o [n+m—k . (k41 n+m-—=k
nenr= SO im0 o
By using ¢-Chu-Vandermonde summation and ¢-binomial theorem, Guo, Guo and

Zeng [13] gave a g-analogue of (|7.1)) by proving the following identities

_ éqw—w—m o

In this section, we will give a transformational identity involving Dy(m,n) and Dy (m,n)

as the application of Theorem

Theorem 7.1. For max{|y1], |y2|, |y3|, |va|} <1, we have

o0

> 0

s (& D (6 O (€5 Dng (45 Dy
—1,0 —q,0
=(—qub—q1/2y2,—q1/2y3,—q1/2y4;q)ooz¢1( q’ ;q,ywz) 2¢1< q’ ;q,y3y4>-

Proof. Taking k =2 in (5.2)), we have

n1—n2)?/2+(n3—nq)?/2

Y1 Yy Yz st D (n17n2)DZ(n37n4)

n3/2+n3/2+n3/2+n3 /2

00
Z (a; Q)n1+n2+n3+n4

(73 @)n1+no+nstns (G Oy (G Ono (G Ons (6 O na

n1,n2,n3,n4=0
X Qnina (Y1, Y2, M1, 01)Qng na (U3, Ya, M2, az)

(o, —y1q?, —yad %, —y3q' 2, — 4% 0)

(r; @)oo
y i (r/o; g i (1" (@0 Doy 21y
my
(0~ —yea'?, —ysd' 2 a2 0 =) (G0);
> a
<D —3’ it

(:9)2,

n3=0
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Setting o = 7, m1 = —y1y2, Mo = —y3y4, a1 = —1 and a3 = —q in the above equation,

we complete the proof of this theorem. O

If we take y1 = yo = y3 = y4 = ¢'/2 in the above theorem, we have the following result.

Corollary 7.2.

i q(n1*n2)2/2+(n3*n4)2/2

oo (@ Dt (€ Oz (6 Ding (45 D

—-1,0 —q,0
:(_Q;Q)go2¢1< ¢ ;q,Q> 2¢1< (é ;q7Q>-
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