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Jordan τ-derivations of Prime GPI-rings

Jheng-Huei Lin

Abstract. Let R be a noncommutative prime ring, with maximal symmetric ring

of quotients Qms(R) and extended centriod C, and let τ be an anti-automorphism

of R. An additive map δ : R → Qms(R) is called a Jordan τ -derivation if δ(x2) =

δ(x)xτ + xδ(x) for all x ∈ R. In 2015 Lee and the author proved that any Jordan

τ -derivation of R is X-inner if either R is not a GPI-ring or R is a PI-ring except

when charR = 2 and dimC RC = 4. In the paper we prove that, when R is a prime

GPI-ring but is not a PI-ring, any Jordan τ -derivation is X-inner if either τ is of the

second kind or both charR 6= 2 and τ is of the first kind with deg τ2 6= 2.

1. Introduction

Throughout the paper, R is a prime ring with center Z(R). Let Qml(R) (resp. Qms(R)) be

the maximal left (resp. symmetric) ring of quotients of R, and let Qs(R) be the Martindale

symmetric ring of quotients of R. The center C of Qml(R) is called the extended centroid

of R. Note that Qs(R) ⊆ Qms(R) ⊆ Qml(R) and Z(Qms(R)) = Z(Qs(R)) = C. We refer

the readers to see [2] for more details.

By a derivation (resp. Jordan derivation) of R we mean an additive map δ : R →
Qml(R) satisfying δ(xy) = δ(x)y + xδ(y) for all x, y ∈ R (resp. δ(x2) = δ(x)x+ xδ(x) for

all x ∈ R). Obviously, a derivation is a Jordan derivation, but, in general, the converse is

not true. Herstein [9], Lee, and the author [15] characterized Jordan derivations of prime

rings. They showed that an additive map δ : R → Qml(R) is a Jordan derivation if and

only if it is of the form d+ µ, where d : R → Qml(R) is a derivation and µ : R → C is an

additive map satisfying 2µ = 0 and µ(x2) = 0 for all x ∈ R. Moreover, Cusack [6] and

Brešar [3] independently generalized Herstein’s result, i.e., they proved that every Jordan

derivation of a 2-torsion free semi-prime ring is a derivation.

Let τ : R → R be an anti-automorphism of R. An additive map δ : R → Qms(R) is

called a Jordan τ -derivation of R if δ(x2) = xδ(x) + δ(x)xτ for all x ∈ R. A Jordan τ -

derivation δ of R is said to be inner (resp. X-inner) if there exists a ∈ R (resp. a ∈ Qms(R))

such that δ(x) = axτ − xa for x ∈ R.
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Let A be a unital ring. Suppose that ∗ : A→ A is an involution of A, i.e., ∗ is an anti-

automorphism of A such that (x∗)∗ = x for all x ∈ A. The problem of the representability

of quadratic forms by bilinear forms is connected with the structure of Jordan ∗-derivations

(see [18, 19]). Brešar and Vukman showed that if a unital ∗-ring A contains 1/2 and a

central invertible skew-hermitian element µ (i.e., µ∗ = −µ), then every Jordan ∗-derivation

δ : A→ A is inner (see [4, Theorem 1]). In particular, every Jordan ∗-derivation δ : A→ A

of a unital complex ∗-algebra A is inner because any complex ∗-algebra A always assumes

(βx)∗ = βx∗ for all x ∈ A and β ∈ C.

Let H be a real Hilbert space with dimRH > 1. Let B(H) stand for the algebra of all

bounded linear operators on the Hilbert space H and let A be a standard operator algebra

on H. Then B(H) can be endowed with a canonical involution, say ∗. It is known that A
is a prime algebra over R with nonzero socle. Moreover, Qms(A) = Qms(B(H)) = B(H)

(see [5, Theorem 1.3]). Šemrl proved that every Jordan ∗-derivation δ : B(H) → B(H) is

inner (see [17]), and that all Jordan ∗-derivations δ : A → B(H) are X-inner (see [20]).

Chuang et al. extended Šemrl’s theorems above by proving the theorem: Let R be a

prime ring, which is not a division ring. Let τ be an anti-automorphism of R and let

δ : R → Qs(R) be a Jordan τ -derivation. If charR 6= 2 and the socle of R is nonzero,

then δ is X-inner (see [5, Theorem 1.2]). Moreover, the structure of Jordan ∗-derivations

of prime rings is completely determined. To be precise, it was proved that every Jordan

∗-derivation of R is X-inner except when charR = 2 and dimC RC = 4 (see [7, 13, 14]).

Note that there exist non X-inner Jordan ∗-derivations when charR = 2 and dimC RC = 4

(see [13, Theorem 3.1]).

The reader is referred to [2] for the definitions of PI-rings and GPI-rings. In [16], Lee

and the author showed that any Jordan τ -derivation of R is X-inner if either R is not

a GPI-ring or R is a PI-ring except when charR = 2 and dimC RC = 4. In order to

completely characterize Jordan τ -derivations of R, they raised the following question.

Question 1.1. Let R be a prime GPI-ring, which is not commutative, with an anti-

automorphism τ . Suppose that neither R is a PI-ring nor R is a division ring. Is any

Jordan τ -derivation of R X-inner?

We remark that, by Martindale’s theorem [10, Theorem 3], if R is both a prime GPI-

ring and a division ring, then it is a PI-ring and Question 1.1 is solved by [16, Theorem 2.9]

in this case. Hence Question 1.1 is reduced to the case that R is a prime GPI-ring but is not

a PI-ring. Given an automorphism (resp. anti-automorphism) g of R, g can be uniquely ex-

tended to an automorphism (resp. anti-automorphism) of Qs(R) (see [2, Proposition 2.5.3]

for the automorphism case and [2, Proposition 2.5.4] for the anti-automorphism case). An

automorphism (resp. anti-automorphism) g is said to be of the first kind if βg = β for all

β ∈ C. Otherwise, g is said to be of the second kind. We first give an affirmative answer
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to Question 1.1 when τ is of the second kind.

Theorem 1.2. Let R be a noncommutative prime ring with an anti-automorphism τ . If τ

is of the second kind, then any Jordan τ -derivation of R is X-inner except when charR = 2

and dimC RC = 4.

We next consider the case that τ is of the first kind. By an X-inner automorphism

we mean an automorphism of the form x 7→ uxu−1 for all x ∈ R, where u ∈ Qs(R).

Kharchenko proved that, given an automorphism σ of a prime GPI-ring, if σ is of the first

kind, then it is X-inner (see [8, Proof of Proposition 2]). By Kharchenko’s theorem, τ2

is X-inner when R is a prime GPI-ring and τ is of the first kind. The complexity of the

question depends on that of τ2.

Definition 1.3. Let R be a prime GPI-ring with an automorphism σ of the first kind.

Then there exists u ∈ Qs(R) such that xσ = uxu−1 for all x ∈ R. We say that deg σ = m

if u is algebraic of minimal degree m over C. Moreover, deg σ = ∞ if u is not algebraic

over C.

Clearly, deg σ is independent of the element u we choose. Also, if deg τ2 = 1, then τ

is an involution and Question 1.1 has been solved in [13, Theorem 1.2]. The following is

the second main theorem of the paper.

Theorem 1.4. Let R be a prime GPI-ring with charR 6= 2 and an anti-automorphism τ

of the first kind. If deg τ2 6= 2, then any Jordan τ -derivation of R is X-inner.

We remark that the case of deg τ2 = 2 keeps unknown.

2. Proof of Theorem 1.2

Throughout the section, R is a prime ring with an anti-automorphism τ of the second

kind. To characterize Jordan τ -derivations of R, we need some results concerning func-

tional identities. In [12], Lee dealt with functional identities on prime rings with an

automorphism. For our purpose, we will follow his viewpoint to get useful results about

functional identities.

We first introduce some notations. For maps f : Rr−1 → Qml(R) and g : Rr−2 →
Qml(R), we write

f i(xr) = f(x1, . . . , xi−1, xi+1, . . . , xr)

and

gij(xr) = gji(xr) = g(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xr)

where xr = (x1, . . . , xr) ∈ Rr and 1 ≤ i < j ≤ r. Our purpose is to prove the following

theorem.
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Theorem 2.1. Let R be a prime ring with an anti-automorphism τ of the second kind.

Suppose that Eit, F`1 : Rr−1 → Qml(R) are (r − 1)-additive maps such that

(2.1)

r∑
i=1

Eii1(xr)xi +

r∑
i=1

Eii2(xr)x
τ
i +

r∑
`=1

x`F
`
`1(xr) ∈ C

for xr ∈ Rr, where 1 ≤ i, ` ≤ r and t = 1, 2. If R is not a PI-ring, then there exist a

nonzero ideal I of R, (r − 2)-additive maps pit`1 : Ir−2 → Qml(R), and (r − 1)-additive

maps λi1 : Ir−1 → C such that

Eii1(xr) =
∑

1≤`≤r
6̀=i

x`p
i`
i1`1(xr) + λii1(xr), Eii2(xr) =

∑
1≤`≤r
`6=i

x`p
i`
i2`1(xr)

and

F ``1(xr) = −
∑

1≤i≤r
i 6=`

pi`i1`1(xr)xi −
∑

1≤i≤r
i 6=`

pi`i2`1(xr)x
τ
i − λ``1(xr)

for all xr ∈ Ir, where 1 ≤ i, ` ≤ r and t = 1, 2.

Corollary 2.2. Let R be a prime ring with an anti-automorphism τ of the second kind.

Suppose that Ei, F` : R
r−1 → Qml(R) are (r − 1)-additive maps such that

r∑
i=1

Eii(xr)x
τ
i +

r∑
`=1

x`F
`
` (xr) ∈ C

for xr ∈ Rr, where 1 ≤ i, ` ≤ r. If R is not a PI-ring, then there exist a nonzero ideal I

of R and (r − 2)-additive maps pi` : I
r−2 → Qml(R) such that

Eii(xr) =
∑

1≤`≤r
6̀=i

x`p
i`
i`(xr) and F `` (xr) = −

∑
1≤i≤r
i 6=`

pi`i`(xr)x
τ
i

for all xr ∈ Ir, where 1 ≤ i, ` ≤ r.

Proof. By Theorem 2.1, there exist a nonzero ideal I of R, (r−2)-additive maps pit`1 : Ir−2

→ Qml(R), and (r − 1)-additive maps λi1 : Ir−1 → C such that

0 =
∑

1≤`≤r
6̀=i

x`p
i`
i1`1(xr) + λii1(xr), Eii(xr) =

∑
1≤`≤r
`6=i

x`p
i`
i2`1(xr),

and

F `` (xr) = −
∑

1≤i≤r
i 6=`

pi`i1`1(xr)xi −
∑

1≤i≤r
i 6=`

pi`i2`1(xr)x
τ
i − λ``1(xr)

for all xr ∈ Ir, where 1 ≤ i, ` ≤ r and t = 1, 2. In view of [1, Theorem 2.4], pi1`1 = 0 and

λi1 = 0 for 1 ≤ i, ` ≤ r. The proof is complete by putting pi` = pi2`1.
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To begin the proof of Theorem 2.1, we first give the following lemma.

Lemma 2.3. Suppose that Ei, F` : R
r−1 → Qml(R) are (r − 1)-additive maps such that

(2.2)
r∑
i=1

Eii(xr)xi +

r∑
`=1

F `` (xr)x
τ
` ∈ C

for xr ∈ Rr, where 1 ≤ i, ` ≤ r. If R is not a PI-ring, then there exists a nonzero ideal I

of R such that Eii = 0 = F `` on Ir for 1 ≤ i, ` ≤ r.

Before proving it, we define the following notation (see [12]). For a map f : Rr−1 →
Qml(R) and t 6= i, we write

f i(xr; {y}t) = f(z1, . . . , zi−1, zi+1, . . . , zr)

where zt = y and zj = xj for j 6= t, i.e., we replace xt by y in f i(xr).

Proof of Lemma 2.3. Let A := {1, 2, . . . , r} and

L := {` ∈ A | there exists a nonzero ideal J of R such that F `` = 0 on Jr}.

We proceed the proof by induction on r − |L|.
Suppose first that r − |L| = 0, i.e., L = A. Then there exists a nonzero ideal J

such that F `` = 0 on Jr for all ` = 1, . . . , r. Thus
∑r

i=1E
i
i(xr)xi ∈ C for all xr ∈ Jr.

By [1, Theorem 2.4], Eii = 0 on Jr for all i = 1, . . . , r, as asserted.

Suppose next that r− |L| ≥ 1. Without loss of generality, we may assume that r /∈ L.

Then, for any nonzero ideal U of R, F rr 6= 0 on U r. Fix β ∈ C with βτ 6= β and choose a

nonzero ideal K of R such that βK ⊆ R. Then, by (2.2), we have

r−1∑
i=1

(
Eii(xr; {βxr}r)− βEii(xr)

)
xi

+
r−1∑
`=1

(
F `` (xr; {βxr}r)− βF `` (xr)

)
xτ` + (βτ − β)F rr (xr)x

τ
r ∈ C

(2.3)

for all xr ∈ Kr. Let K1 = K ∩Kτ . Then K1 is an ideal of R such that Kτ−1

1 ⊆ K and,

by (2.3), we have

(2.4)
r−1∑
i=1

Ẽii(xr)xi + F rr (xr)xr +
r−1∑
`=1

F̃ `` (xr)x
τ
` ∈ C

for all xr ∈ Kr
1 , where

Ẽii(xr) = (βτ − β)−1
(
Eii(xr; {βxτ

−1

r }r)− βEii(xr; {xτ
−1

r }r)
)
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and

F̃ `` (xr) = (βτ − β)−1
(
F `` (xr; {βxτ

−1

r }r)− βF `` (xr; {xτ
−1

r }r)
)
.

Set

L1 := {` | 1 ≤ ` ≤ r − 1, there exists a nonzero ideal J of R such that F̃ `` = 0 on Jr}.

Let ` ∈ L. Then 1 ≤ ` ≤ r − 1 and there is a nonzero ideal N of R such that F `` = 0 on

N r. By the definition of F̃ `` , there exists a nonzero ideal M of R contained in N such that

F̃ `` = 0 on M r and so ` ∈ L1. Thus |L| ≤ |L1| and r − |L| ≥ r − |L1| > (r − 1)− |L1|. By

applying the induction hypothesis on (2.4), we have F `` = 0 on W r for some nonzero ideal

W of R, a contradiction.

Proof of Theorem 2.1. Let A := {1, 2, . . . , r} and

L := {i ∈ A | there exists a nonzero ideal J of R such that Eii2 = 0 on Jr}.

We proceed the proof by induction on r − |L|.
Assume first that r− |L| = 0, i.e., L = A. Then Eii2 = 0 on U r for some nonzero ideal

U of R and so (2.1) becomes

r∑
i=1

Eii1(xr)xi +
r∑
`=1

x`F
`
`1(xr) ∈ C

for xr ∈ U r. Hence the result follows from [1, Corollary 2.11].

Assume next that r − |L| ≥ 1. Without loss of generality, assume that r /∈ L. Then

Err2 6= 0 on any nonzero ideal of R. Let β ∈ C with βτ 6= β and choose a nonzero ideal J

of R such that βJ ⊆ R. Then, by (2.1), we have

r−1∑
i=1

(
Eii1(xr; {βxr}r)− βEii1(xr)

)
xi

+

r−1∑
i=1

(
Eii2(xr; {βxr}r)− βEii2(xr)

)
xτi + Err2(xr)(β

τ − β)xτr

+
r−1∑
`=1

x`
(
F ``1(xr; {βxr}r)− βF ``1(xr)

)
∈ C

for all xr ∈ Jr. Let

Ẽii1(xr) = (βτ − β)−1
(
Eii1(xr; {βxr}r)− βEii1(xr)

)
,

Ẽii2(xr) = (βτ − β)−1
(
Eii2(xr; {βxr}r)− βEii2(xr)

)
,

and

F̃ ``1(xr) = (βτ − β)−1
(
F ``1(xr; {βxr}r)− βF ``1(xr)

)
.
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Then

(2.5)
r−1∑
i=1

Ẽii1(xr)xi +
r−1∑
i=1

Ẽii2(xr)x
τ
i + Err2(xr)x

τ
r +

r−1∑
`=1

x`F̃
`
`1(xr) ∈ C

for all xr ∈ Jr. Choose a nonzero ideal J1 of R contained in J so that Jτ
−1

1 ⊆ J . By (2.5),

we have

r−1∑
i=1

Ẽii1(xr; {xτ
−1

r }r)xi +
r−1∑
i=1

Ẽii2(xr; {xτ
−1

r }r)xτi + Err2(xr)xr

+
r−1∑
`=1

x`F̃
`
`1(xr; {xτ

−1

r }r) ∈ C

for all xr ∈ Jr1 . Set Gii2(xr) := Ẽii2(xr; {xτ
−1

r }r) and

L1 := {i | 1 ≤ i ≤ r − 1, there exists a nonzero ideal J of R such that Gii2 = 0 on Jr}.

Let i ∈ L and i 6= r. Then there exists a nonzero ideal N of R such that Eii2 = 0 on

N r. From the definition of Gii2, there is a nonzero ideal M of R contained in N such that

Gii2 = 0 on M r, and so i ∈ L1. Thus

r − |L| ≥ r − |L1| > (r − 1)− |L1|.

By the induction hypothesis, there exist a nonzero ideal J2 of R contained in J1 and

(r − 2)-additive maps pr2`1 : Jr−2
2 → Qml(R) such that

Err2(xr) =

r−1∑
`=1

x`p
r`
r2`1(xr)

for all xr ∈ Jr2 . Substituting it into (2.1), we have

(2.6)

r∑
i=1

Eii1(xr)xi +
r−1∑
i=1

Eii2(xr)x
τ
i +

r−1∑
`=1

x`
(
F ``1(xr) + pr`r2`1(xr)x

τ
r

)
+ xrF

r
r1(xr) ∈ C

for all xr ∈ Jr2 . By the induction hypothesis, there are a nonzero ideal I of R contained

in J2 and (r − 2)-additive maps pi2`1 : Ir−2 → Qml(R) such that

Eii2(xr) =

r∑
`=1
` 6=i

x`p
i`
i2`1(xr)

for all xr ∈ Ir and 1 ≤ i ≤ r − 1. Thus (2.6) becomes

r∑
i=1

Eii1(xr)xi +
r∑
`=1

x`

F ``1(xr) +
r∑
i=1
i 6=`

pi`i2`1(xr)x
τ
i

 ∈ C
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for all xr ∈ Ir. According to [1, Corollary 2.11], there exist (r − 2)-additive maps

pi1`1 : Ir−2 → Qml(R) and (r − 1)-additive maps λi1 : Ir−1 → C such that

Eii1(xr) =
∑

1≤`≤r
6̀=i

x`p
i`
i1`1(xr) + λii1(xr)

and

F ``1(xr) +
r∑
i=1
i 6=`

pi`i2`1(xr)x
τ
i = −

∑
1≤i≤r
i 6=`

pi`i1`1(xr)xi − λ``1(xr)

for all xr ∈ Ir, where 1 ≤ i, ` ≤ r, as asserted.

Note that if δ : R→ Qms(R) is a Jordan τ -derivation, then

(2.7) δ(xy + yx) = δ(x)yτ + yδ(x) + δ(y)xτ + xδ(y)

for all x, y ∈ R.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. According to [16, Theorem 2.9], we can assume that R is not a

PI-ring. Let δ : R → Qms(R) be a Jordan τ -derivation. Define the bi-additive map

B : R×R→ Qms(R) by B(x, y) = δ(xy+yx) for x, y ∈ R. It follows from [14, Lemma 2.3]

that

B(xw, yz)−B(x,wyz) = B(zxw, y)−B(zx,wy)

for all x, y, z, w ∈ R. So, by (2.7), we have(
δ(yz)wτ − δ(wyz)

)
xτ +

(
δ(xw)zτ − δ(zxw)

)
yτ

+
(
δ(wy)xτ − δ(y)wτxτ

)
zτ +

(
δ(zx)yτ − δ(x)zτyτ

)
wτ

+ x
(
wδ(yz)− δ(wyz)

)
+ y
(
zδ(xw)− δ(zxw)

)
+ z
(
xδ(wy)− xwδ(y)

)
+ w

(
yδ(zx)− yzδ(x)

)
= 0

for all x, y, z, w ∈ R. According to Corollary 2.2, there exist a nonzero ideal I1 of R and

bi-additive maps r13, r23, r43 : I2
1 → Qml(R) such that

x
(
δ(wy)− wδ(y)

)
= −r13(y, w)xτ − r23(x,w)yτ − r43(x, y)wτ

for all x, y, w ∈ I1. Again, there are additive maps p, q : I2 → Qml(R) so that

δ(wy)− wδ(y) = −p(y)wτ − q(w)yτ

for all y, w ∈ I2, where I2 is a nonzero ideal of R contained in I1. Let x, y, t ∈ I2. We have

(2.8) δ(xy) = xδ(y)− p(y)xτ − q(x)yτ .
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Replacing x by tx in (2.8), we obtain

δ(txy) = txδ(y)− p(y)xτ tτ − q(tx)yτ .

Left-multiplying (2.8) by t, we get tδ(xy) = txδ(y)− tp(y)xτ − tq(x)yτ . Thus,

δ(txy)− tδ(xy) =
(
tq(x)− q(tx)

)
yτ − p(y)xτ tτ + tp(y)xτ .

Replacing x, y by t, xy respectively in (2.8), we have

δ(txy)− tδ(xy) = −p(xy)tτ − q(t)yτxτ .

Comparing the two equalities above, we see that(
tq(x)− q(tx)

)
yτ +

(
p(xy)− p(y)xτ

)
tτ +

(
tp(y) + q(t)yτ

)
xτ = 0

for all x, y, t ∈ I2. By Lemma 2.3,

tq(x) = q(tx), p(xy) = p(y)xτ and tp(y) = −q(t)yτ

for all x, y, t ∈ I3, where I3 is a nonzero ideal of R contained in I2. According to [11,

Lemma 2.1], there is a ∈ Qml(R) such that q(x) = xa for x ∈ I3. So

tp(y) = −q(t)yτ = −tayτ

for t, y ∈ I3, i.e., I3

(
p(y) + ayτ

)
= 0 for all y ∈ I3. Thus, p(y) = −ayτ and it follows from

(2.8) that

δ(xy)− xδ(y) = ayτxτ − xayτ

for x, y ∈ I3. Let δ̃ : I3 → Qml(R) be defined by δ̃(x) = axτ − xa for all x ∈ I3. Then

δ̃(xy) = ayτxτ − xya and

(δ̃ − δ)(xy) = xayτ − xya− xδ(y) = x(δ̃ − δ)(y)

for x, y ∈ I3. So there exists c ∈ Qml(R) such that (δ̃ − δ)(x) = xc for all x ∈ I3

(see [11, Lemma 2.1]). Define J := δ̃ − δ, a Jordan τ -derivation of I3. Thus, x2c =

J(x2) = xJ(x) + J(x)xτ = x2c + xcxτ for all x ∈ I3; that is, xcxτ = 0 for all x ∈ I3.

By [5, Lemma 2.2], c = 0 follows, i.e., δ = δ̃ on I3. Therefore, δ(x) = axτ − xa for x ∈ I3.

By [16, Lemma 2.6], a ∈ Qms(R). Finally, we will show that δ is X-inner. Let x ∈ I3 and

y ∈ R. Then

δ(xy + yx) = ayτxτ + axτyτ − xya− yxa

and

δ(xy + yx) = δ(x)yτ + yδ(x) + δ(y)xτ + xδ(y)

= axτyτ − xayτ + yaxτ − yxa+ δ(y)xτ + xδ(y).
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Comparing these equations, we have(
δ(y)− (ayτ − ya)

)
xτ + x

(
δ(y)− (ayτ − ya)

)
= 0

for all x ∈ I3 and y ∈ R. Fix y ∈ R and set q := δ(y)− (ayτ − ya). Then, for x, z ∈ I3,

xzq = −q(xz)τ = −qzτxτ = zqxτ = −zxq

and so (xz + zx)q = 0 for all x, z ∈ I3. This implies (xz + zx)q = 0 for all x, z ∈ Qml(R).

If charR 6= 2, let z = 1 and so 2xq = 0 for all x ∈ Qml(R) implying q = 0. If charR = 2,

then [Qml(R), Qml(R)]q = 0 forcing q = 0. Hence δ(y) = ayτ − ya for all y ∈ R, as

desired.

3. Proof of Theorem 1.4

Throughout the section, R is a prime GPI-ring with an anti-automorphism τ of the first

kind. Let u ∈ Qs(R) be fixed such that xτ
2

= uxu−1 for all x ∈ R.

Lemma 3.1. uτu = uuτ ∈ C.

Proof. Let x ∈ R. Then

uτux = uτxτ
2
u = (xτu)τu = (u(xτ )τ

−2
)τu = xuτu.

Hence uτu = uuτ ∈ C.

Now, by Lemma 3.1, we fix β := uτu = uuτ ∈ C and so uτ = βu−1. Since R is a prime

GPI-ring, RC is a primitive ring with nonzero socle and so Qms(RC) = Qs(RC). In view

of [5, Theorem 1.2], the aim of this section is to extend δ to a Jordan τ -derivation of RC

when charR 6= 2. The following result plays a key role.

Lemma 3.2. Let f : R→ Qml(R) be an additive map such that

(3.1) xf(y) + f(y)xτ = yf(x) + f(x)yτ

for all x, y ∈ R. If deg τ2 > 2, then f = 0 on some nonzero ideal I of R.

Proof. Choose a nonzero ideal such that uI1 ⊆ R. Then, by replacing x with ux in (3.1),

uxf(y)u+ βf(y)xτ = yf(ux)u+ f(ux)yτu

for x ∈ I1. Also, by (3.1),

uxf(y)u+ uf(y)xτu = uyf(x)u+ uf(x)yτu.
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Comparing the two equations, we have

(3.2) βf(y)xτ − uf(y)xτu = yf(ux)u− uyf(x)u+
(
f(ux)− uf(x)

)
yτu

for x ∈ I1. Replacing y by uy in (3.2),

βf(uy)xτ − uf(uy)xτu = uyf(ux)u− u2yf(x)u+ β
(
f(ux)− uf(x)

)
yτ .

Also, by (3.2),

uβf(y)xτ − u2f(y)xτu = uyf(ux)u− u2yf(x)u+ u
(
f(ux)− uf(x)

)
yτu.

Comparing the two equations, we have

β
(
f(uy)− uf(y)

)
xτ − u

(
f(uy)− uf(y)

)
xτu

= β
(
f(ux)− uf(x)

)
yτ − u

(
f(ux)− uf(x)

)
yτu

for all x, y ∈ I1. By [1, Theorem 2.5], f(uy) = uf(y) for all y ∈ I1. So (3.2) becomes

(3.3) βf(y)xτ − uf(y)xτu = yuf(x)u− uyf(x)u

for all x, y ∈ I1. Choose a nonzero ideal I2 of R contained in I1 such that uI2 ⊆ I1.

Replacing x by ux in (3.3), we have

β2f(y)xτ − βuf(y)xτu = yu2f(x)u2 − uyuf(x)u2

for all x, y ∈ I2. On the other hand, (3.3) implies

β2f(y)xτ − βuf(y)xτu = β
(
yuf(x)u− uyf(x)u

)
for all x, y ∈ I2. Comparing the two equations, we have

y
(
βuf(x)− u2f(x)u

)
+ uy

(
uf(x)u− βf(x)

)
= 0

for all x, y ∈ I2. Similarly, uf(x)u = βf(x) for all x ∈ I2. Thus (3.3) becomes

(3.4) βf(y)xτ − uf(y)xτu = βyf(x)− uyf(x)u

for all x, y ∈ I2. Choose a nonzero ideal I3 of R contained in I2 such that I3u ⊆ I2.

Replacing y by yu in (3.4),

βf(yu)xτ − uf(yu)xτu = βyuf(x)− uyuf(x)u = β2yf(x)u−1 − βuyf(x)

= β
(
βyf(x)− uyf(x)u

)
u−1 = β2f(y)xτu−1 − βuf(y)xτ

for all x, y ∈ I3. So we get

β2f(y)xτ −
(
βuf(y) + βf(yu)

)
xτu+ uf(yu)xτu2 = 0

for all x, y ∈ I3. By [1, Theorem 2.5], f(y) = 0 for all y ∈ I3, as desired.
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Remark 3.3. In Lemma 3.2, the case for deg τ2 = 1 had been solved by Beidar and

Martindale III (see [1]). However, the solution of (3.1) is still unknown when deg τ2 = 2.

If we can solve it, then the same result holds for deg τ2 = 2 in Theorem 1.4.

Lemma 3.4. Suppose deg τ2 > 2. Then, for each α ∈ C, there exists an nonzero ideal I

of R such that αI ⊆ R and δ(αx) = αδ(x) for all x ∈ I.

Proof. Choose a nonzero ideal I1 of R such that αI1 ⊆ R. Let x, y ∈ I1. Then

δ((αx)y + y(αx)) = δ(αx)yτ + yδ(αx) + αδ(y)xτ + αxδ(y)

and

δ(x(αy) + (αy)x) = αδ(x)yτ + αyδ(x) + δ(αy)xτ + xδ(αy).

Comparing the two equations, we have(
δ(αy)− αδ(y)

)
xτ + x

(
δ(αy)− αδ(y)

)
=
(
δ(αx)− αδ(x)

)
yτ + y

(
δ(αx)− αδ(x)

)
.

By Lemma 3.2, there is a nonzero ideal I of R contained in I1 such that δ(αx) = αδ(x)

for all x ∈ I.

Lemma 3.5. Suppose deg τ2 > 2. Then every Jordan τ -derivation δ of R can be extended

to a Jordan τ -derivation of RC.

Applying Lemma 3.5, we are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. In view of [16, Theorem 2.9], we can assume that R is not a PI-

ring. By [13, Theorem 1.2], we also assume that deg τ2 > 2. Recall that if R is a

prime GPI-ring and RC is a division ring, then R is a PI-ring. So RC is not a division

ring. Let δ : R → Qms(R) be a Jordan τ -derivation of R. Since the socle of RC is

nonzero, Qms(RC) = Qs(RC). By Lemma 3.5, δ can be extended to a Jordan τ -derivation

δ̃ : RC → Qs(RC) of RC. According to [5, Theorem 1.2], there exists a ∈ Qs(RC) such

that δ̃(x) = axτ − xa for x ∈ RC. In particular, δ(x) = axτ − xa for all x ∈ R. As a

consequence of [2, Proposition 2.1.10], Qms(R) = Qms(RC) = Qs(RC) and so a ∈ Qms(R).

Hence δ is X-inner, as desired.

Proof of Lemma 3.5. Choose a subset {wi}i∈Φ of R which is a basis of RC over C, where

Φ is a nonempty well-ordered set. Then any element of RC can be written as the form∑
i∈Φ αiwi, where αi = 0 for all but finitely many i ∈ Φ. Recall that Qms(R) = Qms(RC).

Define δ̃ : RC → Qms(RC) by

δ̃

(∑
i∈Φ

αiwi

)
=
∑
i∈Φ

αiδ(wi).
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Then it is clearly a well-defined additive map since {wi}i∈Φ forms a basis of RC over C.

We claim that δ̃|R = δ. Let x ∈ R. Write x =
∑

i∈Φ αiwi. By Lemma 3.4, there is a

nonzero ideal I of R such that αiI ⊆ R and δ(αiy) = αiδ(y) for all i ∈ Φ and y ∈ I. Let

y ∈ I. Then

δ(xy + yx) =
∑
i∈Φ

δ
(
(αiy)wi + wi(αiy)

)
=
∑
i∈Φ

δ(αiy)wτi + δ(wi)αiy
τ + wiδ(αiy) + αiyδ(wi)

= δ(y)xτ + xδ(y) +
∑
i∈Φ

(
αiδ(wi)y

τ + αiyδ(wi)
)
.

Comparing this with (2.7), we have(
δ(x)−

∑
i∈Φ

αiδ(wi)

)
yτ + y

(
δ(x)−

∑
i∈Φ

αiδ(wi)

)
= 0

for all y ∈ I. By applying the same argument as the last part of the proof of Theorem 1.2,

we have δ(x) =
∑

i∈Φ αiδ(wi) = δ̃(x) and so the claim holds.

Finally we show that δ̃ is a Jordan τ -derivation. Let x =
∑

i∈Φ αiwi ∈ RC. For each

i, j ∈ Φ, write wiwj =
∑

k∈Φ γ
ij
k wk ∈ R, where γijk ∈ C. Then

δ̃(x2) = δ̃

∑
i, j

αiαjwiwj

 = δ̃

∑
i, j

αiαj
∑
k∈Φ

γijk wk

 =
∑
i, j

αiαj
∑
k∈Φ

γijk δ(wk)

=
∑
i, j

αiαj δ̃(wiwj) =
∑
i, j

αiαjδ(wiwj) =
∑
i

α2
i δ(w

2
i ) +

∑
i<j

αiαjδ(wiwj + wjwi)

=
∑
i

α2
i

(
wiδ(wi) + δ(wi)w

τ
i

)
+
∑
i<j

αiαj
(
δ(wi)w

τ
j + wjδ(wi) + δ(wj)w

τ
i + wiδ(wj)

)
= xδ̃(x) + δ̃(x)xτ .

Hence the proof of Lemma 3.5 is complete.
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[3] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104

(1988), no. 4, 1003–1006.
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[5] C.-L. Chuang, A. Fošner and T.-K. Lee, Jordan τ -derivations of locally matrix rings,

Algebr. Represent. Theory 16 (2013), no. 3, 755–763.

[6] J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), no. 2,

321–324.
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