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Variation of a Theme of Landau–Shanks in Positive Characteristic

Chih-Yun Chuang, Yen-Liang Kuan* and Wei-Chen Yao

Abstract. Let A := Fq[t] be a polynomial ring over a finite field Fq of odd characteristic

and let D ∈ A be a square-free polynomial. Denote by ND(n, q) the number of

polynomials f in A of degree n which may be represented in the form u·f = A2−DB2

for some A,B ∈ A and u ∈ F×q , and by BD(n, q) the number of polynomials in

A of degree n which can be represented by a primitive quadratic form of a given

discriminant D ∈ A, not necessary square-free. If the class number of the maximal

order of Fq(t,
√
D) is one, then we give very precise asymptotic formulas for ND(n, q).

Moreover, we also give very precise asymptotic formulas for BD(n, q).

1. Introduction

Let B(x) denote the number of positive integers m ≤ x which may be represented in the

form m = u2 + v2, where u and v are integers. Landau [8] proved that

B(x) ∼ K x√
log x

where K = 1√
2

∏
p≡3 (mod 4)(1 − p−2)−1/2 is the Landau–Ramanujan constant. Landau’s

result was improved by Shanks [13] who gave an asymptotic formula for B(x):

B(x) = K x√
log x

+O

(
x

log3/2 x

)
.

A similar problem for positive integers represented as the form u2+dv2 where d 6= −k2

and u, v are positive integers was considered by several mathematicians [14]. For integer

d 6= −k2, let Bd(x) be the number of positive integers m ≤ x which may be represented

of the form m = u2 + dv2,

Bd(x) ∼ bd
(log x)1/2

for some constant bd, but bd is not easy to calculate in general.

A variation of the problem of integers represented by a sum of squares is integers

represented by a binary quadratic form. Let d ≤ −3 be a negative integer and let B(x)
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denote the number of positive integers m ≤ x which are prime to d and which can be

represented by positive, primitive, binary quadratic forms of a given negative discriminant

d. James [7] used Pall’s result [10] to prove that

B(x) = b
x√

log x
+O

(
x

log x

)
,

where b is the positive constant given by

b =
1√
π

∏
p:
(

d
p

)
=−1

(1− p−2)−1/2
∏
p|d

(1− p−1)1/2
( ∞∑
n=1

(
d
n

)
n

)1/2

.

Here
(
d
n

)
is the Kronecker symbol. Moreover, Pall [11] deduced a similar result of James

without the restriction that m is prime to d.

In this paper, we study analogues of Landau–Shanks’ and James–Pall’s theorems for

polynomial rings. For convenience, we will fix the following notations in this paper:

A = Fq[t], the polynomial ring over the finite field Fq of odd characteristic,

k = Fq(t), the fraction field of A,

A+ = the set of monic polynomials in A,

A+
n = the set of monic polynomials of degree n in A,

P+ = the set of all monic irreducible polynomials in A.

Let D be a square-free polynomial in A. Put K = k(
√
D) and OK = A + A

√
D. For

f ∈ A+, we define the characteristic function

nD,q(f) :=

1 if u · f = A2 −DB2 for some A,B ∈ A and u ∈ F×q ,

0 otherwise

and the counting function

ND(n, q) :=
∑
f∈A+

n

nD,q(f).

There are several cases that u can be removed. First of all, if degD is odd and the

leading coefficient of −D is a square in F×q . Secondly, OK is real quadratic and has

narrow class number one. For the cases D = −1 and D = −t, a polynomial analogue

of Landau–Shanks’ problem has been studied by Bary-Soroker, Smilansky, Wolf [1] and

Gorodetsky [5]. We generalize their results to square-free polynomials D ∈ A and prove

an analogue of Landau–Shanks’ theorem as follows.
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Theorem 1.1. Assume that the class number of OK is 1. We have, for any real number

0 < δ < 1/2,

ND(n, q) = âD,q(1)

(
n− 1/2

n

)
qn +O

(
qn−1/2+δ

n3/2

)
as n→∞,

where

âD,q(s) =
√
L
(
s,
(
D
·
)) ∏

P∈P+(
D
P

)
=−1

(1− q−2sP )−1/2 ·
∏
P∈P+(
D
P

)
=0

(1− q−sP )−1/2.

Here qP := qdegP and L
(
s,
(
D
·
))

is the Dirichlet L-function corresponding to the quadratic

character
(
D
·
)
.

In order to satisfy the condition that the class number of OK is one, we only state

the asymptotic formula in Theorem 1.1 for fix q. If we add some specific conditions to D,

then we can rewrite the asymptotic formula in more general limit.

Theorem 1.2. Let Fq0 be a finite field of odd characteristic and let D ∈ Fq0 [t]. Then, for

any real number 0 < δ < 1/2,

ND(n, q) = âD,q(1)

(
n− 1/2

n

)
qn +O

(
qn−1/2+δ

n3/2

)
as qn →∞,

where âD,q(s) is defined as in Theorem 1.1 and q varies through powers of q0 under the

condition that D is square-free in Fq[t] and the class number of the maximal order of

Fq(t,
√
D) is one.

Remark 1.3. (a) There are only finitely many D for which OK is imaginary quadratic

of class number one, and conjecturally there are infinitely many D for which OK is real

quadratic of class number one. For more references, we refer the readers to [4, 15].

(b) If D ∈ Z[t] such that Fq[t,
√
D] has class number one for infinitely many q, we

have the asymptotic formula for ND(n, q) in the most general limit qn →∞ without the

condition q is a power of some fix q0.

(c) When D = −t, the Dirichlet L-function L
(
s,
(
D
·
))

= 1 is a constant function. Then

the main term coefficient âD,q(1) of ND(n, q) is equal to

(1− q−1)−1/2
∏
P∈P+(
D
P

)
=−1

(1− q−2 degP )−1/2

which is the same as Gorodetsky’s result [5, Theorem 1.1].
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The condition of class number one in Theorems 1.1 and 1.2 cannot be removed since the

product formula (Corollary 3.3) of nD,q is not correct. We will illustrate it in Example 3.4.

For the case of class number of OK greater than one or D is not square-free, we

investigate Landau–Shanks’ problem for binary quadratic forms over polynomial rings.

This is an analogue of results of James and Pall for the integer case. Instead of counting

the number of solutions of representation by binary quadratic forms as Pall did, we use a

different approach which use composition and other properties of binary quadratic forms.

Hence we generalize their result for both definite and indefinite binary quadratic forms

over polynomial rings.

For D ∈ A and m ∈ A+, let bD,q : A+ → R be the characteristic function defined by

bD,q(m) =

1 if m is represented by a primitive quadratic form of discriminant D,

0 otherwise

and define the counting function

BD(n, q) :=
∑
f∈A+

n

bD,q(f).

Note that, when D is perfect square in A, bD,q(m) = 1 for all m prime to D. Then we

have a trivial estimate

BD(n, q) = O(qn) as n→∞.

So we now only consider that D is not perfect square in A. In order to simplify the

notation, we use the following definition. For P ∈ P+ with P 2 | D, we write D = P 2kPD′

where kP ≥ 1 and P 2 - D′. The following theorem is an analogue of James–Pall’s results

with the discriminant D in odd characteristics.

Theorem 1.4. Let Fq0 be a finite field of odd characteristic and D ∈ Fq0 [t]. For any real

number 0 < δ < 1/2, we have

BD(n, q) = âD,q(1)

(
n− 1/2

n

)
qn +O

(
qn−1/2+δ

n3/2

)
as qn →∞,

where q varies through power of q0 under the condition that D is not perfect square in Fq[t]
and

âD,q(s) :=
√
L
(
s,
(D
·
)) ∏

P∈P+(
D
P

)
=−1

(1− q−2sP )−1/2 ·
∏
P∈P+

P ||D

(1− q−sP )−1/2 · S(s).

Here

S(s) =
∏
P∈P+

P 2|D

(1− q−sP )1/2
(
1 + q−2sP + · · ·+ q

(−2kP+2)s
P + q−2kP sP Λ(s)

)
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and

Λ(s) =

(1− q−sP )−1 if
(D′
P

)
= 0 or 1,

(1− q−2sP )−1 otherwise.

We will prove Theorems 1.1 and 1.2 in Section 3 and prove Theorem 1.4 in Sec-

tion 4. Darboux used contour integration to prove the following analytic theorem [6, The-

orem 11.10b].

Theorem 1.5. Let a(x) =
∑
akx

k and b(x) = (1− x/β)−c =
∑
bkx

k (c ∈ C \ Z) be two

power series with radii of convergence α > β ≥ 0, respectively. Fix integers n > m ≥ 0.

Let fn be the n-th coefficient of f(x) = a(x)b(x). Then, as n goes to ∞,

fn = bn

(
a(β) +

m∑
k=1

(
k−c
k

)(
n+c−1
k

) βk
k!
a(k)(β) +Oa,b,m

(
1

nm+1

))
.

Using Theorem 1.5, we can get asymptotic formulas, as n tends to ∞, in all theorems

of this paper. In [5], Gorodetsky refine Theorem 1.5 to Theorem 1.6 and use Theorem 1.6

deduce the asymptotic formula as qn tends to ∞ for D = −t.

Theorem 1.6. [5, Theorem 3.3] Let a(x) = exp
(∑

k≥1 ãkx
k
)

=
∑
akx

k and b(x) =

(1−x/β)−c1 =
∑
bkx

k (c1 ∈ (0, 1)) be two power series, with radii of convergence at least

α and exactly β, respectively. Assume that α > β > 0. Assume that

(1.1) r =
β

α
≤ 1√

2
.

Assume further that there is a positive number c2 such that

(1.2)
∣∣ãk∣∣ ≤ c2

αk
.

Fix an integer m ≥ 0. For an integer n > m, write the n-th coefficient fn of f(x) =

a(x)b(x) as

fn = bn

(
a(β) +

m∑
k=1

(
k−c
k

)(
n+c−1
k

) βk
k!
a(k)(β) + E

)
.

Then

|E| �m,c1,c2

( r
n

)m+1
.

For general D, it is difficult to fulfil the assumption (1.2). We derive the same result

without the assumptions (1.1) and (1.2) in Section 2.
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2. Preliminaries on analytic theorem

For α ∈ R and R > 0, denote by D(α,R) the unit disk with radius R and its center

at α. Set ∂D(α,R) the boundary of D(α,R) and Ma(α,R) := maxx∈∂D(α,R) |a(x)|. Let

xc := ec lnx for c ∈ (0, 1), analytic branch of lnx fixed with 0 < Arg(x) < 2π. We will

prove

Theorem 2.1. Let a(x) =
∑
akx

k and b(x) = (1 − x/β)−c =
∑
bkx

k (c ∈ (0, 1)) be two

power series, with radii of convergence at least α and exactly β, respectively. Assume that

α > β > 0. Fix an integer m ≥ 0. For an integer n > m, write the n-th coefficient fn of

f(x) = a(x)b(x) as

fn = bn

(
a(β) +

m∑
k=1

(
k−c
k

)(
n+c−1
k

) βk
k!
a(k)(β) + E

)
.

Then

|E| < βn+c sin (cπ)

π ·Rc · n · (β +R)n ·
∣∣(−c

n

)∣∣ +

m∑
k=1

βk · sin (cπ)

π
·
(
1 + R

β

)−(n−k+c)
(n− k + c) ·

∣∣(−c
n

)∣∣
+

Ma(β, R̃)

π · R̃m ·
(
R̃−R

) · (m+1−c
m+1

)(
n+c−1
m+1

) · βm+1 +
βn ·Ma(0, β +R)(R+β

β − 1
)c · (β +R)n ·

∣∣(−c
n

)∣∣ ,
where R and R̃ are real numbers satisfying α− β > R̃ > R > 0.

Choose 0 < θ < π/2 and 0 < R < α − β. Fix r, ε > 0 such that r < min{R, β/2}
and ε < β/2. Let C0 := {u ∈ C : |u| = ε} be a small circle oriented clockwise. Consider

the keyhole contour starting from a small clockwise oriented circle Cr about β of radius

r, extending to a line segment γ1 = {β + x exp(iθ) | x ∈ [r,R]}, close to and above the

branch cut, then continued to the circle CR counterclockwise oriented around the origin of

radius
√

2βR cos(θ) + β2 +R2, returning to a line segment γ2 = {β + x exp
(
i(2π − θ)

)
|

x ∈ [r,R]}, close to and below the branch cut in the negative sense, finally returning to

the original small circle Cr as in Figure 2.1.

Figure 2.1: A keyhole contour.
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Lemma 2.2. For each n ∈ N, we have

fn =
1

2πi

∫
γ1+CR+γ2+Cr

f(x)

xn+1
dx.

Proof. Since f(x)/xn+1 is analytic inside the contour γ1 + CR + γ2 + Cr except at the

point x = 0, ∫
C0+γ1+CR+γ2+Cr

f(x)

xn+1
dx = 0.

From the power series expansion of f(x) about x = 0, we obtain

1

2πi

∫
C0

f(x)

xn+1
dx = −fn.

This completes the proof of the lemma.

We are now ready to prove Theorem 2.1 by establishing the following

Proposition 2.3. (a) For each n ∈ N, we have

lim
r→0

1

2πi

∫
Cr

f(x)

xn+1
dx = 0.

(b) For each n ∈ N, we have∣∣∣∣limθ→0

1

2πi

∫
CR

f(x)

xn+1
dx

∣∣∣∣ ≤ Ma(0, β +R)(R+β
β − 1

)c · (β +R)n
.

(c) For each n ∈ N, we have

lim
r→0

1

2πi

∫
γ1+γ2

f(x)

xn+1
dx = bn

(
a(β) +

m∑
k=1

(
k−c
k

)(
n+c−1
k

) βk
k!
a(k)(β) + Ẽ

)
,

and

∣∣Ẽ∣∣ < βn+c sin (cπ)

π ·Rc · n · (β +R)n ·
∣∣(−c

n

)∣∣ +
m∑
k=1

βk · sin (cπ)

π
·
(
1 + R

β

)−(n−k+c)
(n− k + c) ·

∣∣(−c
n

)∣∣
+

Ma(β, R̃)

π · R̃m ·
(
R̃−R

) · (m+1−c
m+1

)(
n+c−1
m+1

) · βm+1,

where R̃ is any real number satisfies α− β > R̃ > R > 0.

Proof. (a) Let x = β + r exp(iu), where u ∈ [θ, 2π − θ). Then we have∣∣∣∣∫
Cr

f(x)

xn+1
dx

∣∣∣∣ ≤ ∫ 2π−θ

θ

∣∣∣∣a(β + r exp(iu)) · βcr1−c

(β + r exp(iu))n+1

∣∣∣∣ du
≤ 2 · π ·Ma(β, r) · βcr1−c

(β − r)n+1
→ 0 as r → 0.



30 Chih-Yun Chuang, Yen-Liang Kuan and Wei-Chen Yao

(b) Let x =
(√

β2 + 2Rβ cos(θ) +R2
)
· exp(iu), where u ∈ [θ, 2π − θ). We have

∣∣∣∣limθ→0

∫
CR

f(x)

xn+1
dx

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣∣∣∣ a((β +R) · exp(iu)) · (β +R)(
1− (β+R)·exp(iu)

β

)c
((β +R) · exp(iu))n+1

∣∣∣∣∣∣ du
≤ 2 · π ·Ma(0, β +R)(R+β

β − 1
)c · (β +R)n

.

(c) Set γ1 = β + x exp(iθ), where x goes from r to R and γ2 = β + x exp
(
(2π − θ)i

)
,

where x goes from R to r. As θ → 0, we have

1

2πi

∫
γ1+γ2

f(x)

xn+1
dx =

βc · sin (cπ)

π
·
∫ R

r

a(β + x)

xc · (β + x)n+1
dx.

Fix a constant R̃ with α − β > R̃ > R. Since a(x) is holomorphic on the closed disc

D(β, R̃) ⊂ D(β, α− β), so the Taylor expansion of a(x) at the point β holds in the form

a(x) =

m∑
k=0

a(k)(β)

k!
(x− β)k +Rm(x),

where the remainder Rm(x) has the following uniform bound

(2.1) |Rm(x)| < Ma(β, R̃) · |x− β|m+1

R̃m ·
(
R̃− |x− β|

) .

Therefore, we derive∫ R

r

a(β + x)

xc · (β + x)n+1
dx =

m∑
k=0

a(k)(β)

k!

∫ R

r

xk−c

(β + x)n+1
dx+

∫ R

r

Rm(β + x)

xc · (β + x)n+1
dx

:= I1 + I2.

We rewrite the integral in I1 to be

lim
r→0

∫ R

r

xk−c

(β + x)n+1
dx =

∫ ∞
0

xk−c

(β + x)n+1
dx−

∫ ∞
R

xk−c

(β + x)n+1
dx.

From the property of the beta function, one has∫ ∞
0

xk−c

(β + x)n+1
dx = βk−c−n · Γ(1 + k − c)Γ(−k + c+ n)

Γ(n+ 1)

= βk−c−n ·
(−1)n

(
k−c
k

)(−c
n

)(
n+c−1
k

) · Γ(1− c) · Γ(c).
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So we have

βc · sin (cπ)

π
· lim
r→0

(
m∑
k=0

a(k)(β)

k!

∫ R

r

xk−c

(β + x)n+1
dx

)

=
β−n · sin (cπ)

π
·

[
m∑
k=0

a(k)(β)βk

k!

(−1)n
(
k−c
k

)(−c
n

)(
n+c−1
k

) · Γ(1− c) · Γ(c)

]

− βc · sin (cπ)

π
·

[
m∑
k=0

∫ ∞
R

xk−c

(β + x)n+1
dx

]
.

Note that bn = (−1)n ·β−n ·
(−c
n

)
and Γ(1−c)Γ(c) = π/ sin(cπ). Combining these equalities

and the estimate∫ ∞
R

xk−c

(β + x)n+1
dx <


∫∞
R

1
(β+x)n+1−k+c dx = (β+R)−(n−k+c)

n−k+c if k > 0,

1
Rc·n·(β+R)n if k = 0,

we obtain

βc · sin (cπ)

π
· lim
r→0

(
m∑
k=0

a(k)(β)

k!

∫ R

r

xk−c

(β + x)n+1
dx

)

= bn

(
a(β) +

m∑
k=1

(
k−c
k

)(
n+c−1
k

) βk
k!
a(k)(β) + E1

)
,

where

(2.2) |E1| <
βn+c sin (cπ)

π ·Rc · n · (β +R)n ·
∣∣(−c

n

)∣∣ +
m∑
k=1

βk · sin (cπ)

π
·
(
1 + R

β

)−(n−k+c)
(n− k + c) ·

∣∣(−c
n

)∣∣ .
Applying the bound of Rm(x) in (2.1) to I2, we obtain

|I2| =
∣∣∣∣∫ R

r

Rm(β + x)

xc · (β + x)n+1
dx

∣∣∣∣ < Ma(β, R̃)

R̃m · (R̃−R)
·
∫ ∞
0

xm+1−c

(β + x)n+1
dx

=
Ma(β, R̃)

R̃m · (R̃−R)
· β1+m−c−nΓ(2 +m− c)Γ(−1−m+ c+ n)

Γ(n+ 1)

=
Ma(β, R̃)

R̃m · (R̃−R)
· β1+m−c−n

(−1)n
(
m+1−c
m+1

)(−c
n

)(
n+c−1
m+1

) · Γ(1− c) · Γ(c),

which implies that

(2.3)

∣∣∣∣b−1n · βc · sin (cπ)

π
· I2
∣∣∣∣ =

Ma(β, R̃)

π · R̃m · (R̃−R)
·
(
m+1−c
m+1

)(
n+c−1
m+1

) · βm+1.

Combining (2.2) and (2.3), this completes the proof.
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We now put x := q−s in Theorem 2.1 for s ∈ C and write α = q−α0 and β = q−β0 with

α > β > 0. Fix a constant δ > 0 such that β0 − α0 > δ > 0. Set R = q−α0−δ − q−β0 and

R̃ = q−α0−δ/2− q−β0 . Since a(x) =
∑
akx

k is a power series with radius of convergence at

least α < 1, given any ε > 0, there exists a constant Ca,ε such that |an| ≤ Ca,ε · |α|(−1−ε)n

for all n ≥ 0. Take ε = δ/(4α0), we have

Ma(β, R̃) < Ma(0, β + R̃) ≤
Ca,δ,1

1− q−(δ/2−δ/4)
and Ma(0, β +R) ≤

Ca,δ,2

1− q−(δ−δ/4)
,

where Ca,δ,1 and Ca,δ,2 are constants which depend on a and δ. Then we can rewrite

Theorem 2.1 as follows:

Theorem 2.4. Let â(s) =
∑
akq
−sk and b̂(s) = (1− qβ0−s)−c =

∑
bkq
−sk (c ∈ (0, 1)) be

two power series of variable q−s, with radii of convergence at least q−α0 and exactly q−β0,

respectively. Assume that β0 > α0 > 0. Fix an integer m ≥ 0. For an integer n > m,

write the n-th coefficient fn of variable q−s for f(s) = â(s)̂b(s) as

fn = bn

(
â(β0) +

m∑
k=1

(
k−c
k

)(
n+c−1
k

) q−β0k
k!

dkâ

(dq−s)k
(β0) + E

)
.

Then

|E| < sin (cπ) · q(α0−β0+δ)(n+c)

π · (1− q(α0−β0+δ)c) ·
∣∣(−c

n

)∣∣
+

sin (cπ) · q(α0−β0+δ)(n+c)

π ·
∣∣(−c

n

)∣∣
(

m∑
k=1

1

(n− k + c)
· q−k(α0−β0+δ)

)

+
Câ,δ,1 · q(α0−β0+δ/2)(m+1)

(1− q−δ/4)(1− qα0−β0+δ)m
·
(
m+1−c
m+1

)(
n+c−1
m+1

) +
Câ,δ,2 · q(α0−β0+δ)(n+c)

(1− q−
3
4
δ) · (1− qα0−β0+δ)c ·

∣∣(−c
n

)∣∣ ,
where δ is any real number satisfying β0 − α0 > δ > 0 and Câ,δ,1, Câ,δ,2 are constants

which depend on â and δ.

Remark 2.5. Notice that

Câ,δ,1 · q(α0−β0+δ/2)(m+1)

(1− q−δ/4)(1− qα0−β0+δ)m
·
(
m+1−c
m+1

)(
n+c−1
m+1

) = O

(
q(α0−β0+δ/2)(m+1)

n(m+1)

)
as qn →∞

and the other terms are dominated by O
(
n(1−c)q(α0−β0+δ)(n+c)

)
since one has 1/

(−c
n

)
=

O(n1−c).

Corollary 2.6. Let â(s) =
∑
akq
−sk and b̂(s) = (1− qβ0−s)−c =

∑
bkq
−sk (c ∈ (0, 1)) be

two power series of variable q−s with radii of convergence at least q−α0 and exactly q−β0,
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respectively. Assume that β0 > α0 > 0. Fix an integer m ≥ 0 and write f(s) = â(s)̂b(s) =∑
fkq
−sk. Then we have

fn = bn

(
â(β0) +

m∑
k=1

(
k−c
k

)(
n+c−1
k

) q−β0k
k!

dkâ

(dq−s)k
(β0) +O

(
q(α0−β0+δ/2)(m+1)

n(m+1)

))
as n→∞,

where δ is any real number satisfying β0 − α0 > δ > 0.

3. Landau–Shanks’ problem

In this section, we will use Theorem 2.4 to prove Theorems 1.1 and 1.2. We now prove

some properties as follows:

Lemma 3.1. Assume the class number of OK is 1. Let P ∈ P+. Then the quadratic

symbol
(
D
P

)
∈ {0, 1} if and only if there exist u ∈ F×q and x, y ∈ A such that u · P =

x2 −Dy2.

Proof. If
(
D
P

)
= 0, then P | D which implies that P is ramified in OK/A. So there exists a

prime ideal ℘ in OK such that POK = ℘2. Since the class number of OK is 1, there exist

x, y ∈ A such that the ideal ℘ generated by x+ y
√
D in OK . By [12, Proposition 7.8], the

ideal generated by P in A is equal to the ideal generated by NK/k(x+ y
√
D) = x2 −Dy2

in A. Hence there exists u ∈ F×q such that u · P = x2 −Dy2. For the case
(
D
P

)
= 1, then

P splits in OK which means POK = ℘1℘2 for two distinct prime ideals ℘1, ℘2 in OK .

Similarly, there exist x, y ∈ A such that the ideal ℘1 generated by x + y
√
D in OK , and

there exists u ∈ F×q such that u · P = x2 −Dy2.
Conversely, we may assume P - D. Since u · P = x2 − Dy2 for some u ∈ F×q and

x, y ∈ A, x2 ≡ Dy2 (mod P ) which implies
(
D
P

)
= 1.

Proposition 3.2. Assume the class number of OK is 1. For any f ∈ A, write f = mn2

where m,n ∈ A and m is square-free. Then we have
(
D
P

)
∈ {0, 1} for all P ∈ P+ and

P | m if and only if there exist u ∈ F×q and x, y ∈ A such that u · f = x2 −Dy2.

Proof. Assume that f = mn2 and
(
D
P

)
∈ {0, 1} for all P | m. Since

(x1 −Dy21)(x2 −Dy22) = (x1x2 +Dy1y2)
2 −D(x1y2 + x2y1)

2

and n2 is represented by n2 −D · 02, then there exists u ∈ F×q such that u · f = x2 −Dy2

for some x, y ∈ A by Lemma 3.1.

Conversely, assume that u · f = x2 − Dy2 for some u ∈ F×q and x, y ∈ A, and there

exists P | m such that
(
D
P

)
= −1. Since m | (x2 − Dy2), x2 ≡ Dy2 (mod P ). This

contradicts to
(
D
P

)
= −1.
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Let nD,q : A+ → R be the characteristic function defined by

nD,q(f) :=

1 if u · f = A2 −DB2 for some A,B ∈ A and u ∈ F×q ,

0 otherwise.

It is clearly that nD,q(f
2) = 1 for all f ∈ A+.

Corollary 3.3. Assume the class number of OK is 1. Then nD,q(fg) = nD,q(f) · nD,q(g)

for all f, g ∈ A+ with gcd(f, g) = 1.

Proof. Assume nD,q(fg) = 1 and write f = m1n
2
1, g = m2n

2
2 where m1,m2, n1, n2 ∈

A+ and m1, m2 are square-free. Since gcd(f, g) = 1, m1m2 is also square-free. By

Proposition 3.2, we have
(
D
P

)
∈ {0, 1} for all irreducible polynomials P dividing m1m2.

Thus
(
D
P

)
∈ {0, 1} for all irreducible polynomials P dividing m1, which implies that

nD,q(f) = 1. Similarly, we also have nD,q(g) = 1.

On the other hand, if nD,q(fg) = 0, then there exists an irreducible polynomial P |
m1m2 such that

(
D
P

)
= −1 by Proposition 3.2. We may assume P | m1. Since

(
D
P

)
= −1

for some P dividing m1, we have nD,q(f) = 0. This completes the proof.

The corollary fails if the class number of OK is not one. We will illustrate it in the

following example.

Example 3.4. Let q = 3 and D = t3 + t2 + 2 ∈ A, then the class number of OK is 3. Put

f = t2 + t+ 2 and g = t2 + 2t+ 2. It is easy to calculate that nD,q(f) = nD,q(g) = 0 and

nD,q(fg) = 1.

Now, we are ready to prove Theorems 1.1 and 1.2. Define the counting function

ND(n, q) :=
∑
f∈A+

n

nD,q(f)

for n ∈ Z≥0. Consider the generating function of ND(n, q):

FD(s) =

∞∑
n=0

ND(n, q)q−ns.

Since nD,q(f) is multiplicative, we have

FD,q(s) =
∑
f∈A+

nD,q(f)q− deg(f)s =
∏
P∈P+

∞∑
j=1

nD,q(P
j)

(qdeg(P )s)j

=
∏
P∈P+(

D
P

)
∈{0,1}

(1− q− degPs)−1 ·
∏
P∈P+(
D
P

)
=−1

(1− q−2 degPs)−1
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by Proposition 3.2.

For simplicity, we denote qdegP by qP . We now recall some basic facts about zeta

function of A and Dirichlet L-function corresponding to the quadratic character
(
D
·
)
.

The zeta function ζA(s) of A is defined by

ζA(s) :=
∏
P∈P+

(1− q−sP )−1 for Re(s) > 1.

Note that ζA(s) = (1 − q1−s)−1. On the other hand, Dirichlet L-function corresponding

to
(
D
·
)

is defined by

L
(
s,
(
D
·
))

:=
∏
P∈P+

(
1−

(
D

P

)
q−sP

)−1
for s ∈ C

=
∏
P∈P+(
D
P

)
=1

(1− q−sP )−1 ·
∏
P∈P+(
D
P

)
=−1

(1 + q−sP )−1.

It is well-known that L
(
s,
(
D
·
))

is a polynomial in q−s of degree at most deg(D)− 1 [12,

Proposition 4.3]. It is not difficult to check that

FD,q(s) =
√
ζA(s) ·

√
L
(
s,
(
D
·
)) ∏

P∈P+(
D
P

)
=−1

(1− q−2sP )−1/2 ·
∏
P∈P+(
D
P

)
=0

(1− q−sP )−1/2.

Let

âD,q(s) :=
√
L
(
s,
(
D
·
)) ∏

P∈P+(
D
P

)
=−1

(1− q−2sP )−1/2 ·
∏
P∈P+(
D
P

)
=0

(1− q−sP )−1/2

which converges absolutely for Re(s) > 1/2 and

b̂q(s) :=
√
ζA(s) = (1− q1−s)−1/2.

We now consider m = 0 in Theorem 2.4 with FD,q(s) = âD,q(s) · b̂q(s), α0 = 1/2, β0 = 1

and c = 1/2. From Remark 2.5, when δ < 1/2, the error terms are dominated by

O

(
q−1/2+δ/2

n

)
.

Note that if we write b̂q(s) =
∑
bkq
−sk, then bn = (−1)n

(−1/2
n

)
qn =

(
n−1/2
n

)
qn for n ≥ 1.

When any 0 < δ < 1/2, one has

ND(n, q) =

(
n− 1/2

n

)
qn

(
âD,q(1) +O

(
q−1/2+δ

n

))

= âD,q(1)

(
n− 1/2

n

)
qn +O

(
qn−1/2+δ

n3/2

)
as qn →∞,
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where q varies through finite powers of q0. Here the second equality follows from the fact(
n−1/2
n

)
∼ 1/
√
πn as n→∞. This completes the proofs of Theorems 1.1 and 1.2.

4. Binary quadratic forms over A

In this section, we will generalize Landau–Shanks’ problem to binary quadratic forms over

polynomial rings. A binary quadratic form f is a function in two variables f(x, y) = Ax2+

Bxy+Cy2 where A,B,C ∈ A. For simplicity, we denote f by (A,B,C). A quadratic form

f = (A,B,C) is called primitive if gcd(A,B,C) = 1. We say that a quadratic forms f and

g are equivalent if there exists
[
α β
γ δ

]
∈ GL2(A) such that g(x, y) = a−1f(αx+βy, γx+δy)

where a = αδ − βγ. Furthermore, if
[
α β
γ δ

]
∈ SL2(A), we say that f and g are properly

equivalent. It is easy to see that the relations are equivalence relations and preserve the

discriminant D = B2 − 4AC.

A polynomial m is represented by a form f = (A,B,C) if there exist z, w ∈ A such

that

m = Az2 +Bzw + Cw2.

If z and w are relatively prime, we say that m is properly represented by f(z, w).

The following proposition is well-known. We omit the proof.

Proposition 4.1. [3, Lemma 2.3] A form f(x, y) properly represents a polynomial m if

and only if f(x, y) is properly equivalent to the form g(x, y) = mx2 + nxy + ly2 for some

n, l ∈ A.

We define the composition of binary quadratic forms similar to the definition in integer

cases [2, 16].

Definition 4.2. Let f1 = (A1, B1, C1) and f2 = (A2, B2, C2) be two binary quadratic

forms of the same discriminant D and let U, V,W ∈ A such that

UA1 + V A2 +W (B1 +B2) = S = gcd(A1, A2, B1 +B2).

We define the composition of f1 and f2 by f1 · f2 = (A,B,C) where

A =
A1A2

S2
, B = B2 +

A2

S
[V (B1 −B2)− 4WC2], C =

B2 −D
4A

.

Remark 4.3. (a) In last definition, B is unique modulo A (c.f. [3]) satisfying

B ≡ B1 (mod A1/S), B ≡ B2 (mod A2/S), B2 ≡ D (mod A1A2/S
2).

(b) If f1 and f2 are primitive, then f1 · f2 is also primitive.
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Proposition 4.4. Let f1 = (A1, B1, C1) and f2 = (A2, B2, C2) be two quadratic forms

with discriminant D. Assume that gcd(A1, A2) = 1. If m1 (resp. m2) is represented by a

binary quadratic form f1 (resp. f2), then m1m2 is represented by f1 · f2.

Proof. Assume that f1 · f2 = (A,B,C) is defined as in Definition 4.2 and m1 = f1(x, y),

m2 = f2(z, w) for x, y, z, w ∈ A. By Remark 4.3(a), there are Q,R ∈ A such that

B = B1 +A1Q and B = B2 +A2R. It is easy to see that

f1(x+ Q
2 y, y)f2(z + R

2w,w) = (f1 · f2)(xz − Cyw,A1xw +A2yz +Byw).

Hence

m1m2 = f1(x, y)f2(z, w)

= (f1 · f2)
(
(x− Q

2 y)(z − R
2w)− Cyw,A1(x− Q

2 y)w +A2y(z − R
2w) +Byw

)
.

If m = Az2 + Bzw + Cw2 and a ∈ F×q , then am = aAz2 + Bz(aw) + a−1C(aw)2

which means that am is represented by (aA,B, a−1C). Hence, we only consider the

representation for monic polynomials.

Definition 4.5. Let bD,q : A+ → R be the characteristic function defined by

bD,q(m) =

1 if m is represented by a primitive quadratic form of discriminant D,

0 otherwise.

Remark 4.6. (1) Observe that bD,q(m
2) = 1 and bD,q(P ) = 1 for a monic irreducible

polynomial P | D but P 2 - D since P is represented by
(
P, 0, −D4P

)
.

(2) Let P ∈ P+. Then bD,q(P ) = 1 implies bD,q(P
i) = 1 for all i ≥ 1.

The following result is a corollary of Proposition 4.4.

Corollary 4.7. Let m1,m2 ∈ A+ such that gcd(m1,m2) = 1. Assume that bD,q(m1) =

bD,q(m2) = 1. Then bD,q(m1m2) = 1.

Proof. Assume that m ∈ A such that m = Ax2 + Bxy + Cy2 for some x, y ∈ A and

(A,B,C) is a primitive quadratic form of discriminant D. Assume that gcd(x, y) = d and

x = x′d, y = y′d. Then m = (Ax′2 + Bx′y′ + Cy′2)d2 and therefore m′ = m/d2 can be

properly represented by (A,B,C). By Proposition 4.1, (A,B,C) is properly equivalent to

the primitive quadratic form (m′, n, l) for some n, l ∈ A. Hence m can be represented by

(m′, n, l).

Assume that m1,m2 ∈ A with gcd(m1,m2) = 1 and m1, m2 can be represented by

primitive quadratic forms of discriminant D. From about arguments, we may assume

that mi is represented by (m′i, ni, li) where m′i | mi and ni, li ∈ A for i = 1, 2. By

Proposition 4.4, m1m2 can be represented by (m′1, n1, l1) · (m′2, n2, l2).
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Lemma 4.8. Let P ∈ P+ and
(D
P

)
= 1. Then bD,q(P ) = 1.

Proof. Since
(D
P

)
= 1, there is a B ∈ A such that P | (B2 −D). Hence f =

(
P,B, B

2−D
4P

)
is a primitive quadratic form of discriminant D and P is represented by f .

Following the idea of James [7] and Pall [10, Section 5], we have the following lemmas.

Lemma 4.9. Let m,M ∈ A+ and let P be any monic irreducible polynomial for which(D
P

)
= −1. If m = P 2n+1M where n ∈ Z≥0 and P -M , then bD,q(m) = 0.

Proof. Let f = (A,B,C) be a primitive quadratic form of discriminant D. We may

assume P - A. If P | A and P - C, then we may replace f(x, y) by f(−y, x) since properly

equivalent forms represent the same polynomials. If P | A, P | C and P - B, then we

replace f(x, y) by f(x, x+ y).

Suppose that m is represented by f = (A,B,C) with P - A, which means P 2n+1M =

Az20 +Bz0w0 + Cw2
0 for some z0, w0 ∈ A. We shall show that this assumption leads to a

contradiction. Multiplying 4A on both sides of the equation, we have

4AP 2n+1M = (2Az0 +Bw0)
2 −Dw2

0

which implies

(2Az0 +Bw0)
2 ≡ Dw2

0 (mod P ).

Since
(D
P

)
= −1, it follows that P | w0 and P | (2Az0 + Bw0) and therefore P | z0 since

P - A. Thus one has

P 2n−1M = Az21 +Bz1w1 + Cw2
1,

where w0 = Pw1, z0 = Pz1. Repetition of this arguments leads to the equation

PM = Az2n +Bznwn + Cw2
n

for some zn, wn ∈ A. As before we have

(2Azn +Bwn)2 ≡ Dw2
n (mod P ),

and we find that P | wn, P | zn which implies that P 2 | PM . This contradicts to

P -M .

Lemma 4.10. Let P be an irreducible polynomial such that P 2 | D.

(a) If P - n, then bD,q(Pn) = 0.

(b) bD,q(P
2m) = 1 if and only if bD/P 2,q(m) = 1.



Variation of a Theme of Landau–Shanks in Positive Characteristic 39

Proof. (a) Assume that f = (A,B,C) is a primitive quadratic form of discriminant D and

Pn = Ax2 +Bxy + Cy2 for some x, y ∈ A. Hence, we have

4APn = (2Ax+By)2 −Dy2

which implies

2Ax+By ≡ 0 (mod P ).

Since f is primitive, we may assume P - A. Hence there is an A′ ∈ A such that 2AA′ ≡ 1

(mod P ). There is a z ∈ A such that x = −A′By + Pz. Hence

Pn = A(−A′By + Pz)2 +B(−A′By + Pz)y + Cy2

= AP 2z2 +BP (−2AA′ + 1)zy + (AA′2B2 −A′B2 + C)y2.

Since P | (−2AA′ + 1) and D = B2 − 4AC is divided by P , it is easy to see that

P | (AA′2B2 − A′B2 + C). Put (AA′2B2 − A′B2 + C) = PR and (−2AA′ + 1) = PQ for

some Q,R ∈ A. We have

n = APz2 +BPQzy +Ry2.

Let g = (AP,BPQ,R). The discriminant of g is D. Since P 2 | D and P - A, we have

P | R. Therefore P | n. This contradicts to assumption.

(b) Following the ideal of (a), if we have P 2m is represented by a primitive quadratic

form (A,B,C), then m is represented by a primitive quadratic form (A,BQ,R/P ) of

discriminant D/P 2. Conversely, if m = ax2 + bxy+ cy2 for some primitive quadratic form

(a, b, c) of discriminant D/P 2. Since (a, b, c) is primitive, we may assume that P - a. Then

P 2m = a(Px)2 + bP (Px)y + cP 2y2. It is easy to see that (a, bP, cP 2) is primitive and its

discriminant equals D.

Definition 4.11. Let P be an irreducible polynomial, A ∈ A and k be a positive integer.

We say that P k||A if P k | A and P k+1 - A.

From Lemmas 4.9, 4.10 and Remark 4.6, we have the following corollaries.

Corollary 4.12. Let P ∈ P+ and M ∈ A+ such that P -M .

(a) Assume that P 2k||D and D = P 2kD′. If 2i+1 < 2k or
(D′
P

)
= −1, then bD,q(P

2i+1M)

= 0.

(b) Assume that P 2k+1||D, then bD,q(P
2i+1M) = 0 for all i < k.

Corollary 4.13. Let P ∈ P+ and k ∈ Z≥0.

(a) Assume that P 2k||D and D = P 2kD′. If
(D′
P

)
= 1, then bD,q(P

2i+1) = 1 for all

i ≥ k.
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(b) If P 2k+1||D, then bD,q(P
2i+1) = 1 for all i ≥ k.

Combining the above results, we have the following proposition.

Proposition 4.14. For any m ∈ A+, write m = P 2r1+1
1 · · ·P 2rs+1

s N2 where Pi are dis-

tinct and Pi - N for all i. Then bD,q(m) = 1 if and only if Pi satisfies one of the following

properties for all 1 ≤ i ≤ r:

(i) Pi - D and
( D
Pi

)
= 1,

(ii) P 2ki+1
i ||D and ri ≥ ki,

(iii) P 2ki
i ||D, ri ≥ ki and

(D/P 2ki

Pi

)
= 1.

Theorem 4.15. If gcd(m,n) = 1, then bD,q(mn) = bD,q(m)bD,q(n).

Proof. By Corollary 4.7, bD,q(m) = bD,q(n) = 1 implies bD,q(mn) = 1.

Conversely, we assume bD,q(m) = 0. Since gcd(m,n) = 1, we may write m =

P 2r1+1
1 · · ·P 2rs+1

s M2 and n = P
2rs+1+1
s+1 · · ·P 2ru+1

u N2 where Pi are distinct and Pi - MN .

The assumption bD,q(m) = 0 implies that there is a Pi does not satisfy any condition of

Proposition 4.14. Hence bD,q(mn) = 0 by Proposition 4.14.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Define the counting function

BD(n, q) :=
∑
f∈A+

n

bD,q(f)

for n ∈ Z≥0. Consider the generating function of BD(n, q):

FD(s) =

∞∑
n=0

BD(n, q)q−ns.

Following Theorem 4.15, we can write FD(s) as

FD(s) =
∑
f∈A+

bD,q(f)q− deg(f)s =
∏
P∈P+

( ∞∑
i=0

bD,q(P
i)

qi deg(P )s

)
.

From Lemmas 4.8, 4.9, Corollary 4.13 and Proposition 4.14, we have

FD(s) =
∏
P∈P+(
D
P

)
=1

(1− q−sP )−1 ·
∏
P∈P+(
D
P

)
=−1

(1− q−2sP )−1 ·
∏
P∈P+

P |D

( ∞∑
i=0

bD,q(P
i)

qisP

)
.
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For P 2 | D, we write D = P 2kPD′ where kP ≥ 1 and P 2 - D′. Then we can rewrite the

last product of FD(s) as

∏
P∈P+

P |D

( ∞∑
i=0

bD,q(P
i)

q−isP

)
=
∏
P∈P+

P ||D

(1−q−sP )−1
∏
P∈P+

P 2|D

(
1+q−2sP + · · ·+q

(−2kP+2)s
P +q−2kP sP Λ(s)

)
,

where

Λ(s) =

(1− q−sP )−1 if
(D′
P

)
= 0 or 1,

(1− q−2sP )−1 otherwise.

Using the same arguments in Section 3, we have

FD(s) =
√
ζA(s) ·

√
L
(
s,
(D
·
)) ∏

P∈P+(
D
P

)
=−1

(1− q−2sP )−1/2 ·
∏
P∈P+

P ||D

(1− q−sP )−1/2 · S(s),

where

S(s) :=
∏
P∈P+

P 2|D

(1− q−sP )1/2
(
1 + q−2sP + · · ·+ q

(−2kP+2)s
P + q−2kP sP Λ(s)

)
.

Write FD(s) = âD,q(s) · b̂q(s) where

âD,q(s) :=
√
L
(
s,
(D
·
)) ∏

P∈P+(
D
P

)
=−1

(1− q−2sP )−1/2 ·
∏
P∈P+

P ||D

(1− q−sP )−1/2 · S(s)

and

b̂q(s) :=
√
ζA(s) = (1− q1−s)−1/2.

We now consider m = 0 in Theorem 2.4 with FD(s) = âD,q(s) · b̂q(s), α0 = 1/2, β0 = 1

and c = 1/2. When m = 0 and any 0 < δ < 1/2, one has

BD(n, q) = âD,q(1)

(
n− 1/2

n

)
qn +O

(
qn−1/2+δ

n3/2

)
as qn →∞,

where q varies under the condition that D is not perfect square in Fq[t]. This completes

the proof.
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