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Uniform Boundedness and Global Existence of Solutions to a Quasilinear

Diffusion Equation with Nonlocal Fisher-KPP Type Reaction Term

Xueyan Tao and Zhong Bo Fang*

Abstract. This paper deals with the Cauchy problem and Neumann initial boundary

value problem for a quasilinear diffusion equation with nonlocal Fisher-KPP type re-

action terms. We establish the uniform boundedness and global existence of solutions

to the problems by using multipliers technique and modified Moser’s iteration argu-

ment for some ranges of parameters. Moreover, the ranges of parameters have similar

structure to that of the classical critical Fujita exponent.

1. Introduction

We investigate the following Cauchy problem (τ = 0) and Neumann initial boundary

value problem (τ = 1) of the quasilinear diffusion equation with nonlocal Fisher-KPP

type reaction term

(1.1)


ut = ∆um + uα

(
1−

∫
Ω u

β dx
)
, x ∈ Ω, t > 0,

τ ∂u
m

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

where τ ∈ {0, 1}, m > 0, and α, β ≥ 1. When τ = 0, Ω is assumed to be RN , therefore

(1.1) is a Cauchy problem; while in the case of τ = 1, we suppose that Ω ⊂ RN is a

bounded domain with smooth boundary, hence (1.1) turns to a Neumann initial boundary

value problem, ν is the outward unit normal vector on ∂Ω. The nonnegative initial data

u0 is not identical to zero.

Nonlinear diffusion equations like (1.1) appear in various applications, which describes

the diffusion of the concentration of Newtonian flow in a porous medium or the tem-

perature of some combustible substances, see [6, 32]. In particular, equation (1.1) is a

possible model for the diffusion system of some biological species, where u(x, t) represents

the density of the species at position x and time t, ∆um portrays the mutation, which
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we view as a spreading of the characteristic, and the reaction term uα
(
1 −

∫
Ω u

β dx
)

is

considered as the rate of the reproduction. Due to the effect of spatial inhomogeneity, the

occurrence of nonlocal term
∫

Ω u
β dx denotes that the evolution of the species at a point

in space depends not only on the density of species in partial region but also on the total

region, refer to [2, 14, 18]. Moreover, as appeared in many literatures, e.g., [27, 28, 36],

the nonlocal type reaction term uα
(
1 −

∫
Ω u

β dx
)

can also describe Darwinian evolution

of a structured population density or the behaviors of cancer cells with therapy. In the

nonlinear diffusion theory, there exist obvious differences among the situations of slow

(m > 1), fast (0 < m < 1), and linear (m = 1) diffusion. For example, there is a finite

speed propagation in the slow and linear diffusion situations, whereas an infinite speed

propagation exists in the case of fast diffusion.

During the past decades, there have been many works to deal with diffusion equa-

tions with local or nonlocal reaction terms, see [6, 22, 32, 34, 39]. Roughly, those works

contain some focal topics such as existence and nonexistence of global solutions, blow-up

phenomena, extinction phenomena, asymptotic behavior of the solutions as well as the

critical exponent theory, etc. In this paper, we are particularly interested in the issues of

global existence of solutions to the following quasilinear diffusion equation with nonlocal

Fisher-KPP type reaction term

(1.2) ut = ∆um + F (t, u, I(u)), x ∈ Ω, t > 0,

where I(u) =
∫

Ω u(y, t) dy. To the best of our knowledge, compared with the local reaction

problems, few results are available for such nonlocal models. When m = 1 in (1.2).

Bebernes [5, 7], Pao [33] and Liu et al. [26] considered the thermal explosion model of

compressible gas with the nonlocal reaction term

F = eu + aI(ut) or F = eu + aI(eu),

and they obtained the solvability, asymptotic properties and blow-up phenomena of solu-

tions under null Dirichlet boundary condition. Wang et al. [37] investigated the semilinear

diffusion model with the reaction term

F = I(uα)− kuγ , α, γ ≥ 1,

and they derived sufficient condition for which the solutions exist globally and blow up

in finite time by virtue of ODE analysis. Budd et al. [13], Hu and Yin [23] studied the

partial differential equation with the following special nonlocal reaction term

F = uα − 1

|Ω|
I(uα)

under null Neumann boundary condition, where α > 1. The solutions of these problems

have a conservation property and, based on the convexity argument, they proved the
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nonexistence of global solutions under large initial energy. In addition, one can refer

to [15,20,31] to review some latest researches on the nonlocal problems with fully nonlinear

reaction terms, nonlocal semilinear parabolic equation with small positive initial energy

and fourth-order thin-film equations. In [4], Anguiano et al. considered the diffusion

equation with the reaction term

F = f(u)I(u)(1− I(u))

under null Dirichlet boundary condition, and they obtained the existence of global attrac-

tor. Recently, for the Cauchy problem and the Neumann initial boundary value problem

with the nonlocal reaction term

F = uα(1− I(uβ)),

Bian and Chen studied the existence of global solutions and derived the critical exponents

of the Fujita type (cf. [8,9]). Afterwards, Bian et al. [10] investigated the global existence

and asymptotic behavior of solutions to Neumann initial boundary value problem with

the nonlocal term

F = uα(1− I(u)).

Besides, one can refer to the literature [12] to see studies on Fisher-KPP type equation

with convolution operator.

When m 6= 1 in (1.2). Wang and Wo [38] investigated a fast diffusion equation with

the nonlocal term

F = um − I(um)

under null Neumann boundary condition, and they proved a convergence of global solutions

to some steady states in one-dimensional space. Fang et al. [16] studied the slow diffusion

equation with the nonlocal term

F = uαI(uβ)− uγ

under nonlocal boundary condition, and they established a new comparison principle

and gave some sufficient conditions for which the solutions exist globally and blow up

in finite time. Afterwards, Xu et al. [40] considered a fast diffusion equation with the

nonlocal reaction term in [16] under a homogeneous Dirichlet boundary condition, and

they derived some sufficient conditions for the extinction of nonnegative nontrivial weak

solutions and the corresponding decay estimates by virtue of integral estimate method

and ODE technique. In addition, for studies on the travelling fronts, entire solutions,

and large-time behavior of solutions to local Fisher-KPP type diffusion problems, we refer

to [21,24,25] and the references therein.
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In view of the works mentioned above, much less effort has been devoted to the ex-

istence of uniformly bounded global solutions to quasilinear diffusion model (1.1). At a

glance, our main difficulties lie in finding how the competitive relationship between the

nonlinear diffusion term ∆um and the nonlinear nonlocal term
∫

Ω u
β dx affect the global

existence of solutions. In particular, the method used in the nonlocal semilinear diffusion

problems in the aforementioned works of literatures (see [8, 9]) is no longer directly ap-

plicable to our nonlocal quasilinear model, therefore, we need more delicate analysis to

obtain the global existence. Motivated by these observations, applying multipliers tech-

nique and modified Moser’s iteration argument, we will show that the solutions to (1.1) are

uniformly bounded and exist globally under appropriate conditions. Indeed, our results

improve and generalize the Theorem 1 in [9] and [8], respectively.

Note that for m > 0, the diffusion term ∆um(x, t) in problem (1.1) may be singular

or degenerate on the set {(x, t) | u(x, t) = 0}, which leads to the nonexistence of classical

solutions to problem (1.1), therefore, we consider the weak solutions in the distribution

sense. It is well-known that the existence of local weak solutions in time to problem (1.1)

can be obtained by the fixed point theorems or standard parabolic regularity theory that

can be applied to get suitable estimates in the standard limiting process (cf. [3, 35, 39]),

and hence, we omit the details here. It can be seen that there exists Tmax > 0 such that

the unique weak solution u to problem (1.1) satisfies

u ∈ C([0, Tmax);L∞(Ω)),

and either Tmax =∞, or Tmax is finite with lim supt→Tmax
‖u( · , t)‖L∞(Ω) = +∞, which is

similar to the results in [29,30].

Now we are ready to give our main results. For convenience, let 2∗ denote the critical

exponent of Sobolev embedding, that is,

2∗ =


2N
N−2 if N ≥ 3,

p ∈ (2,∞) if N = 2,

∞ if N = 1.

We state the following existence of uniformly bounded global solutions in whole space RN

as well as in bounded domain, respectively.

Theorem 1.1. Let τ = 0. Suppose that N ≥ 1, m > max{0, 1− 2/N}, β ≥ 1 and that α

satisfies the inequalities

max{1,m− β} ≤ α < m+

(
1− 2

2∗

)
β.

If the nonnegative initial data u0 is in Lβ(RN )∩L∞(RN ), then the Cauchy problem (1.1)

has a unique nonnegative global solution, which is uniformly bounded.
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Theorem 1.2. Let τ = 1. Suppose that N ≥ 1, m > 0, β ≥ 1 and that α satisfies the

inequalities

max{1,m− β} ≤ α < m+
2

N
β.

If the nonnegative initial data u0 is in L∞(Ω), then the Neumann initial boundary value

problem (1.1) has a unique nonnegative global solution, which is uniformly bounded.

Remark 1.3. From Theorems 1.1 and 1.2 we see that, for the existence of global solution

to (1.1), Cauchy problem and Neumann initial boundary value problem share exactly

the same critical exponent αc = m + 2
N β (N ≥ 3). In fact, the structure of the critical

exponent αc is similar to that of the well-known classical critical Fujita exponent to the

local porous medium equation with power like source term ut = ∆um + uα. As we all

know, for the local problem, when α < αc, the solutions blow up in finite time for any

initial data (cf. [17,19,29]). However, Theorems 1.1 and 1.2 show the opposite result, i.e.,

global solution exists, which indicates that the nonlocal term has a huge influence on the

properties of solutions.

The present work is organized as follows. In Section 2, we give a proof for Theorem 1.1

on global boundedness for the solution to the Cauchy problem (τ = 0). In Section 3, a

proof for Theorem 1.2 on global boundedness for the solution to the Neumann initial

boundary value problem (τ = 1) is presented.

For simplicity, the variable of integral will be omitted without ambiguity, e.g., the

integral
∫

Ω f(x) dx is written as
∫

Ω f(x).

2. Global boundedness for τ = 0

In this section, we consider global boundedness of the solution to the Cauchy problem (1.1).

To begin with, we review Lemma 2 in [9].

Lemma 2.1. [9] If N ≥ 1, 1 ≤ r < q < 2∗, and q
r < 2

r + 1 − 2
2∗ , then for any

v ∈ H1(RN ) ∩ Lr(RN ), the following inequalities

(2.1)

‖v‖q
Lq(RN )

≤ ε‖∇v‖2L2(RN ) + Cε
− λq

2−λq ‖v‖µ
Lr(RN )

, N ≥ 3,

‖v‖q
Lq(RN )

≤ ε1‖∇v‖2L2(RN ) + ε2‖v‖2L2(RN )

+ C
(
ε
− λq

2−λq
1 + ε

− λq
2−λq

2

)
‖v‖µ

Lr(RN )
, N = 1, 2

hold, where C = C(N, q, r) and ε, ε1, ε2 > 0 are arbitrary constants, and

λ =
1/r − 1/q

1/2− 1/2∗
∈ (0, 1), µ =

2(1− λ)q

2− λq
.

We now introduce the following key proposition to prove Theorem 1.1.
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Proposition 2.2. Suppose that N ≥ 1, m > 0, β ≥ 1 and that α satisfies the inequalities

max{1,m− β} ≤ α < m+

(
1− 2

2∗

)
β.

For any T ∈ (0, Tmax) and each β ≤ k < ∞, if the nonnegative initial data u0 is in⋂
β≤k<∞ L

k(RN ), then any solution to the Cauchy problem (1.1) satisfies

‖u( · , t)‖Lk(RN ) ≤ C for all t ∈ (0, T ),

where C = C(N,m,α, β, k, ‖u0‖Lk(RN )).

Remark 2.3. Proposition 2.2 is a generalization of Proposition 2 in [9].

Proof of Proposition 2.2. We only give a proof for the case N ≥ 3, since the cases of

N = 1, 2 can be similarly proved. Multiplying the first equation in (1.1) by kuk−1 (k > 1)

and integrating the result over RN , we obtain the equation

(2.2)
d

dt

∫
RN

uk +
4mk(k − 1)

(k +m− 1)2

∫
RN
|∇u

k+m−1
2 |2 + k

∫
RN

uk+α−1

∫
RN

uβ = k

∫
RN

uk+α−1.

For each k > max{1, β+1−α}, we choose k′ such that k′ > β and max{1, k+m−1
2 } ≤ k′ <

k + α − 1. Moreover, taking v = u
k+m−1

2 , q = 2(k+α−1)
k+m−1 , r = 2k′

k+m−1 , and ε = 2m(k−1)
(k+m−1)2

in

(2.1), we have∫
RN

uk+α−1 = ‖u
k+m−1

2 ‖q
Lq(RN )

≤ 2m(k − 1)

(k +m− 1)2

∫
RN
|∇u

k+m−1
2 |2 + C1

(
2m(k − 1)

(k +m− 1)2

)− λ
2−λq
‖u‖a

Lk′ (RN )
,

(2.3)

where C1 = C1(N,m,α, k, k′), λ =
1
k′−

1
k+α−1

1
k′−

2
2∗(k+m−1)

∈ (0, 1), a = (1−λ)(k+α−1)

1−λ(k+α−1)
k+m−1

. Substituting

(2.3) into (2.2), there exists C2 = kC1

( 2m(k−1)
(k+m−1)2

)− λq
2−λq such that

(2.4)
d

dt

∫
RN

uk +
2mk(k − 1)

(k +m− 1)2

∫
RN
|∇u

k+m−1
2 |2 + k

∫
RN

uk+α−1

∫
RN

uβ ≤ C2‖u‖aLk′ (RN )
.

Since β < k′ < k + α− 1, the interpolation inequality yields that

‖u‖a
Lk′ (RN )

≤ ‖u‖aθLk+α−1(RN )‖u‖
a(1−θ)
Lβ(RN )

=
(
‖u‖k+α−1

Lk+α−1(RN )
‖u‖β

Lβ(RN )

) aθ
k+α−1 ‖u‖

a(1−θ)− βaθ
k+α−1

Lβ(RN )
,

(2.5)

where θ =
1
β
− 1
k′

1
β
− 1
k+α−1

∈ (0, 1). In addition, one can easily see the following equivalence

aθ

k + α− 1
< 1 ⇐⇒ α < m+

2

N
β.
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Due to α + β ≥ m, we can choose k′ = k+α+β−1
2 in (2.5) and get a(1 − θ) − βaθ

k+α−1 = 0.

Applying Young’s inequality to (2.5), we arrive at

C2‖u‖aLk′ (RN )
= C2

(
‖u‖k+α−1

Lk+α−1(RN )
‖u‖β

Lβ(RN )

) aθ
k+α−1

≤ k

2

∫
RN

uk+α−1

∫
RN

uβ + C3,
(2.6)

where C3 = k+α−1−aθ
k+α−1

(
2aθ

k(k+α−1)

) aθ
k+α−1−aθC

k+α−1
k+α−1−aθ
2 . Substituting (2.6) into (2.4), we

obtain the inequality

(2.7)
d

dt

∫
RN

uk +
2mk(k − 1)

(k +m− 1)2

∫
RN
|∇u

k+m−1
2 |2 +

k

2

∫
RN

uk+α−1

∫
RN

uβ ≤ C3

for each k > max{1, β + 1− α}. It follows from Hölder’s and Young’s inequalities that

(2.8)

∫
RN

u
k+α+β−1

2 ≤ k

2

∫
RN

uk+α−1

∫
RN

uβ +
1

2k
.

In particular, picking k = α+ β − 1 in (2.7) and (2.8) entails

(2.9)
d

dt

∫
RN

uα+β−1 +

∫
RN

uα+β−1 ≤ C3 +
1

2(α+ β − 1)
.

Applying a differential inequality technique to (2.9), we obtain∫
RN

uα+β−1 ≤ max

{∫
RN

uα+β−1
0 , C3 +

1

2(α+ β − 1)

}
.

Now, taking k = β in (2.2), we get the differential inequality

d

dt

∫
RN

uβ ≤ β
∫
RN

uα+β−1

(
1−

∫
RN

uβ
)
,

which results in
∫
RN u

β ≤ max
{ ∫

RN u
β
0 , 1
}

. By the interpolation inequality, one can easily

see that for all k such that β ≤ k ≤ α+β−1, the norm ‖u( · , t)‖Lk(RN ) is uniform-in-time

bounded.

When α + β − 1 < k < ∞, taking v = u
k+m−1

2 , q = q̃ := 2k
k+m−1 , r = k+α+β−1

k+m−1 and

ε = mk(k−1)
(k+m−1)2

in (2.1), and combining with (2.8), we know that∫
RN

uk = ‖u
k+m−1

2 ‖q̃
Lq̃(RN )

≤ m(k − 1)

(k +m− 1)2

∫
RN
|∇u

k+m−1
2 |2 + C4

(
mk(k − 1)

(k +m− 1)2

)− λ̃q̃

2−λ̃q̃
‖u‖ã

L
k+α+β−1

2 (RN )

≤ m(k − 1)

(k +m− 1)2

∫
RN
|∇u

k+m−1
2 |2

+ C4

(
mk(k − 1)

(k +m− 1)2

)− λ̃q̃

2−λ̃q̃
(∫

RN
uk+α−1

∫
RN

uβ
) ã
k+α+β−1

,

(2.10)
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where C4 = C4(N,m,α, β, k), λ̃ =
1

k+α+β−1
− 1

2k
1

k+α+β−1
− 1

2∗(k+m−1)

∈ (0, 1), ã = k(1−λ̃)

1− kλ̃
k+m−1

. It is easy to

see that ã
k+α+β−1 < 1. We apply Young’s inequality to (2.10) to see

(2.11)

∫
RN

uk ≤ m(k − 1)

(k +m− 1)2

∫
RN
|∇u

k+m−1
2 |2 +

k

2

∫
RN

uk+α−1

∫
RN

uβ + C5,

where C5 = C5(N,m,α, β, k). It follows from (2.7) and (2.11) that

d

dt

∫
RN

uk +

∫
RN

uk +
mk(k − 1)

(k +m− 1)2

∫
RN
|∇u

k+m−1
2 |2 ≤ C3 + C5.

Therefore, for all k such that k > α+β−1, the norm ‖u( · , t)‖Lk(RN ) is also uniform-in-time

bounded.

The proof is complete.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We also only need to prove the case N ≥ 3. Let qk = 2k+α+β−1,

where k ∈ N. It is easy to see that qk ≥ β, and hence, the solution u( · , t) of the Cauchy

problem is in Lqk(RN ) for all t ∈ (0, T ) by Proposition 2.2. Taking k = qk in (2.2), we

obtain the differential equation

d

dt

∫
RN

uqk +
4mqk(qk − 1)

(qk +m− 1)2

∫
RN
|∇u

qk+m−1

2 |2 + qk

∫
RN

uqk+α−1

∫
RN

uqk+β

= qk

∫
RN

uqk+α−1.

(2.12)

The definition of qk enables us to pick Cm := 4mmin{ 2
(1+m)2

, 1} such that 4mqk(qk−1)
(qk+m−1)2

≥
Cm > 0. Then it follows from (2.12) that

(2.13)
d

dt

∫
RN

uqk + Cm

∫
RN
|∇u

qk+m−1

2 |2 + qk

∫
RN

uqk+α−1

∫
RN

uβ ≤ qk
∫
RN

uqk+α−1.

Taking v = u
qk+m−1

2 , q = q := 2(qk+α−1)
qk+m−1 , r =

2qk−1

qk+m−1 , and ε = Cm
2qk

in (2.1), we have∫
RN

uqk+α−1 = ‖u
qk+m−1

2 ‖q
Lq(RN )

≤ Cm
2qk

∫
RN
|∇u

qk+m−1

2 |2 + C6

(
Cm
2qk

)− λq

2−λq
(∫

RN
uqk−1

)a1
,

(2.14)

where C6 = C6(N,m,α, β, k), λ =
1

qk−1
− 1
qk+α−1

1
qk−1

− 2
2∗(qk+m−1)

∈ (0, 1), and a1 = 1+
qk+α−1−qk−1

qk−1−N2 (α−m)
< 2.

Let

δ =
λq

2
=

qk − qk−1 + α− 1

qk +m− 1− 2
2∗ qk−1

= g(2k−1),
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where g(y) = y+α−1

(1+ 2
N

)y+ 2
N

(α+β−1)+m−1
. It follows from α < m+ 2

N β that g is increasing on

[1,+∞), and hence, 0 < g(1) ≤ δ ≤ N
N+2 < 1. From (2.14), we arrive at

(2.15) qk

∫
RN

uqk+α−1 ≤ Cm
2

∫
RN
|∇u

qk+m−1

2 |2 + C7q
δ

1−δ
k

(∫
RN

uqk−1

)a1
,

where C7 = C7(N,m,α, β). Similarly, taking v = u
qk+m−1

2 , q = 2qk
qk+m−1 , r =

2qk−1

qk+m−1 , and

ε = Cm
2 in (2.1), it can be obtained that

(2.16)

∫
RN

uqk ≤ Cm
2

∫
RN
|∇u

qk+m−1

2 |2 + C8

(∫
RN

uqk−1

)a2
,

where C8 = C8(N,m,α, β) and a2 = 1 +
qk−qk−1

qk−1−N2 (m−1)
< 2. Adding (2.15) and (2.16)

together, substituting the result into (2.13), we can find a constant C9 = max{C7, C8}
such that

d

dt

∫
RN

uqk +

∫
RN

uqk ≤ C7q
1

1−δ
k

(∫
RN

uqk−1

)a1
+ C8

(∫
RN

uq
k−1

)a2
≤ C9

(
q

1
1−δ
k

(∫
RN

uqk−1

)a1
+

(∫
RN

uqk−1

)a2)
≤ 2C9q

1
1−δ
k max

{
1,

(∫
RN

uqk−1

)2
}
.

(2.17)

By virtue of (2.17) and the well-known Moser-Alikakos iteration procedure (cf. [1], [11,

Lemma 4.1] or Appendix), we derive that

(2.18) ‖u( · , t)‖L∞(RN ) ≤ C for all t ∈ (0, T ),

where C = C(N,m,α, β, ‖u0‖Lβ(RN ), ‖u0‖L∞(RN )). Since T ∈ (0, Tmax) is arbitrary, (2.18)

yields that Tmax =∞, which completes the proof.

3. Global boundedness for τ = 1

In this section, we consider global boundedness of the solution to the Neumann initial

boundary value problem (1.1). To begin with, we review two useful inequalities below.

Lemma 3.1. If N ≥ 1, p ≥ 1, γ ∈ (0, p) and w ∈ H1(Ω), then the Gagliardo-Nirenberg

inequality

(3.1) ‖w‖Lp(Ω) ≤ cGN‖w‖σH1(Ω)‖w‖
1−σ
Lγ(Ω)

holds, where cGN = cGN (N, p, γ), p(N − 2) < 2N , and σ = 1/γ−1/p
1/N−1/2+1/γ ∈ (0, 1). In

addition, if s > 0, then the Poincaré inequality

(3.2) ‖w‖H1(Ω) ≤ cP (‖∇w‖L2(Ω) + ‖w‖Ls(Ω))

holds, where cP = cP (N, s).



98 Xueyan Tao and Zhong Bo Fang

We now introduce the following key proposition to prove Theorem 1.2.

Proposition 3.2. Suppose that N ≥ 1, m > 0, β ≥ 1 and that α satisfies the inequalities

max{1,m− β} ≤ α < m+
2

N
β.

For any T ∈ (0, Tmax) and each k such that 1 ≤ k < ∞, if the nonnegative initial data

u0 is in
⋂
β≤k<∞ L

k(Ω), then any nonnegative solution to the Neumann initial boundary

value problem (1.1) satisfies the inequality

‖u( · , t)‖Lk(Ω) ≤ c for all t ∈ (0, T ),

where c = c(N,m,α, β, ‖u0‖Lk(Ω)).

Remark 3.3. Proposition 3.2 is a generalization of Proposition 3 in [8].

Proof of Proposition 3.2. Multiplying the first equation in (1.1) by kuk−1 (k > 1) and

integrating the result over Ω, we have

(3.3)
d

dt

∫
Ω
uk +

4mk(k − 1)

(k +m− 1)2

∫
Ω
|∇u

k+m−1
2 |2 + k

∫
Ω
uk+α−1

∫
Ω
uβ = k

∫
Ω
uk+α−1.

For each k > max{1, β + 1− α}, taking w = u
k+m−1

2 and p = 2(k+α−1)
k+m−1 in (3.1), and using

(3.2), it can be obtained that

k

∫
Ω
uk+α−1

≤ kcpGN
(
cP (‖∇u

k+m−1
2 ‖2L2(Ω) + ‖u

k+m−1
2 ‖2Ls(Ω))

) pσ
2 ‖u

k+m−1
2 ‖p(1−σ)

Lγ(Ω)

≤ c1‖∇u
k+m−1

2 ‖2
pσ
2

L2(Ω)
‖u

k+m−1
2 ‖

2p(1−σ)
2−pσ

2−pσ
2

Lγ(Ω) + c1‖u
k+m−1

2 ‖pσLs(Ω)‖u
k+m−1

2 ‖p(1−σ)
Lγ(Ω)

≤ 2mk(k − 1)

(k +m− 1)2

∫
Ω
|∇u

k+m−1
2 |2 + c2‖u

k+m−1
2 ‖

2p(1−σ)
2−pσ

Lγ(Ω)

+ c1‖u
k+m−1

2 ‖pσLs(Ω)‖u
k+m−1

2 ‖p(1−σ)
Lγ(Ω) ,

(3.4)

where
(N(p−2)

2

)
+
< γ < p, s > 0, r = 2k′

k+m−1 , σ = 1/γ−1/p
1/N−1/2+1/γ ∈ (0, 1), and c1, c2 depend

on N , m, α, γ and k. Substituting (3.4) into (3.3), we get

d

dt

∫
Ω
uk +

2mk(k − 1)

(k +m− 1)2

∫
Ω
|∇u

k+m−1
2 |2 + k

∫
Ω
uk+α−1

∫
Ω
uβ

≤ c2‖u
k+m−1

2 ‖
2p(1−σ)
2−pσ

Lγ(Ω) + c1‖u
k+m−1

2 ‖pσLs(Ω)‖u
k+m−1

2 ‖p(1−σ)
Lγ(Ω) .

(3.5)

With γ = k+α+β−1
k+m−1 , Hölder’s inequality yields

‖u
k+m−1

2 ‖Lγ(Ω) ≤
(∫

Ω
uk+α−1

∫
Ω
uβ
) k+m−1

2(k+α+β−1)

.
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In addition, it can be shown that the following equivalence

k +m− 1

k + α+ β − 1
· p(1− σ)

2− pσ
< 1 ⇐⇒ α < m+

2

N
β

holds, which yields that

c2‖u
k+m−1

2 ‖
2p(1−σ)
2−pσ

Lγ(Ω) ≤ c2

(∫
Ω
uk+α−1

∫
Ω
uβ
) k+m−1
k+α+β−1

· p(1−σ)
2−pσ

≤ k

4

∫
Ω
uk+α−1

∫
Ω
uβ + c3,

(3.6)

and

c1‖u
k+m−1

2 ‖pσLs(Ω)‖u
k+m−1

2 ‖p(1−σ)
Lγ(Ω)

≤ c1‖u
k+m−1

2 ‖pσLs(Ω)

(∫
Ω
uk+α−1

∫
Ω
uβ
) p(k+m−1)(1−σ)

2(k+α+β−1)

≤ k

4

∫
Ω
uk+α−1

∫
Ω
uβ + c4‖u

k+m−1
2 ‖χLs(Ω),

(3.7)

where χ = 2pσ(k+α+β−1)
2(k+α+β−1)−p(k+m−1)(1−σ) > 0, and c3, c4 depend on N , m, α, β and k.

Substituting (3.6) and (3.7) into (3.5), we get the inequality

d

dt

∫
Ω
uk +

2mk(k − 1)

(k +m− 1)2

∫
Ω
|∇u

k+m−1
2 |2 +

k

2

∫
Ω
uk+α−1

∫
Ω
uβ

≤ c3 + c4‖u
k+m−1

2 ‖χLs(Ω).

(3.8)

We utilize Hölder’s inequality
( ∫

Ω u
β
) k+α−1

β ≤ |Ω|
k+α−1−β

β
∫

Ω u
k+α−1 to estimate

(3.9)

(∫
Ω
uβ
) k+α+β−1

β

≤ |Ω|
k+α−1−β

β

∫
Ω
uk+α−1

∫
Ω
uβ.

Taking s = 2β
k+m−1 , and therefore,

βχ

s(k + α+ β − 1)
=

pσ(k +m− 1)

2(k + α+ β − 1)− p(k +m− 1)(1− σ)
< 1.

It follows from (3.9) that

c4‖u
k+m−1

2 ‖χLs(Ω) = c4

(∫
Ω
uβ
) k+α+β−1

β
· βχ
s(k+α+β−1)

≤ k

4
|Ω|

β+1−α−k
β

(∫
Ω
uβ
) k+α+β−1

β

+ c5

≤ k

4

∫
Ω
uk+α−1

∫
Ω
uβ + c5,

(3.10)
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where c5 = c5(N,m,α, β, k). Substituting (3.10) into (3.8), we have

(3.11)
d

dt

∫
Ω
uk +

2mk(k − 1)

(k +m− 1)2

∫
Ω
|∇u

k+m−1
2 |2 +

k

4

∫
Ω
uk+α−1

∫
Ω
uβ ≤ c3 + c5.

In particular, taking k = β in (3.11), from (3.9) we can choose M1 and M2 depending on

N , m, α and β such that

(3.12)
d

dt

∫
Ω
uβ +M1

(∫
Ω
uβ
)α+2β−1

β

≤M2.

Differential inequality (3.12) results in∫
Ω
uβ ≤ max

{∫
Ω
uβ0 ,

(
M2

M1

) β
α+2β−1

}
.

Therefore, we obtain the uniform boundedness for ‖u( · , t)‖Lβ(Ω). Thanks to Hölder’s

inequality, it can be seen that

‖u( · , t)‖Lk(Ω) ≤ c(k,N,m, α, β, ‖u0‖Lβ(Ω))

for all k such that 1 ≤ k < β and t ∈ (0, T ).

For any k > max
{
β,m− 1, N2 (1−m)

}
, taking w = u

k+m−1
2 , p = p1 := 2k

k+m−1 in (3.1),

we know that the inequality

(3.13)

∫
Ω
uk = ‖u

k+m−1
2 ‖p1Lp1 (Ω) ≤ c6‖u

k+m−1
2 ‖p1σ1

H1(Ω)
‖u

k+m−1
2 ‖p1(1−σ1)

Lγ1 (Ω)

holds for each γ1 ∈ (0, p1), where c6 = c6(N,m, γ1, k) and σ1 = 1/γ1−1/p1
1/N−1/2+1/γ1

∈ (0, 1).

Taking γ1 = 2β
k+m−1 , it is easy to see that p1σ1 < 2. It then follows from the boundedness

of ‖u( · , t)‖Lβ(Ω), (3.2) and (3.13) that∫
Ω
uk ≤ c7‖u

k+m−1
2 ‖p1σ1

H1(Ω)

≤ c8‖∇u
k+m−1

2 ‖2·
p1σ1

2

L2(Ω)
+ c8‖u

k+m−1
2 ‖p1σ1Lγ1 (Ω)

≤ mk(k − 1)

(k +m− 1)2

∫
Ω
|∇u

k+m−1
2 |2 + c9,

(3.14)

where c7, c8, c9 depend on k, N , m, α, β, and ‖u0‖Lβ(Ω). Substituting (3.14) into (3.11),

we obtain the differential inequality

(3.15)
d

dt

∫
Ω
uk +

∫
Ω
uk ≤ c10,

where c10 = c10(k,N,m, α, β, ‖u0‖Lβ(Ω)), and hence, by an argument of differential in-

equality, (3.15) results in ∫
Ω
uk ≤ max

{∫
Ω
uβ0 , c10

}
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for any k > max
{
β,m− 1, N2 (1−m)

}
.

When β ≤ k < max
{
β,m − 1, N2 (1 −m)

}
, we apply the interpolation inequality to

derive the uniform boundedness for ‖u( · , t)‖Lk(Ω) and, from which, we can find a constant

c = c(k,N,m, α, β, ‖u0‖Lk(Ω)) such that

‖u( · , t)‖Lk(Ω) ≤ c for all k ≥ 1 and each t ∈ (0, T ).

The proof is completed.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Using a similar argument as the one used in the proof of Theo-

rem 1.1 and applying the Moser–Alikakos technique [1], it can be shown that the solution

u( · , t) to problem (1.1) satisfies

(3.16) ‖u( · , t)‖L∞(Ω) ≤ c for all t ∈ (0, T ),

where c = c(N,m,α, β, ‖u0‖L∞(Ω)). Since T ∈ (0, Tmax) is arbitrary, (3.16) yields that

Tmax =∞, which completes the proof.

A. Appendix

For completeness, we give a detailed proof for (2.18).

Proof of (2.18). Let ρ = 1
1−δ = O(1). Then ρ > 1, thanks to (2.17), we can find a constant

C = C(N,m,α, β) > 1 such that

(A.1)
d

dt

∫
RN

uqk +

∫
RN

uqk ≤ Cqρk max

{
1,

(∫
RN

uqk−1

)2
}
.

Setting yk(t) =
∫
RN u

qk , we have from (A.1) that

yk(t) ≤ yk(0)e−t + Cqρk max

{
1, sup

t≥0
y2
k−1(t)

}
(1− e−t)

≤ yk(0) + Cqρk max

{
1, sup

t≥0
y2
k−1(t)

}
.

(A.2)

Let M := max{1, ‖u0‖L∞(RN ), ‖u0‖Lβ(RN )}. The interpolation inequality yields that

(A.3) yk(0) =

∫
RN

uqk0 ≤
β

qk
‖u0‖qkLβ(RN )

+
qk − β
qk
‖u0‖qkL∞(RN )

≤M qk .
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Substituting (A.3) into (A.2), there exist C, C̃ depend on N , α, β and M , such that

yk(t) ≤M qk + Cqρk max

{
1, sup

t≥1
y2
k−1(t)

}
≤ 2Cqρk max

{
M qk , sup

t≥0
y2
k−1(t)

}
≤ C2ρk max

{
M qk , sup

t≥0
y22

k−2(t)

}
≤ C̃C1+2

2ρ(k+2(k−1)) max

{
M qk , sup

t≥0
y22

k−2(t)

}
≤ · · ·

≤ C̃C
∑k−1
j=0 2j

2ρ
∑k−1
j=0 2j(k−j+1) max

{
M qk , sup

t≥0
y2k

0 (t)

}
= C̃C

2k−1
2ρ(2k+1−k) max

{
M qk , sup

t≥0
y2k

0 (t)

}
,

here we have used the fact qk = 2k + α+ β − 1 ≤ (α+ β)2k. Therefore,∫
RN

uqk = y
1
qk
k ≤ C(N,α, β,M).

Letting k →∞, we obtain the desired result (2.18).
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