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Stratifying Lie Strata of Hilbert Modular Varieties

Chia-Fu Yu, Ching-Li Chai* and Frans Oort

Abstract. In this survey we explain a stratification of a Hilbert modular variety .#g
in characteristic p > 0 attached to a totally real number field E. This stratification
refines the stratification of .#g by Lie type, and has the property that many strata
are central leaves in .#g, called distinguished central leaves.

In the case when the totally real field E is unramified above p, this stratification
reduces to the stratification of .#Zg by a-type first introduced by Goren and Oort and
studied by Yu, and coincides with the EO stratification on .#g. Moreover it is known
that every non-supersingular a-stratum of .#p is irreducible. To treat the general
case where E may be ramified above p, a key ingredient is the notion of congruity,
a p-adic numerical invariant for abelian varieties with real multiplication by Og in
characteristic p. For every Lie stratum N, on .#g, this new invariant defines a finite
number of locally closed subsets Q.(N.), and N, is the disjoint union of these Lie-
congruity strata Q.(N) in N.

The incidence relation between the Lie-congruity strata enables one to show that
the prime-to-p Hecke correspondences operate transitively on the set of all irreducible
components of any distinguished central leaf in .#g, see Theorems and
The Hecke transitivity implies, according to the method of prime-to-p monodromy of
Hecke invariant subvarieties, that every non-supersingular distinguished central leaf
in a Hilbert modular variety .#g is irreducible. The last irreducibility result is a key

ingredient of the proof the Hecke orbit conjecture for Siegel modular varieties.

1. Introduction

Moduli spaces in characteristic p > 0 have natural stratifications coming from p-adic
invariants of the geometric objects they classify. For instance, the moduli space <71 ,, over
F, which classifies g-dimensional principally polarized abelian varieties in characteristic
p with symplectic level-n structure has several stratifications; e.g., the stratifications by
the Newton polygon (respectively the p-rank, respectively the a-number) of an abelian
variety. These stratifications are helpful in understanding the geometry and arithmetic of

moduli spaces.
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This article is a survey of the congruity stratification of Lie strata in a Hilbert modular
variety .#g over F, attached to a totally real number field E. We give complete definitions
and statements of results but no proofs, so “summary of results” is perhaps more befitting
than “survey”. Detailed proofs can be found in [9, Chapter 4]. We have included a long
introduction, together with preliminary materials in Sections[2H4], to make this article more
accessible. The actual summary itself in Sections which inevitably is quite technical,
occupies about a third of the total number of pages. The last Section consists of a list
of related questions.

Throughout this paper p is a fixed prime number, F is a totally real number field.

1.1. Motivation: the Hecke orbit conjecture for Siegel modular varieties

This paper was motivated by the Hecke orbit problem for the Siegel modular variety
A1, over Fy, with n > 3 and ged(p,n) = 1. For every F,-point x of 41, which
corresponds to a principally polarized abelian variety with symplectic level-n structure
(Az, Az, 1), the central leaf C%ylyn(a:) is the locally closed smooth subscheme of <71,

over Fp, characterized by

Cotyrn (@) Bp) = {y € Hp1n(Fp) | (Ay, \y)[P™] = (Az, Aa)[p™]}

see [30]. In other words for every geometric point y € <7, 1 »(F,), y lies in the central leaf
Ce, ., (x) if and only if the principally polarized p-divisible group (Ay, \,)[p™] attached
to y is isomorphic to (Ag, Az)[p™].

On the other hand, the prime-to-p Hecke orbit of z is the countable subset Hsp2 ( A;p)) ()
g

of ,Qfg’lm(ﬁp), consisting of all points [(A4., Az, 7.)] € %,17,1(@) such that there exists a
prime-to-p quasi-isogeny «a: A, --+ A, such that a*(\;) = A, and o*(n,) = 1.
The Hecke orbit conjecture for 47, 1 ,, predicts that

the prime-to-p Hecke orbit H is Zariski dense in the central leaf Co, | (7).

oy (1) ()

A complete proof will appear in |9, Chapter 8]; see also [5], [9, 8.1], |[L1] for outlines of the
proof. Below is a brief description of how Hilbert modular varieties enter the proof.

A starting point of the proof of the Hecke orbit conjecture for Siegel modular varieties
is Tate’s theorem that every abelian variety over a finite field admits sufficiently many
complex multiplications. This implies the existence of a Hecke-equivariant correspondence
from a product of Hilbert modular varieties to the Siegel modular variety, called the
“Hilbert trick”.

For every x € oy1,(F,), there exists a product of totally real number fields
Ei,...,E, with Y;_||E; : Q] = g, central leaves Cttn, (yi) in Hilbert mod-
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ular varieties Mg, i = 1,...,r, and a finite-to-one Hecke-equivariant cor-
respondence f: Cpp (y1) X -+ X Copp, (yr) —=> Dy, such that the image
under f of an irreducible component of C z, (y1) x -+ X C (yr) is in finite
isogeny correspondence with a locally closed subvariety of the Zariski closure

of HS (A(fm)(x) in Ce, s, (z).

P2g

In the above statement we have used the fact that the Zariski closure in C_z,, (yi) of the
prime-to-p Hecke orbit of y;, a countable subset of C. M, (yi) is both open and closed in the
central leaf C 4, (yi). See Subsections and for the definition of Hilbert modular
varieties .#f, and central leaves in them.

With the help of the action of the local stabilizer subgroup at a supersingular point
of the Zariski closure of the Hecke orbit Hsp2g ( A;p))(:c) in 71, we may further assume
that there is only one prime above p in O, for each i =1,...,7.

Changing the y;’s by Ej;-isogeny, we may also assume that each of the central leaves
Cottw, (yi) in A, is distinguished; see Subsection The critical information which comes

from the congruity stratification of the Lie strata is Corollary
Every non-supersingular distinguished central leaf in Mg, is irreducible.

It is known that every central leaf in .#F, contains a robust hypersymmetric point which
corresponds to an abelian variety B; over F, with at most two slopes, such that the natural
map End(B;) ®z Qp, — End(B;[p>]) ®z, Q, is an isomorphism. So we conclude that the

Zariski closure in C, , ,(2) of the prime-to-p Hecke orbit contains a robust

p2g (A;P)) (x)
hypersymmetric point; cf. |9, Chapter 8] and [10].
With a hypersymmetric point at hand, we are in a position to apply the local rigidity

of p-divisible groups [7], and the density of (z) in Cy, , () follows.

(p)

To recapitulate: the irreducibility of non—sii)gcfign)gular distinguished central leaves in

a Hilbert modular variety .#p implies the existence of a robust hypersymmetric point

in the Zariski closure of a Hecke orbit Hsp2g ( AEfg)(:z:) in the central leaf C, , ,(z). This
irreducibility result is non-trivial—we don’t know of any proof by “pure thought”.

In Subsections below we give a very brief introduction to Lie strata and Lie-

congruity strata on Hilbert modular varieties, as a tour map for Sections

1.2. Hilbert modular varieties

Given an element [.,5/,’7 of the strict class group C~1E of F, a positive integer n > 3 prime

to p, and a generator § of the free rank-one (Og/nOg)-module

(£ ®op, Dy jo/nZL" @0, Dgig) ©@/mz) bn(Fp),
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we have an associated Hilbert modular variety .# E?n s over Fp, which classifies principally
11O YHED

gpolarized abelian schemes of relative dimension g over F,-schemes, with real multipli-
cation by Op with symplectic level-n structures. See Subsection Definitions
and [2:4] for the precise definitions.

The Hilbert modular variety . Egngf is a reduced irreducible normal g-dimensional
1 OYHE D

scheme over Fp, and is a local complete intersection. It is smooth over Fp if and only if

E is unramified above p. When FE is ramified above p, the locus in .# gnﬁf consisting
310y Uhsip

of singular points is a closed subset of .# angﬁ all of whose irreducible components have
310 Usip

: : . a
codimension 2 in ‘///E,n,S,E, )
are all independent of the

Since geometric properties of the modular variety .# gn ST
216058 p

parameters (927, n,d), we will shorten .# f; s to A if no confusion is likely.
216058 p

Remark. Strictly speaking the Hilbert modular variety .# z are not a special cases

E.n,5F,
of PEL type modular varieties as defined in [23] unless the element [Z] is 0 in the strict
class group GIE. Still, the modular varieties .# anﬁf should be regarded as analogs of
210 Uhip

the Siegel moduli space <7 1, of g-dimensional principally polarized abelian varieties with
level-n structures; cf. Remark

We will not discuss those moduli spaces which classify g-dimensional Og-linear abelian
varieties in characteristic p together with Opg-linear polarizations of some fixed degree

which is divisible by p.

1.3. Central leaves in .#g

For an Fp—point x of a Hilbert modular variety .#x which corresponds to an abelian variety
with real multiplication by Op with level-n-structure (Ag, Ay, tz, M), the central leaf in
Mg passing through z is, by definition, the locally closed smooth subvariety of .#g over
E, such that

Conr (@) (Bp) = {y € ME(F,) | (Ay, Ay, 1y)[P™] = (A, Aas 1) [P}

Certain central leaves in Hilbert modular varieties .#g, called distinguished central
leaves, are irreducible. Every distinguished central leaf in .#F is a Lie-congruity stratum
of .#E. See Subsection for a short description of Lie-congruity strata, and Defini-
tions [6.2.1] and [6.3.5] for the definition of distinguished central leaves. Every central leaf

in g is in a finite isogeny correspondence with a distinguished central leaf. As already

mentioned, the proof of the Hecke orbit conjecture in [9, Chapter 8] depends heavily on

the fact that every non-supersingular distinguished central leaf in .#% is irreducible.
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1.4. The Lie stratification of .Zg

Deligne and Pappas [13| introduced a stratification of .# by the isomorphism classes of
Lie(A;) as vector spaces with actions by Op/pOpg, where x runs through all geometric
points of .#Zg, and Lie(A,) is the Lie algebra of the fiber at = of the universal abelian
scheme with real multiplication by Og over .#g. Under this stratification by Lie type, or
the Lie stratification of .4, the set underlying .#g is the disjoint union of Lie strata:
ME = Ugeng Ne. Here N, is the locally closed subset of .#g such that a point = of . is
in MV if and only if the isomorphism class of the (Og/pOpg)-module Lie(A,) corresponds
to the element e of the indexing set ng. Moreover each Lie stratum N, with the reduced
scheme structure is a smooth locally closed subscheme of .#Zg, and the Zariski closure of
N is a local complete intersection and is normal.

The indexing set T3¢ for the Lie stratification of .#g has a natural structure as a
finite poset (partially ordered set). The poset TESd is ranked, in the sense that all maximal
chains between any two elements of TESd have the same length. Moreover it has a unique
maximal element and also a unique minimal element. This partial ordering on ng is
compatible with the incidence relation of Lie strata, in the following sense: for any two
elements e;, e, € ’TESd, the Lie stratum N, is contained in the Zariski closure of N, if
and only if e; < ey. The Lie stratum corresponding to the maximal element in ng is
the smooth locus .Z3", consisting of all smooth points of .#g. The dimension of every
irreducible component of the minimal Lie stratum Ny, indexed by the minimal element
Q%(Ji,min of ng, is > ¢, odd Ju- The sum here runs through all places v of E above p whose

ramification index e, is odd, and f, := [k, : Fp], the degree of the residue field &, of OF, .

1.5. The a-stratification of .#Zp when E is unramified above p

In this subsection we assume that the totally real field F is unramified above p. In this
case the poset T2 is a singleton, the Hilbert modular variety .4 over F, is smooth, and

the Lie stratification of .#g is trivial.

(i) The stratification of the Hilbert modular variety .#g by the isomorphism classes of
the maximal a-subgroup scheme of A,[p] with action by O/pOpf attached to geo-
metric points [(Az, Az, Lz, Nz)] of A was studied in |14], called the a-stratification.

(ii) One of the main results of [14] says that if k¥ O F, is an algebraically closed field
and z, y are k-points of .#Zg such that the maximal (Og/pOg)-linear a-subgroup
schemes of A,[p] and A,[p] are isomorphic, then there exists an (Op/pOFg)-linear
isomorphism from A;[p] to Ay[p] which respects the principal polarizations. In
other words, the stratification of .#E by a-types is a natural generalization of the

EO stratification of Siegel modular varieties 47 1, defined in [29).
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(iii) The a-stratification of .#Zf has a unique dense open stratum, which coincides with
the ordinary locus .Z grd in A, i.e., the open subset .# grd of .#r whose points
correspond to ordinary abelian varieties. The complement of .# grd in Ag is a
smooth divisor D with normal crossings, and the a-stratification coincides with the
stratification of .#g associated to the divisor D. Moreover, some of the a-strata are

actually central leaves in .#Z.

The congruity stratification of Lie strata of Hilbert modular varieties .#g for pos-
sibly ramified totally real fields E, described in Subsections below, extends the
a-stratification for Hilbert modular varieties attached to totally real fields unramified
above p considered in this subsection: if E is unramified above p, then .#Zr has a single
Lie stratum, and the congruity stratification of this unique Lie stratum coincides with the

a-stratification.

1.6. The congruity stratification of Lie strata of .#g

A numerical invariant ¢(A4,) with values in a finite poset g, for g-dimensional principally
gpolarized abelian varieties (A, Az, t;) with real multiplication by Op attached to points
x of Mp, was defined in [40, 2.4]. This invariant, called congruity in [9, Chapter 4], is
a refinement of the a-type of A,, the invariant which defines the a-stratification. The
invariant ¢(A,) gives rise to a stratification on every Lie stratum N, of .#g: we have
Ne = |, Qc(Ne), where Q. (Ne) is the locally closed subset of Ne, consisting of points of
Ne whose congruity is ¢. Below are some properties of the stratification of N by congruity,

for every e € 7}3‘1.
(i) The finite poset Tp is ranked, and has a unique maximal element, denoted by 0.

(i) Each stratum Q.(N) is a smooth locally closed subscheme of N.

(iii) The Zariski closure in N, of Qc(Ne), is equal to Q<c(Ne) = | Jy<, Q(Ne), which

is smooth over E}, for every c € Tg.
(iv) The stratum Qg(MN) is a dense open subscheme of N.

(v) The complement of Qy(Ne) in N, if non-empty, is a divisor in N, with normal

crossings.

We call a subset of .Zg of the form Q.(N.) a Lie-congruity stratum of /.

A warning is in order, that the incidence relation between Lie-congruity strata is not
well understood yet. For instance we don’t know whether the Zariski closure (Q, (/\/g))zar in
AME of Q.(Ne) is a union of Lie-congruity strata, for every Lie-congruity stratum Qg(N);

see Question [10.1
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The Lie type and the congruity of an .;Sf,”v—polarized abelian variety (A, Az, t;) in charac-
teristic p depend only on the polarized Og-linear p-divisible group (A, [p™], Az [p>°], t=[p>°])
associated to (Agz, Az,tz). Since the isomorphism class of (Az[p™], Az[p™°], tz[p™>°]) does

not change under prime-to-p Hecke correspondences associated to SLQ(AE}J )), every Lie-

>]

congruity stratum Q. (M) is stable under all prime-to-p Hecke correspondences on .Zp.
More information on prime-to-p Hecke symmetries on Siegel and Hilbert modular varieties

in characteristic p can be found in [4,42].

1.7. Distinguished Lie-congruity strata

We will define a subset of the set of all Lie-congruity strata of .#g, called distinguished

Lie-congruity strata; see Definition [5.6 They have two useful properties:

(a) For any algebraically closed field & O F, and any two k-points x, z2 on a distin-
guished Lie-congruity stratum, there exists an Og-linear isomorphism from A, [p]
to Az, [p*°] which respects the principal Og-linear polarizations induced by \;, and
Azy-

(b) For any algebraically closed field £ D F,, and any k-point z € .#g(k), there exists
a k-point y in a distinguished Lie-congruity stratum, and an E-linear quasi-isogeny

from A, [p>] to A,[p>°] which respects the principal Og-linear polarizations.

Property (a) says that each distinguished Lie-congruity stratum is a central leaf of the
Hilbert modular variety .#g, consisting of all points in .#g with a fixed geometric iso-
morphism class of principally polarized O ®z Z,-linear p-divisible groups; these central
leaves are said to be distinguished. Property (b) implies that every central leaf on .#f is

in isogeny correspondence with a distinguished central leaf.

1.8. Specialization from distinguished central leaves to F-minimal points

A key result on the geometry of distinguished central leaves on a Hilbert modular variety
A is Theorem [0.1] which asserts that the Zariski closure of every irreducible component
of a distinguished Lie-congruity stratum on .#p contains an E-minimal point, i.e., an
E,—point Ty € J\fmin(E) whose underlying abelian variety A, is superspecial. In other
words Ay, is isomorphic to the product of [E : Q] supersingular elliptic curves over F,.
Theorem [9.1] follows from the combination of Theorems [7.1] and Theorem [7.1] says
that the Zariski closure of every irreducible component of a distinguished Lie-congruity
stratum which is not contained in the minimal Lie stratum M., contains an irreducible
component of a distinguished congruity stratum in Nyi,. Its proof is intricate; see Subsec-

tion [7.4] for an impressionistic sketch. Theorem says that the Zariski closure of every
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irreducible component of a congruity stratum in the minimal Lie stratum N, contains
an F-minimal point.

A consequence of Theorem is the fact that the prime-to-p Hecke correspondences
operate transitively on the set of all irreducible components of any distinguished central
leaf Q.(Ne) of A ; see Corollary This Hecke transitivity statement and the method of
prime-to-p monodromy [6}, 4.4] imply the irreducibility of every non-supersingular distin-
guished central leaf in .#p; see Corollary[9.4] The last irreducibility result in Corollary[9.4]
is a crucial ingredient of the proof of the Hecke orbit conjecture for Siegel modular varieties
in characteristic p; see Remark This connection to the Hecke orbit problem was the
main motivation of [40].

The congruity stratification of a Lie stratum of a Hilbert modular variety was first
defined in 40, 2.4]; a succinct proof of Theorem is in [40, 3.3]. The observation
that certain Lie-congruity strata are actually central leaves in Hilbert modular varieties
appeared in [12, Section 6], |40} 2.5] and [40, 2.8]. The readers are referred to [9, Chapter 4],

which is an expanded version of [40], for more information and proofs.

1.9.

The length of this article is due partly to a long Section [3|on the definitions of type spaces
attached to a totally real number field. Readers who are familiar with basic properties of
Hilbert modular varieties are urged to go directly to Section [5], and consult Section |3 only
when necessary.

The rest of this article is organized as follows. In Section [2| we recall the definition of
Hilbert modular varieties. In Section[3|we define indexing posets for the Lie stratification of
M and for the congruity stratification on Lie strata of .#p. The stratification of a Hilbert
modular variety .#g by Lie type and its basic properties are reviewed in Section 4l The
congruity invariant is defined in Section 5] In Section [6] we explain some basic properties
of the congruity stratification of a Lie stratum, including the definition of distinguished
Lie congruity strata. The main results on distinguished central leaves, Theorems and
[B:1] are explained in Sections [7] and [§ respectively. In Section [9] we explain how these two
theorems imply the irreducibility of non-supersingular central leaves in Hilbert modular

varieties. In Section [10| we discuss some questions on stratifications of .#Zg.

2. Hilbert modular varieties

We fix a totally real field F, a prime number p, and an integer n € Z with n > 3 which
is relatively prime to p. Let Z[(,] := Z[T]/(®,(T)), where ®,(T") is the n-th cyclotomic
polynomial. Let . be an invertible Og-module, and let .ZH{ be a notion of positivity for
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£, i.e., a choice of a connected component of
(,,%R)X = ISOH]@E®QR (OE®QR7$ XqQ R).
Let & = (L, %), Let

b€ (ZLY ®o, E/Q/n.i” Rop E}Q) @/nz) Wn(Z[Gn, 1/n])

be a generator of the free (Or/nOg)-module

(fv R0y 'DE}Q/RB?V R0g DE}Q) 2/nz) 1 (Z[Cny 1/n]),

where £V := Homo, (%, Op), D;J}Q is the inverse different of E/Q, and pu,(Z[Cn, 1/n])
is the cyclic subgroup of Z[(,, 1/n]* of order n generated by the element (,, € Z[(,, 1/n]*.

In this section we recall the definition of a Hilbert moduli scheme .# :Egi sovera number
ring Z[1/n, ;] which classifies principally .:?Z:polarized abelian schemes with real multipli-
cation by Op with d-symplectic level-n structures. Abelian varieties with real multiplica-
tion by O over C are uniformized as quotients of O ®qC by discrete rank-two projective
Op-submodules of O ®q C; see Remark [2.2.1] - (iii). This leads to the uniformization of
M Eg:nﬁ X Spec(Z[n,cn]) OPeC(C) and the interpretation of Hilbert modular forms as sections
of equivariant line bundles on Hilbert modular varieties. See [35, p. 11] for an informative
discussion on the history of Hilbert’s modular group and modular functions, including
the first papers [2,3] on Hilbert modular forms by Blumenthal, and the correction [26] by
Maass of an error in [2}3].

After this section, we will consider only I:Ivﬂbert modular varieties over F,, and the

notation .4 ]‘;? 3E for a geometric fiber of .# gng in characteristic p will be shortened to
.//E. o

2.1. Abelian varieties with real multiplication

2.1.1. Let S be a scheme. An abelian scheme with real multiplication by Og over S is a
pair (A — S,¢), where A — S is an abelian scheme of relative dimension [E : Q], and
t: O — Endg(A) is a ring homomorphism. Note that ¢ is injective because Endg(A) is

torsion-free.

2.1.2. Let (A, ) be an abelian variety with real multiplication by O over a field K.

(a) Denote by Homg (A, A’) the group of all K-homomorphisms h: A — A’ from
A to the dual abelian variety A! such that h* = h under the canonical identification of
A with (AY)!. The abelian group Hom%’IEn(A,At) has a natural structure as a projective

Og-module of rank one.
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(b) The (E ®q R)*-torsor
Isompg,r (E ®g R, Hom%ygl(Av A" ®Q R)

has a connected component, denoted by Homsggl(A, At)ﬁ, which is uniquely determined
by the property that every element of Homg ™ (A4, ANHEn Homgy ™ (A, At) is a polarization
of the abelian variety A.

Remark. The pair (Homg (A4, A"), HomZ3™ (A, A")g) attached to an abelian variety (A, 1)
with real multiplication by OF is an invertible Og-module with a notion of positivity. The
set of all isomorphism classes of invertible Og-modules with notions of positivity is the
strict class group Clg of E. Thus the image of the pair (Homg ™ (A, A"), Homg ™ (A, AHE)

in Clg is a discrete invariant of (A, ).

Definition 2.2. Recall that .& = (&, %) is an invertible Op-module with a notion of
positivity. Let (A — S,¢) be an abelian scheme over S with real multiplication by Op.

(1) An Z-polarization of (A, ) is an Og-homomorphism \: & — Homsg;ns(A, At) such
that for every point s € S, the map As: £ — Homg (A, AY) is an isomorphism
and sends every element of £ N .,?H{ to an Op-linear polarization of Aj.

(2) An Z-polarization \: & — Homd™ (A, A") is said to be principal if the natural

homomorphism

Z R0, A— Al
is an isomorphism.

Here .Z ®o, A is the tensor product of the Og-linear fppf sheaf A over S with the

projective Og-module .Z, which is representable by an abelian scheme over S, again
denoted by .Z ®p,, A.

Remark 2.2.1. Let (A,¢) be an abelian variety A with real multiplication by Op over a
field K.

(a) The natural map
as: HomG" (A, A" ®o, A — A

is an isogeny. This isogeny a4 is an isomorphism if and only if there exists a principal
(Homg;n(A, AY), Hom?%';n(A, A")}b)-polarization on (A4, ¢).

(b) If the Opg-linear abelian variety (A, «) admits an Og-linear principal polarization
pr: A — A', then the invariant [(Hom@™ (A, A"), Hom3™ (A, A)g)] of (A,¢) is the
zero element of the strict class group Clg. So the invariant [(Hom%’;n(A, AY),
Homgy™ (4, AHE)] is an obstruction for the existence of an Op-linear principal po-

larization on (A, ¢).
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(c) Suppose that K is algebraically closed.

i) If char(K) = 0 then the isogeny a4: Hom3 " (4, A) ®p, A — Al is an isomor-
OE E
phism.
(ii) If K = C, then H;(A(C),Z) is a projective Og-module of rank two, and the

invertible Og-module Homg ™ (A, A*) is isomorphic to

2
Homo, ( \H1(A(©).2),0r ) 8o, Dyl
O

-1
where DE/Q

It is a fact that for every discrete rank-two Og-submodule Q) of ¥ ®g C, there

is the inverse different of E/Q.

exists an abelian variety B with real multiplication by Op over C such that
B(C) is Og-linearly isomorphic to (E ®q C)/Q.

(iii) If char(K) = p > 0, then Ker(ay) is a finite group scheme over K whose order
is a power of p. Moreover there exists an abelian variety (Aj, 1) with real
multiplication by O over K, a principal Og-linear polarization p: A; — A,
and an Og-linear isogeny (A,t) — (A1, 1) over K.

Remark 2.2.2. There are examples (A, () of abelian varieties with real multiplication by
Op such that the isogeny a4 is not an isomorphism, and can be constructed as follows.
Suppose that there exists a finite place v of O above p with residue field degree f, > 1.
Then there exists an algebraically closed field K of characteristic p and an abelian variety
(A1,11) over K with real multiplication by Op whose Lie type is not self-dual. It follows
from Lemmas and that the isogeny aa: Homgy" (A1, A}) ®o, A1 — Af is not

an isomorphism.

Remark 2.2.3. Let (A, \,¢) be a principally gpolarized abelian scheme with real mul-
tiplication over a scheme S. As explained in Remark (a), there exists an Op-linear
principal polarization on A if and only if the image of Z in the strict class group GIE is
0. If the element [.:?7} € GIE of & is nonzero, then there is no Og-linear principal polar-
ization A — A!, but there exist (many) separable Opg-linear polarizations on A: by weak
approximation for ,,5?: every element of £ N .,S,”IR'; whose image in . /p.% is a generator of
the cyclic (Og/pOg)-module £ /p.Z corresponds to an Opg-linear separable polarization
of (A4,1).

Definition 2.3. (a) Recall that 0 is a free generator of the (Og/nOg)-module

(.Zv ® DE}Q/n.ZV ® DE}@) ®z/nz) Mn(Z[Cny 1/n]).
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For each element [ € .Z, denote by

(s )nzs: (Op/nOE)§? = jins

the alternating pairing on the free module (O /nOp)§? over the sheaf of rings (Op/nOg)s
on Se; attached to the free (Op/nOg)-module (O /nOg)%? with generators e;, ez, which

is equal to the composition of the canonical (Or/nOpg)s-linear alternating pairing

2

(0p/n0R)$* - N (Op/nOR)E?
(Or/nOE)

with the homomorphism of group schemes

2
/\ (Op/nOR)E* = pns, a-e1Aeyr (Trg)q®1)(1-6 - a)
(Op/nOg)

for all local sections a of (Og/nOg)s, where
Trg/®1: (DE}Q/ TLD]E}Q) ®(z/nz) Hn,S = Hin,S

is the homomorphism of group schemes induced by the (E/Q)-trace.
(b) Let S be a scheme over Z[1/n,(,]. Let (A — S,¢) be an abelian scheme over S
with real multiplication by O, and let A be a principal gpolarization of (A,¢).

A 0-symplectic level-n structure on (4, ), ) is an Opg-linear isomorphism
(Or/nOp)§ —= Alnl

such that for every [ € .Z, the diagram

(Op/nOR)% x5 (Op/nOp)% — 1 Aln] x5 Aln]

<'7'>n,571l llAX/\(l)
(5 n,
Fin,s S Aln] x5 Al[n]

commutes, where

< cyt >n7A: A[n] Xs At[n] — Un,S
is the Weil pairing for A[n].
Definition 2.4. (a) Denote by

///Eij: (Z[1/n, ,]-Schemes) — (Sets)

the functor from the category of Z[1/n, (,,]-schemes to the category of sets as follows. For

every Z[1/n, (,|-scheme S, .4 gng(S ) is the set of all isomorphism classes of quadruples
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(A — S, A\ t,n), where (A — S,¢) is an abelian scheme with real multiplication by Og
over S, A is a principal .Z-polarization of (4,t), and 7 is a é-symplectic level-n structure.

(b) Pick and fix a ring homomorphism from Z[1/n,¢,] an algebraic closure of F,.
Denote by .# B i the restriction of the moduli functor .# Ens to the category of [F,-
schemes.

Proposition 2.5. (a) The functor %g ~ is representable by a scheme of finite type

E,n,6~ —
over Z[1/n,(,], again denoted by //lgng. The structural morphism ///gng —

Spec(Z[1/n, () is faithfully flat, normal and is a relative complete intersection.

(b) The geometric fiber ‘///E%LSF is normal and irreducible. It is smooth over F, if and
2 1Y ED

only if E/Q is unramified above p.

, _ Z.sm Z
(c) Suppose that E/Q is ramified above p. Then the smooth locus //[E,n,gfp of %E,n,gfp

is a dense open subscheme of %E‘fngﬁ. The singular locus
216, Usip

e D Zsm
‘/Slng - %E,N,S7E AN %Eﬂ’b,g,ﬁp

with the reduced structure is a local complete intersection, and every irreducible com-

ponent of Viing 1s of codimension 2 in ‘//}Z?nﬁ'

Proposition [2.5]is a consequence of |33, Theorem 5.1] and 13, Theorem 3.3]. Here we
explain the irreducibility statement (b). We have an arithmetic toroidal compactification

M ;;Z 7;,23 of A gi 3 over Z[1/n, (,] which is again a complete intersection over Z[1/n, (,]. It

follows that the geometric fiber .# };? ;LZEF is normal. Since the geometric generic fiber of
2 1HYHED

M gn 5 is geometrically irreducible by complex uniformization, so is the geometric fiber in
characteristic p.

Remark 2.5.1. As a special case of Remark the universal abelian scheme A —

M gnEF with real multiplication by O has many separable Og-linear polarizations, and
s 10yUsip

it admits an Og-linear principal polarization if and only if the element [,,5/,’2? in the strict

class group of F is zero. If [£] is non-zero, one can view the .# gnSF as an analog of
2y 10 UHi D

an irreducible component of 7 4, with ged(d,p) = 1, where 7, 4, is the moduli space

over F, of g-dimensional polarized abelian varieties (A, \,n) with deg A\ = d? and level-n

structure.

2.5.2. In the rest of this article we will consider only Hilbert modular varieties .# g; 5T
216,058 p

over [F,. Often we will also suppress the parameters ,5:’7, n and 0 from the notation, and

shorten .# gnSF to .4, if there is no risk of confusion.
10 UHsip
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3. Type spaces

This section contains the definitions of two finite posets T34, 75 associated to the totally

real number field F. They are natural indexing sets for the Lie stratification of the Hilbert

modular variety .#g, and for the congruity stratification of Lie strata of .#x. The partial

ordering of these posets are compatible with the incidence relation between strata in the

respective stratifications.
We recommend readers to go directly to Definition and skip the rest of this

section, and return to this section only when necessary.

3.1. Product decomposition of the ring O ®z A(F,)

3.1.1. Notations related to the totally real field E and its p-adic completion F ®g Q).

e Denote by X, the set of places of E above p.

o Let v € X, be a place of E above p and let £, the v-adic completion of E at v.

Let O, = Opg, be the ring of integers in FE,, let g, be the maximal ideal of
Og,, and let K, := Op, /py, the residue field of O, .

Let g, = [Ey : @), fo := [k : Fp], and let e, = e(E,/Q,) be the absolute
ramification index of FE,.

Denote by 7, a generator of the maximal ideal g, of O,.

Let E," be the maximal subfield of E, unramified over @, and let Opur be the
ring of integers of E".

Let Fry,, be the arithmetic Frobenius map (y — y?) on k,. We will identify
the Galois group Gal(k,/Fp) with Z/ f,Z, by the isomorphism which sends the
element Fr, in Gal(k,/Fp) to the element 1+ f,Z in Z/ f,Z.

Let fg :=lem{f, | v € ¥E,}, the least common multiple of all f,’s.

e Let & be perfect field containing g, where £ denotes a finite field with p/# elements.

Denote by A(k) the ring of all p-adic Witt vectors with entries in k.

Let o be the continuous ring automorphism of A(x), which sends every infinite
Witt vector (ag,ai,...,an,...) in A(k) to (ab,al,... ah,...).

For every v € ¥, define a torsor I, = I, for the cyclic group Gal(k,/F,) =
Z] foZ by

I, = VK Homring,cont(OEl‘}ra A(H)) — Homring(ﬂva K,),

so that for every element ¢ € I, ., the element 1 mod f, € Z/ f,Z sends i to the

element oo € I, .
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3.1.2. We have direct product decompositions of rings
OE®ZZp: H OEU and 0E®ZFp: H OEv/pgv.
’UEEE,p ’UEEE,p
For every perfect field k containing kg, we have direct sum decompositions of rings
Og, ®z, A H O, @Oy, Mr) and  Op, ©z, k = H OE, Oy i) K-
74€I'u K ie[’v,n
So we get a product decomposition

(3.1) OpezAk) = [[ Il Om @@= T I AY

UEEEPZEIU P UEZEJ, ie[uw
where A(H)z()i) denotes the complete discrete valuation ring
A(k){) = O, B0 pyr 1) MK)

with residue field x and absolute ramification index e,. The maximal ideal of A®) = A(x)®
is generated by the element 7, € Op,. From the product decomposition of the ring
Ofr ®z A(k), we see that every finitely generated module over O ®7 A(k) is a direct sum,
over all pairs (v, 1), of direct sums of cyclic modules of the discrete valuation rings Ag,i).

Similarly, for every field K containing s, not necessarily perfect, we have a product

decomposition

32) OpezK= [ Il 95 ®0wmsK= 1] [ =T/T)&wq K
UEEE,piEI'U,K ’UEZEJ,’LIEIU,K

where

Iv,K = I’U,,‘{E = Homring(ﬁva KE) = Homring(’iva K)

for every v € ¥ p, and k,[T] is the polynomial ring over &, in the variable T'. It follows
that every finitely generated module over O ®7z K is isomorphic to a direct sum, over all

pairs (v, 1), of direct sum of cyclic modules of the ring
(Ro[T1/(T%)) @,y K = K[T)/T K[T].

3.2. Type spaces of finite (O ®z K)-modules

In this subsection, K is a field containing kg. The type spaces considered in this article
are isomorphisms classes of modules over Op ® K which can be generated by two elements,

together with natural partial ordering compatible with specialization.

Definition 3.2.1. Let K O I, be a field which contains a finite subfield kg with plE

elements.
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Denote by 7 ik to be the set of all isomorphism classes of modules over Op ® K

which can be generated by two elements.

We will identify 7 r with the set consisting of all collections of sequences of pairs

of the form

€= (ﬁy)vEEE,p = ((ez(zi,)lvevz,
(3.3) |
s.t. e(z)

v, 1’ v2€{01 U}’ ()1 60)2

for all v € ¥, and all @ € I, . An element e as above corresponds to the isomor-
phism class of the (Og ®z K)-module

RO
b D (OEv (©pyei) K /70" O, @0y i) K>

VEX R P ’LGIU K

el )

Let K(Op ®z K) denote the Grothendieck group of finitely generated (O ®z K)-
modules. Denote by TE?K C TE,k the subset consisting of all isomorphism classes of
modules over O ®7 K whose image in K (Op ® K) is equal to the image of Op ® K
in K(Op ®z K).

Following the explicit form (3.3|) of 7T i, we will identify the type space T with

the set of all collections of sequences of pairs
(@) @) D @) i) ) ) ) _
<(€v,1’ ev,?)iefu,K)UEEEp 5.8 €u,10 60,2 €N, €u,1 < €v,2> €1 + €y2 = €
forallv € ¥, and all i € I, . Here N denotes the set of all non-negative integers.
Denote by Tk i the set of all collections of sequences

c= (Qv)UEEE,p = ((cvi))iEIU,K)UEZE,p s.t. 0 < cz(Jl) < ey

forallv € ¥g,and all i € I, . We will identify 7 g with the set of all isomorphism
classes of cyclic (O ®z K )-modules.

Remark 3.2.2. (a) For any two fields K, K’ containing kg, every ring homomorphism

h: K — K' induces isomorphisms

I,k — Iyg, Tex — Tek', 7?7?[( — TE?KM TEK — TEK'

Often we will suppress the subscript “K” and shorten the notations I, r, Tg K, 'TES‘?K,

TE,K to Iy, TEk, , TE respectively, when there is no risk of confusion.
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(b) The type space Tg is a direct product of spaces Tg,, where v runs through all
v € ¥gyp. The same holds for ’TSd and Tg. Explicitly, 7g, consists of all sequences of
pairs
(e(i) ei)Q)ier’ e ei)2 €{0,1,... ey}, el < 1())2 Viel,

v,1 =

and similarly for 75 and 7.

(¢) Elements of T ®.x and TES‘}K will be called self-dual types. The Lie type of any
principally Dizpolarized abelian variety with real multiplication by Of over K is self-dual.
Similarly the Lie type of any self-dual rank-two Opg-linear p-divisible group over K, is
self-dual. See Lemmas [4.2.2] and [4.2.3]

Definition 3.3. We define partial orderings on the type spaces Tz, T5¢ and T as follows.

@ @)

j;v71’ej;v,2)ielv,k)veEE,p for j = 1,2. Define

(i) Let ¢y, e5 be two elements of Tg, e; = ((e
ez ey if

68;1<eg)1 and 65)1+6512<€gz}1+3§2},2a Vv eXpy Viel,

for all v e ¥g, and all 7 € I,,.

(ii) The restriction of the partial ordering < on 7Tx induces a partial ordering on 75
@ @

.10 ej;v,2)ielv,k)uezE,,, for

Explicitly, if e;, e, are two elements of 7'5(1 with e; = ((e
7 =1,2, then

eze egll<€g)vlv Vo,i.

Note that the last condition is equivalent to 6;3)72 < 6(12}72 for all v € ¥, and all

1€ 1.

(iii) For any two elements ¢; =

(4) . .
j ( J,v)veZEyp,z‘er n7g,j=12,

e = c% §cgz), Vv e Xgy, Vie 1,
Remark 3.3.1. (a) The poset T54 is ranked, in the sense that any two maximal chain
between two comparable elements have the same length.
(b) The poset T has a unique maximal element e, ,, and a unique minimal element

e The (v,7)-component (e (0) e ) of €.y 18 (0,e,) for all v € ¥g ), and all

min- maxv 1 ma)(‘7v,2
i € I,. The (v,i)-component (e fn)mvl,ef;)in’vg) of enin is (lev/2], [€n/2]) for v € Spy

and all 7 € I,,. Here |e,/2] is rounding e, /2 down to the nearest integer, while [e,/2] is

rounding e, /2 up to the nearest integer.

3.3.2. Let S be a scheme over a field containing k. Let M be a coherent Og module,
endowed with an action by Og, i.e., a ring homomorphism O — Endg(M). For every
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point s € S, the product decomposition (3.2)) with K replaced by the residue field k(s) at
s induces a decomposition of the fiber My as a module over O ®z £(s). Denote by e/
the element in the type space Tg () <— Tp,x determined by the (O ®z k(s))-module
M.

Lemma 3.3.3. Let M be a coherent Og-module as in Subsubsection |3.3.2. Let s, s’ be

points of S. If s is a specialization of s', then ey s = epy o
The proof of Lemma, is left as an exercise.

Definition 3.3.4. Define a function strdim: TESdk — N by

strdim(e) = Z Z (6511)2 - 61(12)1)
’UEZE’p i€l

ife= (((evz,)lv eg;g))ielu)veg&p'

Definition 3.4 (Local version of Definition . Let v be a place of E above p and
let K be a field which contains a subfield with pf* elements. Let I, xk = Homying (Ko, K),
regarded as a torsor over Gal(k,/F,) = Z/f,Z. The ring O, ®z, K admits a natural

product decomposition
Or, 92, K = ] (Or. Sopi K).
iGIU,K

(i) Denote by Tk, k the set of all isomorphism classes of modules over O, ®z, K which
can be generated by two elements. We identify Tg, x with the set consisting of all

sequences of pairs
e = (0 09),; o 0B <b)) <ey, Vie Dk

A sequence of pairs as above corresponds to the isomorphism class of the (Op, ®z,
K)-module

(1) (3)
@ (Og, ®(’)E3r,iK)/(7Tgl Og, ®0E5r,iK)@<OEU ®0E3r,z’K)/(7T32 OEU®(9ESY,¢K)-

1€y K

(ii) Denote by ng, 5 the subset of Tg, gk consisting of all elements ((bgi), béi))) in

i€, i

Tr, i such that b\ + b5) = e, for all i € I, .
(iii) Denote by Tg, i the set of all sequences
co = (Nier, o, ) €{0,1,... e}, Vi€ L.

This set Tp, i is naturally identified with the set of isomorphism classes of cyclic
(Og, ®z, K)-modules.
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Remark 3.4.1. (a) Each of the local type spaces Tg, K, TEiK and T, x has a natural
partial ordering, obtained by suppressing the quantifier “Vv € Xg ;" in Definition
(b) Suppose that K is a field which contains a subfield with p/# elements. Then the
finite poset Tx i (respectively Tpde, T k) is the product, over all v € X, of the finite
posets Tg, i (respectively 7;3721 K TEyK)-
¢) We have a local version strdim,,: — N of Definition [3.3.4] given
We h local ion strdim, : T§? ;- — N of Definition (3.3.4) given by

srdim, (60,6 her ) = 3 08— )

i€ly K

Then strdim(e) =), 5, ) strdim,(e,).

3.5. Newton polygons for abelian varieties with real multiplication

We define a finite poset NP%I, which encodes Newton polygons of g-dimensional abelian

varieties with real multiplication by Op.

Definition 3.5.1. (a) Denote by NP3 the set of all families of pairs ((s,,1, 5v,2)Jvesy,, Of

non-negative rational numbers such that

e 0< 5,1 <sp2<1,

® 5,1+ Sp2 =1,

o [E,:Qp]sy1 € Nand [E, : Qp] - sp2 € N whenever s,1 < y.2,
for all v € X .

Elements of NPSEd will be called self-dual Newton E-polygons, often shortened to “New-
ton E-polygons” or “Newton polygons” if there is no risk of confusion.

(b) For each element s = ((sy.1, 8%2))7}62&? in NP?Ed, denote by I's C R? the union of
the segment from (0,0) to ([Ey : Qpl, [Ey : Qp] - $p,1) and the segment from ([E, : Qp], [Ey :
Qpl - s0,1) to (2[Ey = Qpl, [Ey : Qp)), for every v € X ;. This family (I's )vesy , of polygons

2v

in R? is the more classical form of s.

Definition 3.5.2. We define a partial ordering on NP%i such that any two elements

s = ((5071’ 80,2))1)6215,;77 §/ = ((S;,lv 5;,2))1162&;; € NPSLg7

we have

IV

<s = (Sv,l > 3271, Vv e EE,p).

Equivalently,
<s < (T, liesabove I'y, Vv e Xpy).

[V
|,
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Remark 3.5.3. (a) The finite poset NP5 is a product of finite posets NPSEdU forallv € ¥g .
(b) For each v, the finite poset NP%dv is linearly ordered, and

card(NPSZ ) = 1 4 [[E2@l],

(c) Let A be a g-dimensional abelian variety with real multiplication by Op over an
algebraically closed field £ O F,,. For each place v of E above p, the rank-two Op,-linear
p-divisible group A[p°] is either isogenous to direct product of two isoclinic p-divisible
groups of height [E, : Qp], with slopes s, 1 and s, 2, or is isoclinic with slope 1/2. In the
latter case we say that A[p°] is supersingular and let s, 1 = sy 2 = 1/2. The element
(80,1, 80,2) Jvesp, € NP3 defined this way is said to be the Newton polygon associated
to A; cf. Definition

(d) The partial ordering on NP5 is compatible with specialization; see Lemma

(e) The minimum element in NP5$ for the above partial ordering is the element s Eo
whose v-component is (1/2,1/2) for every v € Xpg,, called the supersingular Newton
polygon.

The maximal element in NP3 for the above partial ordering is the element s E.ord

whose v-component is (0, 1) for every v € X, called the ordinary Newton polygon.

4. Stratifying Hilbert modular varieties by Lie types

4.1. Review of Dieudonné theory

We use covariant Dieudonné theory for commutative finite group schemes and p-divisible
groups over perfect fields of characteristic p.

Let k 2 F, be a perfect field. Let A(k) be the ring of p-adic Witt vectors with
entries in k. Let o be the continuous automorphism of A(x) which sends every element
(ag,a1,...,an,...) € A(k) to (ah,dl,... db,...).

Let R, be the (non-commutative) ring generated by A(k) and elements F, V, with

defining relations
Fa=%F, aV=V°%, VYVacAk) and FV=VF =p.

Let CFGS, be the category of commutative finite group schemes over k, and let
DM, ¢ be the category of modules over R, which are of finite length as modules over
A(rK).

Denote by p-Div, the category of p-divisible groups over x, and denote by DM , the

category of modules over R, which are free of finite rank as modules over A(k).

4.1.1. We have an exact covariant additive functor

D: CFGS, — DM,
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which is an equivalence of abelian categories and satisfies the following properties.

(i) For every commutative finite group scheme G over k, with relative Frobenius and

Verschiebung homomorphisms
Frg/: G — GP .= @G X (Spec(r),Frz) Opec(k) and  Verg,: G» - @q,
the operator Vg on D(G) is equal to the composition

D(Frgyy) o~ @1pq)

D(G) D(GP) —== A(K) ®(5a(m)) D(G) ————= D(G),

and the operator Fg is equal to the composition

r—1Qx ]D)(VerG/,@)

]D)(G) A(H) ®(0’,A(l{)) D(G) —= D(G(p)) D(G)

(ii) A commutative finite group scheme G over k is etale (respectively multiplicative) if
and only if Vg (respectively F¢) is bijective.
(iii) If the relative Frobenius homomorphism
Frg/: G — G
is 0, then we have a natural isomorphism
D(G) = Lie(G)P := Lie(G) @y ) 5-
4.1.2. The Dieudonné functor I in Subsubsection [£.1.7] induces an exact additive functor
D: p-Div, — DM
which is an equivalence of categories with the following properties.

(i) For every p-divisible group X over x and for every m € N, we have a functorial
isomorphism

P "D(X)/D(X) = D(X[p™])
of R,.-modules.

(ii) The operators Vx, Fx on the Dieudonné module D(X) of a p-divisible group X over

K are equal to the compositions

]D)(FI‘ m) — 0'71®1
D(X) —— = DX D) —== A(K) (o, () D(X) ——— D(X)
and
T x - D(Verx/,.)
D(X) 21 o A(K) ©(pa () D(X) —> D(X @) X p(x)

respectively.
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(iii) A p-divisible group X over k is etale (respectively multiplicative) if and only if Vx
(respectively Fx) is bijective.
(iv) For every p-divisible group X over x we have natural isomorphisms
Lie(X) = D(X)/V(D(X)) and HE(X/k) = D(X)/pD(X),
so that the short exact sequence
0 = V(D(X))/pD(X) — D(X)/pD(X) — D(X)/V(D(X)) = 0

is identified with the Hodge filtration of the first de Rham homology group H{®(X/k)
of X.

The formulas in Lemma below have already been stated in Subsubsections[4.1.1(iii)
and 4.1.2{(iv). We give an explicit isomorphism D(X [F]) 2 Lie(X[F])® as an illustration.

Lemma 4.1.3. Let X be a p-divisible group over a perfect field k O Fp,, and let M = D(X)
be the Dieudonné module of X. Let X[F] = Ker(Frx/,: X — X ®)) be the kernel of relative

Frobenius homomorphism of X. We have natural k-linear isomorphisms
Lie(X) 2 M/VM

and
D(Verx)

~

D(X[F]) —=p~ ' F(M)/M (M/V(M))®) — Lie(X)).

Proof. The covariant Dieudonné theory we used is normalized so that the Lie algebra
Lie(X) of X is naturally isomorphic to D(X)/V(D(X)). The isomorphism

D(X[F]) —= p ' F(M)/M

follows from Subsubsection [4.1.2(i) and the exactness of the Dieudonné functor for com-

mutative finite group schemes over k, because
p F(M)/M = Ker (p~"M/M % p~'M/M).
Clearly the o~ !-linear operator V on p~!M/M induces a k-linear isomorphism
(p ' F(M)/M)#™) == M/V(M). O

Remark 4.1.4. (a) There are (at least) two versions of covariant Dieudonné theory, which
differ from each other by a Frobenius twist. The properties in Subsubsections (iii) and
[4.1.2(iv) are “normalization conditions” which specify the Dieudonné functors G ~» D(G)
and X ~» D(X) in Subsubsections 4.1.1{ and 4.1.2l Note also that the statement of
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Lemma will need to be modified by a Frobenius twist if a different Dieudonné theory
is used.

(b) The functor G ~» ID(G) used here is the covariant crystalline Dieudonné theory,
denoted by G ~~ E,(G) in [8, B.3].

We refer to [8, B.3] for the literature and further information about Dieudonné theory,
including the formulas for basic differential invariants in [8, B.3.11] and the comparison
with the classical Dieudonné theory in [8, B.3.10].

4.2. Rank-two Opg-linear p-divisible groups and their Dieudonné modules

We apply Dieudonné theory to the p-divisible groups associated to abelian varieties with

real multiplication by Op.
Definition 4.2.1. Let S be an F,-scheme.

(a) Let v be a place of E above p. A rank-two Og, -linear p-divisible group over S is a
pair (X, — S, 1), where X, — S is a p-divisible group over S of height 2[E, : Q,],
and ¢,: O, — Endg(X,) is a ring homomorphism.

(b) A rank-two Og-linear p-divisible group over S is a pair (X — S,¢) where X — S is
a p-divisible group and ¢: O ®7Z, — Endg(X) is a ring homomorphism, such that
for every v € ¥, the p-divisible group X [p5°] — S has height 2[E, : Qp]. In other
words, there exist rank-two O, -linear p-divisible groups (X, — S,t,), v € g p,
such that the fiber product over S of the (X, ty)’s is (O ®z Z,,)-linearly isomorphic
to (X, ¢).

(c) A rank-two Op,-linear p-divisible group (X, — S,¢,) is said to be self-dual if its
Serre dual (X! — S,:') is Op,-linearly isomorphic to itself. A rank-two Opg-linear
p-divisible group (X — S,¢) is self-dual if its Serre dual (X — S,!) is Op-linearly

isomorphic to itself.

(d) A rank-two Og,-linear p-divisible group (X, — S,¢y) is said to be self-dual up to
isogeny if there exists an Op, -linear S-isogeny from (X,,¢,) to (X!, ¢!). A rank-two

Opg-linear p-divisible group (X — S,¢) is self-dual up to isogeny if there exists an
Og-linear isogeny over S from X to X*.

Lemma 4.2.2. Let (A, 1) be an abelian variety with real multiplication by Op over a field
K D F,.

(a) The p-divisible group A[p>] with action by Op ®z Zy, is a rank-two Og-linear p-

divisible group which is self-dual up to isogeny.
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(b) If (A,t) admits a principal .,S?/—polarization, then the rank-two Og-linear p-divisible
group (A[p™], ¢[p™]) is self-dual.

Lemma 4.2.3. Let (X,1) be a self-dual rank-two Og-linear p-divisible group over a field
K D F,, then the isomorphism class in Tg i of the Lie algebra Lie(X,t) of (X,¢)
is self-dual; i.e., the class [Lie(X,¢)] of Lie(X,t) in the K-group of finitely generated
((Or/pOg) ®F, K)-modules is equal to the class [(Op/pOg) ®r, K| of (Op/pOFg) ®F, K.

Lemma 4.2.4. Let (X,¢) be a rank-two Og-linear p-divisible group over a field K DO T,
which is self-dual up to isogeny. For every v € X g,, suppose that the p-divisible group
X[pS°] is not isoclinic of slope 1/2. Then X [p:°] is isogenous to the product of two isoclinic
Op, -linear p-divisible groups Y1, Ya of height [E, : Qp], and the slopes s, 1, sy 2 of Y1, Y2
satisfy

0<sp1,502<1, Sy1+8p2=1 and [E,:Qp|-s,; €N.

Definition 4.2.5. (a) Let (X,¢) be a rank-two Opg-linear p-divisible group over a field
K D T, which is self-dual up to isogeny. The Newton polygon of (X,.) is the element
(80,1, Sug))vegﬂp € NPS]S1 such that

(sx,1,5xw2) if X[pg°] has two distinct slopes sx 4.1 < Sx0.2,

(Sv,ly Sv,2) ==
(1/2,1/2) if X[pS°] is isoclinic.

(b) Let (A, ¢) be an abelian variety with real multiplication by Of over a field K D F),.
The Newton polygon of (A, ) is by definition the Newton polygon of (A[p*], ¢[p*]).

Definition 4.2.6. For each s € NPSEd, denote by Wy = Ws(4E) the locally closed subset
of A consisting of all points x € .#r whose Newton polygon is equal to s. Clearly .#p

is the disjoint union of all Newton polygon strata W,, where s runs through all elements
of NP,

Remark. The Newton polygon stratum W, corresponding to the minimal element sp ,
in NPi,Si, called the supersingular locus in .#g, is the closed subset of .#g consisting of

points whose underlying abelian varieties are isoclinic of slope 1/2.

Remark 4.2.7. There is another notion of Newton polygon strata attached to a Newton
polygon s in the literature. What was defined in Definition a) is sometimes called
the open Newton polygon stratum attached to s and denoted by Wg .

Lemma 4.2.8. Let S be a scheme over F), and let (X — S,¢) be a rank-two Op-linear
p-divisible group with real multiplication by O which is self-dual up to isogeny. Let z, 2’
be points of S, and let s,, s, € NPSEd be the Newton -polygons of X, and X, respectively.

If z is a specialization of 2’ then s, < s,.
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Corollary 4.2.9. Let s be an element ofNP‘j‘g. The Zariski closure (Ws)*" of the Newton
polygon stratum Ws in Mg is contained in the union of all Newton polygon strata Wy
with s’ < s:
= C | W
Eat
Remark. Whether (Ws)**" is equal to | |, Wy is the content of the Grothendieck con-
jecture on the Newton polygon stratification of ., w; cf. Question [10.4[(d)—(e).

Definition 4.2.10. Let s be a field which contains a subfield with p/Z elements. Let

k1 = kPT be the perfection of k.

(a) Let v be a place of E above p and let (X, ,) be a rank-two O, -linear p-divisible
group over k. The Lie type of (X,,t,) is the element ey € Tg, which corresponds
to the isomorphism class of the (Og, ®z, k)-module Lie(X,). Equivalently, ey is
the element of Tg, , whose image in Tg, ., under the bijection Tg, » — T, x, is the
isomorphism class of D(Xy Xgpec(x) SPec(k1))/V - D(Xy Xgpec(n) SPeC(k1))-

(b) Let (X,¢) be a rank-two Opg-linear p-divisible group over k. The Lie type of (X, ) is
the element ey € Tg which corresponds to the isomorphism class of the (O ®yz k)-
module Lie(X). In other words ex = (ex, Jvexy,,» Where ex, is the Lie type of the
rank-two Op, -linear p-divisible group X, = X[p°], for every place v of E above p.

(c) Let (A,t) be an abelian variety with real multiplication by Og. The Lie type e,
of (A,¢) is by definition the Lie type of the rank-two Opg-linear p-divisible group

(A[p>], [p™]).
Lemma 4.2.11. Let k O F), be an algebraically closed field, and let (X,t) be a rank-two
Og-linear p-divisible group. Let ex = (eg?yvyl,622)7“72)1}62&?72.6[” 46 TE be' the Lie type of
(X,1). Then (X,1) is self-dual if and only if ex € T3, i.e., egz()’vyl + eg?ﬂ)’z = ey for all
v € XEgy and all i € I,,.

The definition and properties of Lie stratification of Hilbert modular varieties, due to
Deligne and Pappas in [13, Sections 3-4], is summarized in Theorem below.

Theorem 4.3. For each e € ng, there exists a locally closed subscheme

No( M) C My = a2

= E,n,g
over E,, characterized by the property that for every point x € 4, we have
x € Ng(%E) <~ E(Apug) = &

Here (A, ty) denotes the fiber at x of the universal abelian scheme with real multiplication

by O over Mg. The subvarieties N = Ne(ME) satisfy the following properties:
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The modular variety Mg is the disjoint union of these Lie strata:

= || Ne(ate) = | | Ne

QETBd geTsd

(2) Each Lie stratum N is a locally closed smooth subscheme of M.

(3)

The dimension of the Lie stratum N, indexed by an element
_ (@) ) d
€= ((eul? ev’2)i61v>U€EE’p S TES'

is given by

dim(N) = strdim(e Z Z eq% eq(i)l

v i€l

In particular the dimension of the minimal Lie stratum Npin = Ngmin (AME) is

dim mll’l Z fU Y

ey odd
where the sum runs through all places v of E above p with odd ramification index e,,

and f, = [ky : Fp] is the degree over F), of the residue field k, of O, .

The mazimal Lie stratum Npax = Ne X(///E) coincides with the smooth locus of

=ma

ME, i.e., the largest open subset of Mg which is smooth over F,.

The Zariski closure (Ng)™ of a Lie stratum N in Mg is the disjoint union of all

strata N, where € runs through all elements in 'TSd such that €' < e, i.e.,

zar_l_lN

e'=ze

For each e € ’T . (Ne)™" is a local complete intersection and is normal, and N, is

the largest open subset of (Ne)? which is smooth over F,.

Suppose that e; 2 ey are elements of ng, and there is no element e € ng such that
e 2 e 2 ey, then dim(N,, ) = dim(N,) — 2.

5. The congruity invariant

In this section we define a numerical invariant, called congruity, attached to every rank-

two Op-linear p-divisible group (X, ¢) over an algebraically closed field k of characteristic

p. When the congruity invariant ¢ x ,) takes certain specific values, the isomorphism class

of (X, ¢) is uniquely determined by the invariant c(x ), in which case (X,¢) is said to be
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distinguished; see Definitions and 5.6l The definition of the congruity invariant
is described in the next two paragraphs.

In Definition we define an N-valued invariant ¢(M; N, N') associated to an un-
ordered pair (N, N’) of two lattices in a rank-two module M over a discrete valuation ring,
which measures the extent the of the failure of these two lattices in M to be transversal
up to rescaling inside M.

For a rank-two Opg-linear p-divisible group (X, ) over a sufficiently large perfect field
k1 of characteristic p, the Dieudonné module D(X) is a projective rank-two module over
Op®yzA(k1), which decomposes into a direct sum, indexed by the disjoint union of the sets
I,,, of rank-two projective modules D(X )1(}1) over discrete valuation rings Op, ®(ouw ;) A(K1).
The same holds for F(D(X)) and V(D(X)). For each place v of E above p and each i € I,
the construction in Definition applied to D(X )S,i), (FD(X ))q(f) and a “transport” to
]D)(X)I(f) of (V]D(X))S,i/) for a suitable element i’ € I, gives the (v,7)-component of the
congruity invariant ¢ x ) of (X,¢) defined in Definition

5.1. Lattices in a free rank-two module over a discrete valuation ring

In this subsection, D denotes a discrete valuation ring with maximal ideal g and residue
field k = D/p. Let M be a free rank-two D-module. We will define a discrete invariant
¢(M; N, N') attached to two lattices N, N' in M.

Recall that the elementary divisors (b1,be) of a lattice N in M, by < by, are the two
natural numbers determined by M/N = D /" @ D/p, or equivalently there exists a
D-basis v1,vs € M such that N = ¥ - v + o - vy. Note that by = max{b | N C @’M},
and by = min{b | N D p’M}.

Definition 5.1.1 (An invariant of two lattices in D?). Let N, N’ be two lattices in M,
with elementary divisors (b1, b2) and (b), b)) respectively, by < ba, b) < by. Define an
invariant ¢(M; N, N') by

M/(p™" N + o "iN") 2 D/,

Note that the elementary divisors of g "' N and o % N’ are (0,by — by) and (0, b, — b})
respectively. So M/(p "N + =" N’) is a cyclic D-module of finite length. Note also
that the equality

0 < c¢(M;N,N') <min{by — by, b5 — b}

holds.

Remark 5.1.2. The congruity invariant can be computed as follows. Let (x1,x2) be a
D-basis of M such that N = p"z; + "z, and let (y1,2) be a D-basis of M such that
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N’ = pby; 4+ p%2ys. Define an element (@ij)ij=1,2 € GLa(D) by

Yyj = Z aijri, J=1,2.
i=1,2

From

O "N+ "N = Dzy + D - anaz + o ag + o My

ba—b1

=Dy +D-any2+p g+ %2y,

we see that
¢(M; N,N') = min{ord,(a21), ba — b1, by — b’ }.

Definition 5.1.3. Let ex = (e,)vesp, = ((ez(;i)l’ei(i)Q)iEIv)vezEp be an element of 754

For every v € X, define a function t. : I, — NU{—oc} by

te, (1) == min{n € N | e&”n) < eé”n)}, Vie L.

Note that t. (i) = —oo if and only if the set {n € N | egiJr")
which case the function ¢, on I, has constant value —oo. Note also that t, (i) = 0 if and

(@) (4)

only if e, < e,5.

(i+n

< ey )} is empty, in

Definition 5.2 (Congruity). Let » be a field which contains a finite subfield with p/=

elements. Let k1 = xP®f be the perfection of k.

(a) Let v be a place of E above p. Let (X,¢) be a rank-two Opg-linear p-divisible group
over k. Let M, := D(Xy Xgpec(s) Spec(k1)) be the covariant Dieudonné module of

M, =P M

1€1y

Xy Xgpec(x) Spec(k1). Let

be the decomposition of M, corresponding to the product decomposition of the ring
Og, ®z, A(k) in Subsubsection Note that Mé’) is a free A(x)®-module of

rank two for every i € I,,. Moreover we have
FMDYyC MY and V(MDY € MEY Y (v,i).

Let

QX == (QU)UEZEJ; = ((67),?[’67}7/7)2)7:EIU>1)€ZE
P

be the Lie type of X.

We will define an element cy, = (ng,)z cr, MTE, k = TR, 4, called the congruity of

the rank-two Op,-linear p-divisible group (X, t,). For every ¢ € I,,, the i-component
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cg?v of cx, is given by

(

0 if le, (1) = —o0,
o ) e@n FOnTY), vant)) if e < ell),
CXU - C(qui);]:(Mzgifl))?
(i+n
m— Zogngt%(i)ﬂ eﬂj )Vtgv (i)+1M1Ei+tgv (i)+1)) ’ tgv (z) >0

(b) Let (X,¢) be a rank-two Og-linear p-divisible group over . For every v € X p, let
X, = X[pS°], an Op,-linear p-divisible group over k. The congruity invariant cx
of (X,¢) is the element

(@)

Cx ‘= (QXU)veZEW = ((CXU)iejv)UezE
sP

of Tp = Tp .

Remark 5.2.1. (a) In the case t. (i) > 0, we have

(i+n) )
oL MO for n=0,1,...,t (i) — 1,

=v

e

(V(Mv))(1+n) _ V(M£Z+n+1)) —

and we use the o~ !-linear isomorphisms

_eitm) . N .
T UtV MY S ) o — 0,1, 8, (1) — 1

=v

to transport the lattice V(Mé”t% (i)ﬂ)) in Mﬁ”tﬁv @ back to M. The (v, i)-component
of cx is defined to be the congruity of F (Méi‘l)) and the result of the transport, two
submodules of the free A(x)®-module MY of rank two.

(b) It is easy to see that the elementary divisors of the A(x)®-submodule ]-'(ngi_l)) -
Méi) are (ev — efjgl), ey — G,E)Z;Il)) because V o F = p = F o V. Therefore,

0< cg?v < min{eﬁgl) - eg;l), eg’;t) — e(Ht)}, Vv eXgy, Viel,,

v,1
where t = t. (i).

Remark 5.2.2. The congruity invariant ¢y and the Lie type of (X, ¢) determine the a-type
of (X,¢). The relations between the a-type and the Newton polygon were investigated
in [39).

Proposition 5.3. Let v be a place of E above p, and let (X,, 1) be a rank-two O, -linear
p-divisible group over an algebraically closed field k 2 Fy. Let ex, = (eg?v 1,6&2} 2)ie[ ,

Cx, = (C-()?v)ielv and sy, = (5x,,1,5x,,2) be the Lie type, congruity and Newton polygon

of (Xy,ty) respectively.
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(1) [Bo: Q- Syer, €@, <58 .

(2) The following statements are equivalent.

(@) [Bo: Q- Yier, €9, = s .

(b) cx, =0, i.e., cg?v =0 for every i € I,,.

(¢) There exist
— isoclinic p-divisible groups Y1, Ya over k of height [E, : Q,] of slopes sx, 1
and sx, o respectively, and
— ring homomorphisms v;: O, — End(Y;) for j =1,2, and

— an Og, -linear isomorphism
(X,1) = (Y1,11) x (Yo, 12).

See [9), Section 4.3] for a proof of Proposition

Remark 5.3.1. For j = 1,2, denote by ey, the Lie type of the CM p-divisible group Y;
in Proposition (2), i.e., the element of 7, corresponding to the (O, ®z, k)-module
D(Y;)/V(D(Y;)). Then

ey, = (622)71)1'6%7 ey, = (e()?v,z)iau.

Since two Op, -linear CM p-divisible groups over an algebraically closed field k£ O F,, with
the same Lie type are Op, -linearly isomorphic, the unordered pair {(Y7,¢1),(Y2,2)} in
Proposition is uniquely determined by the congruity invariant cy, of (Xy,u,) up to

isomorphism.

Definition 5.3.2 (Exquisite rank-two Op,-linear p-divisible groups). Let v be a place
of E above p and let (X,,¢,) be a rank-two Op, -linear p-divisible group over a field
K D F,. We say that (X,,t,) is exquisite if for some algebraically closed extension field k&
of K, or equivalently for every algebraically closed extension field k of K, the equivalent
conditions (a)—(c) in Proposition [5.3(2) are satisfied.

Corollary 5.3.3. Let v be a place of I above p and let k O T, be an algebraically closed
field. If (X1,01) and (Xa,12) are two exquisite rank-two O, -linear p-divisible groups with

the same Lie type, then there exists an Og,-linear isomorphism from (X1, 1) to (Xa,12).

0.4.

In this subsection we define the notion of balanced self-dual rank-two p-divisible groups.

We begin with a preliminary statement in Lemma [5.4.1] whose proof is obvious.
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Lemma 5.4.1. Let K be a field which contains a subfield isomorphic to k,, where v is a
place of E above p. Let (Xy,ty) be a self-dual rank-two O, -linear p-divisible group over

K whose Lie type ey, is equal to the minimal element gsEdmmin m 7’5?.

(a) Suppose that the ramification index e, of E,/Q, is even. Then the congruity cx, of
(Xy, ty) 50, i.e., cg?v =0 for alli € I,.

(b) Suppose that the ramification index e, of E,/Q) is odd. Let cx, = (Cg?v) be the

congruity of (Xy,ty). Then cggj € {0,1} for every i € I,,.

icly

In the case of (b), the subset
lieh|dd =1
will be called the support of cx, .
Definition 5.4.2 (Balanced subsets of I,). (a) A non-empty subset J of the (Z/f,7Z)-

torsor I, is an interval if J ; I, and there exists an element iy € I and a natural number
bwith 0 < b < f, —2 such that J = {ig,ip+1,...,79+b}. Such an interval will be denoted
by [io, i + b].

(b) A subset J of I, is connected if J =, or if J = I, or if J is an interval in I,,.

(¢) A connected component of a subset I’ of I,, is a maximal element in the family of
connected subsets of I'.

(d) A subset I’ of I is balanced if the cardinality of every connected component of I’
is even. In particular the empty subset ) is balanced, and I, is balanced if and only if f,

is even.

Definition 5.4.3 (Balanced rank-two O, -linear p-divisible groups). Let v be a place of
E above p. Let K be a field which contains a finite subfield isomorphic to x,. A self-dual
rank-two O, -linear p-divisible group (X, ¢,) over K is said to be balanced if the following

conditions are satisfied.

(a) The Lie type ey, of (Xy,ty) is equal to the minimal element

Fymin = ((Le0/2]: Teo/2D)) ey,

in the local type space ngj

(b) The support of cy, is a balanced subset of I,.

Remark 5.4.4. Note that if the ramification index e, of E, /Q, is even, then the condition in
Definition m(b) is empty, and the congruity cy, of every self-dual rank-two p-divisible
group (Xy,t,) over a field K which satisfies Definition [5.4.3|a) is both exquisite and
balanced. So the notion of balanced self-dual rank-two O, -linear p-divisible groups is of

interest only when e, is odd.
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Proposition 5.4.5. Let v be a place of E above p such that e, = 2d, + 1 is odd. Let
k DT, be an algebraically closed field.

(a) Let (Xy,ty) be a balanced rank-two Og, -linear p-divisible group. Let I' be the support
ofcx, # 0. Assume that I' # 0, and let I be a subset of I, such that I' is the disjoint
union of I and Iy + 1. There exist O, -linear p-divisible groups (Y1,t1), (Ya,t2)
over k of height [E, : Qp] with the following properties:

— The Lie type ey, = (egé))z‘el of (Y1,u1) is given by
(i) dy, +1 Zf’LGIl,
a4 ifidI.

— The Lie type ey, = (eg)ieh of (Ya,12) is given by
(i) dy Zf’L S Il,
a1 ifig .

— There exists an O, -linear isomorphism from (Xy,ty) to (Y1,01) x (Ya,12).

(b) Suppose that (X, t,) and (X)), l) are balanced rank-two O, -linear p-divisible groups

v v

over k with the same congruity invariant. Then (X,,t,) is O, -linearly isomorphic
to (X,,1,).

v U

See [9) Section 4.4] for a proof of Proposition [5.4.5

Definition 5.5 (E-minimal self-dual rank-two Opg-linear p-divisible groups). Let K be a
field which contains a finite subfield with p/Z elements.
(a) Let v place of E above p, and let (X,,t,) be a self-dual rank-two O, -linear p-

divisible group over K. We say that (X,,¢,) is E,-minimal if its Lie type ey is the
(4)

. . Sd . Sd . . _ . .
minimal element €% ., in TE,» and its congruity cx, = (CXU)Z. e, 15 given by
@ 0 if e, is even,
cx, =

1 if e, is odd

for all i € I,,.
(b) Let (X, ¢) be a self-dual rank-two Og-linear p-divisible group over K. We say that
(X,¢) is E-minimal if the v-component (X [pS°], ¢[p°]) of (X,¢) is E,-minimal for every

place v of E above p.
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Remark 5.5.1. (a) If (X, ty) is an E,-minimal self-dual rank-two O, -linear p-divisible
group over an algebraically closed field k 2 I, then the p-divisible group X, is superspecial
in the sense that it is isomorphic to the product of [E, : Q] copies of the p-divisible group
attached to a supersingular elliptic curve over k.

(b) The terminology “E-minimal” comes from [31].

Lemma 5.5.2. Let v be a place of E above p, and let k D F, be an algebraically closed field.
Any two E,-minimal self-dual rank-two O, -linear p-divisible groups are Op, -linearly iso-

morphic.

Definition 5.6 (Distinguished self-dual rank-two Opg-linear p-divisible groups). Let K
be a field which contains a finite subfield with p/# elements. Let (X,:) be a self-dual
rank-two Op-linear p-divisible group over K. Write (X,¢) as a product of self-dual rank
two Op,-linear p-divisible groups over K:
(X,0) = H (Xo, tv),
’UEEE,p

where (X, ty) = (X[p°], t[pg°]) for each v € X .

We say that (X,¢) is distinguished if for every v € ¥, the self-dual rank-two Op, -

linear p-divisible group (X, t,) is exquisite, or is balanced, or is E,-minimal.

Proposition 5.6.1. Let (X,1) and (X',//) be distinguished self-dual rank-two Og-linear
p-divisible groups over an algebraically closed field k O Fp,. If (X,¢) and (X',.") have the

same Lie type and the same congruity, then (X, i) is Og-linearly isomorphic to (X', ).

Proof. This is the combination of Corollary [5.3.3] Proposition[5.4.5, and Lemmal[5.5.2l O

6. The stratification of a Lie stratum by congruity

In this section .#Zg stands for a Hilbert modular variety .# E?ng over F,, where n > 3 is

a positive integer relatively prime to p, ¥ = (.Z, .,f]g ) is an invertible Og-module with a

notion of positivity, and J is an Og-generator of .Y ®o,, DE}Q /nLY @0, DE}@. We will
stratify each Lie stratum N, of .#Zg by the congruity invariant, and explore properties of

the resulting congruity stratification of N.

Definition 6.1 (Congruity strata in a Lie stratum N.). Let

€= (Qu)vGEE,p = (((evl,)l’ evl,)2>)ielv>

UEEEyp

be an element of 759, and let N = N, (.#g) be the Lie stratum in .#p consisting of points
corresponding to abelian varieties with real multiplication by O whose Lie type is equal

to e.
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For each ¢ € T, denote by Q.(N) the reduced locally closed subscheme of N, such
that for every algebraically closed extension field k of F,, the set Q.(N¢)(k) of k-points
of Q.(Ng) consists of all points = [(Az, Az, ta;s Nz)] € Ne(k) such that the congruity

invariant ¢, of (A, ) is equal to c.

Clearly N, is the disjoint union of all congruity strata Q.(N;), where ¢ runs through
all elements of 75. Note that there may exist pairs (e, ¢) such that Q.(N;) is empty.

Proposition 6.2. (1) For every ¢, the Zariski closure of Q.(N;) is the disjoint union of
all Qo (Ne) with ¢ < c:
(Qe(N))™ = | ] Qu(Ne).

' =c

In particular Qy(Ne) is a dense open subscheme of N.
(2) If Qc(Ne) # 0, then every irreducible component of Q.(N.) # 0 is a locally closed

smooth subscheme of Ne of codimension |c| in N, where

|| = Z ch).

vES . p i€,

(3) For each c with |c| = 1, the Zariski closure | |, Qu(Ne) of Qc(Ne) is a smooth
divisor on the smooth scheme N over F,. Together these smooth divisors on N form a

divisor with normal crossings, whose support is equal to N \ Qo(Ne).

Remark. Proposition [6.2]is proved using deformation theory of p-divisible groups and the

theory of displays; see [9, Section 4.5].

Definition 6.2.1. A Lie-congruity stratum Q.(N.) in .#f is said to be distinguished if

. _ _ Sd .
for every v € X p, either ¢, =0, or e, = ¢ By, min and ¢, is balanced.

Remark. It follows from Propositions 5.3/ and that a Lie-congruity stratum Q.(N) is
distinguished if and only if for every geometric point x of Q.(N.), the self-dual Og-linear
p-divisible group attached to z is distinguished.

6.3. Central leaves in .Zg

Through every Fp—point r € Mg, we have a smooth locally closed subscheme C(z) =
C.u,(x) C M5 satistying the following properties.

(i) For every algebraically closed extension field k of Fp, we have

C(x)(k) = {y € Mp(@) | (A4y[p™], Ay [P™], 1y [P™]) = (Au[p™] Ae[p™], ta[p™]) }-
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(ii) The restriction to C(z) of the universal self-dual rank-two Og-linear principally .-
polarized p-divisible group (A4, A, ¢)[p>°] over C(x) is sustained, i.e., for every positive

integer m, the C(z)-scheme
Isomc(y)((Az, Ao ta)[P™], (A, 2, 0)[p™]) = C(2)

whose sections over every C(z)-scheme S is

ISOmS ((A:va )\xu Lw)[pm] XSpec(k) S7 (Aa )‘7 L) [pm] XC(J:) S)a

is faithfully flat over C(x). See |9, Chapter 5] for the theory of sustained p-divisible

groups.

(iii) For every positive integer m, there exist an integer jo such that the images of the

restriction morphisms

Isomc(x) ((Ax, Az, Lx) [pm+j]’ (Av A, L) [perj])
= Isomo(y) ((Az, Aoy o) [p™], (A, A, 0)[p™])

stabilize for all j > jy and defines a subscheme
Isom3?) ((Ag, Aw, 1) [P™], (A, A, 1) [P™])

of Isome(y)((Ae, Ae,ta)[p™], (A, X, 1)[p™]), called the stabilized Isom scheme for

C(x) at level m, which is finite locally free over C(z).

Remark 6.3.1. (a) The condition (i) uniquely determines C(x) as a subset of .#p. The
path adopted in [32], which may be called the “direct approach”, is to first show that this
subset is constructible. Then one shows, in a bootstrapping process, that the subset C(x)
with reduced scheme structure is locally closed and smooth.

(b) The approach to central leaves in 9] via the notion of sustained p-divisible groups
explained in [9, Chapter 5] has the advantage of conceptual clarity and helps revealing the

local structures of central leaves. See Proposition [6.3.3] for an illustration.

Lemma 6.3.2. Let x be an F,-point of Mg, let C(x) be the central leaf in My containing
z, and let s = ((Sv,1,50,2) Jvesy,, € NPSBSi be the Newton polygon for (Az,ty). Then

dim(C(z)) = Y [By: Q- (S0.2 = S0.1)-

UEZE’Z,

Proposition 6.3.3. For every F,-point x of My, the leaf C 4, (x) in Mg is quasi-affine.



1342 Chia-Fu Yu, Ching-Li Chai and Frans Oort

Proof. Consider the stabilized Isom scheme

stab

Isom,;,

= Isomsctv?;’) ((A;u )\x; La:)[pm]a (A7 )‘7 L)[pm])

for C(x) at level m, which is finite locally free over C(x). The pullback to Isomst®P of the
restriction to C(x) of the universal p-divisible group is constant. Therefore the pullback
to IsomS'® of the Hodge line bundle on .#5 is trivial. As the Hodge bundle on .#p is

ample, the proposition follows. O

Proposition 6.3.4. A distinguished congruity stratum Q.(N) in a Lie stratum N is a

central leaf.
Proof. This is a rehash of Proposition [5.6.1 O

Definition 6.3.5. A central leaf in .#E which is equal to a distinguished congruity stra-
tum in a Lie stratum N is called a distinguished central leaf in .#g; cf. Definition

Lemma 6.3.6. Newton polygons of distinguished central leaves in Mg exhausts all Newton
polygons for E. In other words for every s € NPSEd, there exists a distinguished central leaf

in Mg whose Newton polygon is s.

Proposition below, on the incidence relation between distinguished congruity strata
and the F-minimal locus follows from deformation theoretic considerations in [13, Sec-
tions 3—4] and the proof of Proposition cf. |9, Section 4.5]. Tt is an important ingredi-
ent in the proof that prime-to-p Hecke correspondences operate transitively on the set of

irreducible components of a distinguished central leaf in .Z%.

Proposition 6.4. Let Q.(N.) be a distinguished Lie-congruity stratum on #g. Let Q'
and Q" be irreducible components of Q.(Ng). If there is an E-minimal point z € Npin

which is contained in the Zariski closure of Q' and also the Zariski closure of Q", then

Ql — Q//.

7. Distinguished leaves on non-minimal Lie strata

Theorem 7.1. Let /\fg be a non-minimal Lie stratum in MAE, i.e., e # gﬁmin. No rre-
ducible component of a distinguished Lie-congruity stratum Q.(N) is closed in M. More
precisely, for every distinguished Lie-congruity stratum Q.(Ng) on N, the Zariski closure
in Mg of every irreducible component of Q.(Ne) contains an irreducible component of the

distinguished Lie-congruity stratum Q¢(Nmin) of the minimal Lie stratum Nuin in Af.

Theorem [7.2] below is a slightly stronger version of Theorem with the same proof.
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Theorem 7.2. Let e = (e,)vexy, be an element of Tbsjd and let ¢ = (¢,)vesy, be an
element of 7. Let Q be an irreducible component of a Lie-congruity stratum Q.(Np)

in a Lie stratum N of ME. Suppose that vg is a place of E above p such that e,, #

QSEde min @nd ¢,y = 0. In other words the self-dual rank-two Og, -linear p-divisible group

(Az[93], ta03]) attached to any geometric point x of Q.(Ne) is distinguished and its Lie
type is not equal to the minimal element gﬁ}mm in 7'5‘3. Then the Zariski closure Q% of
Q contains an irreducible component of Q.(Ng), where ¢ = (Qﬁ;)ueEE,p is the element of

T34 given by

d Y I
6/ — QSEvO,min lfU = Yo,
=2
€, if v #£ vg.

Remark 7.3. The reason that we need a statement like Theorem is that a priori, it is
possible that a given distinguished Lie-congruity stratum Q.(N.) with N, # Mpin may
have an irreducible component @ which is equal to its own Zariski closure in .Zg. In the
case when c¢ is the maximal element 0 in 75 and e is not the minimal element QSECtmm in
754, the scenario that Q is closed in .#f is equivalent to the statement that Q is proper
over E,. Most people will consider this scenario to be very unlikely, but we don’t know of

any “easy proof”.

Readers who are contemplating going through the details of this proof in [9, Chapter 4]
undoubtedly will prefer a proof which is shorter and more appealing. Unfortunately such

a proof has yet to be found.

7.4.

The main thrust of the proof of Theorem described in [40, 2.5] and [9, Chapter 4], is an
inductive procedure to construct, for any given irreducible component Q of a distinguished
Lie-congruity stratum Q.(N) with N. # Npin, P!-families in the Zariski closure of Q.
Each of these P! families of abelian varieties with real multiplication by OF is Og-linearly
isogenous to a constant abelian variety with real multiplication by O, and there is a
dense open subset U of P! contained in Q.(N;). The Lie types of points of P!\ U can
be explicitly computed. In the majority of situations there is a point in P! \ U whose Lie
type is strictly small than e in 759, and the inductive procedure stops if this is the case.
If the Lie types of points of P!\ U are all equal to e, one constructs another P! family
and then repeats the same operation. One shows that this procedure eventually produces

a point of the minimal Lie stratum N, which lies in the Zariski closure of Q.
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8. Congruity strata on the minimal Lie stratum

Theorem 8.1. Every irreducible component of a congruity stratum of the minimal Lie
stratum Npin = ./\/’gsEd - of Mg contains a minimal point, i.e., an irreducible component
of the zero-dimensional congruity stratum in Npin.

8.2.

The proof of Theorem is a variant of the method called Raynaud’s trick in [28, Sec-
tion 4], and is based on the phenomenon, explained in Subsubsection that the
congruity stratification of the minimal Lie stratum Npin(.Zg) bears prominent similari-
ties to the a-type stratification of Hilbert modular varieties attached to a totally real field

L which is unramified above p. See [9, Section 4.7] for details.

8.2.1. For a totally real field L unramified above p, there is only one Lie stratum, and the
congruity invariant on .#7, has the same information content as the type of the maximal
a-subgroup schemes considered in [14]. It is shown in [14} Section 3] that for every a-type
stratum W, of .#7, there exists a positive integer m > 0 such that the restriction to W
of the m-th power of the Hodge line bundle on .7, is trivial, hence every a-stratum W

of ., is quasi-affine.

8.2.2. Let € Npin(F,) be an Fy-point of the minimal Lie stratum of .#p. Let M, =
D(Az[pS°]) be the Dieudonné module of the Op,-linear p-divisible group A,[pS°]. The
assumption that z € Nmin(Ea) implies that the operators F, V on M, are both divisible
by w5/ Let @, = m, L/ - Fla,, Uy = my e/ - V|n,. These two semi-linear

operators on M, commute with the action of O, ®z, A(F,), and
(I)v o \I}v e \I”U o (P’U :p 71—;2L6U/2J

(i) If e, is even, then @, is a o-linear automorphism of M,, ¥, is a o~ !-linear automor-

phism, and such a triple (M,, ®,,¥,) is rigid.

(ii) On the other hand if e, is odd, then 7, :=p- WJQLEU/ZJ is a generator of g,. For the

decomposition M, = @ My) and the semi-linear operators ®,, ¥V, we have

iclg,
(MDY C MY W, (MDY C MUY Vielg,.

It follows that dimg (M /®y(MS ™) + 0, (M§™)) < 1 for every i € Ip,. The
(i)

congruity ¢, , = (cxi,v of A, [pSr] is given by

)’LEIE”

0 if ®, (M) 4 W, (M) = M,
1 if &y (M) + Wy (M) 2 M.
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This formula for cgf)v is very similar to the formula for the (w,?)-component of the
a-invariant of an abelian variety with real multiplication by the ring of integers of a
totally real field L unramified above p. Of course if E, is unramified over Q,, then

e, = 1, and cgf)v =1 if and only if ]-"(Mzgi_l)) + V(M£i+1)) ;Ct Mzgi).

)

8.2.3. The similarity of the congruity stratification of the minimal Lie stratum N, on .#p
with the a-type stratification of .47, as sketched in Subsubsectin holds to such an
extent that the argument in [14, Section 3], suitably interpreted, shows that the restriction
of the Hodge line bundle on .Zx to every congruity stratum Q.(Nmin) on Niiy is torsion.

Therefore every congruity stratum Q.(Npin) on Npin is quasi-affine.

9. Irreducibility of non-supersingular distinguished leaves

Theorem 9.1. The Zariski closure of every irreducible component of a distinguished Lie-

congruity stratum in Mg contains an E-minimal point.

Proof. Theorem follows from Theorems and O

Replacing Theorem [7.1] by Theorem we get a slightly stronger statement.

Theorem 9.2. Let Q.(Ne) be a Lie-congruity stratum in #g. Suppose that for every place
v of E above p, either the v-component e, of e is equal to giéiv mins OT the v-component c,

of ¢ is 0. Then every irreducible component of Q.(N.) contains an E-minimal point.

Corollary 9.3. The prime-to-p Hecke correspondences operate transitively on the set of

all irreducible components of every non-supersingular distinguished Lie-congruity stratum

of Mg.
Proof. This is a corollary of Theorem [9.1] and Proposition O

Corollary 9.4. FEvery non-supersingular distinguished Lie-congruity stratum in Mg is

rreducible.

Proof. This irreducibility statement is a consequence of Corollary and the method in [6,
4.4] for proving irreducibility of Hecke-invariant subvarieties via prime-to-p monodromy.
Note that |6, 4.4] was stated for Siegel modular varieties, but the proof therein shows that

the statement also holds for Hilbert modular varieties; see [42, Section 6]. O

The same argument, using Theorem instead of Theorem [9.1] gives a strengthened
version of Corollary
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Corollary 9.5. Let Q.(N;) be a Lie-congruity stratum in A which is not contained in
the supersingular locus of Mg. Suppose that for every place v of E above p, either the

sd

v-component e, of e is equal to €%y mins OT the v-component ¢, of ¢ is 0. Then Q (Ne) is

irreducible.

Remark 9.6. Readers may consult [9, Chapter 8] for a proof of the Hecke orbit conjecture
for Siegel modular varieties, and see Corollary in action. See also Subsection for
the role played by the Hilbert trick and the irreducibility result in Corollary in the

proof of the Hecke orbit conjecture.

10. Some questions

Question 10.1 (Geometry of the Lie-congruity strata). (a) Determine the Zariski closure
(Qe(NL))™ of the Lie-congruity strata Q.(N) in .#g, for all e € T34 and all ¢ € 7.
(b) Is (QQ(/\/‘Q))ZZMr normal, Cohen-Macaulay, or a local complete intersection?

(c) Is every Lie-congruity stratum Q.(N.) quasi-affine?

Remark 10.1.1. An optimist may ask whether there exists a stratification on .#g which
refines the Lie stratification on .#E and induces the congruity stratification on every Lie

stratum N.. In other words:

Is the Zariski closure of a Lie-congruity stratum Q.(Ng) a union of Lie-congruity

strata, for every pair (e,c) € ng XTE?

Remark 10.1.2. Question contains a preliminary part, namely determine all pairs
(e,¢) € T4 x Tp such that Q.(N.) # 0. The related problem on non-emptiness of EO

strata and Newton strata of PEL-type Shimura varieties has been solved in [36].

Remark 10.1.3. We know that every distinguished Lie-congruity stratum is quasi-affine,
and so is every congruity stratum on the minimal Lie stratum Myj,. An optimist may ask
whether the restriction of the Hodge line bundle to Q.(N,) is torsion for every pair (e, ¢)

in TESd XTE.

Question 10.2 (Irreducibility question for Lie-congruity strata). Let Q.(N) be a Lie-

congruity stratum not contained in the supersingular locus of #Zg. Is Q.(N.) irreducible?
Question 10.3 (Lie-congruity strata and the Newton polygon stratification).
(a) Determine the subset
{(s,e,0) € NPE x TE! x 7 | Wy N Qe(N;) # 0}

of NP4 x T34 x 75.
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(b) Given a Lie-congruity stratum Q. (N), determine the Newton polygon of the generic
point of each irreducible component of Q.(N).

(c) Given a Newton polygon stratum Wj, determine the Lie type and the congruity of

the generic point of each irreducible component of W;.
Question 10.4 (Newton polygon strata and Grothendieck’s conjecture).

(a) For each Newton polygon s € NP5, determine the number and dimensions of irre-
ducible components of W,. Compare the set of irreducible components of W, and
that of the special fiber the Rapoport-Zink space attached to YW, modulo the twisted
stabilizer group (denoted by J(Q,) in [34} p. xiii]).

zar

(b) Determine the singular locus of the Zariski closure (Ws)*" of Wj. Is every irreducible

zar

component of (W;s)?" normal (respectively Cohen-Macaulay)?

(c) Let k O IF,, be an algebraically closed field. Let e = ((e(i) e be an

v,1» v,2)ielv)veEE7p
element of 7'5‘1. Let = be a k-point of the Lie stratum N, in .#g. Let s, be the
Newton polygon of x. Let s = ((sy.1,502)) € NP5 be a Newton polygon such that
S, 2 sand sy1 - [Ey 0 Q] > Zz’elv ey, for all v € ¥ . Show that there exists a
point y of A, such that x is contained in the Zariski closure of y and the Newton

polygon of y is equal to s.

(d) Let k 2 F), be an algebraically closed field. Let z be a k-point of the Lie stratum
N in AE. Let s, be the Newton polygon of z. Let s = ((Sy,1,502)) € NPSEd be a
Newton polygon such that s, < s. Show that there exists a point y of .#Zxr whose

Newton polygon is equal to s and x is contained in the Zariski closure of .

Remark. (i) It is not difficult to see that the statement (c) implies the statement (d). So
the question (c) is in essence an approach to (d), which is Grothendieck’s conjecture on
the Newton polygon stratification for Hilbert modular varieties.

This conjecture of Grothendieck is known when p is unramified in £ [18}|19], and also
when every prime ideal of Of containing pOFg has residue field F, [38, Theorem 6.20].

(ii) For the question (a) when p is unramified in E and the residue field degree f, <4
for every place v € ¥ g, the number of the irreducible components of the supersingular
locus is computed by a formula |41, Theorem 4.12]; this formula involves the special value
(r(—1) of the Dedekind zeta function of E and certain constants c¢(v) depending only
on fy, v € ¥g,. Conjecturally [41), 4.13] the same formula for the number of irreducible
components of the supersingular locus in .#g holds for all totally real field F, with the

integer-valued constants c(v) depending only on e, and f,,, v € Xg,.
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(iii) The sets of irreducible components of affine Deligne-Lusztig varieties modulo the
action of the twisted stabilizer group are studied by Hamacher and Viehmann [20] and
by Xiao and Zhu [37] very recently under a general good reduction setting. Their results
give an explicit group-theoretic description of irreducible components of the corresponding
Rapoport—Zink space in the question (a) when p is unramified in E.

(iv) For a general formulation of the notion of Newton invariant of isocrystals with

additional structure, see [22}24].

Question 10.5 (Lie-congruity vs. EKOR strata). Compare the Lie-congruity stratifica-
tion of .#Zf with the EKOR stratification in [21].

Remark. The Lie stratification on .#g coincides with the KR stratification introduced
in [25,27]. The Lie-congruity stratification and the EKOR stratification both refine the
Lie stratification on .#Zg. The geometry of KR strata of Siegel modular varieties is studied
in [15H17].

Question 10.6 (Analog of the EO stratification on .#f). Find a good definition of
the Ekedahl-Oort stratification for Hilbert modular varieties, so that the resulting EO
stratification on .#g has properties similar to the EO stratification [29] on the Siegel
moduli space 1, g-dimensional principally polarized abelian varieties over Fp with

symplectic level-n structures.

Remark 10.6.1. The EO stratification on 7, 1, comes from geometric isomorphism classes
of (A[p], Alp]), where (A, A) runs through g-dimensional principally polarized abelian va-
rieties in characteristic p. The naive generalization to .# E?;L 3 involves understanding the
classification of geometric isomorphism classes of triples (A[p], A[p], ¢[p]), where [(A, A, ¢, )]

runs through geometric points of .# ;E(Znﬁ'

(a) When the totally real field E is unramified above p, this “naive notion” works
nicely. Moreover we know from [14, Theorem 3.2.8] that the principally polarized

(Og/pOg)-linear BT group (A.[p], A\z[p], tz[p]) attached to a geometric point z of

f . .
%E’H’S is determined by the a-type of (Az[p], Az[p], tz[p])-

(b) One difficulty when E is ramified above p is that the number of geometric isomor-

phism classes of (A.[p], Az[p], tz[p]) may not be finite; see [1,38].

Remark 10.6.2. For any element | € .2 N.%;" such that .Z = O -1+ p.%, we have a finite

etale morphism

fi: «///5%5 = D dn,
where d = card(Z/OFg - 1). A question related to Question is to investigate basic

geometric properties of the pull-back fl*SPO of the EO stratification on 7, 4, such as the
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dimensions, irreducible components and smoothness of strata of fl*S;EO and the incidence
relation between strata.

Some of the properties of the EO stratification on .27 4, holds for fl*SPO. For instance,
SEO EO

every stratum in f;"Sg" is quasi-affine. But other geometric properties of strata in f;*S,™,

such as dimension, singularity and the closure relation have not been determined. The re-
lations between fl*S;EO and other stratifications of .#g, such as the congruity stratification

of Lie strata and the Newton polygon stratification, await further work.

Remark 10.6.3. Satisfactory answers to Question [10.1] may very well depend on future
progress on Questions (a) and For instance if it turns out that every Lie-congruity
stratum is quasi-affine and every irreducible component Q of Q.(N;), the Zariski closure of
@ is a union of irreducible components of Lie-congruity strata of .#x, then one can made
a good case that the Lie-congruity stratification is a good analog of the EO stratification

for .//E
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